THE METRIC OF A (n+2)-GON IN AFFINE n-SPACE
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SUMMARY

For n + 2 points in affine n-space in general position there is a canonical metric
(unique up to a similarity factor) such that complementary faces of the (n + 2)-gon
are orthogonal.

We describe this metric in terms of a sum over all (n — 1)-dimensional faces (see
Proposition 2) and discuss some of its properties.
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1. PRELIMINARIES

1.1. Affine spaces. An affine space over a field F' consists of a set A, a vector
space V over F' and an operation

AxV — A
(a,v) —a+wv

which makes A into a principal homogeneous V-space.

By a dilation of A we understand an automorphism of A whose linear part (in
GL(V)) is a scalar multiple of the identity.

Affine spaces can be presented as follows. Let W be a vector space over F' and
let

e W-—-F

be an epimorphism. Then A = ¢71(1) is an affine space with underlying vector
space V = £71(0). The pair (W,¢) is uniquely determined by (A,V,+) up to
unique isomorphism.

There are natural exact sequences

0— ATV S AT S5 ATV -0
where €; is characterized by
gilahw)=w
with a € A and w € A*V.
1.2. Symmetric bilinear forms. Let V' be a finite-dimensional vector space and
let L be a 1-dimensional vector space. We consider symmetric bilinear maps
P: VXV —-L

For dual vector spaces we use the notation V¥ = Hom(V, F').
The map

®:V —Hom(V,L)=V'V®L
B (v)(w) = (v, w)

is called the duality associated to ®.
Let n = dim V. The determinant of ® is defined as

det(®) = A"® € Hom (A"V, A"(VY ® L)) = (A"V)®2 @ L&"
1.3. The orientation module of a finite set. Let M be a finite set. The ori-
entation module of M is defined as
Oy = AMIZ[M]

where Z[M] is the free abelian group on M. The group Oy is free of rank 1 and the
natural action of the group of permutations of M on Oy, is given by the signum.
Clearly Oy @ Oy = Z.
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1.4. M-gons. Let A be an affine space (with notations V, e: W — F as above)
and let M be a finite set. By an M-gon in A we understand a map

z:M— A
1= X

By a r-gon we understand a M-gon for some set M with |M| = r, usually M =

{1,...,7}.

For v € V we denote by x + v the translated M-gon, defined by
(r4wv);=z+v
with i € M.
For a M-gon € AM and a subset I C M we denote by
Ar(z) Cc A
the affine span of the points x; with ¢ € I. Its underlying vector space
Vi(x) cV

is generated by the elements x; — x; with 7, j € I.
We denote by

WM — AMWw
e AN
be the universal alternating map. Note that
AMW = AMIW @ Oy

1.5. (n + 2)-gons. Let n be an integer, let A be an affine space with dim A = n,
let M be a set with |[M| =n+ 2 and let x € AM be a M-gon in A. For i € M we
define the element
0;(x) e A"V @ Opy
by
0:(x) = en (To) A+ Agngr)) @ (iAT(L) A+ Ao(n+1))
where
o:{l,...,n+1} —» M\ {i}

is any bijection.

The element 6;(z) has the standard interpretation of a volume element for the
i-th face of x. It is invariant under translations:

0;(z +v) =0;(x)
This can be easily deduced for instance from
TN ANz =21 A (B2 — 1) A A (2 — 1)

with z; € A.

We say that z is nondegenerate if 0;(x) # 0 for all i € M.

Lemma 1. Let dim A = n, let M be a set with |M| =n+ 2 and let x € AM be a

M-gon in A. Then
ieM
in A"V Oy QW.
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In particular, by applying €, one gets
ieM
i A"V ® O]\/[ .
Proof. Basic multilinear algebra: For z; € W the expression
n+2

S0 @A Ty AN pgo)T
i=1

is alternating in the x;. Since n + 2 > dim W, it vanishes. ([

For a subset I C M we write
" I
01(z) = [[ 6:(x) € (A"V © Op)
iel
Moreover for i € M we write
pi(r) = O iy (2)
2. THE MAIN STATEMENTS

Let n = dim A4, let M be a set with |[M| = n + 2 and let x € AM be a M-gon
in A.

Notations V, e: W — F are as in the previous section.
2.1. The (dual) metric of a (n + 2)-gon. This subsection contains a simple
definition of the metric. I found it only after typing the other parts of the text,
which turned out to be much more complicated than necessary.

