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Summary

For n + 2 points in affine n-space in general position there is a canonical metric
(unique up to a similarity factor) such that complementary faces of the (n+2)-gon
are orthogonal.

We describe this metric in terms of a sum over all (n− 1)-dimensional faces (see
Proposition 2) and discuss some of its properties.
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1. Preliminaries

1.1. Affine spaces. An affine space over a field F consists of a set A, a vector
space V over F and an operation

A× V → A

(a, v) 7→ a + v

which makes A into a principal homogeneous V -space.
By a dilation of A we understand an automorphism of A whose linear part (in

GL(V )) is a scalar multiple of the identity.
Affine spaces can be presented as follows. Let W be a vector space over F and

let

ε : W → F

be an epimorphism. Then A = ε−1(1) is an affine space with underlying vector
space V = ε−1(0). The pair (W, ε) is uniquely determined by (A, V, +) up to
unique isomorphism.

There are natural exact sequences

0 → Λi+1V
ι−→ Λi+1W

εi−→ ΛiV → 0

where εi is characterized by

εi(a ∧ ω) = ω

with a ∈ A and ω ∈ ΛiV .

1.2. Symmetric bilinear forms. Let V be a finite-dimensional vector space and
let L be a 1-dimensional vector space. We consider symmetric bilinear maps

Φ: V × V → L

For dual vector spaces we use the notation V ∨ = Hom(V, F ).
The map

Φ̂: V → Hom(V,L) = V ∨ ⊗ L

Φ̂(v)(w) = Φ(v, w)

is called the duality associated to Φ.
Let n = dim V . The determinant of Φ is defined as

det(Φ) = ΛnΦ̂ ∈ Hom
(
ΛnV,Λn(V ∨ ⊗ L)

)
= (ΛnV )⊗−2 ⊗ L⊗n

1.3. The orientation module of a finite set. Let M be a finite set. The ori-
entation module of M is defined as

OM = Λ|M |Z[M ]

where Z[M ] is the free abelian group on M . The group OM is free of rank 1 and the
natural action of the group of permutations of M on OM is given by the signum.
Clearly OM ⊗OM ≡ Z.
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1.4. M-gons. Let A be an affine space (with notations V , ε : W → F as above)
and let M be a finite set. By an M -gon in A we understand a map

x : M → A

i 7→ xi

By a r-gon we understand a M -gon for some set M with |M | = r, usually M =
{1, . . . , r}.

For v ∈ V we denote by x + v the translated M -gon, defined by

(x + v)i = xi + v

with i ∈ M .
For a M -gon x ∈ AM and a subset I ⊂ M we denote by

AI(x) ⊂ A

the affine span of the points xi with i ∈ I. Its underlying vector space

VI(x) ⊂ V

is generated by the elements xi − xj with i, j ∈ I.
We denote by

WM → ΛMW

x 7→ ∧x

be the universal alternating map. Note that

ΛMW ≡ Λ|M |W ⊗OM

1.5. (n + 2)-gons. Let n be an integer, let A be an affine space with dim A = n,
let M be a set with |M | = n + 2 and let x ∈ AM be a M -gon in A. For i ∈ M we
define the element

θi(x) ∈ ΛnV ⊗OM

by
θi(x) = εn

(
xσ(1) ∧ · · · ∧ xσ(n+1)

)
⊗

(
i ∧ σ(1) ∧ · · · ∧ σ(n + 1)

)
where

σ : {1, . . . , n + 1} → M \ {i}
is any bijection.

The element θi(x) has the standard interpretation of a volume element for the
i-th face of x. It is invariant under translations:

θi(x + v) = θi(x)

This can be easily deduced for instance from

x1 ∧ · · · ∧ xr = x1 ∧ (x2 − x1) ∧ · · · ∧ (xr − x1)

with xi ∈ A.
We say that x is nondegenerate if θi(x) 6= 0 for all i ∈ M .

Lemma 1. Let dim A = n, let M be a set with |M | = n + 2 and let x ∈ AM be a
M -gon in A. Then ∑

i∈M

θi(x)xi = 0

in ΛnV ⊗OM ⊗W .
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In particular, by applying ε, one gets∑
i∈M

θi(x) = 0

in ΛnV ⊗OM .

Proof. Basic multilinear algebra: For xi ∈ W the expression
n+2∑
i=1

(−1)i(x1 ∧ · · · x̂i · · · ∧ xn+2)xi

is alternating in the xi. Since n + 2 > dim W , it vanishes. �

For a subset I ⊂ M we write

θI(x) =
∏
i∈I

θi(x) ∈
(
ΛnV ⊗OM

)⊗|I|
Moreover for i ∈ M we write

ρi(x) = θM\{i}(x)

2. The main statements

Let n = dim A, let M be a set with |M | = n + 2 and let x ∈ AM be a M -gon
in A.

