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Introduction

A well known theorem about quaternion algebras is the common slot lemma by A. AL-
BERT: For a, b, ¢, d € k*, non-zero elements in a field such that (a,b) = (c¢,d) there
exists an element e € k* such that

(a,b) = (a,e) = (c,e) .

For non-zero elements a, b in a field k of characteristic not 2, the symbol (a,b) denotes
the central simple k-algebra of degree 2 defined by the presentation

(X,)Y:X?=0a,Y?=0b, XY =-YX).

There are several other theorems of this form. One example is the chain-p-equivalence
of Pfister forms, cf. chapter 4, §1 in SCHARLAU [SchQF].

Another example is Witt’s chain equivalence theorem of diagonal quadratic forms, cf.
chapter 1, (5.2) in Lam [LaQF].

Concerning the first example, one may ask similar questions for central simple algebras
of degree > 2. E.g., for some integer n > 2 let k£ be a field of characteristic prime
to n, containing a primitive n-th root of unity . Then for a, b, ¢, d € k* such that
(a,b)¢ = (¢,d)¢, does there exist elements eq,...,e,—1 € k* such that there is a chain
of isomorphisms of length ¢ of the form

(a,b)¢ = (e1,b)¢ = (e1,e2)c & -+ = (er—2,e0-1)¢ = (c,e0-1)¢
if ¢ is odd, or

(a,b)¢ = (a,e1)e = (ez,e1)¢ = -+ = (er—a,e0-1)¢c = (c,e0-1)¢
if ¢ is even?
Here (a,b)¢ denotes the central simple k-algebra of degree n defined by the presentation
(X,)V : X"=a,Y"=0, XY =(CYX) .

If this statement is true, i.e., answered with “yes”, we call it a common slot lemma for
central simple k-algebras of degree n and chains of length ¢.

J.-P. TiGNOL answered the question for central simple algebras of degree n = 3 and
chains of length ¢ = 2, by giving a counter-example: There are fields k and elements a,
b, ¢, d € k* with (a,b); = (¢,d)¢, such that for no e € k* the following holds:

(a,b)¢ = (a,e)c = (c,e)c
Cf. the appendix in [RoCL)].

A common slot lemma for exceptional Jordan algebras over quadratically closed fields
was proven by H.P. PETERSSON & M. L. RACINE in [PeSR]. Their methods were
used by M. RosT in [RoCL] in order to show a common slot lemma for central simple
algebras of degree 3 and chains of length 4.

For completeness we reproduce his proof (with minor adaptations) in §14 of this paper.

M. RosT announced a chain lemma for Kummer elements, which we are going to
state below.—A Kummer element in a central simple k-algebra A of degree n is an
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invertible element X in A such that its reduced characteristic polynomial has the form
Prd(X,t) = t"™ — a. Furthermore, a (-pair in A is a pair (X,Y") of Kummer elements in
A such that XY = (Y X, where ( denotes a primitive n-th root of unity.

We will see in §6 that a (-pair (X,Y) generates the algebra A; so with a := X™ and
b:=Y" € k* we have A = (a,b)c.

Now ROST’s chain lemma says: Let n = p be a prime number and k a p’-closed field,
i.e., k has no finite algebraic extension of degree prime to p. Let A be a division algebra
over k of degree p and ¢ € k* a primitive p-th root of unity. Then for any two Kummer

elements Zy and Z, in A, there exist Kummer elements Zi,...,Z,_; in A such that
(Zi—1,Z;) are (-pairs for i =1,...,p.
For the last fact we are going to say that Zy, ..., Z, is a (¢-)chain of Kummer elements

in A of length p.

As a corollary we easily get a common slot lemma for central simple k-algebras of
degree p and chains of length p, with the field k£ from above: Let a, b, ¢, d € k* with
A := (a,b)¢ = (¢,d)¢, then there are Kummer elements Zy and Z, in A with Z{ =

if (p=1mod4)or Z¥ =b~1if (p = 3 mod 4) and ZP = ¢. We assume that p is odd.

Then there are (in the generic case) Kummer elements 71, ..., Z,_1 such that Z, ...,
Zy is a (-chain of Kummer elements in A, and we get
A=(20,21) = (Z1,2Z) = -+ = (Zp_1,2Zp) .

In the language of symbols this is

(a,b)c = (e1,0)¢ = (er,e2)¢ = - = (ep—2,6p-1)¢c = (c,€p-1)¢
for suitable e; := Z" € k*.

The following paper consists of two parts:

In the first part we set the notion of (-pairs in a more conceptual frame: If (X,Y) is a
(-pair in a central simple k-algebra A of degree n, then we get other (-pairs by taking
powers of the two elements X and Y with exponents prime to n, i.e., (X", Y*) is a
("H-pair. The same we can do more generally for a whole chain of Kummer elements.
But the pairs we got by this process do not give anything new. In particular the entries
a and b in the associated symbol (a,b)¢ just change to the v-th and p-th power. We
also observe that X and Y generate maximal commutative subalgebras L = k[X]| and
K = Ek[Y] of A, cf. §6, and that these algebras remain unchanged, even if we first applied
any operation of taking powers, mentioned above. We call the pairs (L, K) arising in
this way a decomposition of A.

In chapter II we analyze these kinds of objects—the triples (A, L, K). We even consider
objects, which are models (over a subfield of k) of this triple.

It is easy to see (cf. §3) that the powers of Y act on L and mutatis mutandis X on K
by conjugation in A. This situation is the subject of chapter I.

In chapter III we give the connection between the decompositions of A and (-pairs in
A: We specify several notions of chains and show how they are related. This chapter is
the link to the second part of the paper.

Here we give a geometric view of the main objects—Kummer elements and chains of
Kummer elements: We will find smooth irreducible k-schemes W°(A) and W*(A) which
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classify by their points the Kummer elements and chains of Kummer elements of length
¢, up to scaling of the Kummer elements (i.e., we work in projective spaces). By this
interpretation, the problem of the chain lemma becomes a question in Algebraic Geom-
etry, where we have much additional structure. For example we may stress dimension
theory. The problem, if any two (generic) Kummer elements can be connected by a
chain of Kummer elements of length ¢ now has the following form: Let

™ WHA) — WO(A) x;, WO(A)

be the morphism of schemes which on the points is just the projection (Zy,...,Zy) —
(Zo, Zy) of a chain of Kummer elements of the length ¢ onto the first and last factor.
Question: Is the morphism dominant, and—if dim W*(A4) = dim W°(A4) x;, W°(4)—
what is the degree of 77

We will find that dim W*(A) = (£ +n)(n —1) and dim W°(A) = n(n —1). So one easily
can see that for a chain lemma of a central simple algebra A of degree n we need at
least ¢ > n.

In the case from above, for central simple algebras of degree 3 we recognize that there
is no chance connecting 2 arbitrary Kummer elements by a chain of length 2—for di-
mensional reasons! In his counter-example, TIGNOL even showed more: He proved that
one can find two Kummer elements X and Y such that X can not be connected to any
conjugate of Y, by a chain of length 2.

In the end of chapter IV, we show an interesting property about the topology of the
scheme W' (A) of (-pairs, i.e., we will describe the closure of the space.

In chapter V, we explicitly work out three cases:

The first case is concerned with the common slot lemma for central simple algebras
of degree 2 and chains of length 2; the “classical” common slot lemma, given at the
beginning.—But of course we do it in our terminology of Kummer elements. We will
see the geometric structure of the chain lemma:

The morphism m: W?(A) — W(A) x, W°(A) will be revealed as part of the blowing-
up morphism along the diagonal.

The second case is the chain lemma for central simple algebras of degree 3 and chains
of length 3. We will see that for a quadratically closed field k, almost any two Kummer
elements X and Y can be connected by exactly two chains of Kummer elements of
length 2.

The third case is the case of central simple algebras of degree 3 and chains of length 4,
already mentioned above.

The last chapter gives a new interpretation of the morphism 7: We will construct a
more explicit map w between spaces which are coverings of degree n and n of WK(A)
and W2(A) x W2(A) respectively, and via these coverings w lies over 7. So, one may
ask the question of dominance and even (for n = £) of the degree anew for the map w.
Finally we will see that our new map w has a nice interpretation for £ = n:

Let S and T be the maximal tori in PGL(A) given by the subalgebras generated by
Kummer elements X and Y'; where (X,Y) is a (-pair. Then for £ = n odd, the map w
can be interpreted as the multiplication map

SxTxSxTx---xSxT:(SxT)% — PGL(A) .
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Notations

Throughout the paper k denotes a field and—unless specified in a different way—we
denote by k a separable algebraic closure of k. Then I" = Gal(k|k) denotes the absolute
Galois group of k.

Furthermore we use the following “standard” notations:

E;; quadratic matrix (of specified size) with entry 1 at the place (i, j)
and 0 otherwise

diag(dy,...,d,) diagonal n x n-matrix with diagonal entries dy,. .., d,, in this
Ol"deI‘, i.e., d1E11 + -+ dnEnn

EigVal(f) set of eigenvalues of some endomorphism f of a vector space

EigVec(f,0) set of (non-zero) eigenvectors of f to the eigenvalue 6

EigVec(f) [oerigval(y) EigVec(f, 0)

11 sum in the category of sets, i.e., disjoint union

Ko conjugation with the element x in some domain, whenever this
action is defined, i.e., k;(y) = zyx ™!

evy evaluation in z, i.e., ev,(f) = f(z), whenever f is a map which
can be evaluated in x

Prd(X,t) reduced characteristic polynomial (in the variable t) of
some element X in a central simple algebra

Nrd(X) reduced norm of some element X in a central simple algebra

Trd(X) reduced trace of some element X in a central simple algebra

If X is any scheme and & an Ox-module on X, then we denote with &(x), for a point
r € X, the x(z)-vector space &, ®o,, x(x), where in this context x(z) is the residue
field Ox 5 /m, of z and &, the stalk of & at =.

For such an & on a k-scheme X and a k-vector space E, we use the following notations:
A(E) Spec(S(E)), the k-Scheme, which has F as its k-rational points

P(E) Proj(S(E)), the k-Scheme, which has E — {0}/k* as its k-rational points
V(&)  Spec(S(&))

P(&)  Proj(S(&))

Here E stands for the k-vector space dual Homy in (F, k) of E, and S is the (naturally
graded) symmetric k-algebra on some k-vector space or sheaf of modules on some k-
scheme X. In a similar way, one has to read the k-Schemes GL;(A) and PGL;(A) for
k-algebras A.

Note that in this notation, if one interprets F as a sheaf of Ox-modules, for X =

Spec(k), this implies: A(F) =V(E) and P(F) = P(E).
In most cases we use the notation [z] for some equivalence class of z, however, sometimes
we write a for (a mod nZ).



Chapter I

Twisted Cyclic Extensions

A cyclic Galois extension L|k is known to be a Galois extension L|k of finite degree n
with a Galois group Gal(L|k) = Z/nZ.

We can characterize a cyclic Galois extension in the following way: Let L|k be a sepa-
rable field extension of degree n and k = L be a separable algebraic closure of L and k.
Further we denote by L the Galois closure of L in k. If 0 is a primitive element of L,
i.e., L = k(6), then 0 has n conjugates 61, ...,0, in k and hence L = k(6,,...,0,).
Now obviously we can say: L|k is a cyclic Galois extension < Gal(L|k) = Z/nZ.

From Galois theory one knows the morphism

¢: Gal(klk) — S({01,...,0,})
Y 7’{91 ..... 0n}

from the absolute Galois group of k£ into the permutation group of the conjugates of
0. The kernel of this morphism in Gal(k|L) and therefore the image is isomorphic to
Cal(L|k). So we can say: L|k is a cyclic Galois extension < im(y) 2 Z/nZ.

In this case im(y) is a group which acts free on the set {61, ...,0,}. The group Gal(k|k)
acts on S(f4,...,0,) by conjugation via ¢. However this action is trivial on im(¢p).

In the following chapter we will treat objects which are slightly more general than the
cyclic Galois extensions, namely pairs (L,C) where C C S({61,...,60,}) is not any
more the image of ¢ but some other cyclic subgroup of order n which is preserved by
the action of the absolute Galois group of k.

8§ 1. Twisted Cyclic Extensions

1. Preliminaries

Let M be a finite set of n elements, S(M) denotes the symmetric group on M and let
C C S(M) be a transitive cyclic subgroup of order n, i.e., a cyclic subgroup of order
n such that M = {n(m) : # € C} for any m € M. About the normalizer subgroup
Ng :={r € S(M) : 7Cn~! = C} one knows:

(1.1) Claim. There is a natural short exact sequence

incl

1 — C <= Nog = Aut(C) — 1
T — K

1

where k(@) = mom~" is the inner automorphism on S(M) restricted to C, given by

conjugation with .
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Proof: We may assume M = {1,2,...,n} and—since C' is a transitive subgroup of
order n—that C' is generated by o := (1 2 ... n), the permutation which maps i to
7+ 1 modulo n.

Let 7 € ker(k) be an element of the kernel of k. Then wp = pr for all elements ¢ € C.
Let ¢ = m(n), then we have

7(j) = o'roI(j) = oIn(n) = o(i) = o™ (n) = o'())

for all j, hence 7 = o% € C.

It remains to show the surjectivity of x: An automorphism f € Aut(C) = (Z/nZ)*
is given by some (m mod nZ) € (Z/nZ)* such that f: C — C, m — 7. Define
p €S, =S(Z/nZ) to be Z/nZ =~ Z/nZ, £ mod n — m - £ mod n, then considering

m:( 1

o Im2m ... nm)=¢ (12 ... n) o " =kK,(o)

one can see both—¢ € N¢ and K, = f. 0
The surjective homomorphism x has sections. There is no canonical section, but we will
see that there is indeed a class of sections which are given naturally.
(1.2) Lemma. For each m € M the restriction of k: No — Aut(C) to

I, :={m € N¢:m(m) = m} =% Aut(C)

is an isomorphism. It gives rise to a section s,,: Aut(C') — N¢ of k: No — Aut(C),
namely its inverse. It can be described by

Sm(f): M — M
n(m) — (fm)(m) ,

for all f € Aut(C) and 7 € C.

Proof: First of all, the restriction x: I,,, — Aut(C) is injective: If w, 7’ € I,,, are two
elements such that x, = k,, we can conclude 7’71 € ker(k) = C and hence ' = 7.
In fact, since 7’71 (m) = m we know 7/m~1 = 1.

Now, in order to show that the morphism is surjective, choose an f € Aut(C). Then
the permutation defined by §: M — M, n(m) — (Ym)(m) for = € C, is a pre-image of f
lying in I,,: We first claim for any 7 € C"

sTit=In,
Evaluation with ¢(m) € M for ¢ € C gives

GEm s Y (wm) = Gm( ¥)(m)

= (m)(¥(m)) .

This proves that § € No—thus we get § € [,,,, since 5(m) = m—and that kz = f. O

9



§ 1. Twisted cyclic extensions

(1.3) Lemma. Foranym € M andw € C we have the formula s, (,,,)(f) = w8y, (f)m ™!
for every f € Aut(C), i.e.,

Sx(m) = Kr O8m ,

where k. is the conjugation k,: No — N¢, ¢ — mon 1. In other words, we have

the commutative diagram
e

Aut(C) Ko

sw(\)

N¢

Nc .