Let

L=A"V®O0Oy
Let a, b € A. One considers the tensor
Q, = Z(mi_a)@@(m -b)®0i(x)eVVRL
=

Proposition 1. (1) The element Q) does not depend on the choice of a, b € A.
(2) The element Qy, is invariant under switch involution on V@ V.
(3) Let I C M and let f € VY. If f(Vi(x)) =0, then

(f®idy ®idL)(Q2e) € Vang(z) ® L

Proof. (1) follows from ), 0;(z)z; = 0 (cf. Lemma 1). (2) is obvious. As for (3),
we may assume [ # &, M. Choose a € Aj(x) and b € App\7(x). Then

(f@idy @idL)(Q) = Y fla—a)(z; —b) @ b;(x)

i€ M\I

The tensor €, defines a symmetric duality
ﬁm: VYV - V®L
Consider its (n — 1)-fold exterior power

Anflﬁm: Anflv\/ N An71V® L®(n71)
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Since A"V = VYV @ A"V, it defines a symmetric bilinear form
$,: V xV — LEOHD
We call the form @, the metric of x.

In the following we give some other descriptions.

2.2. The metric of a (n + 2)-gon. We consider the following symmetric bilinear
map on A2W with values in an appropriate 1-dimensional vector space:

Ot AZW % AQW _ (Anv ® OM)®(TL+1)

Z 01 (2)en (N (Azlr))en(BA (A1)
ICM
[I|=n—1
This is to be read as follows. The product o A (A x|r) is an element of

MW ANW = 2WAAW @ 0; = A" W ® O

Thus e, (a A (Az|;)) is an element of A"V @ O; and since O; ® O; = Z we have

en(a A (Az|1))en(BA (Azlp)) € (A"V)®2 =(A"V® OM)®2
Lemma 2. If o € A%V or 3 € A%V, then . (o, 3) = 0.

Proof. Suppose a € A%2V. Fix a € A.
For z € A”~! one has
en(an(N2)) =cn(@Azt A Azyo)
5n(a/\z1/\ (22— 21) A A (2n—1 —21))

6n(o¢/\a/\ (22 —21) N A (2n—1 —zl))
—1

3

H'l a/\a/\zl/\ Zi- ~/\zn,1)

z:l
Moreover
en(BA(N2) = (1) en(BAZiAZI A B A 2na)
Hence
En(a/\(/\z))an(ﬁ/\(/\z)) =
n—1
ana/\a/\zl/\ ANzp1)en(BAZ ANzt A B A zpi)

This shows that
€n(05 A (/\x|1))5n(ﬁ A (/\xh)) _
Z en(aNan (Az|g))en (B Az A(A2|K))

i€l
K=I\{i}
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We get

Z 01(2)en(a A (Az|1))en (B A (A1)

50
I|=n—1
= Z Z Or(x)en(aNan (ANz|k))en(BA T A(Az|K))

KCM ieM\K
|K|=n—2

For i € K one has z; A (Ax|x) = 0. Hence we may extend the range of i to all
of M and get

vz, B) = Z ZGK (2)en(a N an (Az|k))en(BAT A(Az|K))
Kiena '

This vanishes because of ). 6;(x)x; = 0 (cf. Lemma 1). O

By Lemma 2, the form ¢, is essentially a form on A2W/A2?V ~ V. We describe
this as follows:

Proposition 2. Let a, b € A. The form

B, VXV — (A"V @ 0y)* "

Z Or(@)en(vAan (Az|r))en(wAbA (M)
ICM
[I|=n—1
does not depend on the choices of a and b.

We call the form @, the metric of x.

Lemma 3. Leti, j, k, £ € M be distinct elements. Then

(1) O, (z; —xj, 28 —x0) =0
(2) Py (2 — xj, m — 1) = —pi(T)
(3) Py (s — x5, @ — x5) = —pi(w) — p; ()

Proof. Tt is easy to see that (1) and (3) follow from (2).
As for (2) we choose a = b = x; in the definition of ®,. Then

O, (v — x5, 25 — Z 0r(x —x; Ay A (/\m|[))€n(—xk/\mi/\(/\x|1))
ICM
| Il=n—1

Every summand vanishes except for I = M \ {i, 4, k} and for this term the last two
factors amount to —6;(z)8x(x). This shows (2). O

Remark 1. One may check (3) also as follows. We have with a =b = z;

2
O, (z; —xj, 2 —xj) = Z 0r(2)en (zi Az A (Azlr))
IcM
[I|=n—1
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Here every summand vanishes except for I = M \ {i, j, h} with h # i, j. Hence

Z 91($)€n(l'i/\xj/\(/\x|1))2

@w(l‘l — l‘j,l‘i — l‘j)

heM\{i,j}

I:M\{i,j,h}

= > Or(x)0h()?

he M\{i,j}

I=M\{i,j,h}

= Oar figy () Z 0, (2)
he M\{i,j}

= O\ fi,5y (@) (—0i(2) — 0;())
Here we have used ), 6;(x) = 0 (cf. Lemma 1). Claim (3) is now immediate.
Remark 2. Condition (1) in Lemma 3 is equivalent to

Vi(z) Lo, Vanr(x)

for all subsets I C M.
Suppose z is nondegenerate. Then

for all subsets I C M. Moreover the form ®, is determined by (1) in Lemma 3 up
to multiplication by a scalar.