Notations V , ε : W → F are as in the previous section.

2.1. The (dual) metric of a (n + 2)-gon. This subsection contains a simple
definition of the metric. I found it only after typing the other parts of the text,
which turned out to be much more complicated than necessary.

Let
L = ΛnV ⊗OM

Let a, b ∈ A. One considers the tensor

Ωx =
∑
i∈M

(xi − a)⊗ (xi − b)⊗ θi(x) ∈ V ⊗ V ⊗ L

Proposition 1. (1) The element Ωx does not depend on the choice of a, b ∈ A.
(2) The element Ωx is invariant under switch involution on V ⊗ V .
(3) Let I ⊂ M and let f ∈ V ∨. If f

(
VI(x)

)
= 0, then

(f ⊗ idV ⊗ idL)(Ωx) ∈ VM\I(x)⊗ L

Proof. (1) follows from
∑

i θi(x)xi = 0 (cf. Lemma 1). (2) is obvious. As for (3),
we may assume I 6= ∅, M . Choose a ∈ AI(x) and b ∈ AM\I(x). Then

(f ⊗ idV ⊗ idL)(Ωx) =
∑

i∈M\I

f(xi − a)(xi − b)⊗ θi(x)

�

The tensor Ωx defines a symmetric duality

Ω̂x : V ∨ → V ⊗ L

Consider its (n− 1)-fold exterior power

Λn−1Ω̂x : Λn−1V ∨ → Λn−1V ⊗ L⊗(n−1)
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Since Λn−1V = V ∨ ⊗ ΛnV , it defines a symmetric bilinear form

Φx : V × V → L⊗(n+1)

We call the form Φx the metric of x.
In the following we give some other descriptions.

2.2. The metric of a (n + 2)-gon. We consider the following symmetric bilinear
map on Λ2W with values in an appropriate 1-dimensional vector space:

ϕx : Λ2W × Λ2W →
(
ΛnV ⊗OM

)⊗(n+1)

ϕx(α, β) =
∑
I⊂M

|I|=n−1

θI(x)εn

(
α ∧ (∧x|I)

)
εn

(
β ∧ (∧x|I)

)

This is to be read as follows. The product α ∧ (∧x|I) is an element of

Λ2W ∧ ΛIW = Λ2W ∧ Λ|I|W ⊗OI = Λn+1W ⊗OI

Thus εn

(
α ∧ (∧x|I)

)
is an element of ΛnV ⊗OI and since OI ⊗OI ≡ Z we have

εn

(
α ∧ (∧x|I)

)
εn

(
β ∧ (∧x|I)

)
∈

(
ΛnV

)⊗2 =
(
ΛnV ⊗OM

)⊗2

Lemma 2. If α ∈ Λ2V or β ∈ Λ2V , then ϕx(α, β) = 0.

Proof. Suppose α ∈ Λ2V . Fix a ∈ A.
For z ∈ An−1 one has

εn

(
α ∧ (∧ z)

)
= εn

(
α ∧ z1 ∧ · · · ∧ zn−1

)
= εn

(
α ∧ z1 ∧ (z2 − z1) ∧ · · · ∧ (zn−1 − z1)

)
= εn

(
α ∧ a ∧ (z2 − z1) ∧ · · · ∧ (zn−1 − z1)

)
=

n−1∑
i=1

(−1)i+1εn

(
α ∧ a ∧ z1 ∧ · · · ẑi · · · ∧ zn−1

)
Moreover

εn

(
β ∧ (∧ z)

)
= (−1)i+1εn

(
β ∧ zi ∧ z1 ∧ · · · ẑi · · · ∧ zn−1

)
Hence

εn

(
α ∧ (∧ z)

)
εn

(
β ∧ (∧ z)

)
=

n−1∑
i=1

εn

(
α ∧ a ∧ z1 ∧ · · · ẑi · · · ∧ zn−1

)
εn

(
β ∧ zi ∧ z1 ∧ · · · ẑi · · · ∧ zn−1

)
This shows that

εn

(
α ∧ (∧x|I)

)
εn

(
β ∧ (∧x|I)

)
=∑

i∈I
K=I\{i}

εn

(
α ∧ a ∧ (∧x|K)

)
εn

(
β ∧ xi ∧ (∧x|K)

