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1. Introduction

Let
f(x, y) = a0x

d + a1x
d−1y + · · ·+ ady

d−1

be a homogeneous form of degree d in 2 variables. The discriminant of f is a
homogeneous polynomial of degree 2d− 2 in the coefficients ai.

In this text we describe a presentation of the discriminant as the determinant of
a (2d − 2) × (2d − 2)-matrix which is linear in the coefficients of f . There are no
denominators and the method works over any ring in a coordinate free way. The
construction has a natural explanation in terms of jet spaces.

In brief, the discriminant of f is the determinant of the equation

afx + bfy − (ax + by)f = 0

or, in a more compact form,

(a/f)x + (b/f)y = 0

where a, b are homogeneous forms of degree d− 2.
As is well known, the determinant of

afx + bfy = 0

is the resultant of the derivatives fx, fy which is dd−2 times the discriminant. The
extra term −(ax + by)f eliminates the factor dd−2, so to speak.
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2. Preliminaries and Examples

We use the notations disc(f) and

∆(f) = (−1)d(d−1)/2 disc(f)

for the two common definitions of the discriminant (see [1, A IV.76], [2]). They are
characterized by

disc(f) =
∏

i6=j

(αi − αj)

∆(f) =
∏

i<j

(αi − αj)
2

for a polynomial of the form f(x, y) =
∏d

i=1(x− αiy).
For d = 2, 3 one has

∆(f) = a21 − 4a0a2

∆(f) = a21a
2
2 − 4a0a

3
2 − 4a3a

3
1 − 27a20a

2
3 + 18a0a1a2a3

respectively, and disc(f) = −∆(f) in both cases.
A standard method to describe (or define) disc(f) is to consider the resultants

of f and its derivatives. One has

disc(f) =
1

a0
Res(f, fx) =

1

dd−2
Res(fx, fy)

and the resultant may be computed with the Sylvester matrix [1, A IV.71].
For instance computing via Res(f, fx) yields for d = 2

disc(f) =
1

a0
|f, xfx, yfx| =

1

a0

∣∣∣∣∣∣

a0 2a0 0
a1 a1 2a0
a2 0 a1

∣∣∣∣∣∣
= 4a0a2 − a21

and computing via Res(fx, fy) yields for d = 3

disc(f) =
1

3
|xfx, yfx, xfy, yfy| =

1

3

∣∣∣∣∣∣∣∣

3a0 0 a1 0
2a1 3a0 2a2 a1
a2 2a1 3a3 2a2
0 a2 0 3a3

∣∣∣∣∣∣∣∣

There are several methods to get rid of the denominators. A basic remark is
Eulers relation

xfx + yfy = df

As for 1
a0

Res(f, fx), one first subtracts d-times the first column xd−2f from the

d-th column xd−1fx. Then the first row has just a0 in the first place and one drops
the first line and column. This results in

disc(f) =
∣∣xd−3f, . . . , yd−3f,−xd−2fy, x

d−2fx, . . . , y
d−2fx

∣∣

For d = 3 this gives

disc(f) = |f,−xfy, xfx, yfx|
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To eliminate the factor dd−2 from Res(fx, fy) one may rearrange the matrix so
that one can divide by d on a (d− 2)-dimensional subspace.

Let us first consider the example d = 3. To get rid of the factor 3 one uses again
Eulers relation

xfx + yfy = 3f

It shows that one may simply replace the first or the last column by f and drop
the denominator 3. This results for instance in

disc(f) = |xfx, yfx, xfy, f |

However, to get more symmetry it is better to replace the columns xfx, yfy by

u = xfx − f, v = yfy − f

Indeed, since u+ v = f , one has

xfx = 2u+ v

yfy = v + 2u

and the factor
∣∣ 2 1
1 2

∣∣ = 3 gets eliminated. Thus

disc(f) = |xfx − f, yfx, xfy, yfy − f | =

∣∣∣∣∣∣∣∣

2a0 0 a1 −a0
a1 3a0 2a2 0
0 2a1 3a3 a2

−a3 a2 0 2a3

∣∣∣∣∣∣∣∣

3. Description of the discriminant as determinant

The last example generalizes to any degree d as follows. Let Sk denote the space
of homogeneous polynomials of degree k in x, y. One has rankSk = k + 1. Given
f ∈ Sd, consider the map