Proof: Since tir () = Ir(m) we can change the two right hand side objects in the
diagram to I, and I, such that we have to show the commutativity of

Im,
=
Aut(C) Ko
\
S (m)
Iﬂ'(m) .

Now the two diagonal arrows are bijections, and in order to show the commutativity of
the diagram it is equivalent to prove the commutativity of the diagram with the reversed
arrows:

Im
/
Aut(C) Ko
Iﬂ(m) .

Thus we have to prove k o kK, = k on [,,. But this is clear. We even have the commu-

tativity on N¢

Aut(C) Ko

T

Nc

NC )
since 7 is an element of the kernel of k: No — Aut(C): For any 7 € N¢
Ko ke(T) = K(mrn™ 1)
= r(m)r(r)r(r ")
= &(7)
and this completes the proof. O

10



§ 1. Twisted cyclic extensions

(1.4) Claim. For each m € M there is an isomorphism of groups

om: CxAut(C) =% Ng
(@, f) — @sm(f)

We have the commutative diagram for any m € C

C'x Aut(C) —Im NC

Or(m)
I{(ﬂ',idc) Ko

Cx Aut(C) L N NC .

Proof: With the last lemmas there is nothing to prove anymore. The commutativity
of the right triangle follows from ¢ s;(m)(f) = @msm (f)T ™! = T 85 (f)m ™t for p € C
and f € Aut(C). To recall the multiplication in the semidirect product we show the
homomorphism property:

om (2. )& 1) (@(m)) = om ( )(w m))
= poly osu(ff)(¥(m))
= poly O(”@b)( )
= wosu(f)((¢' T¥)(m))
= (e, ) (om(e’ [ (¥(m)))
= om(p, f)ooly, f')(’tb(m))

for (¢, f), (¢, f') € Cx Aut(C) and ¢ € C. O
(1.5) Remark. Up to an inner automorphism with an element of C' (which is a sub-

group of either C'x Aut(C) and N¢) there is a canonical isomorphism of the groups
Cx Aut(C) = Nc.

(1.6) Lemma. Ifn is of the form n = 2°n’, where n’ is an odd and squarefree number
and § =0, 1, 2, then in (Z/nZ)x Aut(Z/nZ) = (Z/nZ)x(Z/nZ)* one has

ord(m,a)=n — a=1
for all (m,a) € (Z/nZ)x(Z/nZ)*.
Proof: Let (m,a) € (Z/nZ)x(Z/nZ)* and let m = (m mod nZ), a = (a mod nZ).

Assume first that n = p is a prime.
If a =1 (mod p), then

If a # 1 (mod p), then

l+a+a®+ - +a"? = ——— = 0 (mod p)
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and therefore
(m,a)’~t = (m+am+---+a”"*m mod pZ,a?’ " mod pZ) = (0,1) .

Let first n be (not necessarily odd) squarefree and n = p; - - - p,- be the prime factoriza-
tion of n. We define fori =1,...,r

i if a =1 (mod p;)
HioZ \pi—1, ifa#1 (modp;)

and g = 1 --- . Then
(m,a)" = (0,1)

since
,

@z« (@) = [[ @/ n(Z/mz)”
i=1
Now if @ # 1 we have an i such that a # 1 (mod p;), hence u; = p; — 1 and therefore
p < n. It follows that ord(m,a) < n.
In the case of n = 4n/ = p3psy - - - p,, where n’ is odd squarefree and p; = 2 we modify

Di, if a=1 (modp;) and 2 <3

) pi—1, ifa#1 (modp;) and 2 <73
Hi =9 g, ifa=1 (modp;) and 1 =i
2, ifa 1 (modp;) and 1 =1

with g := pq -+ - pr. Then one observes for ¢ = 1 that in (Z/4Z)x(Z/AZ)*
(m,a)" =(0,1)
and therefore we have analogously in (Z/nZ)x(Z/nZ)*
(m,a)" = (0,1)
also with p < n which implies ord(m, a) < n. |
(1.7) Corollary. Let m € S(M) be an element of order n and C' some transitive cyclic

subgroup of S(M). Assume n = m or n = 2m for some squarefree m. Then the
condition tCr~! C C implies (1) = C.

Proof: The condition says that 7 € No = C'x Aut(C). It suffices to show the following
statement: If 7 € Z/nZx Aut(Z/nZ) = Z/nZx(Z/nZ)* is of order n, then m € Z/nZ,
i.e., m = (m,1) for some m € Z/nZ. But this is exactly (1.6). a

2. Twisted Cyclic Structures

We fix a separable algebraic closure k of a field k. Let I' := Gal(k|k) denote the absolute
Galois group of k. In the following let L be a separable k-algebra of degree n, i.e., L is
a commutative k-algebra with

L =L@k = k"

as k-algebra (cf. (18.3) in [BI]). I acts (continuously) on L by semilinear automorphisms
vial' x L — L, (v,{® ) — £ @ ~y(x). Obviously L' = L.
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§ 1. Twisted cyclic extensions

If My, is the set of the n primitive idempotents of L, then there is a canonical identifi-
cation

AUtE(IJ) —— S(ML)
f— f’ML )

where S(Mp) is the symmetric group on the set M.

(1.8) Remark. By this identification one can write the morphism considered in (1.4)
as

oe: CxAut(C) — Autz(L)
(f;9) ¥— [ose(p)

where e € My is a primitive idempotent of L and C' C Autg(L) a transitive cyclic
subgroup of order n, and s.(¢) € Autg(L) is given by

se(p): L — L

Z z - cle) — Z .- (Yc)(e) ,
ceC cel

where z, € k. Recall that L = Decnr, ke = @.eck-cle).

There is a left action of I" on the group Autj(L) given by

I' x Aut,;(L) — Autjq(L)
(7, f) — "f = (idr®@y) o fo(idp®@y™!) .

One checks that ”f again is k-linear, even if the composition on the right hand side

takes place in the larger group Auty(L).

(1.9) Remark. There is a canonical identification

Auty (L) == Aut,;(l_/)r
f— f®idg

glrer g .

Proof: All we have to show is g(L ® k) C L ® k, and this is clear since L' = L: Let
yeT and £ € L, then g({ ® 1) = (g)({ ® 1) =~v(9({ ® 1)). O
The action of I' on Auty(L) is already given by inner automorphisms. Define

or: T — Autg(L) = S(Myp)
v er(y) = (dr@)|m,

i.e., o1 () has the same effect on My, as (idy ®7) but is k-linear.
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§ 1. Twisted cyclic extensions

1.10) Claim. The action of T on Aut; (L) is given by ko ¢y, i.e.
(1.10) k g y KO pr, i.e.,

' x Autz (L) — Autg(L)
(1, f) — B () =wr(y) o fopr(y)~".

Proof:

(e o foor() V= (V) © flar, 0 e (y) s,
= (idL ®7)|n, © flag 0 (ide ®y ) |ar,
= "flay -

O

(1.11) Remark. Let L = k(0)|k be a separable field extension of degree n. We assume
L Ck,so0¢€k. Let {0y,...,0,} be the set of the n distinct conjugates of 6 in k. Then
we have the canonical identifications

ML — Homk(L, k)

e — e*,

where e*: L — k, £+ trzz(ef) and

Homy (L, k) == {01,...,0,}
f— f0).

With this identification of M, with {61, ...6,}, we can give the following interpretation
of pr: For v € I the permutation ¢y, (y) € S(M}) is given by

orL(y): {01,...,0,} == {61,...,0,}

So the map ¢r: I' — S({01,...,0,}) is just the morphism one knows from Galois
theory.

(1.12) Definition. We call the image im(¢r)(C Autz(L)) the Galois group of the
k-algebra L and the fixed field k¥**(¥1) the splitting field of L.

(1.13) Example. If L|k is a separable field extension, then the splitting field of L

is the Galois closure L of any embedding of L in k, and ¢y induces the isomorphism
Gal(L|k) =% im(pp).

(1.14) Definition. A twisted cyclic structure on the separable k-algebra L is a

[-invariant subgroup of Autg (L) which is a transitive cyclic subgroup of order n.
A twisted cyclic extension of k of degree n is a pair (L,C') of a separable k-algebra
L of degree n and a twisted cyclic structure C on L.

(1.15) Remark. A transitive cyclic subgroup C C Autz(L) of order n is a twisted

cyclic structure on L if and only if im(pr) C N¢, i.e., if pr: I' = Autg (L) factorizes in
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§ 1. Twisted cyclic extensions

the form I' =% C'x Aut(C) < Autz(L) (for any e € My). Here 7, is uniquely defined
by the choice of e; and 7, = k(s q) © Tf(e) for any f € C, as one can see regarding (1.4).

(1.16) Remark. Let k be some other separable algebraic closure of k and a: k =% k
a k-isomorphism, then we have the induced isomorphism

ot Aut (L @k k) — Auty (L ® k)
f — a.(f) = (idp ®a) o f o (idp ®a) ™t .

which gives a twisted cyclic structure a.,(C') on L if and only if C' is one. In this case,
i.e., if C'is a twisted cyclic structure, the subgroup a.,(C) is independent of the choice
of the k-isomorphism a: Let § = ao~, (7 € I') be a second k-isomorphism. Then
ﬁ*(C) = (idL ®a)(idL ®’Y)C(idL ®’)/)_1(id[, ®Oz)_1 = (idL ®Oz)WC'(idL ®Oé)_1 = 04*<C),

since "C' = C.

(1.17) Example. If n = 2,3 there is a unique twisted cyclic structure on L because So
and S3 have exactly one cyclic subgroup of order n, and this one is a normal subgroup.

(1.18) Remark. In general there is not only one twisted cyclic structure on the al-
gebra L. For example if k& = k, then the absolute Galois group I' = 1 is trivial, so
is im(¢y) and every transitive cyclic subgroup of S(Mp) = S,, of order n is a twisted
cyclic structure, and there are exactly (n—1)!/p(n) transitive cyclic subgroups of order
n. (¢ is the Euler phi function.)

(1.19) Definition. A twisted cyclic structure C on L is called a cyclic structure on
L, if T acts trivially on C. Then the pair (L,C) is called a cyclic extension of k of
degree n.

(1.20) Remark. A transitive cyclic subgroup C' C Autz(L) of order n is a cyclic

structure on L, if and only if im(py) C C, because the only elements of Autj(L) = S,
commuting with the elements of C' are the elements of C'. In other words: C'is a cyclic
structure, if and only if one gets the (unique) factorization of ¢y, in the form

r —FL 5 Autz(L)

[ ]

C=C0x{l} —— OxAut(C) ,

where again e € M, is any primitive idempotent of L.

(1.21) Remark. If C is a cyclic structure on L, then one has
C =C" C Auty (L)' = Auty(L) .

Therefore, if L is a field, then from # Auty(L) < n follows C' = Auty(L). Hence L|k is
a cyclic Galois extension with Galois group C.

(1.22) Example. If L|k is a cyclic Galois extension of degree m, then im(p) =
Gal(L|k) is a cyclic structure. It is the only cyclic structure on L, as we have seen
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§ 1. Twisted cyclic extensions

n (1.21). In the following we will see that it is in fact the only twisted cyclic structure
on L.

(1.23) Definition. A twisted cyclic structure C on L is called a dihedral structure
on L, if T acts on C' only as identity and taking the inverse, i.e., if one has the following

factorization:
r —% , No —& Aut(C)

N, 7

7.)27
where the lower right hand arrow takes (0 mod 2Z) to idc and (1 mod 2Z) to f — f~1.

(1.24) Remark. A transitive cyclic subgroup C' C Autz(L) of order n is a dihedral
structure on L, if and only if ¢r: I' — Autz (L) factorizes in the form

r —% Aut,; (E)

Cx{i> Cx Aut(C) ,
where {£1} C (Z/nZ)* = Aut(C) and e € Mj,.

(1.25) Example. For n = 3,4,6 every twisted cyclic structure on L is dihedral. In
fact in this case is Aut(C) = (Z/nZ)* = 7/2Z.

(1.26) Example. Let L|k be a separable field extension of degree n = 4 of the form

L = k(\/a,/b). Then L|k is Galois and Gal(L|k) = Z/2Z x Z/2Z. There are three
twisted cyclic structures on L (which are already dihedral by (1.25))—the 3 = (n —
1)!/¢(n) (transitive) cyclic subgroups of order 4. The action of I on M, can be identified
with the action of T' on M := {#/a + /b}. One observes that im(¢z) C S(M) is the

Klein Four Group
U:={occSWM):0*=1,sgno =1}

= {(rs)(tu) : {r,s,t,u} = M} .
The claim follows since the Klein Four Group U operates on the three cyclic subgroups
by conjugation: One checks this for M = {1,2,3,4}, e.g., consider first

(1234)

((rs)(tw)) (1 2 3 4)((rs)(tu)) = { (4321),

with {r, s, t,u} = {1,2,3,4}.

The permutation (1 2 3 4) is a generator of one of the three transitive cyclic subgroups
and conjugating it with an element of the group U yields the element itself or its inverse,
i.e., U acts by conjugation on the group generated by (1 2 3 4). We get all the other
generators of the transitive cyclic subgroups by conjugating (1 2 3 4) by any element of
S(M) = Sy, and so the conjugation of these generators by an elements of U again yields
the element itself or its inverse. Note that the Klein Four Group is a normal subgroup.
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§ 1. Twisted cyclic extensions

3. Uniqueness of Twisted Cyclic Structures

Let’s start with a “counter-example” for n = 6.

(1.27) Example. Let n = 6. In Sg we have the elements o1 := (12345 6), 02 :=
(143652)ando3z=(163254) of order 6, furthermore ¢ := (1 6)(2 5)(3 4) of order
2 and finally ¢ := (1 3 5)(2 4 6) of order 3. Also we know for i =1, 2, 3

Y = o7,
QOUi(p_l = O-;l 3
e = 2.

Obviously, the subgroup U := (p, 1) (of order 6) generated by ¢ and ¥ acts on C; := (o)
by conjugation, i.e., U C N¢,. Notice that the three groups C, Cy and C are different!
They are the only cyclic subgroups of order 6 with this last property:

Let C = (6) C Sg be a transitive cyclic subgroup of order 6 with U C N = C'x Aut(C).
After some identification N = C'x Aut(C) we can write ¢ = (¢, f) € Cx Aut(C). Since
Y = p* and Aut(C) = Z/27 we have f = 1, i.e., p = ¢ € C. Hence by ord(y)) = 3
we have ¢ = 62 or ) = 6~ 2. Since & and 6! are the only two generators of C, we
may assume (1 3 5)(2 4 6) = ¢p = G2. Therefore & has the form 6 = (1 a 3 b 5 ¢) with
(a bc)=(246). There are three possibilities for substituting the variables a, b and
¢ by the numbers 2, 4 and 6 (in the right order!), and they yield the elements o1, o9
and os.