)
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We get

ϕx(α, β) =
∑
I⊂M

|I|=n−1

θI(x)εn

(
α ∧ (∧x|I)

)
εn

(
β ∧ (∧x|I)

)
=

∑
K⊂M

|K|=n−2

∑
i∈M\K

θI(x)εn

(
α ∧ a ∧ (∧x|K)

)
εn

(
β ∧ xi ∧ (∧x|K)

)

For i ∈ K one has xi ∧ (∧x|K) = 0. Hence we may extend the range of i to all
of M and get

ϕx(α, β) =
∑

K⊂M
|K|=n−2

∑
i∈M

θK(x)θi(x)εn

(
α ∧ a ∧ (∧x|K)

)
εn

(
β ∧ xi ∧ (∧x|K)

)

This vanishes because of
∑

i θi(x)xi = 0 (cf. Lemma 1). �

By Lemma 2, the form ϕx is essentially a form on Λ2W/Λ2V ' V . We describe
this as follows:

Proposition 2. Let a, b ∈ A. The form

Φx : V × V →
(
ΛnV ⊗OM

)⊗(n+1)

Φx(v, w) =
∑
I⊂M

|I|=n−1

θI(x)εn

(
v ∧ a ∧ (∧x|I)

)
εn

(
w ∧ b ∧ (∧x|I)

)
does not depend on the choices of a and b.

We call the form Φx the metric of x.

Lemma 3. Let i, j, k, ` ∈ M be distinct elements. Then

Φx(xi − xj , xk − x`) = 0(1)

Φx(xi − xj , xi − xk) = −ρi(x)(2)

Φx(xi − xj , xi − xj) = −ρi(x)− ρj(x)(3)

Proof. It is easy to see that (1) and (3) follow from (2).
As for (2) we choose a = b = xi in the definition of Φx. Then

Φx(xi − xj , xi − xk) =
∑
I⊂M

|I|=n−1

θI(x)εn

(
−xj ∧ xi ∧ (∧x|I)

)
εn

(
−xk ∧ xi ∧ (∧x|I)

)

Every summand vanishes except for I = M \ {i, j, k} and for this term the last two
factors amount to −θj(x)θk(x). This shows (2). �

Remark 1. One may check (3) also as follows. We have with a = b = xj

Φx(xi − xj , xi − xj) =
∑
I⊂M

|I|=n−1

θI(x)εn

(
xi ∧ xj ∧ (∧x|I)

)2
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Here every summand vanishes except for I = M \ {i, j, h} with h 6= i, j. Hence

Φx(xi − xj , xi − xj) =
∑

h∈M\{i,j}
I=M\{i,j,h}

θI(x)εn

(
xi ∧ xj ∧ (∧x|I)

)2

=
∑

h∈M\{i,j}
I=M\{i,j,h}

θI(x)θh(x)2

= θM\{i,j}(x)
∑

h∈M\{i,j}

θh(x)

= θM\{i,j}(x)(−θi(x)− θj(x))

Here we have used
∑

i θi(x) = 0 (cf. Lemma 1). Claim (3) is now immediate.

Remark 2. Condition (1) in Lemma 3 is equivalent to

VI(x)⊥Φx
VM\I(x)

for all subsets I ⊂ M .
Suppose x is nondegenerate. Then

V = VI(x) + VM\I(x)

for all subsets I ⊂ M . Moreover the form Φx is determined by (1) in Lemma 3 up
to multiplication by a scalar.

Remark 3. It is clear (for nondegenerate x) that if two lines of the M -gon are
parallel, then its metric is isotropic.

2.3. Second presentation of Φx. Fix h ∈ M and let N = M \ {h}. Then
|N | = n + 1. We assume that the family (xi)i∈N is a basis for W .

Then there exists a symmetric bilinear map

Ψh : W ×W →
(
ΛnV ⊗OM

)⊗(n+1)

with

Ψh(xi, xj) = 0

Ψh(xi, xi) = −ρi(x)

for i, j ∈ N , i 6= j.

Lemma 4. One has

Ψh(xi, xh) = ρh(x)

for i ∈ M .

Proof. Indeed,

Ψh(xi, xh) = Ψh

(
xi,−θh(x)−1

∑
j∈N

θj(x)xj

)
= −θh(x)−1θi(x)

(
−ρi(x)

)
= ρh(x)
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and

Ψh(xh, xh) = Ψh

(
xh,−θh(x)−1

∑
j∈N

θj(x)xj

)
= −θh(x)−1ρh(x)

∑
j∈N

θj(x) = ρh(x)

�

Corollary. The form Φx is the restriction of Ψh to V . Moreover

Ψh(V, xh) = 0

and

(4) W = V ⊕ xhF

is an orthogonal decomposition with respect to Ψh.

