ESSENTIAL DIMENSION OF TWISTED C₄

MARKUS ROST

INTRODUCTION

In this note we show that over a field of characteristic different from 2 the essential dimension of any Galois module which is cyclic of order 4 is equal to 2, except for μ_4 .

The method is consists of a (non-)ramification argument, which is also used in the text [1] for the computation of the essential dimension of PGL_4 .

For the essential dimension of $\mathbb{Z}/4$ with trivial Galois action see also [2].

1. Statement of result

Let k be a field of characteristic different from 2 and let G be a Galois module over k, which as an abstract group is cyclic of order 4. Let $d \in k^*$ be an element such that G is isomorphic to μ_4 twisted by the quadratic character given by the square class of d. Thus $G \simeq \mu_4$ if d is a square and $G \simeq \mathbb{Z}/4$ if -d is a square.

One has $H^1(k, \mu_4) = k^*/(k^*)^4$ and it easy to see that $ed(\mu_4) = 1$.

Proposition. If d is not a square, then ed(G) = 2.

2. Galois cohomology

We assume in the following that d is not a square.

Then G can be identified with the elements of order 4 in the norm 1 sub group of the multiplicative group of $K = k(\sqrt{d})$.

Moreover there is an exact sequence

$$1 \to G \to (K \otimes_k \bar{k})^* \xrightarrow{\pi} \bar{k}^* \times \frac{(K \otimes_k k)^*}{\bar{k}^*} \to 1$$

where

$$\pi(\lambda) = \left(N_{K/k}(\lambda), [\lambda^2]\right)$$

This is easy to check.

By Hilbert's Theorem 90 one gets an exact sequence

$$K^* \xrightarrow{\pi} k^* \times \frac{K^*}{k^*} \xrightarrow{\delta_k} H^1(k,G) \to 0$$

Note that $H^1(k, G)$ classifies the extensions L/k of degree 4 together with a monomorphism (of algebraic groups!) $G \to \operatorname{Aut}(L/k)$. In fact, let $a \in k^*$ and $\mu \in K^*$ and let $\overline{\mu}$ be the conjugate of μ under the Galois group of K/k. Consider the Kummer extension

$$E = K[u], \qquad u^4 = a^2 \frac{\mu}{\bar{\mu}}$$

Date: March 2, 2002.

It has a K-semilinear automorphism

$$\sigma \colon E \to E, \qquad \sigma(u) = \frac{u}{u}$$

Then

$$L = E^{\sigma}$$

is an extension of k of degree 4 with a natural G-action. This extension corresponds to $\delta_k(a, [\mu])$.

3. Invariants

We consider the cohomological invariants

$$\eta_1 \colon H^1(k, G) \to H^1(k, \mu_2)$$

 $\eta_2 \colon H^1(k, G) \to H^2(k, \mu_2)$

defined as follows: The invariant η_1 is just the map induced from the projection $G \to \mu_2$. The invariant η_2 is given by the embedding

~

$$\begin{split} G &\to \mathrm{PGL}(2) \\ \zeta &\to \left[\begin{pmatrix} 1 & -\sqrt{-d} \\ \sqrt{-d}^{-1} & 1 \end{pmatrix} \right] \end{split}$$

where $\zeta \in G(\bar{k})$ is a generator, followed by the standard invariant $H^1(k, \text{PGL}(2)) \rightarrow$ $H^2(k, \mu_2).$

One has for $a \in k^*$ and $\mu \in K^*$:

$$\eta_1\big(\delta_k(a,[\mu])\big) = \big(N_{K/k}(\mu)\big)$$
$$\eta_2\big(\delta_k(a,[\mu])\big) = (a) \cup (d)$$

One may take these formula also for a definition of η_1 and η_2 .

4. Versal elements

Let F = k(x, y). Then

$$\alpha = \delta_F(x, [1 + y\sqrt{d}]) \in H^1(F, G)$$

is a versal element for $H^1(?, G)$.

Let v be the valuation on F which is trivial on k(y) and with prime element x. Then $\kappa(v) = k(y)$. One has

$\eta_1(\alpha)$ is unramified at v.

$\eta_2(\alpha)$ is ramified at v.

5. Proof of the Proposition

Now let $\alpha' \in H^1(F', G)$ be some versal element for $H^1(?, G)$. We have to show that F' has transcendence degree at least 2.

Let

 $\varphi \colon F' \rightsquigarrow F$

be a k-place with

$$\varphi_*(\alpha') = \alpha$$

(see [1] for places).

Further let $v' = \varphi^*(v)$. Since $\eta_2(\alpha) = \varphi_*(\eta_2(\alpha'))$ is ramified at v (here we use that d is not a square), we must have that $\eta_2(\alpha')$ is ramified at v'. Hence the ramification index of v'|v is odd. In particular, v' is not trivial. Since $\eta_1(\alpha) = \varphi_*(\eta_1(\alpha'))$ is unramified at v, it follows then that $\eta_1(\alpha')$ is unramified at v'.

Next note that the specialization

$$\eta_1(\alpha)(v) \in H^1\big(k(y), \mu_2\big)$$

is a versal element for square classes which are norms from K/k. Let

$$\bar{\varphi} \colon \kappa(v') \to \kappa(v) = k(y)$$

be the induced homomorphism on the residue class fields. Then

$$\bar{\varphi}_*(\eta_1(\alpha')(v')) = \eta_1(\alpha)(v)$$

Hence

$$\eta_1(\alpha')(v') \in H^1\big(\kappa(v'), \mu_2\big)$$

is also a versal element for square classes which are norms from K/k. It follows that $\kappa(v')$ has transcendence degree at least 1. Since v' is non-trivial it follows that F' has transcendence degree at least 2. This finishes the proof.

References

- M. Rost, Computation of some essential dimensions, notes, 2000, http://www.math.ohiostate.edu/~rost/ed.html.
- [2] J.-P. Serre, Topics in Galois theory, Jones and Bartlett Publishers, Boston, MA, 1992, Lecture notes prepared by Henri Damon [Henri Darmon], With a foreword by Darmon and the author.

Department of Mathematics, The Ohio State University, 231 W 18th Avenue, Columbus, OH 43210, USA

E-mail address: rost@math.ohio-state.edu *URL*: http://math.ohio-state.edu/~rost