Now, set k = Q and L := Q((3, ¥/2) where (3 is a primitive third root of unity. Then L|k
is Galois of degree 6 and the Galois group Gal(L|k) = im(py) can easily be identified
with U. So L has exactly three twisted cyclic structures.

Note that L|k is a non-abelian Galois extension. This is interesting, since for cyclic
Galois extensions of fields we have the following:

(1.28) Proposition. A cyclic Galois extension L|k of fields of degree n has a unique
twisted cyclic structure—namely the cyclic structure mentioned in (1.22).

Proof: Let C := im(py) be our cyclic (hence twisted cyclic) structure from (1.22),
and we assume that C’ is another twisted cyclic structure on L. We choose generators:
(o) =C and (1) = C".

Then by definition, im(¢z) = C C N¢r, i.e., Tor~1 € C. So there is an integer i with
Tor™! = o'. But o' = 707! is also a generator of C, hence (i mod nZ) € (Z/nZ)*.
Chose an integer j such that ij = 1 (modn). Then 770777 = ¢ = o. Since C is
a transitive subgroup of S(Mp) we know by (1.1) that 77 € C, hence 7 = 7% € C.
Therefore C' = C". O

(1.29) Proposition. Assume n = m or n = 2m for some squarefree m. Let C' be a
twisted cyclic structure on a separable k-algebra L of degree n, and suppose that there
exists an element m € im(py,) of order n, then C' = (m), and C' is the only twisted cyclic
structure on L.

Proof: After the identification Autj(L) = S(M},) one can use (1.7), which says that
7Cr~! C C implies () = C. |
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§ 1. Twisted cyclic extensions

(1.30) Proposition. Let L|k be a separable field extension of degree n. If the con-
dition (n, go(n)) = 1 holds—in this case n is squarefree—then there exists at most one
twisted cyclic structure on L. (¢ denotes the Euler phi function!)

Proof: Assume C' is a twisted cyclic structure on L, by (1.29) it is enough to find an
element 7 € im(py) of order n. Certainly there are elements m; € im(pyr),i=1,...,m
of order p;, where n = p; - - - p,,,. This follows from the fact that n|# im(ey).

Identifying somehow Neo = C'x Aut(C') we can write m; = (¢;, ;) for ¢; € C and ¢; €
Aut(C). We claim ¢; = id¢ for all 7. Otherwise we have 1 # ord(y;) | ord(c1, ;) = pi,
i.e., ord(p;) = p;. But ord(p;) | ¢(n), which is prime to n. Therefore 7 := 71 -+ -7, =
(c1+-¢m,ide) has order py - - pp, = n. 0

(1.31) Remark. Example (1.27) shows that (1.30) doesn’t hold without the condition
(n, p(n)) = 1.
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§ 2. Cy-Extensions

1. Cy-Extensions

Again, let k be a field and I' = Gal(k|k) the absolute Galois group of k (for some
separable algebraic closure k of k).

Now fix a natural number n and a continuous discrete I'-module Cjy which is isomorphic
to Z/nZ as a group. Let a: I' — Aut(Cp) denote the morphism given by the action of
[ on Cy, i.e., a(vy)(c) =T for y € T',c € Cp.

(2.1) Definition. Let L be a separable k-algebra of degree n. A Cy-structure on
L is an injective I'-equivariant morphism p: Co — Autg(L) = S(M],) of groups such
that im(p) is a transitive cyclic subgroup of order n.

A Cy-extension is a pair (L, p) of a separable k-algebra L of degree n and a Cy-structure
pon L.

(2.2) Remark. If (L ,p) is a Cp-extension, then im(p) C Autg(L) is a twisted cyclic

structure on L and (L, im ) is a twisted cyclic extension of k of degree n. On the
other hand: If (L,C) is a tw1sted cyclic extension, it gives rise to the C-extension

incl

(L, p: C — Autz(L)).

(2.3) Example. Let us take a look at the case of a trivial I'-module:

If Cy is a trivial [-module, then im(p) is a cyclic structure on L for any Cp-extension
(L,p). From (1.21) already follows im(p) C Autg(L) C Autg(L). So the Cyp-structures
on L are already the injective morphisms Cy —— Autg (L) of groups. Therefore after
fixing some generator ¢y of Cy, there is a bijection

{Cy-structures on L} =% {c € Auty(L) : ord(c) = n}
p — plco) -
Since a cyclic group of order n has exactly p(n) = #(Z/nZ)* generators (i.e., elements of
order n), there is a p(n) to 1 correspondence between Cy-structures and cyclic structures

on L. In the case Cy = Z/nZ we have the canonical generator (1 mod nZ) and instead
of writing (L, p) we may write (L, p(1 mod nZ)).

2. Classification of (Cj-Extensions

There is a classification of the Cjy-extensions of k by the Galois cohomology group
H'(k,Co) = H'(T', Co).

(2.4) Definition. A morphism f: (L,p) — (L', p’) of Cy-extensions of k is a mor-
phism f: L — L' of k-algebras such that for every ¢ € Cy, the diagram

/

ll

r(e) p'(c)

%
N — &

~

-
N SN

gl
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is commutative. Here f is the morphism

fidg: L = Loyk — L'@pk = L.

(2.5) Remark. In other words: L and L’ become Co-modules via p: Co — Aut(L)
and p': Cy — Autg(L’) and f is a morphism of Cy-modules.

(2.6) Remark. The morphisms f and f are then already isomorphisms. In fact f
is bijective, since f|p;,: My — My, is bijective: Cy acts free on the sets of primitive
idempotents My, and M.

(2.7) Remark. Recall some well known facts about Galois cohomology; one has the
following groups: Let
Z1(T',Cy) = {continuous crossed homomorphisms I" — Cp}

denote the group of the 1-cocycles of I' with values in Cy. On this group we have (an
equivalence relation given by) the normal subgroup

B (T,Cy) = {f:T — O : there exists a ¢ € Cy such that f(y) = yc — c for all y € T'}

of the 1-coboundaries.
Then we have the cohomology group HY(T',Cy) = Z1(T", Cy) /% (T, Cy). Let

Hom,,,, p(I', CoxI') := {f € Hom,,, (I, CoxT") : pryof =idr} ,

where pry: CoyxI' — I' is the projection on the second factor. On this group we have the
equivalence relation given by:

f~g = [=Fk¢i)og forsomeceCy.
Here k(1) is the conjugation in CoxI" with the element (c, 1r). Let
Hom. o, o (F, Co~ Aut(Co)) = {f € Hom,.,,. (F, Co~ Aut(Co)) ipryof = a} ,

where pry: Cox Aut(Cy) — Aut(Cp) is the projection on the second factor. On this
group we have the equivalence relation given by:

f~g = [f= K(cidgy) © 9 for some c € Cj .

Here £ (. idc,) 1s the conjugation in Cyx Aut(Cp) with the element (¢,id¢,). Also, there
are the identifications of these groups

21, Co) =% Hom,.,, p(T,CoxI)
h — E,
where h(7y) = (h(v),7) and
71T, Cy) == Hom, o o (F, Cox Aut(C'o))

h — h ,

where h(v) = (h(7),a(v)). They respect the equivalence relations, such that canonically
H'(T',Cy) = Hom,o (T, CoxI)/~
= Hom, o o (I, Cox Aut(Cp)) /~ .
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§ 2. Cp-extensions

The theorem (2.10) states that there is an identification of isomorphism classes of Cjy-
extensions and the elements of H(T', Cp).

First, we want to assign a cohomology class [h(r, ,)] € H'(T', Cp) to a Cyp-extension (L, p):
Let C := im(p) be the twisted cyclic structure associated to p. Choose a primitive
idempotent e € My, of L. Now p induces the isomorphism

p«: CoxAut(Cpy) =~ CxAut(C)
and there is the commutative diagram

[ —— CxAut(C) <7 Autz(L) = S(My)

p*]
py tore

Cox Aut(Co)

of the factorization of ¢y, . -
Now define the crossed homomorphism Ay, ,: ' — Cq by the equation Az, ,) = py Lor,,
SO

<1) PL = 0c¢ O P« Oh(va) .

The cohomology class [k, ] € H' (T, Cy) is independent of the choice of the primitive
idempotent e: Let co € Cp, ¢ := p(cg) € C, then by (1.15) 7c = K(cid) © Te(e), therefore

(prto7e) = Pyt 0 K(co,id) © Te(e) = K(eosid) © (P3O Te(e)) -

Furthermore it is obvious that [ )] = [h(r 1], if (L, p) = (L, p).

(2.8) Lemma. For the 1-cocycle hy, ,) which is given by hg’/p) = p; ! o7, we have
the explicit description: The diagram

hw,
F%Co

\ le(—)(e)
pr(=)(e)

is commutative, i.e., for any v € T,

p(hpy(M)(€) = wr(v)(e) = (idr ®7)(e) .

Proof: By definition

(' o) (V) = hiwpy(7) = (hw.pn(1)a())
for any v € I'. Therefore

7e(7) = (p(hw,pn (), pea(7))
where p.a(y) = poa(y)op~t. Hence

(pL(/Y) = (Ue 07_6)(’7)
= ae(p(hir,p(7)), pra(7))
= p(hr,p (1)) 0 se(pea(v)) 3
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for s, cf. (1.8). Evaluation in e € My, yields

er(1)(e) = phir,p) (7)) o se(pea(v))(Lele))
= p(hz.n () (" *Mc(e)
= p(hizp()(e) -
and we are done. O
For the other direction we want to assign a Cy-extension (Ly, pp,) to a 1-cocycle h:

Let h € ZY(T,Cy), and set M := Cj.
Then Cj is canonically embedded in the symmetric group S(M) viz

I: Co — S(M)
cr— e,

where . : M — M is the left multiplication with ¢. Denote C' := im(l). Now let " act
on M in the following way: The cocycle h gives a homomorphism

h: T — Cyx Aut(Cy)

as described above. The embedding [ yields the embedding (which maps isomorphically
to the normalizer No—cf. (1.4))

010l Cox Aut(Cy) — S(M)
(€p) —— leoyp,

where [,op: M — M, m—c-p(m)and 1 =1¢, € M.
Composing these two maps one gets the (continuous) morphism
(2) gbh: r — S(M)

Y > a0 a(y) ,

which gives an action of I' on M. Now let T' act semilinear on L, := €

rxgglz;.m_> @;;.m

meM meM

(vs (@m -m)) — (Y(@m) - Pn(7)(m))

for x,, € k. Then Ly, := L_hF is a separable k-algebra of degree n. (cf. (18.1) in [BI])
(2.9) Remark. Because of Lj, ® k = Ly, we can identify M with My, , and then one
has the equality

(3) oL, =¢n: I' — S(Mg,) =S(M) ,

since both morphisms describe the Galois action of I" on the set of the primitive idem-

potents M = My, .

Finally we define the Cy-structure p; as the injection ! from above:

pr: Co — S(My,) = S(M)

c — ..

(4)
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We have to prove that pj is I'-equivariant, i.e., for every v € I', the diagram
Co — 22— S(M)
a(v)l lm%h(v):%hm
Co — 22— S(M)
is commutative. For every ¢ € Cy we have to verify

fgn(n (Pn(€)) = pr(a(v)(c))
i.e., on(y) o pr(c) = pr(c) o dp(y) in S(M). Indeed, evaluation in m € M gives

én(7) © pr(c)(m) "= 1) 0 aly) o le(m)
= h(y) c-m)
— e-h(y)m
= o) - (R(7) - 'm)
P pn (%) 0 g (v) (m) .

If [h] = [A'], then (L, pn) = (Lns, pr). One can check this directly as in the previous
case or it follows with the proof of (2.10).

Now we can state and prove the Theorem.

(2.10) Theorem. There is a canonical bijection

{Cp-extensions of k} /= =~ HY (T, Cp)
(L, )] — [hw,p)]
[(Ln, pn)] — [h]

between the set of isomorphism classes of Cy-extensions and the first Galois cohomology
group.

Proof: We have to prove that the two maps are inverse to each other.

Let h € ZY(T,Cy) be a 1-cocycle and write %, for (Ly, pr) We will show: h = hg, .
But it is enough to show h = hg,: I' — Cyx Aut(Cyp). It is even enough to show

orol,oh = Ulol*oﬁ:g;: ' — S(M)=S(My,) ,

where 1 = 1¢, € M. But that follows from

o10ly,ohg, = o10(pr)«ohg,
= PL,
= o

= alol*oﬁ.
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§ 2. Cp-extensions

Now let .Z = (L, p) be a Cp-extension. hg is defined by the equation

o =0c0piohy

for some primitive idempotent e € M. We have to show

(L;P) = (thaphg)a

but that means just

LT,
as k-algebra, I'-module and Cy-module (as described in (2.5)).

The bijective map
r M — Mg

¢ — ple)(e)
(remember M = Cy!) gives an isomorphism
r: Lp, = @l_c-c = @ k-m = L
ceM meMr,
(zc-¢) — (zc-r(c))
of k-algebras. But r is also I'- and Cp-equivariant: First we claim that the diagram

Co~ Aut(C()) SN S(M) = S(Mth)

P*P T*lz
Cx Aut(C) —Z=— S(Mp)
with C' := im(p) and 1 = 1¢, € M, is commutative, i.e., for (¢, ¢) € Cox Aut(Cy), we
have the identity
ae(p(c), pilp)) = ri(o1(c,)) -
To show this, evaluate the equation in an element m = r(d) € Mp, d € M = Cp, and
the claim follows from

7 (p(e), p- () (m) = 0 (pl0), puly
= )

= r(oi(e,9)(r~'(m)))

~ r(or(e)) (m)
/C\o/mposing this diagram in the upper left corner with either Cy — Cyx Aut(Cp) and
hg: T'— Cyx Aut(Cp) one gets the commutative diagrams

o S(M)
Co / lr*
p\
S(Mr)
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and
T J/"’*
oL
S(Myp) .
But this is just the Cy- and I'-equivariance of r, and we are done. 0

(2.11) Notation. If (L,C) is a twisted cyclic extension of k, then—by virtue of

incl =

(2.10)—the C-extension (L,p: C — Autg(L)) maps to (b, )] € H'(T,C). We will
denote this cohomology class by [L,C] € HY(T,C).

(2.12) Remark. If (L,p) is a Cy-extension and C := im(p), then p induces an iso-
morphism

ps: HY(T,Cy) == HYT,C) ,
which maps [k, )] to [L,C].

3. un-Extensions and Kummer Extensions

Now we take a look at the case where Cy is p,, := pp(k), the I'-module of the n-th roots
of unity. We assume that the characteristic of k does not divide n, so that pu,, is a cyclic
group of order n.

Let (L, p) be a p,-extension of k, i.e., p: i, — Auty (L) is I-equivariant. That means

p(’C) = Fpp(y) (p(C))
= wr(v)op(¢)ewr(v)”
= (idp ®7) 0 p(¢) o (idy @)~
for ¢ € u, and v € T' (cf. (1.10)), therefore

1

(5) p(’¢) o (i ®y) = (idr @) o p(() ,
which takes place in Auty(L) = Auty(L ®4 k).
Define

K, ={ze€L:p)(z)=C-z, forall ( € p,} .
Of course, if one chooses a primitive n-th root of unity £ € u,,, one has

K, = {zel:pe)()=¢a}.

