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Summary

The Rosenberg-Ware theorem states that for a Galois extension K/F of odd
degree the natural map of Witt rings of quadratic forms

W (F )→W (K)Gal(K/F )

is an isomorphism. We extend this result to arbitrary field extensions K/F of odd
degree. Basically we show that (Proposition 1)

0→W (F )
rK/F−−−→W (K)

i1−i2−−−→W (K ⊗K)

is exact, where i1, i2 are induced from the two natural maps K → K⊗K. Further it
is shown that an element of the graded Witt ring is represented by a Pfister form if
this is true after an extension of odd degree (Proposition 2). We apply this to trace
forms of exceptional Jordan algebras (Proposition 3). In the last section similar
questions for symbols in Milnor’s K-theory and Galois cohomology are considered.

The final version of this article has been prepared during a visit at ETH Zurich.
I thank the FIM at ETH Zurich for its hospitality.

1. The transfer map

For generalities on quadratic forms we refer to [7, 9].
Let F be a field of characteristic different from 2 and let W (F ) be the Witt

group of quadratic forms over F . Due to the Witt cancelation theorem one may
identify W (F ) with the set of isomorphism classes of anisotropic quadratic forms
over F .

For a field extension K/F we denote by

rK/F : W (F )→W (K),

rK/F ([ϕ]) = [ϕK ]

the homomorphism given by extension of scalars.
Let s : K → F be a nontrivial F -linear map. According to Scharlau [9, Chap. 2,

§ 5] there is an associated transfer map

s∗ : W (K)→W (F ),

s∗([ψ]) = [s ◦ ψ]

such that

s∗ ◦ rK/F (x) = s∗(1)x.
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If K/F has odd degree, then s can be chosen so that

s∗(1) = 1,

cf. [9, Chap. 2, Lemma 5.8]. In this case s∗ is a left inverse to rK/F . It follows that
the restriction map rK/F is injective for extensions K/F of odd degree.

If K/F is purely inseparable (necessarily of odd degree since charF 6= 2), then
K and F have the same square class groups. Hence every quadratic form over K
is extended from a form over F , as can be seen via diagonalization. Therefore
W (F ) = W (K) in the purely inseparable case.

Let I(F ) ⊂ W (F ) be the fundamental ideal consisting of the classes of even
dimensional quadratic forms and let In(F ) denote its n-th power. The transfer
maps respect the filtration of the Witt ring by the powers of its fundamental ideal,
i. e.,

s∗
(
In(K)

)
⊂ In(F ),

cf. [1, Lemma 3.2]. It follows that

In(F ) = r−1K/F
(
In(K)

)
for an extension K/F of odd degree.

2. Descent for extensions of odd degree

Let K/F be a finite field extension. For each prime ideal m of K ⊗F K let

Hm = (K ⊗F K)/m,

and let

i1m, i
2
m : W (K)→W (Hm)

be the restriction maps induced from the homomorphisms

K → Hm, a 7→ a⊗ 1 mod m, a 7→ 1⊗ a mod m,

respectively. We put

δ : W (K)→
∏
m

W (Hm),

δ(x) =
(
(i1m − i2m)(x)

)
m
.

Proposition 1. Let K/F be an extension of odd degree. Then the sequence

0→W (F )
rK/F−−−→W (K)

δ−→
∏
m

W (Hm)

is exact.

Proof. The injectivity of rK/F has been discussed already. Further, using the bi-
jectivity of rK/F in the purely inseparable case, one easily reduces to separable
extensions K/F . In this case one has

K ⊗F K =
⊕
m

Hm.

Let s : K → F be F -linear with s∗(1) = 1 and let sm : Hm → K be the compo-
nents of s⊗ idK , i. e.,

s(a)b =
∑
m

sm(a⊗ b mod m).
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With these settings one has for x ∈W (K)∑
m

(sm)∗
(
i1m(x)

)
= rK/F ◦ s∗(x),∑

m

(sm)∗
(
i2m(x)

)
= s∗(1)x = x,

as may be verified on the level of forms.
If x ∈ ker δ, then i1m(x) = i2m(x) for all m, whence x = rK/F ◦ s∗(x). �

The Rosenberg-Ware theorem appears as a special case of Proposition 1. Namely
if K/F is a Galois extension with Galois group G, the map δ can be identified with
the homomorphism

W (K)→
∏
σ∈G

W (K),

x 7→
(
(1− σ)(x)

)
σ
.