Φf : S
d−2 ⊕ Sd−2 → S2d−3

Φf (a, b) = afx + bfy − (ax + by)f

Since both spaces have the same dimension, one can take the determinant. If one
chooses the respective basis over the ground ring Z, that determinant is well-defined
up to sign. With the basis as in [1, A IV.71] one gets

(1) disc(f) = det(Φf )

Without the extra term −(ax + by)f , the map Φf would give the usual Sylvester
matrix computing the resultant Res(fx, fy) (as above for d = 3).

We will prove (1) in two ways. A first step is to define Φf in a coordinate free
way.

Let V be a locally free module of rank 2 and let

D : SkV → V ⊗ Sk−1V

D(v1 · · · vk) =
∑

i

vi ⊗ v1 · · · vi−1vi+1 · · · vk

be the derivative. For f ∈ SdV the map Φf reads as

Φf : V
∗ ⊗ Sd−2V → S2d−3V

Φf (ϕ⊗ g) = (Df)(ϕ) · g − (Dg)(ϕ) · f
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It follows in particular that f → Φf is SL(2)-invariant. In this setting, (1) reads as

det(Φv1···vd) =
∏

i6=j

(vi ∧ vj) ∈ (Λ2V )d(d−1)

Note further that

Φf (a, b) = (afx − axf) + (bfy − byf)

Hence a compact way to write Φf is

−Φf (a, b)/f
2 = (a/f)x + (b/f)y

If f has a double root, say f = x2g, then Φf has the zero (a, b) = (0, g).
To prove (1) recall the formula

∆(xg) = g(0, 1)2∆(g)

for g ∈ Sd−1 which is another way of characterizing ∆. The corresponding state-
ment for det(Φ) follows from the commutative diagram with exact rows

(2)

Sd−3 ⊕ Sd−3 ·(x,x)
−−−−→ Sd−2 ⊕ Sd−2 −−→ 〈yd−2〉 ⊕ 〈yd−2〉

Φg

y Φxg

y
y
(

∗ g(0,1)
g(0,1) 0

)

S2d−5 ·x2

−−→ S2d−3 −−→ 〈xy2d−4, y2d−3〉

By induction one concludes (1).
The commutativity of (2) follows from a direct computation. One has

Φxg = a(g + xgx) + bxgy − (ax + by)xg

Taking this mod xS2d−4 yields

Φxg(a, b) ≡ a(0, 1)g(0, 1)y2d−3 (mod xS2d−4)

This explains the second row in the matrix on the right of (2).
Assume then a(0, 1) = 0 so that a = xã. One has

Φxg(xã, b) = xã(g + xgx) + bxgy − (ã+ xãx + by)xg

which yields

(3) Φxg(xã, b) = (bgy − byg)x+ (ãgx − ãxg)x
2

Calculating mod x2S2d−3 yields

Φxg(xã, b) ≡ (bgy − byg)x

≡ b(0, 1)g(0, 1)
(
yd−2(yd−1)y − (yd−2)yy

d−1
)
x

≡ b(0, 1)g(0, 1)y2d−4x

This explains the first row in the matrix on the right of (2).
Another consequence of (3) is

Φxg(xã, xb̃) = x2Φg(ã, b̃)

which means the commutativity of the first square of (2).
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4. Demonstration via the resultant

Another proof of (1) stems from a direct comparison with the Sylvester matrix
for the resultant which is given by