(2.13) Claim. The subset K,(C L) is T-invariant with respect to the semilinear action
of I" on L (cf. the beginning of §1, 2.)

Proof: Let z € Kp and v € I'. Then for any ¢ € p,,
p(Q)((idz ®7)(2)) = (p(¢) o (idr ®7))(2)
2 ((dz@y)ep(” Q) (@)
= (idp ®v) (flC - )
= (- (idr ®7y)(=) .
and that means (id; ®7)(x) € K. O
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§ 2. Cp-extensions

(2.14) Claim. K, is a one dimensional k-vector space. The I'-semilinear action on K,

. —=I 7 . .
gives a k-vector space K, := K, C LY = L of k-dimension one.

Proof: Kp is obviously a vector space, so all we have to prove is dimy, Kp = 1. But
that is clear, regarding the following explicit description: Since
1

L = k-m(e),

3
|

<
I
=

where e € M, is any primitive idempotent and 7 := p(¢) € S(Mp) = Auty (L) for some
fixed primitive n-th root of unity & € pu,, it is obvious that

n—1
K, = {Zaf‘”-w”(e):ae%} :
v=0

because for any y := Z:;é a,&7V-v(e) € L, one has p(¢)(y) = 522;3 a1V (e),
where one has to read the index v modulo n.
For the last claim cf. again (18.1) in [BI]. a

(2.15) Claim. Ifz € KC, is non-zero, i.e., K, = k - x, then one has 2" € k* = k — {0}
and L = k(x).

Proof: Let o € k such that z = "} ag=" - 7¥(e) € K, — {0}. Then

n—1 n—1
" = Za" (e) = an-ZW”(e) =a"-1
v=0 v=0

But of course " = a” is I-invariant, i.e., o™ = 2" € k' = k.
Because the Vandermonde determinant
det(&")pw=0,.m—1 = £ [ (£7=¢€%) #0
0<v<w<n
2

is non-zero, the set {1,2,22,..., 2" '} is k-linearly independent and therefore a basis
of L|k and (since x € L) of L|k. O

This claim gives rise to the following

(2.16) Definition. A Kummer structure on a separable k-algebra L of degree n is
a one dimensional k-vector subspace K C L such that for some non-zero element x of
IC, one has the following properties

(i) =™ € k*,
(ii) the morphism of k-algebras k[t]/(t" — x™) — L, t — x is an isomorphism.

(In this case these properties hold for any non-zero element x of K.)
A Kummer extension is a pair (L,K) of a separable k-algebra L of degree n and a
Kummer structure KC on L.
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§ 2. Cp-extensions

(2.17) Proposition. For a separable k-algebra L of degree n there is a bijection be-
tween the set of u,-structures on L and the set of Kummer structures on L, given

by
{Kummer structures on L} =% {u,-structures on L}
K — px
]Cp P

where pic: iy, — Autg (L) is given by pic(¢)(z) = ¢ -« for some non-zero element x of K.

Proof: Note that the definition of px is independent of the choice of z and since
L = k(x), the morphism px is well defined.—The two maps are inverse to each other:
First we prove K = K,: Let x € K be non-zero, then

Ko ={ye€Ll:pc(Q)y)=¢ -y} 2 k-x =K,

and both are one dimensional vector spaces.
Now for p = pic,: p(¢)(x) = ¢ -z = px,(¢)(z) for some x € IC,. 0

(2.18) Definition. Two Kummer extension (L, K) and (L', K") of k are said to be iso-
morphic, if there exists an isomorphism f: L -~ L' of k-algebras such that f(K) = K'.

(2.19) Remark. Of course the bijection of (2.17) respects this notion of being iso-
morphic, i.e.,

(L7,C) = (L/JC/> — (L710’C) = (L/,p;g/)

Therefore (2.17) gives us a bijection

{Kummer extensions of degree n}/>~ — {u,-extensions of k}/=
(L, )] =— (L, prc)]
(L, KCp)] e (L p)]

between the isomorphism classes of Kummer extensions and the isomorphism classes of
Ln-€xtensions.
Taking the long exact cohomology sequence to the short exact sequence
1 — pp — B 5 B — 1
of I'modules and using Hilbert’s Theorem 90 we get the well known isomorphism

0: k*/Jk*" =~ HYT, uy,)
a- -k — [ha] ,
where hq: T' — p,, is given by hq () = - for some root o € k* of the polynomial t" — a.

With this interpretation of the cohomology group we can describe the composition of
the maps mentioned in (2.19) and (2.10):
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§ 2. Cp-extensions

(2.20) Proposition. The composition of the two maps of (2.19) and (2.10)

{Kummer extensions of degree n}/~ — {u,-extensions}/=

- Efwrﬂﬂn)

9-1
is given by the application

(L, )] — £,

where K*" =™ - K", if K=k - x.
Proof: We prove this by going a “step back” via 0, i.e., we show [h( ,c)] = [hal;
where « is a solution of t" — 2™ = 0 in k*. (Note first that 2™ € k* and second that
a=1ack=k@rkbutr=2®1ecL=L®;k)
Going a second step back, we are actually proving the equality

(*) YL = O¢ O PKx Oilzi [ — S(Mp) = Autl%(i) g

for a suitable e € Mp—cf. formula (1). First observe that

is an idempotent, since

) 1 n—1 2\ vHw
R Sl C
n (6%
v,w=0

It is even a primitive idempotent because

Z pic«(Q)(e) = % Z ”21 <%>V

CEMn CEpyn v=0
1n—l AV
= > > ¢ (;)
1 o (T\Y
=2 (3)
CEUn
=1.

—Note that p(¢)(e) = = 302} (%) . Furthermore

L = k-ax” (: %_Ba:”(k@)k k)) :
vr=0

v=0

Now evaluation of (*) in v € I' and then in the element (for an arbitrary ¢ € )

a:mm@:ifGifem

«



§ 2. Cp-extensions

of the primitive idempotents, gives on the left side

er(v)(e') = (idL @v)(e')

On the other side of (*) we get

((0e © prcx 0 ha)(M))(€') = o (p (—) ,PK*(7)> (pc(¢)(e))

This proves the claim.
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Chapter 11
Twisted Cyclic Algebras

If we assume that the ground field k, of characteristic prime to n, contains the n-th
roots of unity, then a cyclic algebra A of degree n is a k-algebra of the form

(a,b)¢ == (X, Y : X" =a, X" =b, XY =(YX)

—the k-algebra generated by the two variables X and Y with the three relations X" —a,
Y™ —band XY — (Y X. Here, a, b € k*, and ( is a primitive n-th root of unity.

After the base extension k|k we may assume a = b = 1 and we can identify (a,b); with
M, (k) in a way that X = diag(¢,¢?,...,¢") and Y is the invertible matrix which maps
the canonical basis vector e; of k™ to €it1-

In this chapter, we consider the twisted forms of this kind of algebras, i.e., algebras,
which become, after base extension, isomorphic to a cyclic algebra, together with two
generators fulfilling the three relations from above.

§ 3. Twisted Cyclic Algebras

In this section again fix a field k and some separable algebraic closure k, and let be
[' = Gal(k|k). Choose a positive integer n > 2 relatively prime to the characteristic of
k. We abbreviate p, = (k).

1. Twisted Cyclic Algebras

A twisted cyclic algebra is a twisted version of the standard triple (Ag, Lo, Kqo), which
is defined as follows: Ag := M, (k) is the k-algebra of the n x n matrices, Ly and K are
two commutative subalgebras: Lg is the subalgebra of the diagonal matrices and Ky is
the k-algebra generated by the matrix Yj:

0 0 1
1 0 0
B 0 1 0
Ko = k[Yo] = @k Yy, where Yy = '
v=0 0
1 0
010

is the matrix which maps e; to e; 1. Lo and K are maximal commutative k-subalgebras
of Ag (of degree n).
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§ 3. Twisted cyclic algebras

If 1, C k then in M, (k) define for any ¢ € p,,
Cl
CQ
Xo(¢) =
CTL

(3.1) Remark. If u,, C k, then Ly = k[X¢], where X := X((({) for any primitive n-th
root of unity ¢ € py,.

(3.2) Notation. For k-algebras A, L, K, Ag, Lo, Ko, ... we denote with A, L,... the
k-algebras A @i k, L Q. k, . ..

(3.3) Definition. A twisted cyclic k-algebra (of degree n) is a triple (A, L, K),
where A is a central simple k-algebra of degree n, L and K are commutative k-
subalgebras such that (A, L, K) = (Ao, Lo, Ko) over k, i.e., there exists an isomorphism

a: A — Ay = M, (k)

of k-algebras such that o(L) = Ly and oK) = K.
The pair (L, K) is called a (twisted cyclic) decomposition of A.

(3.4) Remark. If (A, L, K) is a twisted cyclic k-algebra and & is any separable alge-
braic field extension of k, then (A, L, K) := (A®k k', L Qi k', K Qi k') is a twisted
cyclic k’-algebra and vice versa. In §6 we will see that the fact holds even for algebraic
field extensions which are not necessarily separable.

(3.5) Lemma. If (A, K, L) is a twisted cyclic k-algebra, then the multiplication map
L®p K — A, x ®y+ xy is an isomorphism of k-modules.

Proof: Of course it is enough to prove this after base change with k|k. Because of the
commutative diagram

E@E K — A
.
Lo ®; Ko — Ag
of k-modules, where « is defined as in (3.3) and the horizontal arrows are the multi-

plication maps, all we have to consider is the case (Ao, Lo, Ko). But it is easy to see
that

n—1
Ay = PLo-vy
v=0

and so the surjectivity of the map is clear, hence also the injectivity for dimension
reasons. 5
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§ 3. Twisted cyclic algebras

(3.6) Remark. Since L = Ly = k™ and K = Ky = k" as k-algebras, L and K are
separable k-algebras of degree n for any twisted cyclic k-algebra (A, L, K) of degree n.

(3.7) Lemma. If (A, L, K) is a twisted cyclic k-algebra, then (A, K, L) is also one.

Proof: We only have to show it for the case (Ao, Lo, Ko), since then
("Zla K; I’) = <A07 KO; EO) = ("2107 I/O7 KO) :

So let ¢ € p, be a primitive n-th root of unity, Ly = k[Xo], Ko = k[Yy], where
Xo := Xo(¢). For the inner automorphism

RZy: A() = Mn(l%) AN AO = Mn(/z?)

given by the conjugation with the matrix Zp := Zo(¢) == (C7¥)i j=1,..n € Mp(k) we
have kz,(Lo) = Ko and kz,(Ko) = Lo; more precisely: One checks that ZOXOZO_1 =Y
and ZoYoZ, 1= Xy !, (The second one follows from the first by taking transposes.) O

2. Pairs of Twisted Cyclic Extensions associated to Twisted Cyclic
Algebras

Define for any twisted cyclic k-algebra (A, L, K) of degree n,
Kir)y={X € L:X"=1,kx(K)=K},

—the elements of L* of order dividing n which act on K by conjugation. Also
Ky ={YeK:Y"=1,ry(L)=L}.

For these sets, we have the following obvious properties:

(3.8) Proposition. Let (A, L, K) be a twisted cyclic k-algebra of degree n. Then
(i) K(z k) is a subgroup of L*.
(ii) K(r,x) is I'-invariant.
(iii) pn C K(r, k), where we view (fin OkCLviak— L r—1®ux.
)

(iv) The isomorphism «: A =~ Aq of k-algebras of (3.3) induces an isomorphism
a: K, xy == K(1,,K,) of groups.

The same holds for Kk 1.

(3.9) Lemma. For the twisted cyclic k-algebra (Ao, Lo, Ko) we have the explicit de-
scription:

Kiro,ko) = {¢X0(¢"): ¢, ¢ € pn}
= {£'Xo(¢) 14,5 =0,...,n—1}
Kikoro) = {CY5 ¢ E€pin,j=0,....,n—1}
= (&Y :4i,j=0,...,n—1},

where & € p,, is any primitive n-th root of unity.
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§ 3. Twisted cyclic algebras

Proof: Let X € K (1, k,), then XKoX ! = Ky, especially
XY X' = apY) + a1 Yy + -+ an Yy !

for some a; Eilz;. Since X is diagonal we must have a; = 0 for i # 1: XYpX ! = aY)
for some a € k¥, i.e., X = aYpX Yo_l, and one observes that X has the form

a1
X =
(679

where a; € k* and a1 = aq; for all ¢ (seen modulo n), i.e., a; = ala for o = oy,
hence a™ =1 (thus a = ¢ € py,) and X = aXp(¢). Finally X = o™ = 1, and that
means « € fi,. On the other hand the elements (X (¢") obviously lie in Kz, k)

The second part follows from the first if one uses the isomorphism

KZo(): ]C(L07KO) — ’C(KO,LO)
EXo(E) — Y] .
mentioned in (3.7), and (3.8)(iv). O

(3.10) Proposition. For any twisted cyclic k-algebra (A, L, K) of degree n, the groups
K(r,x)/tn and Kk 1y/pn are cyclic groups of order n and they are I'-modules.

Proof: The last part is clear. The first part is certainly true for (Ag, Lo, K¢) as one can
see at the explicit description given in (3.9). But the induced isomorphisms (of groups)

a: Ko, gy/tn == K(ro,Kko)/Hn
a: Kg,ny/tn = K(ko,00)/n

show the general case. 0

(3.11) Remark. We immediately get for any two generators (of the cyclic groups)
[X] € IC(L,K)/,Un and [Y] S ’C(K,L)/,Un:
Kiry = {CX7:C€pp, j=0,...,n—1}
and
Ky = {CY7 (€ pn, j=0,....,n—1} .
X and Y are any representatives of the classes [X] and [Y].

(3.12) Corollary. For a twisted cyclic k-algebra (A, L,K) of degree n let [X]| €
K(r,x)/tn and [Y] € Kk 1)/ pin be generators of the cyclic groups. Then

n—1 n—1
L = k[X] = @krX” and K = k[Y] = Pry".
v=0 v=0

Proof: Again, we only have to prove this for our standard triple (Ag, Lo, Ko). In this
situation it is clear that

X = £X(¢) and Y =&Yy

for ¢ € u, primitive and &, £’ € u,; and the claim is obvious. 0
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§ 3. Twisted cyclic algebras

By definition, K 1) resp. Kz i) are sets of elements of K resp. L which act on L resp.
K by conjugation. Since pu,, lies in the center of A we get the maps

pr: Kx,ny/tn — Autj(L)
Y] — ry

and

prc: Kir,xy/pn — Autg(K)
[(X] — kx .
About these maps one knows:
(3.13) Remark. Let (A, K, L) and (A’, L', K') be twisted cyclic k-algebras of degree

n. Let oz A % A’ be an isomorphism of k-algebras such that a(L) = L’ and a(K) =
K’, then we have the commutative diagram

Kx.Ly/bn > Autg(L)
- -
Ko 1)/ iin == Auty (L) .
The same holds for px and pg-.