Remark 3. It is clear (for nondegenerate z) that if two lines of the M-gon are
parallel, then its metric is isotropic.

2.3. Second presentation of ®,. Fix h € M and let N = M \ {h}. Then
IN| =n+ 1. We assume that the family (x;);cn is a basis for W.
Then there exists a symmetric bilinear map

Uy W x W — (A"V @ 0,) Y
with
U (x, ;) =0
U (2i, ;) = —pi(z)
fori, je N,i#j.
Lemma 4. One has

Uy, (x4, 2) = pr(z)
forie M.

Proof. Indeed,

(25, 2p) = Up (i, —On(z) " Z 0;(x)z;)
JEN

= —05,(2) 710;(x) (—pi(z)) = pu()
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and
Uy (zn, 2n) = Up(2n, —On(z) " Z 0;(x)z;)
jEN

= —On(2) "' pn(2) D_ 0;(x) = pi(2)

JEN

Corollary. The form ®, is the restriction of Wy, to V. Moreover
U, (V,zp) =0
and
(4) W=V @apF
s an orthogonal decomposition with respect to Wy,.
2.4. Third presentation of ®,. Let |M|=n+ 2 and let
a€ (FM
be a M-family of invertible elements in F' with
Z a; =0
ieM
Let U = F[M] be the vector space with basis e;, i € M. Let
U,:UxU—-F

be the symmetric bilinear form with

fori, j e M, i#j.
The vector
z = Z a;e; €U
ieM
is isotropic. Let us denote by [z] C U the subspace generated by z. Note that
W,(ei,2) =1 for i € M. Hence for i, j € M one has e; —e; € [z]*. Since z # 0,
these elements generate [2].

Now put
Wa = U/[7]
Vo = [2]t/[2]
Further let
e W, —F

e(u+[2]) = Val(u, 2)
and
A, = 11)
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Then A, is a n-dimensional affine space with underlying vector space V,,. Moreover,
r: M — A,
x; =e; + [2]

defines a M-gon = in A,.
Let

b, V,xV, = F
Dy (u+ [2],u' + [2]) = Wa(u,u')

be the canonical form associated with ¥, and the isotropic vector z.
There is a canonical identification

AV, @0y =[2]0U/[2]t @AV, @ Oy = A"PPUR Oy = F
given by
a®(No)—zRe0a® (Ad) — (zANe; ANa) @ (Ao), (Ao)® (Ao) — 1

with & € A™([2]*) and o: {1,...,n+ 2} — M a bijection.

With respect to this identification, one has

0;(x) = a;

and
(5) (a1 apio) 'O, LH =1,

where H is a hyperbolic plane.
It is easy to see that every nondegenerate M-gon z in a n-dimensional affine
space appears in this way from some

ae (FM
with

Yoo

ieM

Remark 4. For nondegenerate x this gives a very simple way to define ®,. The
first definition of ®, via a sum over all (n — 1)-dimensional faces works smoothly
for all  and has its own appeal anyway. I don’t know an urgent reason to consider
the description of ®, via the form ¥y, h € M—I used it at first to compute the
determinant of ®,.

Remark 5. Suppose char F' # 2. Then a n-dimensional quadratic form ® appears
as @, for some z if and only if

D1 (1,-1) ~ —ay- - ant2{(ai,...,ant2)

for some a; € F* with 222_12 a; = 0. From this one sees that every similarity class

of a n-dimensional quadratic form appears as the similarity class of the metric of a
(n + 2)-gon.
Remark 6. One may also consider twisted forms of (n+ 2)-gons. The setup would

be to consider an etale algebra H of rank n + 2 and a point z: Spec H — A. For
nondegenerate x the quadratic form ®, would be of the form

®, L (1,-1) > —Ny/r(a)Th/r((a))
for some a € H* with Ty r(a) = 0.
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2.5. The determinant of ®,. Here is the computation:

Lemma 5.
det(@x) = (_QM(z))("fl) c (Anv)®(n+2)(n71)

In particular we see that @, is nondegenerate if and only if x is nondegenerate.