2.4. Third presentation of Φx. Let |M | = n + 2 and let

a ∈ (F×)M

be a M -family of invertible elements in F with∑
i∈M

ai = 0

Let U = F [M ] be the vector space with basis ei, i ∈ M . Let

Ψa : U × U → F

be the symmetric bilinear form with

Ψa(ei, ej) = 0

Ψa(ei, ei) = a−1
i

for i, j ∈ M , i 6= j.
The vector

z =
∑
i∈M

aiei ∈ U

is isotropic. Let us denote by [z] ⊂ U the subspace generated by z. Note that
Ψa(ei, z) = 1 for i ∈ M . Hence for i, j ∈ M one has ei − ej ∈ [z]⊥. Since z 6= 0,
these elements generate [z]⊥.

Now put

Wa = U/[z]

Va = [z]⊥/[z]

Further let

ε : Wa → F

ε
(
u + [z])

)
= Ψa(u, z)

and
Aa = ε−1(1)
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Then Aa is a n-dimensional affine space with underlying vector space Va. Moreover,

x : M → Aa

xi = ei + [z]

defines a M -gon x in Aa.
Let

Φa : Va × Va → F

Φa(u + [z], u′ + [z]) = Ψa(u, u′)

be the canonical form associated with Ψa and the isotropic vector z.
There is a canonical identification

ΛnVa ⊗OM ≡ [z]⊗ U/[z]⊥ ⊗ ΛnVa ⊗OM ≡ Λn+2U ⊗OM ≡ F

given by

α⊗ (∧σ) 7→ z ⊗ ei ⊗ α⊗ (∧σ) 7→ (z ∧ ei ∧ α)⊗ (∧σ), (∧σ)⊗ (∧σ) 7→ 1

with α ∈ Λn
(
[z]⊥

)
and σ : {1, . . . , n + 2} → M a bijection.

With respect to this identification, one has

θi(x) = ai

and

(5) (−a1 · · · an+2)−1Φx ⊥H = Ψa

where H is a hyperbolic plane.
It is easy to see that every nondegenerate M -gon x in a n-dimensional affine

space appears in this way from some

a ∈ (F×)M

with ∑
i∈M

ai = 0

Remark 4. For nondegenerate x this gives a very simple way to define Φx. The
first definition of Φx via a sum over all (n − 1)-dimensional faces works smoothly
for all x and has its own appeal anyway. I don’t know an urgent reason to consider
the description of Φx via the form Ψh, h ∈ M—I used it at first to compute the
determinant of Φx.

Remark 5. Suppose charF 6= 2. Then a n-dimensional quadratic form Φ appears
as Φx for some x if and only if

Φ⊥ 〈1,−1〉 ' −a1 · · · an+2〈a1, . . . , an+2〉

for some ai ∈ F× with
∑n+2

i=1 ai = 0. From this one sees that every similarity class
of a n-dimensional quadratic form appears as the similarity class of the metric of a
(n + 2)-gon.

Remark 6. One may also consider twisted forms of (n+2)-gons. The setup would
be to consider an etale algebra H of rank n + 2 and a point x : Spec H → A. For
nondegenerate x the quadratic form Φx would be of the form

Φx ⊥ 〈1,−1〉 ' −NH/F (a)TH/F (〈a〉)
for some a ∈ H× with TH/F (a) = 0.
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2.5. The determinant of Φx. Here is the computation:

Lemma 5.
det(Φx) =

(
−θM (x)

)(n−1) ∈ (ΛnV )⊗(n+2)(n−1)

In particular we see that Φx is nondegenerate if and only if x is nondegenerate.

Proof. Since we have to check a polynomial identity in x, we may assume that x is
nondegenerate. Then one may use the description of Φx in (5). But one may also
use the orthogonal decomposition (4) which shows

det(Ψh) = det(Φx)Ψh(xh, xh)

One has
det(Ψh) = θh(x)−2

∏
i∈N

(
−ρi(x)

)
=

(
−θM (x)

)n−1
ρh(x)

and we are done by Ψh(xh, xh) = ρh(x) (cf. Lemma 4). �

2.6. The dual (n + 2)-gon. We assume that x is nondegenerate. Fix a ∈ A and
a basis element λ for

(
ΛnV ⊗OM

)⊗(n+1). Then we get a M -gon

y : M → V ∨

yi = Φ̂x(xi − a)/λ

in the dual space V ∨. We call it a dual M -gon of x. Dual M -gons of x are
determined by x up to dilations (translations and scalar multiplications). They are
characterized by

〈yi − yj , xk − x`〉 = 0
where i, j, k, ` ∈ M are distinct elements and where 〈 , 〉 denotes the natural pairing
V ∨ × V → F .