(3.14) Proposition. Let (A, L, K) be a twisted cyclic k-algebra. Then (L, pr) and
(K, px) are Kk 1)/ tn- and K (1, i)/ pn-extensions.

Proof: The map py, is I'-equivariant since for any Y € K 1) and v € T’

Kide ov)y = ¢r(y) o ky opr(7)™" = (idr ®y) 0wy o (idp @) " .
In fact we evaluate in any X € L:
. . -1
K (idk ®7)y(X) = ((ldA ®’7)Y)X((1d,4 ®’}/)Y)
= (idy @) (Y ((idz ®7) "' X)Y )
= ((idr ®7) o ky o (idf ®7y) ") (X) .

pr is injective:

Regarding (3.13) it is enough to consider (Ao, Lo, Ko). Therefore Y is a generator of
IC(KO,LO)/,UTL' Now if pL([Yo]J) = ldi, then X() = YO]X()YO_j = Cino (Xo = Xo(C) and
¢ some primitive n-th root of unity) therefore n|j. It is easy to see that im(pz) is a
transitive subgroup.—Analogously one proves the same fact about about py. 0

(3.15) Proposition. For a twisted cyclic k-algebra (A, L, K) one has the isomorphism

carn i) Kiaeny/bn @z K/t =2 pn C K
V]®[X] — XYXly—!,

of I'-modules.

Proof: Let X € K k) and Y € Kk 1), then XY X'V~ € K*NL* = k*. Therefore
¢ := ¢(a,L,k) 18 well defined as a map going to k*. Obviously ¢ is I'-equivariant. ¢ is a
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§ 3. Twisted cyclic algebras

homomorphism of groups: e.g., let [X] € K(z x)/pn and [Y] € K(x 1)/ ptn be generators
and a,b € Z, then

(V] @ [X]) = Xyotbx-ly—e-b
= XYX Y XYlXx-ly by
= (XY X~ ly-o)(Xytx—ly—?)
— «([Y"] @ [X])e([Y"] ® [X]) .
The object on the left hand side of the arrow is as an abelian group isomorphic to
Z/n7 ®y Z/nZ = Z/nZ, and therefore ¢ factors through p,,, the subgroup of k* of the

elements of order dividing n. In order to show that ¢ is an isomorphism one has to show
that ¢ is surjective. Let ¢ € p,. With the isomorphism a: A % Aj of (3.3) we have

the commutative diagram

Kr,Ly/bn @ KL, 1)/ 1n
e Hn

%’oioaKo)

K:(Ko,Lo)/lun ® K:(LO,KO)/Mn
All we have to show is ¢ € im(c(a,,10,x,))- But Xo(O)YoXo(O)" 1Yyt =¢. 0

Now, one easily gets the following descriptions of the p’s.

(3.16) Corollary. For a twisted cyclic k-algebra (A, L, K) we know about py, and pk
the following description: Let X € K (1, k) and Y € K(k,1), then

pr(YD(X) = €7'X and pr([X])(Y) = €Y,
where § = ¢(4,1,1)([Y] ® [X]) € par.

(3.17) Remark. For any twisted cyclic k-algebra (A, L, K) there is a commutative
diagram
C(A,L,K)

IC(KL)/:“n ® IC(L,K)/,U% —> lUn

ZJ/switch z[inverse

K1)/ o @ Kx,Ly/ tin Ty, Pn

Starting from a twisted cyclic k-algebra (A, L, K) we got two twisted cyclic extensions
(L,C) and (K, D), where we denote C' := C(a 1 k) := im(pr) and D := D4 1 k) :=
im(pk).

Observe the (almost) tautology Ca, 1. x) = Dia,x,r) and Da 1. k) = Cia, k1)
Additionally we got an isomorphism ¢4z xy: Kix,)/tin @ K1, k)/ttn == pin. This
factorizes through pr ® pg in the form

Kk,n)/tn @ KL K/ ln

C(A,K,L)
pL®PKlz
C(A,K,L)

C®D [T

35



§ 3. Twisted cyclic algebras

(3.18) Definition. A pair of twisted cyclic extensions (of degree n) is a tuple
((L,C), (K, D),c), where (L,C) and (K, D) are twisted cyclic extensions (of degree n)
and ¢: C ®z D =% p, is an isomorphism of I'-modules.

Now we can say: There is a map from the twisted cyclic k-algebras to the pairs of
twisted cyclic extensions of k (of degree n)

(AaLaK) — ((L7C(A,L,K))7(KaD(A,L,K))ac(A,L,K)) .

In the next section we will ask the question, if every pair of twisted cyclic extensions
comes from a twisted cyclic algebra.

If we have a pair of twisted cyclic extension, associated to a twisted cyclic algebra, we
immediately get back A as a k-module, namely L ®; K (cf. (3.5)).

How about the multiplication, i.e., what are the relations of the elements of L and K
by multiplication? At least we know it for the elements K(;, k) C L and K,ry € K,
since ¢(4 1, k) gives us the rule, and that is enough. But since we have only C' and D,
we first have to get back the groups Kz, ) and Kk 1)

(3.19) Lemma. Let (A, L, K) be a twisted cyclic k-algebra and let C' and D be the
associated twisted cyclic structures on L and K. Then we have the following description:

n—1
Kx) = {C' > ¢re(e): (' ¢ e un}
v=0

for any generator ¢ € C' and any primitive idempotent e € M, ;

n—1
Kgry = {C’Zé”d”(f) ¢, e un}
v=0
for any generator d € D and any primitive idempotent f € M.

Proof: First observe that the sets on the right side are independent of the choices!
Let a: A — Ay be an isomorphism of k-algebras as in (3.3). Then a maps bijectively
]C(A,L,K) to IC(AO7L07K0)7 im(pr) to im(pLO), My, to Mg, ... .

So we just have to prove the claim in this case: It is easy to see that ky, € Autz(L)
generates C' = C(4,,1,,k,) and that F1; (we denote with E;; the n x n-matrix which
has just one non-zero entry: a “1”at the place (7, j)) is a primitive idempotent of Ly, in
fact M, = {E11, Eaa, ..., Eyny ). Furthermore

Kyy (Bu1) = Yo EuYy " = Byt

thus
n—1 n—1
¢ Ry (Bn) = ¢ ¢ Bt = (X))
v=0 v=0
Now compare with (3.9). The second part is proved analogously. O

Now we can give an intrinsic description of (the inverse of) pr and px without using
the embeddings of L and K in A.
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(3.20) Proposition. Let (A, L, K) be a twisted cyclic k-algebra and pr, px, ¢ =
¢(A,L,K) the associated data. Then the inverse maps of px and pr, can be described in
the following way:

Ax: D — K k)/tn

icc"(e)] ,

where ¢ € C is any generator of C, ( :==¢(c®d) and e € M|;

d —

Ar: C — Kx,n)/tn
n—1
¢ — [Z C”d”(f)] :
v=0
where d € D is any generator of D, ( :=¢(c®d) and f € M.
Proof: First observe that the maps are well defined and independent of the various
choices, e.g., let’s prove it for \g.

Let ¢’ be another generator of C, ¢’ = ¢ for some integer w with (w,n) = 1. Then

¢=c(d @d) =v.
n—1 n—1 n—1
[Z c’c'"<e>] = [Z c%%)] = [Z <”c"<e>] .
v=0 v=0 v=0
Let ¢/ = ¢“(e) € My be any other primitive idempotent, then
n—1 fn—1
[Z CVCV(GI)] _ Z Cucy—i—w(e)]
=0 Lv=0
B n—1
_ C—w Z Cu+wcu+w (6)]
L v=0
B n—1
= ¢ <“c”<e)]
L v=0
fn—1
= > «;“c“(e)] :
Lv=0
The same holds for A;. Also Ak is a homomorphism. Let o, 5 € Z

[n—1
A (d*d?) = Zd“@”c"(e)]

Lvy=0

[n—1
= 1> <a”<ﬁ”c”<e>]

Lv=0

- ica“c%e)] [i CW@I

v=0

= A (d*)Ak (d”) ;
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the proof for Ay, is similar.

In order to show that Ax = pj we only need to prove Ag (px ([X])) = [X] for X €
K(r k). Again by reasons of “functoriality”(cf. (3.13)) it is enough to consider the case
(Ao, Lo, Kp), so we will show Ak, (pKO([XO])) = [Xo] for any Xo = Xo(() € K(1,x):

Aio (Pro ([X0])) = Ak (kx,)

fmn—1
= | Y ENYy
v=0

n—1

- Z CVE1+V,1+V]
Lv=0
i n—1

= ¢ CE]
L =0

= [(7'Xo] = [Xo] ;
note that ¢ = ¢(a,,1,,i,)([Yo] ® [Xo]). Using (3.7) together with (3.17) the claim for Ag
follows from the proven one. Alternatively one can prove it directly like above. 0

3. Twisted Cyclic Algebras associated to Pairs of Twisted Cyclic
Extensions

Now we want to go the other direction. Given a pair of twisted cyclic extensions
((L, ), (K, D), c) of degree n we ask: Is there a central simple k-algebra A of degree
n together with embeddings L <— A, K — A such that (A4, L, K) is a twisted cyclic
k-algebra and the associated pair ((L,C’(AL,K)), (K, D(A7L’K)),C(A,L7K)) is the given
one? If there is one it must be L ®; K by (3.5) and C, D, ¢ will give us the right
multiplication on it.

(3.21) Lemma. Given a pair ((L,C), (K, D), <) of twisted cyclic extensions of degree
n then the following maps are well defined injective morphisms of I'-modules, indepen-
dent of the various choices:

Ai: D — L*/jp
n—1

d +— [ZC”C”(e)] ,
v=0

where ¢ € C' is any generator of C, ( :==¢(c®d) and e € M|;
Ap: C — K*/up

n—1
¢ [Z C_”d”(f)] ,
v=0
where d € D is any generator of D,  :=¢(c® d) and f € M.

Proof: The independence of the choices are proved exactly the same way as in the
proof of (3.20).
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§ 3. Twisted cyclic algebras

The injectivity and the fact that the maps go to the units of L and K: Taking the
identification L = k™ of k-algebras, observe that the matrix, given by (representatives
of) the vectors of Ak (d), d € D is (up to some elementary row and column operations)
the Vandermonde matrix (¢% )i,j=0,...n—1 for some primitive n-th root of unity ¢, and
this matrix is invertible. 0

Now define

Kk ,r),e == im(AL) and K gy = im(Ax) .
They are cyclic groups of order n.
Again with the Vandermonde determinant one sees

(3.22) Lemma. If ¢ € C is a generator of C, then the element \r(c) (better: any

representative) is a generator of K . and it is a generator of K as a k-algebra, i.e.,
K = k[A(c)]. Mutatis mutandis for d € D and L.

(3.23) Theorem. Let ((L,C), (K, D), c) be a pair of twisted cyclic extensions of k.
Then there exists a—up to a unique k-isomorphism—unique twisted cyclic k-algebra
(A, L, K) such that C = C(A,L,K); D= D(A,L,K)? ¢ = C(A,LK)-

Proof: Ezistence: Define A to be L&y K as k-module. We have to give a multiplication
on A. But this is the same as giving a—the I'-action respecting—multiplication on
A = L ®; K. Choose any primitive idempotents e € My and f € Mg and some
generators ¢ € C' and d € D, then (because ¢ is an isomorphism) ¢ := ¢(c® d) € uy, is a
primitive n-th root of unity. Set

n—1 n—1
lg = Z ¢"c"(e) and [{p := Z ¢vd’(f)
v=0

v=0

then A\x(d) = [{x] € L*/jin, and Ar(c) = [(1] € K*/uu,, and from (3.22) we know

]
X

L = k[tg] = @k£ and K = k[t;] = k- .

N
Il
=

There is a well defined isomorphism

Lo K = A,

K @07, — Xo(¢)'Yd
of k-modules.
The two restrictions L «— L®; K — Ag and K — L®; K — Ay are monomorphisms of
k- algebras, and we can define (by structure transport via this isomorphism) on Lep K
a k- algebra structure such that L and K are k-subalgebras. The semilinear action of T’
on L ®; K is even an action on the new k-algebra: For that, all we have to consider
is that I' respects the multiplication of the pair {x and £;,. We know £x {1 l} 16_ =(
since Xo(¢)YoXo(¢)™'Yy * = ¢. For an element v € T’ we have % = ¢’ and 7d = dj for
some integers ¢, 7 which are prime to n. Hence

U= Ylc®d) = (e = ccdad) = (7,
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§ 3. Twisted cyclic algebras

and this implies W W1 ;" = C. In fact

n—1

e = 30040 (9e)
v=0

n—1

= )¢ (ve)
o
= Y e )
V:i{ ;
= ZC”C”(’Y@))
B J
_ j{:cy u+p )

(e c”c”<e>)

_ C—m’gﬂ}'{

where p is an integer such that ve = cP(e).
Analogously %, = (%¢% for some integer ¢ such that vf = d?(f).
So from (xly = (lplx follows ¢/ A = (e EJK, ie.,

WKWLWI_(lel _ g;{g@l[;{]gzz _ Cij _ WC

Now we have a k-algebra structure on A. Finally we have to show that C' = C(4 1 k),
D:D(A,L,K) andc:c(AvL,K). B B B
Claim: pr,(¢r) = ¢, i.e., kg, = c: L — L. It suffices to prove it for evaluation in ¢ € L:

ke, (Cx) = Lll;t = Mk
n—1
=) ¢e(e)
nilu—O
= Zch”(e)
_ zi:cy u+1
= CZC”C”(e)
v=0

= clk ;

analogously px ({x) = d.—The claim ¢ = ¢(4 1, k) is obvious.
Uniqueness: Let (A, L,K) and (B, L, K) be two twisted cyclic k-algebras such that
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§ 3. Twisted cyclic algebras

Ca,L,x) =C,L,K), Dar,k) = Do,k and ¢4 k) = ¢B,L,Kx): CQD — pipn. Then
the isomorphisms of (3.5) yield an isomorphism ¢ of k-modules such that

commutes. Here a and 8 denote the multiplication morphisms. We have to show that
d is a morphism of k-algebras. We verify it after the base extension k|k. Let {x € L
and (1, € K be—as above—elements representing Ax (d), Ar(c), then we know

G_B a(fr)’ and B = @ k- B(0x)'B(lL) .

Now we have to show only

d(allr)a(lr)allx)  allr)™) = B(lx)B(L)B(Cx) B(r) ™
But the two groups K(r, ) derived from the two twisted cyclic algebras are equal (cf.
(3.19)), and also the two groups Kk ). Also {x € K1 k), {1 € K(k,1), hence
a(li)a(lr)alx)  ally)™ = ¢ x) (] © [lk])
= ¢,0,5)([lL] ® [lk])
= B(lx)BL)Br) " B(0r) ™
O

(3.24) Notation. In the following we will denote the algebra A constructed in the
proof of (3.23) with A((L,C), (K, D),¢).

4. A Cohomological Classification of Twisted Cyclic Algebras

We want to classify the twisted cyclic k-algebras of degree n.