Ψf : S
d−2 ⊕ Sd−2 → S2d−3

Ψf (a, b) = afx + bfy

or, without coordinates, by

Ψf : V
∗ ⊗ Sd−2V → S2d−3V

Ψf (ϕ⊗ g) = (Df)(ϕ) · g

It is convenient to tensor with the line bundle Λ2V and to rewrite Ψf and Φf as

Ψf ,Φf : V ⊗ Sd−2V → Λ2V ⊗ S2d−3V

Ψf (v ⊗ g) = v ∧Df · g

Φf (v ⊗ g) = v ∧Df · g − v ∧Dg · f

Thus

Φf = Ψf − λ · f

with

λ : V ⊗ Sd−2V → Λ2V ⊗ Sd−3V

λ(v ⊗ g) = v ∧Dg

There is the standard exact sequence

0 → Λ2V ⊗ Sd−3V
κ
−→ V ⊗ Sd−2V

µ
−→ Sd−1V → 0

with

κ
(
(v ∧ w)⊗ h

)
= v ⊗ wh− w ⊗ vh

and with µ the multiplication in the symmetric algebra. One has λ ◦ D = 0 (in
derivative notation this is hxy = hyx) and the following variants of Eulers relation

λ ◦ κ = d− 1

κ ◦ λ+D ◦ µ = d− 1

µ ◦D = d− 1

Now a key observation is that

Ψf ◦ κ : Λ2V ⊗ Sd−3V → Λ2V ⊗ S2d−3V

is multiplication by df :

Ψf ◦ κ = df

Thus if we put (assuming for a moment that d is a non zero divisor)

M =
1

d
κ(Λ2V ⊗ Sd−3V ) + V ⊗ Sd−2V ⊂

1

d
(V ⊗ Sd−2V )

there is the induced morphism

Ψ̃f : M → S2d−3V
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For the determinants one has

det(Ψf ) = drankSd−3V det(Ψ̃f )

so that

det(Ψ̃f ) = disc(f)

The module M can be defined without assuming that d is a non zero divisor by
means of extensions:

Λ2V ⊗ Sd−3V
κ

−−→ V ⊗ Sd−2V
µ

−−→ Sd−1V

d

y p

y
∥∥∥

Λ2V ⊗ Sd−3V
κM−−→ M −−→ Sd−1V

In other words

M =
Λ2V ⊗ Sd−3V ⊕ V ⊗ Sd−2V

(d,−κ)(Λ2V ⊗ Sd−3V )

and Ψ̃f is given by

Ψ̃f([β, α]) = Ψf (α) + β · f

A further observation is that there is the isomorphism

r : Λ2V ⊗ Sd−2V → M

r(α) = p− κM ◦ λ

(note that r ◦ κ = dκM − (d− 1)κM = κM ). Finally one finds

Φf = Ψ̃f ◦ r

which results in (1).

5. Interpretation with jet bundles

Formula (1) can be interpreted geometrically by means of jet bundles on P
1 (I

am indebted to P. Deligne for explanations). In brief, the map Φf is given by

ϕf : H
0
(
P

1, Jd(−1)
) ∧j(f)
−−−→ H0

(
P

1, (Λ2Jd)(−1)
)

where Jd is the jet bundle for O(d) and j(f) is the jet of f . It is easy to see
that Λ2Jd ≃ O(2d− 2). The computation of the global sections of Jd(−1) is more
delicate.

If one assumes that d is invertible, the jet bundle splits as

Jd ≃ O(d− 1)⊕O(d − 1)

This way ϕf becomes a map

ϕf : H
0
(
P

1,O(d− 2)⊕O(d − 2)
)
→ H0

(
P

1,O(2d− 3)
)

or

ϕf : S
d−2 ⊕ Sd−2 → S2d−3

Computing ϕf this way yields Ψf (the Sylvester matrix of the derivatives).
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In the general case (over Z) one finds

H0
(
P

1, Jd(−1)
)
≃ M

and together with the isomorphism r above one gets again

H0
(
P

1, Jd(−1)
)
≃ Sd−2 ⊕ Sd−2

However, computing ϕf this way yields Ψ̃f resp. Φf .
The principle result on discriminants and jet bundles involved here is [3, Theo-

rem 2.5, p. 56]. The book [3] works generally over C and gives as application the
Sylvester formula with the denominator dd−2 [3, formula (2.9), p. 60].
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of the 1994 edition.

Fakultät für Mathematik, Universität Bielefeld, Postfach 100131, D-33501 Biele-

feld, Germany

E-mail address: rost at math.uni-bielefeld.de

URL: www.math.uni-bielefeld.de/~rost