Therefore ker δ equals the subgroup of Galois invariants.

3. Descent of Pfister forms

An n-fold Pfister form is a quadratic form of type

〈〈a1, . . . , an〉〉 =

n⊗
i=1

〈1,−ai〉

with ai ∈ F ∗.
The classes of n-fold Pfister forms generate In(F ). If a Pfister form is isotropic,

then it is hyperbolic [7, Chap. Ten].
A basic theorem of Pfister [9, Chap. 4, Theorem 4.4] asserts that an anisotropic

quadratic form ϕ in indeterminates X = (x1, . . . , xm) is isomorphic to a Pfister
form if and only if

(1) ϕ(X)ϕF (X) ' ϕF (X).

If α and β are n-fold Pfister forms such that

α = β mod In+1(F )

in W (F )/In+1(F ), then α and β are isomorphic [7, Chap. Ten, Corollary 3.4].

Lemma. Let ϕ be a quadratic form over F , let K/F be an extension of odd degree,
and suppose that ϕK is isomorphic to a Pfister form. Then ϕ is isomorphic to a
Pfister form.

Proof. Since ϕK is a Pfister form, the dimension of ϕ is a 2-power. If ϕK is isotropic,
it is hyperbolic and therefore ϕ is hyperbolic. It follows that ϕ is a Pfister form.

Assume that ϕK is anisotropic. Then ϕ is anisotropic and the claim follows from
the criterion (1) and the injectivity of W

(
F (X)

)
→W

(
K(X)

)
. �

Proposition 2. Let ϕ be a quadratic form over F , let K/F be an extension of odd
degree, and suppose that there exists an n-fold Pfister form β over K such that

ϕK = β mod In+1(K).

Then there exists an n-fold Pfister form α over F such that

ϕ = α mod In+1(F ).
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Proof. Let H/F be a field extension and let f , g : K → H be two homomorphisms
over F . We denote the by rf resp. rg the extension of scalars via f resp. g. Obviously

rf (β) = rg(β) mod In+1(H).

Hence rf (β) = rg(β) in W (H).
Using the last equality for the fields Hm, it follows from Proposition 1 that

β ∈ rK/F
(
W (F )

)
. The Lemma shows β = αK for some Pfister form α. Then

(ϕ− α)K ∈ In+1(K) and therefore ϕ− α ∈ In+1(F ). �

Corollary 1. Let 0 ≤ n1 < n2 < · · · < nr be integers and let c1, . . . , cr ∈ F ∗. Let
further ϕ be a quadratic form over F , let K/F be an extension of odd degree, and
suppose that there exist ni-fold Pfister forms βi over K (i = 1, . . . , r) such that

ϕK = c1β1 + c2β2 + · · ·+ crβr

in W (K). Then there exist ni-fold Pfister forms αi over F such that βi = (αi)K
(i = 1, . . . , r) and

ϕ = c1α1 + c2α2 + · · ·+ crαr

in W (F ). Moreover, if for some j > i one has βj = 〈〈b1, . . . , bs〉〉βi for some
bk ∈ K∗, then αj = 〈〈a1, . . . , as〉〉αi for some ak ∈ F ∗.

Proof. For the first statement we use induction on r ≥ 0. One has ϕK = β1 mod
In1+1(K). By Proposition 2 there exists an n1-fold Pfister form α over F such that
ϕ = α mod In1+1(F ). Then necessarily β1 = αK . The claim follows by applying
the induction hypothesis to the form ϕ⊥−c1α.

For the second statement first note that αi is a subform of αj by Springer’s
theorem [9, Chap. 2, Theorem 5.3]. The claim follows from [3, Theorem 2.7]. �

Quadratic forms ϕ of the type as in Corollary 1 appear when studying trace
forms of various algebras. An example is considered in the next section.