Since the twisted cyclic k-algebras are exactly the objects which become—after the
base field extension k|k—isomorphic to our standard model (Ag, Lo, Ky), the set of
isomorphism classes of twisted cyclic k-algebras of degree n is the first Galois cohomology

group over k with values in the automorphism group of our standard model. Cf. chapter
X, §2 in [SeLF] or chapter VII, 29.A in [BI].

(3.25) Definition. An isomorphism of twisted cyclic k-algebras f: (A, L, K) %
(A',L',K’) is an isomorphism f: A -~ A’ of k-algebras such that f(L) = L’ and
f(K) = K'. The set of the automorphisms of a twisted cyclic k-algebra (A, L, K) will
be denoted by Aut(A, L, K).

(3.26) Remark. As we have seen earlier, an isomorphism f: (4, L, K) =~ (A', L', K')
of twisted cyclic k-algebras induces isomorphisms

fZ IC(L,K) =~ IC(L’,K’) and fi ’C(K,L) =~ IC(K’,L’)
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§ 3. Twisted cyclic algebras

as well as

fr Ky =5 K xy/pn and  fr Kieny/tn == Krpry/ tn -

So in the case of an automorphism f € Aut(A, L, K) we get the induced automorphisms
fixy = [ Ky /itn == Kigy/pn  and  fixry = f: K,py/tn == Kx,Ly/bn

i.e., f(L,K) € AU.t(IC(L,K)/IUJn) and f(K,L) S Aut(/C(K,L)/un).
From (3.10) we know that K1 x)/pn and Kk 1)/pn are cyclic groups of order n.
Therefore we have the canonical identifications

(Z/TLZ>* _— Aut(lC(L,K)/un)
(v mod nZ) — ([X] > [X”])
and
(@/n2)* — Aut(Ksr)/pin)
(v mod nZ) — ([Y]+— [Y"])

where here [X] and [Y] stand for (X mod ) and (Y mod p,). So we will view f(1 k)
and f(x 1) also as elements of (Z/nZ)*.

(3.27) Lemma. With these identifications we have

fi.xy - fix,py = (1 mod nZ) € (Z/nZ)*

for any automorphism f € Aut(A, L, K) of a twisted cyclic k-algebra (A, L, K) of de-
gree n.

Proof: We may assume that & = k and hence that (A, L, K) = (Ao, Lo, Ko) is our
standard triple. Regarding f(1 x) = (v mod nZ) and f(x 1) = (v’ mod nZ) as elements
of (Z/nZ)*, then

fx): Ky /pin == K x)/Hn

[Xo(§)] — [X0(£)"]

for any ¢ € puy,, and

fueny: Kaeyny /b == Kx,ny/pn

[Yo"] — [Y5™']

for any m € Z.
Now for any primitive n-th root ¢ € u,, of unity

¢ = f(¢)
= f(Xo(Q)YoXo() 'Yy )
= Xo(¢)"Yy Xo(¢) Yy

— CVV .
Therefore v/ =1 (mod n). O

Now we assume that p, = u(k) C k.
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(3.28) Lemma. If( € p, is a primitive n-th root of unity, then for an automorphism
f € Aut(Ay, Lo, Ky), the following conditions are equivalent
(i) f(Yo) € pn - Yo
(i) f(Xo(C)) € pn - Xo(C)
(iil) f(Xo(€)) € pn - Xo(§) for all £ € p,
)
)

(iv) f(ro, ko) = (1 mod nZ) is the identity

)
(v) f(ko,Lo) = (1 mod nZ) is the identity.

Proof: The equivalence of (i) and (v) as well as (ii) and (iv) is trivial since [Xy(¢)] and
[Yo] are generators of the cyclic groups IC(r, ko) /tn and Kk, 1o)/ tn-

The equivalence of (iv) and (v) is just (3.27).

The equivalence of (ii) and (iii) is clear. O

(3.29) Lemma. There is an injective morphism
X (Z/?’LZ) — Aut(Ao,Lo,Ko)
(& m) — Kem)

where
K(&,r‘n) = KJXO(S)YOm: AO =, AO

Z s Xo()YZY ™ Xo (€)™

—We write m for (m mod nZ).
The image of this injection is the set of all automorphisms f € Aut(Ag, Lo, Ko) which
fulfill the conditions of (3.28).

Proof: The map is a morphism since

Rxo©) vy © Fxoeyy = KXO(ggf)Y()(m*m')
for &, & € p, and m, m’ € Z. This follows from the fact that
Xo(ﬁl)yom = ﬁleOmXO(ﬁl)
and hence K x,(¢/) © Ky = Ky © Kx,(¢1)-
Ingectivity: Let (§,m) € pin X (Z/nZ) such that k(¢ ) is the identity. Then
Xo(€) = K(e,m) (Xo())
= Xo(§)Yg"Xo(¢)Yy " Xo(6) ™
= ¢ " Xo(¢)
for any ¢ € p,,, hence m =0 (mod n).
Yo = Ke,m)(Yo)
= Xo(§)Yg"YoYy mXo(ﬁ)
= Xo(§)YoXo()™
= &Yo ,

hence £ = 1.
For the last statement, first note that for any ({,m) € u, x (Z/nZ), the induced
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morphism
(K(e.m)) (Lo Ko) K(Lo.Ko)/Hn =2 KLy 10)/Bn
is the identity, since
Fem) (Xo(€)) = (T Xo(Q)

for any ¢ € p,. Cf. (3.28).

On the other hand let f € Aut(Ao, Lo, Ko) such that the conditions of (3.28) hold for
f. Then f(Yy) = &Yy for some £ € p,,. Choose a primitive n-th root of unity ¢ € u,,
then we also have by (3.28) f(Xo(¢)) = ¢("™Xo(¢) for some m € Z.

Obviously now f = k¢ m), since both automorphisms are equal on the generators of
Ao,fX()(C) and Y() O

As a consequence we get

(3.30) Proposition. There are two short exact sequences

0 — pn X (Z/nZ) — Aut(Ag, Lo, Ko) — Aut(K(1,,k0)/ttn) — 1
f— f(ro,k0)

and
0 — pn X (Z/nZ) — Aut(Ag, Lo, Ko) — Aut(K(k,.14)/tin) — 1

J— f(Ko,L0) -
The surjective morphisms on the right hand side have the following sections:
Aut(lC(LO,KO)/,un) = (Z/TLZ)* — Aut(Ao, Lo, Ko)
v = (vmodnZ) — f5

and
Aut(K (ky,10)/tn) = (Z/nZ)" — Aut(Ao, Lo, Ko)
v = (vmod nZ) — gz
where f; and g3 are given by
fo: Ag =5 Ag
Xo(§) — Xo(8)”
Yo — Y
and
go: Ag == Ap
Xo(€) — Xo(©)® )
Yo — Yy

for any & € p,; and v~ denotes any integer such that vv=! =1 (mod n).

Proof: The first part of the proposition—except for the surjectivity in the sequences—
is just (3.28) and (3.29).
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The surjectivity follows with the sections: For the fact that f; and g5 are well de-
fined automorphisms of (Ag, Lo, Ko) observe that they conserve the relation of the two
generators Xo(¢) (for any primitive n-th root ¢ € uy,), Yo and their images, e.g., for fz:

Xo(Q) Y D Xo(Q) Y ) = ¢ = ¢ = Xo(OYoXo(O) Y

It is obvious that the applications 7 — f; and v +— g are morphisms and sections. O

(3.31) Remark. For every v € (Z/nZ)* the automorphisms f; and g are inverse to
each other, i.e., fy 0 gy = g o fy =1id4,.

In our situation of (3.30), the right hand side objects of the short exact sequences act on
the left hand side objects, in a well known manner: E.g., in the first case, one takes a pre-
image ¢ € Aut(Ao, Lo, Ko) of an element v € Aut(K (1, x,)/tn) = (Z/nZ)* (one may
take ¢ = f) and, after identification of u,, X (Z/nZ) with its image in Aut(Aog, Lo, Ko),
the action of ¥ on p,, x (Z/nZ) is given by conjugation with ¢. One knows that this is
in fact a well defined action.

How do these actions look like in our case?

(3.32) Lemma. The actions of the groups Aut(K(r, ry)/tn) and Aut(Kk,, o)/ tn)
on the group p, X (Z/nZ) from above can be described in the following way:
After the identification Aut(IC(r, k,)/tn) = (Z/nZ)*, the action of this group is

(Z/nZ)* X (pn X (Z/0Z)) —> pn x (Z/nZ)
(7, (§,m)) — (&0 'm) .
After the identification Aut(IC(k, 1,)/tn) = (Z/nZ)*, the action of this group is
(Z/nZ)* X (pn X (Z/0Z)) — pn x (Z/nZ)
(7, (& m) — (€7, vm)

! is any integer such that vv=1 =1 (mod n).

where v~

Proof: For the first case we choose ¢ = f; and we have to prove
Joo Kgm) = Rev,p—1m) © Io -

It is enough to verify this equation after evaluation in X, (¢) (for any ¢ € u,,) and Yj:

(f7 0 Ke.m)) (Xo(Q) = fo(rem (Xo(Q)))
= fz?(C_mXO(C))
= (" Xo(Q)"
= (" Xo(¢")
= fi(er-1m) (Xo(C"))
= (’f(gl',ﬁ—lm) Ofﬁ)(XO(C))
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and
(fzo “(s,m))(Yoy) = fﬂ(/f(g,m)(yoy))

= f5(£"Yy)

= 'Y

= K(f”,z‘/—lﬁz)(yb)

= Kevo1m) (fo(Y9))

= (Kevo—1m) © f5)(Y5) -
The description of the other action follows from the fact that g5 = f, ' for every
ve(Z/nZ)*. 0

From the last points now follows:

(3.33) Proposition. With these actions we can construct the following semidirect
products and get the isomorphisms

(e X (ZnZ)) 3 At(K 1y 10y /1n) = (tn X (Z/Z))x(Z/nZ)* = Aut(Ag, Lo, Ko)
((fam)ﬁ) = R(,m) o fo
and
(1 X (Z/0Z)) % Aut(K sy 0)/tn) = (n X (Z/nZ))x(Z/nZ)* == Aut(Ao, Lo, Ko)
((f,m)75> = K(,m)°9p -
Now let again k be a field not necessarily with p, C k, and let (4, L, K) be a twisted
cyclic k-algebra of degree n. We still have a separable algebraic closure k of k£ and

I = Gal(k|k). -
Then T acts on Aut(A, L, K) via conjugation
I x Aut(A, L, K) — Aut(A, L, K)
(v, f) = (ida®y)o folida®y).
In an analogous way I' acts by conjugation on Aut(K(r xy/pn) and Aut(Kix, 1)/ pin)-
On py, X (Z/nZ) the group I' may act in the obvious way.

(3.34) Lemma. The actions of I' on the groups Aut(Kr x/tn) and Aut(Kx 1)/ fin)
are trivial, so their identification with (Z/nZ)* are even I'-isomorphisms.

Proof: Let f € Aut(K(z x)/1n), i.-e., there is a v € (Z/nZ)* such that
[ Ky tn == K, x)/n
X] — [X7].
Then for any v € T’
(ida@v) o fo(ida®y)  ([X]) = (ida®7) o f([(ida®7)7" X])
(ida @7)([(ida ®7) 7' X"])
= [X"]
S(X]) -

Analogous for the other action. 0
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(3.35) Lemma. The injective morphism
pin X (Z/nZ) — Aut(Ag, Lo, Ko)
(& m) +— Kem)
is I'-equivariant.
Proof: For v €T, £ € uy,, m € Z/nZ we have to show
(id ®7) o k(e m) o (id ®y)" ! = K(ye,m) -
For any Z € Ay we have
(([d@7) 0 kgm0 ([d@7)7)(Z) = ([d@)(Xo(€)Ys" ((id@y) ' 2)Yy " Xo(€) ™)
= (i[d®7)(Xo(§)Y¥") - Z - (id @) (Y5 " Xo(§) ")
= Xo(Y)Yg"ZYy " Xo(v€) ™!
= Kyem)(2) 5

and we are done. O

Xo
Xo

Now we apply the former propositions to (Ag, Lo, Kg) and we get

(3.36) Theorem. The short exact sequences from (3.30)
0 — pin, X (Z/nZ) — Aut(Ag, Lo, Ko) — Aut(K 1, ro)/pn) — 1

and
0 — pin X (Z/nZ) — Aut(Ag, Lo, Ko) — Aut(Kk, 10)/pn) — 1

are sequences of I'-groups and the morphisms are I'-equivariant. The two induced
isomorphisms from (3.33)

B (pn X (Z/nZ)) x Aut(K 1y, 1)/ tin) = (. X (Z/nZ)) % (Z/nZ)* 2 Aut(Ag, Lo, Ko)
and

B (i % (Z/nZ)) 3 Aut(K (ko 1.0y /1) = (pn X (Z/nZ)) % (Z/nZ)* 2 Aut(Ag, Lo, Ko)
are isomorphisms of I'-groups.

Now, by the general theory of Galois cohomology we know that the first cohomol-

ogy group over k with coefficients in Aut(Ag, Lo, Ko) classify the twisted objects of
(AOvL()?KO):

(3.37) Remark. There is an isomorphism, i.e., bijection,
{Twisted cyclic k-algebras of degree n}/~ =~ H'(k,Aut(Ay, Ly, Ko))
(A, LK) — [c,] ,
where a representing cocycle I' — Aut(Ag, Lo, I_(O)), v +— ¢, is given by
¢, = ao(ida®y)oato(ids ®@y) 7t

« is any isomorphism as in the definition (3.3).

Now we fix (e.g.) the first action of (Z/nZ)* on u, x (Z/nZ) described in (3.32) and
the theorem (3.36) yields the

47



§ 3. Twisted cyclic algebras

(3.38) Corollary. There is an isomorphism

{Twisted cyclic k-algebras of degree n}/~ -~ H'(k, (s, x (Z/nZ))x(Z/nZ)*)
(A, LK) — [B e, .
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§ 4. Existence of Twisted Cyclic Decompositions of Central
Simple Algebras

In §3, 3., we considered the question if—expressed in a sloppy manner—we can fill in
the gap in (7, L, K). Now we want to fill the gap in (A4, L,?), i.e., we ask if we can
complete L to a twisted cyclic decomposition of A.

The way we are going to find some K is the following: We transfer our situation to Ay,
i.e., instead of looking for a K in A, we are looking for a I'-invariant K in A—but for
computational reasons we work in Ay. And all we have to do is pushing the action of T
on A to an action of I on Ay, which is not necessarily the canonical action.

The main ingredient however is a cohomological one, which we will discuss in the first
part.

1. A Cohomological Lemma

Let (L,C) be a twisted cyclic extension of k of degree n. As always I' denotes the
absolute Galois group of k—with respect to a chosen separable algebraic closure k of k.
We assume that L is a field.