Dual M -gons determine the metric up to multiplication by a scalar.

2.7. The involution of a (n + 2)-gon.

Proposition 3. Let n = dim A, let M be a set with |M | = n + 2 and let x ∈ AM

be a M -gon in A. Suppose that x is nondegenerate. Then there exists a unique
involution τx of orthogonal type on End(V ) such that

τx

(
Hom

(
V, VI(x)

))
= Hom

(
V/VM\I(x), V )

)
for each subset I ⊂ M .

It is clear that τx = τy if x, y differ only by a dilation of A.

Proof. τx is the involution associated with the symmetric bilinear form Φx, i. e.,

τx

(
Φx(v)⊗ v′

)
= Φx(v′)⊗ v

�

Remark 7. Suppose charF = 2, that n is even and that θi(x) = θj(x) 6= 0 for all
i, j ∈ M . Then ∑

i∈M

xi = 0

One finds that there is a unique alternating bilinear form Ω: V × V → F with

Ω(xi − xj , xi − xk) = 1
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for distinct elements i, j, k ∈ M .
This is the only case where an involution τ on End(V ) with

τx

(
Hom

(
V, VI(x)

))
= Hom

(
V/VM\I(x), V )

)
for each subset I ⊂ M is possibly symplectic.

3. The case of a plane quadrangle

We now look at the case dim A = 2 and |M | = 4.
In this case V = V ∨ ⊗ Λ2V and the duality Φ̂x becomes a map

Φ̂: V → V ∨ ⊗ (Λ2V ⊗OM )⊗3 = V ⊗ (Λ2V )⊗2 ⊗OM

3.1. On the lines of a plane quadrangle. We assume that x is nondegenerate.
Then Φ̂ is an isomorphism and induces an involution

σx : P(V ) → P(V )

on the projective space of lines in V . It has the following interpretation: Let
M = {i, j, k, h}. Then

σx([xi − xj ]) = [xk − xh]
One may phrase this by saying that “the 6 lines of a plane quadrangle stand in
involution”. The converse is also true: If 6 points in P1 stand in involution, they
are given by the lines of a quadrangle. (Note: An involution of P1 is determined
by two pairs of points.)

3.2. On the dual quadrangle. Since V = V ∨ ⊗ Λ2V we may also speak about
dual M -gons in V . They can be described as follows:

Given four general points x1, x2, x3, x4 in a 2-dimensional affine space, there
exists another sequence of four points y1, y2, y3, y4 such that the line xi − xj is
parallel to the line yk−yh for any permutation ijkh of 1234. The y-tuple is uniquely
determined by the x-tuple up to translation and scalar multiplication.

3.3. Selfdual quadrangles? It turns out that a nondegenerate quadrangle is
never dual to itself (in characteristic different from 2).

What about nondegenerate quadrangles which become dual to itself after a per-
mutation? It turns out that then there exists one side xi − xj which is parallel
to its opposite side xk − xh and the permutation is (ij)(kh). More specifically, let
A = V , let v, w ∈ V be linearly independent and let c ∈ F×. Then the quadrangle
(0, v, w, w + cv) is dual to (v, 0, w + cv, w).

3.4. The determinant. Let x1, x2, x3, x4 be a nondegenerate plane quadrangle
and let ai ∈ F× with

a1x1 + a2x2 + a3x3 + a4x4 = 0
Then

det(Φx) = −a1a2a3a4

up to multiplication by a square.
Consider the case of a parallelogram. (This amounts to a1 = a2 = −a3 = −a4.)

In this case the metric is hyperbolic; the two isotropic lines are given by the pairs
of parallel sides.

Suppose that F = R (real numbers). The Φx is definite if and only if one of the
points xi lies inside the triangle formed by the other points xj , xk, x`.



12 MARKUS ROST

3.5. Orthocentric quadrangles. Let us consider the case F = R. Let x be a
nondegenerate plane quadrangle and suppose that the metric Φx is definite. Then
we have an Euclidean structure on A. With respect to this Euclidean structure, the
quadrangle x is orthocentric, i. e., each point xi is the orthocenter of the opposite
triangle xj , xk, x`. A dual quadrangle is obtained from x by a rotation of 90◦.
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