4. Serre’s (mod 2) invariants for F4

It has been noticed by Serre that there are cohomological invariants

f3 : H1(F, F4)→ H3(F,Z/2),

f5 : H1(F, F4)→ H5(F,Z/2),

cf. [10, III. Annexe, § 3.4] or [11, III. Appendix 2, 3.4] and [6, § 40]. The construc-
tion of these invariants is based on the interpretation of H1(F, F4) as the set of
isomorphism classes of exceptional Jordan algebras (cf. [5, 6, 12]) and the following
description of their trace forms:

Proposition 3. Let J be an exceptional Jordan algebra over F and let

qJ : J → F,

qJ(x) = TJ(x2),

where TJ denotes the trace map of J . Then there exist elements a1, . . . , a5 ∈ F ∗
such that

(2) qJ ' 〈1, 1, 1〉 ⊥ 2〈〈a1, a2, a3〉〉〈−a4,−a5, a4a5〉.



A DESCENT PROPERTY FOR PFISTER FORMS 5

In terms of this description, Serre’s invariants are given by

f3([J ]) = (a1)(a2)(a3), f5([J ]) = (a1)(a2)(a3)(a4)(a5).

For a proof of Proposition 3 using an analysis of the Tits constructions of excep-
tional Jordan algebras see [6, Lemma 40.1].

Alternatively one can prove Proposition 3 using Corollary 1 as follows. Let
ϕ = 2

(
qJ ⊥ −〈1, 1, 1〉

)
. After passing to an appropriate cube extension K/F , the

Jordan algebra J has zero divisors. In this case (the so called “reduced” case), the
description (2) of the trace form can be read off a presentation of J in terms of 3×3
matrices over an octonion algebra [5, 6]. Hence ϕK = 〈〈b1, b2, b3, b4, b5〉〉−〈〈b1, b2, b3〉〉
in W (K) for some bi ∈ K∗. By Corollary 1 one has ϕ = 〈〈a1, a2, a3, a4, a5〉〉 −
〈〈a1, a2, a3〉〉 in W (F ) for some ai ∈ F ∗, whence (2).

5. Descent for (mod 2) symbols in Milnor’s K-ring

Let KM
n F be Milnor’s K-group of F [2, 8]. For a1, . . . , an ∈ F ∗ one denotes by

{a1, . . . , an} the image of a1 ⊗ · · · ⊗ an in KM
n F .

Let p 6= charF be a prime. By a (mod p)-symbol we understand an element in
KM
n F/p of the form {a1, . . . , an} mod pKM

n F . Let us call an element x ∈ KM
n F/p

a weak (mod p)-symbol, if there exists a finite field extension K/F of degree prime
to p such that xK is a (mod p)-symbol.

Is a weak (mod p)-symbol always a (mod p)-symbol?
I don’t know any counterexample. For p = 2 one has:

Corollary 2. Every weak (mod 2)-symbol is a (mod 2)-symbol.

Proof. Milnor [8] defined a homomorphism

sn : KM
n F/2→ In(F )/In+1(F ),

sn({a1, . . . , an}) = 〈〈a1, . . . , an〉〉 mod In+1(F ).

The map sn is surjective and it is injective on symbols [3, Prop. 2.1].
Let x ∈ KM

n F/2, let K/F be of odd degree, and suppose that

xK = {b1, . . . , bn}

with bi ∈ K∗. Let ϕ be a quadratic form such that

sn(x) = ϕ mod In+1(F ).

Applying Milnor’s homomorphism over K yields

〈〈b1, . . . , bn〉〉 = ϕK mod In+1(K).

By Proposition 2 there exist ai ∈ F ∗ with

sn(x) = sn({a1, . . . , an}).

Since sn is injective on symbols one has

xK = {a1, . . . , an}K mod 2KM
n K.

Applying the transfer map in Milnor’s K-theory yields

x = {a1, . . . , an} mod 2KM
n F

since K/F is of odd degree. �
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If n = 2 and µp ⊂ F , the question whether a weak symbol is a symbol is
equivalent to the question whether an algebra of prime degree p is cyclic. This is
known for p ≤ 3 and unsettled otherwise.

Using the results of [4] one can show that every weak symbol in KM
2 F/3 is a

symbol for any field F of characteristic different from 2 and 3.
Beyond the cases p = 2 and n = 2, p = 3 not much seems to be known, even

for instance for the following question: Let K/F be a quadratic extension, let
x ∈ KM

3 F/3 and suppose that xK is a symbol. Is then x itself a symbol? Similar
for x ∈ KM

2 F/5.
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