There is a canonical morphism of I'-modules

Z: Homgz(C, p,) — L*/k*
u > [Yeecule) - cle)]

for any primitive idempotent e € My, of L: T acts on the left group in the usual way.
= is independent of the choice of e: Let ¢/ = ¢/(e) be any other primitive idempotent,

¢ € C, then
Z u(c) - c(e) = Z u(c) - ec(e)
ceC ceC
= Z u(ed ™M) - e(e)
ceC
= u(d)! Z u(c) - c(e) .

ceC
= is T-equivariant. Let v € T, then giving heed to (1.10)

200 = Shouosi )
= D yulen(y) tepr() ‘C(€>]
LceC
= | > () - (dz (¢ (i @) ) )]
Lc'eC
= (id @) (E(w)) .

Taking cohomology, this morphism induces the morphism

=, :=H'(T,E): H'(T,Homz(C, ny,)) — HY(L,L*/k*) .
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(4.1) Lemma. The cohomology group H'(T',L*/k*) is isomorphic to the relative
Brauer group Br(L|k), and therefore it is an n-torsion group.

Proof: First we may assume that L is embedded in k, i.e., ¥k C L C k. Let IV :=
Gal(k|L) be the absolute Galois group of L which is an open subgroup of I' of index n.
Note: L does not denote an algebraic closure of L but still the base extension L ®;, K.
Claim: L* is an induced module for TV C T.

The morphism of I'-modules

¥: L* = (L @ k)* =% Mapp (T, k*)
Yo, ez, — (T =y l,,T(.r,,))

is an isomorphism. In fact it is the composition of the obviously bijective morphisms of
I'-modules

and

(ag)s +— (T — TCL7—_—1)
(aw(a_l))c_r — w .

Here & stands for (0 mod I'') and o is any representative.
Applying cohomology to the short exact sequence

1 — k* — L* — L*/k* — 1
of '-modules yields, as part of the long exact cohomology sequence, the exact sequence
HYT,L*) — HYT,L*/k") - H* (T, k") — H(T,L7).

Hilbert’s Theorem 90 and Shapiro’s lemma—via ¢—(cf. [ShPG], II, §2, Theorem 8,
p. 31) shows

HY(I,L*) =2 H'(T,Mapp ([',k*)) = HY(I",k*) = 1.

Therefore § identifies H'(T, L*/k*) with the kernel of the right arrow of the latter
sequence. We have the commutative diagram

H?>(T,k*) —— H*(I, L")

\ P~

H?(T,Mapp/ (T, k*)) ,

where €z. is the composition
k= (k@i k)" — (L@ k)" — Mapp (T, k),
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e« (z)(7) = 7(x) for € k* and 7 € I',—in concordance with the notation in [ShPG],
11, §3, Proposition 7, p. 33—gives the commutative diagram

H2(T, k) =% 52(T, Mapy (T, &)

ros lehapiro
H2(T', k*)
Therefore our kernel is equal to the kernel of the restriction, given in the last diagram.
This kernel is known to be the relative Brauer group Br(L|k) and this is n-torsion since
the composition B B B
H*(I,k*) = H*(I',k*) =5 H*(T, k)
restricted to Br(L|k) is on the one hand zero, and on the other hand it is the multipli-
cation with n. 0

(4.2) Lemma. Assume that I' acts trivially on C, i.e., (L,C) is a cyclic extension,
then o
=t H' (D, Homy(C, pp,)) — H'(T,L*/k*)

is surjective.

Proof: In this case we have the isomorphism ev,: Homy(C, p,,) =5 pip, u — u(wz of
I-modules; here we have chosen a generator m € C of the cyclic group C(C Autj(L)).
We will show the surjectivity of the composition

™ .

*

—_—
—
—

2,0 (evi ) HYT, pn) — HYT,L*/k*)

where this morphism is induced by

us

(1l

=Zoev 'y, — L*/k*
¢ [ZZs (e

for any primitive idempotent e € My, which we want to fix.
Let us apply cohomology to the two short exact sequences

1 — pp — k5 B — 1

and

where N is the morphism
N: L* = GB ke — K
e’'eMrp,
(ae,) — He’GML Ae!
induced by the Norm map Np;. Then we get the exact sequences

s k- BV, pn) — HY(D,E)
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and N
L 2% g 2 g\, L*/k*) — HY(T,L*) .

But H'(T',k*) = 1 by Hilbert’s Theorem 90 and H'(T, L*) = 1 as we have seen in the
proof of (4.1). Therefore we get isomorphisms

6 k* k™ = HYT, py,)
(a mod k™) +—— [hq] ,
where hy(v) = ﬁ, with some o € k* such that o™ = a, and
8: k*/Np(L*) =~ H'(T,L*/k*)
(@ mod Ny (L%)) +— [hg]
where for v € ' the element hg(y) € L*/k* is given by (1 — m)hg(y) = %, with some

B € L* such that N(3) = a. For example one may choose 3 = Y .. a - c(e) for some
a € k* with o = a. Then % = Ecec(ﬁ) - c¢(e) and therefore

hol) = [g (%)Vﬂe)] .

The diagram ~
HYT, pp) ——— HY(D, L*/k*)

42 5[2
k*/k*n Loj» k*/NL|kL*

is commutative: For any a, o and (3 as above,
«
w2 (i)
) 7(a)
n—1 o v
= — ] 7Y(e
[2 (56) = )]

= ha(7) -

The claim follows immediately. 0

(1l

(4.3) Proposition. If (n,¢(n)) =1, then the morphism
= H' (I, Homy(C, pp)) — H' (T, L*/k¥)

is surjective.

Proof: For any e € M}, we have the factorization from (1.15)
or: T' 7% Cx Aut(C) 2% Autg (L) .

Set I := 7,1 (C'x{1}) (this group is independent of the choice of e), then we see that
[ acts trivially on C. The field extension k' := k' |k has the degree n’ := (I : T),
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which divides ¢(n) and thus is prime to n. Therefore (4.2) says that
=, H'(I",Homgz(C, pn)) — H'(I',L*/k*)

is surjective. Consider that in this case—the situation of k' as base field—we have
(L' .= L@ k',C) as (twisted) cyclic extension of degree n, k' = k, L' = L' @ Qk =
L®, k=L and My, = My, especially L'*/k'* = L*/k*. Now there is the commutative
diagram

[1]

H' (I, Homz(C, 1)) —=—» H'(I",L* /F*)

lCOI‘ lCOI‘

H'(T,Homg(C, u,)) ——— H'(T,L*/k*) .
Since H'(T', L*/k*) is n-torsion the multiplication with n’ is surjective, but this is also
cor ores, therefore cor is surjective. Since now coroZ! = Z, o cor is surjective, this is
also true for =,. 0

2. Galois Actions on A

In this section we are interested in the following problem: Given a k-algebra A such
that A = A as k-algebras. How does the action (id4 ®7v) of v € T on A look like, after
“transporting” it to Ay? Especially in the case when we have additional structures like
twisted cyclic decompositions of A.

(4.4) Notation. Let o € S, be a permutation, then we denote by E, the “permu-
tational matrix” in GL,(k), which is defined by the condition that it maps the i-th
canonical basis vector e; € k™ t0 €4 ;).

For example, if mp := (1 2 ... n) € S,, then we have Yy = E., and more general
Yo! = Ery for any v € Z.

(4.5) Lemma. Let X € GL, (k) be an invertible matrix such that the inner automor-
phism kx: Ay =% Ag maps Lo to Ly. Then X has the form

X =D-E,,
where D is a diagonal matrix, i.e., D € Lqy, and o € S,, is uniquely defined by
kx(Ei) = Eo(i),06) -

This decomposition of X into a product of a diagonal matrix and a permutational matrix
is therefore unique.

Proof: Since xx is also an automorphism of the k-algebra Lg it permutes the primitive
idempotents 11, ..., Eny,. Hence define o € Sy, by kx(Ei) = Eo(i),0(i)-

So we have X - E;; = Eg ;) 0(;)- X foralli = 1,2,...,n, and the image of the right-hand-
side endomorphism is k - e,(;) whereas the image of the left-hand-side endomorphism is
X(k - e;). Therefore X must map k- e; onto k - €,(;). So X o E,—1 maps k - e,(;) onto
itself, and that means that it is a diagonal matrix. 0
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(4.6) Lemma. Additionally to the situation in (4.5) we assume that kx maps Ky to
Ko. Then D has the form

D = n-Xo(¢)
for a n-th root of unity ¢ € (k) and n € k*. Moreover o € N,y C S, is an element
of the normalizer subgroup of (my), where again 7o = (12 ... n) € S,,.

Proof: Since kx(Yy) = XYoX ' = DE,E,,E;'D™!' = DE,, .~ D! € Ky = k[Yy]
there exists a A € k* and (i mod nZ) € Z/nZ such that kx(Yy) = A\Yy, i.e., Egpyo-1 =
Yy or equivalently omgo~! = 7§ —hence the last claim follows. Since the order of Yj
is n, the same holds for the order of kx(Yp) and that means (i mod nZ) € (Z/nZ)*.
Furthermore (A\Y§)" = kx (Yy)" = E we have X € p, (k).

Let (j mod nZ) € (Z/nZ)*, such that ji = 1 (mod nZ). We have

XE;len = De,, = ne,
for some n € k*. '
Claim: D = nXy(¢) with ( = M.
All we have to check is De, = n("e,. For e,, this is the definition of . Now we know
XYy = \Y¢X and E,YoE;' = Y]
and the latter can be written as E,Y{ E; ! = Yy, i.e., E; 'Yy = YJ E;'. Therefore
De, = (XE;')(Yy en)
= XE; 'YVe,
= XYJ'E; e,
= XY XE e,

O

(4.7) Remark. Of course both lemmas also go into the other direction, i.e., if X =
D - E; or X = nXo(()Es with 0 € N, then kx leaves Lo, or both Ly and Ky
respectively, invariant.

Now let A be a central simple k-algebra of degree n and L C A a separable commutative
k-subalgebra of k-dimension n. Then L is a maximal commutative k-subalgebra of A.

We fix an isomorphism a: A -~ Ay of k-algebras with (L) = Lg. Such an isomorphism
always exist: If o/: A =% A is any isomorphism of k-algebras, then the set a(Mp) is a
set of —as projectors—diagonalizable and commuting endomorphisms in A9 = M, (k).

Therefore they are simultaneously diagonalizable by say G € GL, (k). Now define
o :=kKgod.

(4.8) Claim. We endow the group PGL, (k) = GLy,(k)/k* with the canonical I'-action
(or we just say PGL,, (k) := A§/k*.) For every v € I there exists a unique element

(X, mod k*) € PGL,, (k)

54



§ 4. Existence of twisted cyclic decompositions

such that the diagram

A

ak

Ay
is commutative, i.e., a.(ida ®y) := a o (ida ®7)
(X, mod k*) defines a 1-cocycle

(X, mod k*) € 2" (T,PGL,(k)) .

kx,o(ida, ®7)

A

zja

Ay
o Oz_l

= Ky, o (ida, ®vy). Moreover

Proof: Since the morphism a, (id4 ®7) o (ida, ®7y) "1 49 =% Ao_is obviously li—linear
we get by Skolem-Noether’s theorem a unique element (X, mod £*) € PGL, (k) such
that kx, = o, (ida ®@v)o(ida, ®y) !, hence kx. o(ida, ®7) = a.(ida ®7). Letv,7" € T,
then

kx,, = ao(ida®@yy)oa " o(ida, ®yy) "

= ao(ida®y)oatoao(ids®y)oa o (ida, ®y) ' o (ida, ®y)"

= o (jdA ®fy) cato KX, © (idAO ®*)/)—1

= KXx, © (idAO ®’Y> OKkx_ ,© (idAo ®7)_1
— K/X’Y [e] K’(idAO ®’y)(X,Y/)
= KX, (ida, ®7)(X,/)

hence X, = X, (ida, ®7)(X,) (mod k*), and (X, mod k*) is a crossed homomor-
phism. O

(4.9) Notation. If there is no way of misunderstanding we will write ~ instead of
(ida ®7) and (ida, ®7), and we will write c.. () for a,(ida ®7).

(4.10) Remark. This is the first step (of two steps) in the definition of a morphism—
which will be the opposite of the standard morphism—from the Brauer group Br(k) to
the cohomology group H?(k,k*); cf. [SeLF], X, §2 and §5.

(4.11) Notation. The set of the primitive idempotents of Ly is

MLO - {E117E227 o 7Enn} .

We identify this set with the set {1,...,n} via i — F;;, such that we also can easily
identify S(Mp,) with S,,.

The isomorphism «: L % Lg gives a bijection a: My -~ My, = {1,...,n}. This
gives rise to the composition

r 25 S(Mp) =% S(Mp,) =S, ,

and we will denote for any v € T,

3= a.(prL(y)) €5, .
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In other words we have the commutative diagram

M, er(y)=(ida ®v) M,

o o

My,

{1,...,n}) — 2 {1,...,n}

and the middle horizontal arrow is defined by E;; — E5 ;) 5(;)- We have

E5 )40y = o (ida @7)(Bii) = o (ida @7)(ida, ®7) 7 (i) = kx, (Eii) -

(4.12) Remark. Since both a,(id4 ®v) and (id4, ®7) leave Lo invariant we know by
(4.5) about the matrix X, that it has the form X, = D., - E5, where D, is a diagonal
matrix and (D, mod k*) € L§/k* is unique. But we can say more about D.,:

(4.13) Proposition. There is a unique 1-cocycle
(D, mod k*) € (T, L* /k*)
such that

D, = a(f)v) (mod k*) .

Proof: Since a: A =% Ay yields am isomorphism o: L*/k* -~ L /k* just define
D, mod k* := o~ (D, mod k*) .
All we have to prove is that (ﬁ,y mod k*) is a 1-cocycle, i.e., for v,7" € T,
Dyy = Dy (ida®7)(Dy)  (mod k*) .
Applying «a, this is equivalent to showing
Dy = D, - a.(ida ®y)(Dy)  (mod k*) .
We know from (4.8) and (4.12)
D’V’Y/E:Y:Y/ = X’Y’Y/

X, (ida, ®7)(Xy)
Dy E5(ida, ®@7) (D~ E5)
D Es(ida, ©7)(Dy) By (mod F°)

and this is equivalent to
Doy = Dykg. ((ida, ®y)(D4)) (mod k) .
But the latter equivalence shows that rp. ((ida, ®7)(D,/)) is diagonal, so it is equal to
kD, o 5 ((iday ©7)(D)) = au(ida ©9)(Dy)

Replacing this in the last equation we get our cocycle condition. 0
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3. The Existence of a Twisted Cyclic Decomposition

Again, let A be a central simple k-algebra of degree n, let (L,C) be a twisted cyclic
extension of k of degree n and assume that L C _A is a_subalgebra of A. Choose
a generator m € C' of C' and an isomorphism a: A =% Ay of k-algebras such that

O_/([_/) = Eo.
We may assume that a.(7) = aomoa™! € S(ML,) = S, is the permutation my :=
(12 ... n)€eS,, ie, (aoroa 1) (Ey;) = Eit1,i+1. The index is viewed modulo n.

If this is not already the case, then there exists a o € S,, such that oo, (m)o™! = mg. If
we change o to kg, o a, then we have our desired property.