Proof. Since we have to check a polynomial identity in x, we may assume that z is
nondegenerate. Then one may use the description of ®, in (5). But one may also
use the orthogonal decomposition (4) which shows

det(\Ilh) = det(sz)\l!h(xh, xh)

One has )
det(¥y,) = On(2) "> [[ (=pi(2)) = (=0m(2))" pu(a)
iEN
and we are done by Wy (xp, xp) = pp(z) (cf. Lemma 4). O

2.6. The dual (n + 2)-gon. We assume that = is nondegenerate. Fix a € A and
a basis element A for (A"V ® OM)®(H+1). Then we get a M-gon
y: M — VY

yi = (s — a)/A

in the dual space VV. We call it a dual M-gon of x. Dual M-gons of x are
determined by z up to dilations (translations and scalar multiplications). They are
characterized by
(Yi —yjyzk —20) =0
where i, j, k, £ € M are distinct elements and where (, ) denotes the natural pairing
VVxV = F.
Dual M-gons determine the metric up to multiplication by a scalar.

2.7. The involution of a (n + 2)-gon.

Proposition 3. Let n = dim A, let M be a set with |M| =n + 2 and let € AM
be a M-gon in A. Suppose that x is nondegenerate. Then there ezists a unique
involution T, of orthogonal type on End(V') such that

72 (Hom (V, Vi (2))) = Hom (V/Van (2),V))
for each subset I C M.
It is clear that 7, = 7, if «, y differ only by a dilation of A.

Proof. T, is the involution associated with the symmetric bilinear form ®,, i. e.,
T2 (P2(v) ®@V') = @, (V) @0
|

Remark 7. Suppose char F' = 2, that n is even and that 6;(z) = 0;(z) # 0 for all
i, 7 € M. Then

€M
One finds that there is a unique alternating bilinear form Q: V x V — F with

Ny —zj,z; —ap) =1
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for distinct elements ¢, j, k € M.
This is the only case where an involution 7 on End(V) with

7 (Hom(V, Vi (z))) = Hom(V/Vyp 1 (2),V))
for each subset I C M is possibly symplectic.

3. THE CASE OF A PLANE QUADRANGLE

We now look at the case dim A = 2 and |M| = 4.
In this case V = VY ® A2V and the duality ®, becomes a map

OV - Ve (AW e 0y =V e (AV)82 00y

3.1. On the lines of a plane quadrangle. We assume that z is nondegenerate.
Then @ is an isomorphism and induces an involution

or: P(V) = P(V)

on the projective space of lines in V. It has the following interpretation: Let
M = {i,j,k,h}. Then

oo(xi — x;]) = [wr — 2]
One may phrase this by saying that “the 6 lines of a plane quadrangle stand in
involution”. The converse is also true: If 6 points in P! stand in involution, they
are given by the lines of a quadrangle. (Note: An involution of P! is determined
by two pairs of points.)

3.2. On the dual quadrangle. Since V = V'V ® A2V we may also speak about
dual M-gons in V. They can be described as follows:

Given four general points x1, 2, T3, x4 in a 2-dimensional affine space, there
exists another sequence of four points y1, y2, ¥3, ¥4 such that the line z; — x; is
parallel to the line y;, —yp, for any permutation ijkh of 1234. The y-tuple is uniquely
determined by the z-tuple up to translation and scalar multiplication.

3.3. Selfdual quadrangles? It turns out that a nondegenerate quadrangle is
never dual to itself (in characteristic different from 2).

What about nondegenerate quadrangles which become dual to itself after a per-
mutation? It turns out that then there exists one side x; — x; which is parallel
to its opposite side xy — xp, and the permutation is (i5)(kh). More specifically, let
A=V, let v, w €V be linearly independent and let ¢ € F'*. Then the quadrangle
(0, v, w,w + cv) is dual to (v,0,w + cv, w).

3.4. The determinant. Let x,, x2, x3, x4 be a nondegenerate plane quadrangle
and let a; € F'* with
ai1x1 + asxs + azxrsz +agxry =0
Then
det(®,) = —arazasaq
up to multiplication by a square.

Consider the case of a parallelogram. (This amounts to a3 = as = —ag = —ay.)
In this case the metric is hyperbolic; the two isotropic lines are given by the pairs
of parallel sides.

Suppose that F' = R (real numbers). The @, is definite if and only if one of the
points x; lies inside the triangle formed by the other points x;, xy, /.
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3.5. Orthocentric quadrangles. Let us consider the case FF = R. Let x be a
nondegenerate plane quadrangle and suppose that the metric ®, is definite. Then
we have an Euclidean structure on A. With respect to this Euclidean structure, the
quadrangle x is orthocentric, i. e., each point x; is the orthocenter of the opposite
triangle x;, x, £,. A dual quadrangle is obtained from z by a rotation of 90°.
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