(4.14) Lemma. In this situation, the composition
Homyz (C, uy,) =, L*/k* =25 Li/k*
can be described as

(a0Z)(u) = [Xo(u(m))] .

Proof: We choose for the primitive idempotent e € My the element e := a1 (E,,).
Then

(oZ)(u) = « [Z_: u(m”)m” (e)

v=0

= Z u<7T)VE7T6’(n),7T6’(n)]

v=0

fn—1

= | _u(m)’E,,

Lv=0

= [XO (u(w))} .

O

(4.15) Theorem. Assume that L is a field and (n,¢(n)) = 1. Then there exists
a separable k-subalgebra K of A of degree n such that (A, L,K) is a twisted cyclic
k-algebra of degree n. Moreover C' = C( 4,1, K)-

Proof: Let (X, mod k*) € 2*(I',PGL,(k)) be the 1-cocycle constructed in (4.8).
(This, of course, depends on the choice of a—we take the o from above.) Then, with
D, = X,yExy_l, by (4.13) there exists a 1-cocycle (D, mod k*) € Z1(T, L*/k*) such
that D, = 04(157) (mod k*).
Because of (4.3) there is a 1-cocycle

uy € Z"(I',Homz(C, iy,))

such that 3 o
Sou,] = [D] € H'(T,L*/k") ,
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i.e., there is a A € L* such that
157 = (Zou,)-"A-A"! (mod k*)

for all v € T'. Applying a and defining Ag := «(A) we get with (4.14)

D, = Xo(u,(m)) - auida ©7)(A0) - A7 (mod &),
For all v € I'. But

. (ida ®y) = E5 - (ida, ©7)(A0) - E5* (mod k*) ,
since Ay € Lg is diagonal. Therefore

Ao Dy - By = Xo(uy(m)) - Bs - (ida, ®7)(Ao)  (mod k¥) ;

in other words: The diagram

- K(DyE5)0(iday ®7)

0 Ay
KAOP ZlnAO
< B(Xg(uy () B5)0(idag ®7)

0 A,

is commutative. If we replace a by ka, o «, then
Xy = Xo(uy(m)) - E5

and (4.7) says that kx_, and also kx_ o (ida, ®7), leaves Ly and K, invariant. Define
K := a }(Kjy), then K C A is I-invariant. Define K to be K', and we are done. The
last statement of the theorem follows, e.g., from the uniqueness of C, cf. (1.30). 0
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In this section we fix a twisted cyclic k-algebra (A, L, K) of degree n—or equivalently—
a pair of twisted cyclic extensions ((L,C), (K, D), ¢) of degree n (which is associated to
this algebra.)

The well known isomorphism between the Brauer group Br(k) of k£ and the cohomology
group H?(k,k*) gives us a two-dimensional cohomology class [A], associated to the
central simple k-algebra A.

On the other hand we constructed in §2 the one-dimensional cohomology classes [L, C]
and [K, D].
In this rather technical section we will show how these three classes are related.

1. The Theorem
In §2 we constructed the cohomology classes
[L,C] e HY(I',C) and [K,D]ec HY(T',D).
Their cup-product is a two-dimensional cohomology class
[L,C]U[K,D] € H*(I',C ®z D) .
The isomorphism ¢: C' ®z D % u,, of I'-modules induces the isomorphism
¢.: H*(I',C ®z D) == H*(T, )

of the cohomology groups, and the right-hand-side group can canonically be identified
with the n-torsion part of H?(I',k*). (Apply cohomology to the short exact sequence
1 — p, — k* =5 kE* — 1 and use Hilbert’s Theorem 90 to get the exact sequence

1 -2 H2(T, py) — H2(T, k) - H?(T, k*).) Therefore
¢.([L,C]U[K,D]) € H*(T, k") .

If we use the well known identification H?(T', k*) = Br(k)—we will use the construction
of SERRE in [SeLF], X, which is the opposite of the standard morphism, constructed by
means of “crossed products”—we can see this class as an element of the Brauer group
of k. On the other hand we have the element [A] € Br(k). They are connected in the
following way:

(5.1) Theorem. Let ((L,C), (K, D),c) be a pair of twisted cyclic extensions of degree
n and assume that I' acts transitively on My, then

«.([L,ClU[K,D]) = —[A((L,C), (K, D),c)] .

(5.2) Remark. The additional assumption is true, e.g., if L is a field. Of course for
reasons of symmetry, one can alternatively assume that I acts transitively on M.

We will show the theorem by a—lengthy—direct computation with cocycles. In order
to do that we first have to compute a 2-cocycle which represents the cohomology class
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[A] € Br(k) = H?(T', k*) and two 1-cocycles representing the cohomology classes [L, C] €
HYT,C) and [K, D] € H(T', D).

Recall that the construction given in [SeLF], X, §2 and §5 has two steps: Starting with a
central simple algebra of degree n, one first gets (as shown in (4.8)) a cohomology class
in H'(I',PGL,(k)). By virtue of the connecting morphism §: H' (I, PGL,(k)) —
H?(T, k*) that appears in the long exact cohomology sequence which is associated to
the short exact sequence

1 — k* — GL,(k) — PGL,(k) — 1
of (non-abelian) I'-groups, we get the cohomology class [A].

Actually, we will not go all the way but compare the cohomology class of A with the
cup-product in the left-hand group H*' (F, PGLn(k)). In order to do that we have to
find a pre-image of the cup-product.

Moreover we are not working with the classes [L, C| and [K, D] but—and this is equiv-
alent because of (2.12) and the remark before (3.18)—with the more explicit [h(z,,)] €
HY(T,Kk.1)/pn) and [h(k p,y] € HY (T, K1, 1)/ tn) constructed in §2, 2.

2. Cocycles Associated to a Twisted Cyclic Algebra

For our twisted cyclic k-algebra (A, L, K) choose an isomorphism a: A =% Aj of k-
algebras as in (3.3). We adopt the notations of (4.11) and set again mp:= (12 ... n) €
Sp =8(Mp,). Let Y := a1 (Yy) € K(i,1) and e := a1 (E,,) € My.

Then define 7 := pr([Y]) € C. Since Y and Y, have order n the cyclic group C' is
generated by .

(5.3) Lemma. The morphism
ax: S(Mp) — S(Mg,) = Sh

maps T to mg.

Proof: Let:=1,...,n, then
(1) (Eny) = a(r'(e))
= a(Y'eY")
= Y5 EunYy '
= F; .

This implies our claim. O

Now we want to describe the cohomology class in H* (F,PGLn(E)) assigned to the
algebra A, which is mapped to [A] by the morphism é§: H'(I', PGL,(k)) — H?*(T, k*)
mentioned above.
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We have done this already in §4, 2.: The cohomology class is given by
[X, mod k*] € H' (I, PGL,(k)) ,
where X, is the cocycle we got in (4.8). Now (4.6) tells us that we can write
Xy = Xo(&) - E5
where &, € p,, for every v € I'. Let us denote the pre-image of X((¢,) via a by
X (&) =a " (Xo(&)) € Kr.x) -
For the proof we want to write PGL,, (k) in a different way: Define the k-vector space

V to be
V= @ k-é
e’'eMp,

and V := V ®;, k with the canonical I'-action: I' does not permute the components. So
the linear map -
g k" — V
e; — 1-7'(e)

fori=1,---,n, is an isomorphism of I'-modules and it induces an isomorphism
B.: PQL, (k) = (GLn(k) @5 k) /K* = PGL(V) = (GL(V) @ k) /k" .

of I'-groups. - B
Let now [g, mod k*] denote the image of [ X, mod £*] under the induced isomorphism

B.: H' (I, PGL,(k)) =~ H'(I,PGL(V)) ,

ie,q, € GL(V) is some automorphism of V for every v € T
In order to describe g, better let us make some conventions on notations:

(5.4) Notation. If ¢’,¢” € My are some primitive idempotents of L, then there a
unique ¢ € C such that " = c(e’). We will write

Furthermore, if ¢ = w¥ for some v € 7Z/nZ, then we will write

log,.(c) =1 .

(5.5) Lemma. A representative g, of the class [¢, mod k*] € H' (I, PGL(V)) is given

by
¢y @ k-e — @ ke
e’eMy, e’eMp,
y(eh
e — &5 ()

where y(e') is an abbreviation for (ida ®7v)(e’) = ¢r(v)(e'), which we will use in the
following in connection with the action on the idempotents; cf. (4.9).
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Proof: We denote the linear morphism defined in the lemma by q’v. We have to show
for y e T,
B Hdy) = DyBE;  (mod k),
and we will show
qfly(ﬁ(ei)> = 5(DvEﬁ(€i))
for i =1,...,n, and e; is still the i-th basis vector of k™.

First we claim: (i) = log,r(w7r (6))

Since o maps e to E,,, € My, or—equwalently in our convention of 1dent1fy1ng M,
with the set {1,...,n}—ton € {1,...,n} and since a,:S(Mr) — S,, maps y7* to ym}
we have

a(yri(e)) = a.(yr)ale) = Frh(n) = (i) = 1V n) = (X D(e)) .
Hence y7'(e) = 77 (e)—the claim. Now

B(DyEse) = B(Xo(&)esw)
= &9 Blesw)
= g 770(e)
= W yr'(e)
= & y(B(e))
= ¢, (8(ei))

since 4(i) = logﬂ(w (e)) logﬂ(Vﬁ(el)). 0

(5.6) Remark. If—in the description of the map ¢,—one replaces the idempotent e
by any other primitive idempotent, then one gets the same 1-cocycle in 2 (I', PGL(V)).
If one changes 7w to some other generator of C' one gets a different cocycle, but the new
one still represents the same cohomology class.

3. The 1-Cocycles Associated to the Pairs (L, pr) and (K, pk)

We still keep the notations from above.
For the 1-cocycle hy := h(y,,) which represents the cohomology class [k ,,)] €
HY(T',K(k,1)/n), constructed in §2, we know by (2.8) that it is given by the formula

(ida®v)(e) = pr(hr(v))(e)
for all v € I.

(5.7) Lemma. A l-cocycle hy: I' — Kk 1y/pn representing the class [hy, ,,)] is

given by
hly) = (Yo

) mod ,un)
for all v € T'.
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Proof: We have to check the formula from above. It suffices to prove this formula after
applying « to it, i.e., we have to prove

o (e)
o (ida ®7)(ae) = pr, (Yo"

mod i, )(ce) .
First we claim

log, (——
Let y(e) = 7'(e) for some i = 1,...,n, then

F(n) = a.(v(e)) = au(n'(e)) = mp(n) = i.
Now with (4.8)
. (ida ®@7)(ae) = kx, o (ida, @7)(Enn)
= Xo(&)E5Enn B Xo(&,) ™"
= Xo(&) B5(n), 50 Xo0(&) ™"
= E5(n) 5(n)

— YO’?(n)EnnYO_’S’(n)
= PLo (YE):Y(n) mod iy )(Enp) -

O
(5.8) Lemma. The action of T on Y = a~(Yy) can be described as follows:
: log. ()
(ida@y)(Y) = (& -Y) 50
for all v € I
Proof: Again the formula will be verified after we applied a.
Let or(y)mor(y)™t = «° for some i = 1,...,n, then ymey~! = 7} and yr(e) =
vy~ L(ve) = wiy(e), hence i = logﬂ(wf((;;) ). Now since
Xo(&)Er, Xo(&) ™! = Xo(§,)Y0Xo(&) ™" = &Y
we have
. (ida ®7)(Yo) = kx, o (ida, ®y)Ex
= Xo(&y)E5Ex, E5 1Xo(€ )~
= Xo(&)Eyrey-1Xo0(&) ™!
= Xo(&))Er X (&)~
= Xo(&)Er,Xo(&) ™!
= (S’yYO) :
O

63



§5. A cohomological description of twisted cyclic algebras

Like in the first case we can describe a 1-cocycle hi := h(k ,,) which represents the
cohomology class [h(f )] € H' (I, K(1 1)/ pn) by the formula

(ida ®7)(9) = px(hx(¥))(9) ,

where g € M is any primitive idempotent of K.

Recall the isomorphism kz,: Ly =% K defined in the proof of (3.7). This induces a
bijection kz,: M1, — M, and explicit computation yields

1 n—1
MKO = {EZ()C”YOV . C € ,un} .
We will choose for g the easiest case ( =1, i.e., g :=a (1 Z:;é Yy) =1 ZZ;S Yv.

(5.9) Lemma. A 1-cocycle hx: I' — K(1, k)/pn representing the class [h(x )] is
given by

hic(y) = (X(&) mod pn)
for all v € T'.

Proof: We have X (¢,)Y X (&,)"! = &,Y and therefore

(ida ®7)(9) = (ida®7)( ZY”
1 .
= — Z(ldA ®7)Y
n
vr=0
n—1
1 vlo ('Yﬂ(e))
= - Z(&’YY) AT
n v=0
n—1
1
= n Z(fw -Y)

:_Z £VYX§’Y) )

_ X(e)ox(6)"
— i (X(&) mod 1) (9) -

Note that

= tog, (7)) = 10g, (1) ¢ (zmay

since ymy~! = 7’ has order n. 0
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4. Proof of the Theorem

We now want to prove the Theorem, i.e., the equation
c([hL] U [hK]) = —[A].

The cohomology class

[hp] U lhi] € H* (T, K(k,1)/ttn ®z K(L,5)/Hn)

has the 2-cocycle by, := hr(0) ® (ida ®0)hk(T) as a representative.
Because of the anticommutativity of the cup-product of one-dimensional cohomology
classes we will actually show

(coswitch)([hx]UhL]) = [4].
A 2-cocycle which represents the left side is then
ao,r = ¢(((ida ®0)hi (7)) @ hi(0))

— — — 1 —
— i (o) - (ida ®0) (hi (7)) - hic(0) - (ida @0) (hp(7)) ™" € pim

Where h;(\a) and h;(\T) are representatives of hy (o) and hy(7) respectively. In order

to compare [a,,-] € H*(I',k*) with [¢, mod k*] € H'(I', PGL(V)) we first take a pre-

image of [a, -] under the composition

-1
B
—

H'(T,PGL(V)) H'(T,PGL, (k")) - H*(T,k*).

5.10 emma. re-image mod k*] € 7)) of [a under d o 3" is
( )L A pre-imag [pv dk] Hl(F,PGL(V)) f[U,T] der 6 6*1

given by
Py @ ke! — @ ke
e’eMy, e’eMy,
7(€) = ay,r - y7(e)
forteT.

(5.11) Remark. p, is well defined:

If for two elements 7,7" € I" we suppose 7(e) = 7'(e), then ay, = a, ./, since the
assumption implies (id4 ®7)(e) = (ida ®7’)(e) and thus hr(7) = hr(7'), by (2.8).
Moreover My, = {7(e) : 7 € I'} since in (5.1) we assumed that I" acts transitively on the
set My, of the primitive idempotents of L.

Proof: (of (5.10)). We have to show that a, , is cohomologous to p, o °p, o p,l. In

fact we will show that they are equal: Let o, 7,w € T", then
Po 0 pr(wle)) = po(o(arw) - (Tw)(e))
= Q7w 0(Arw) - (oTW)(€E)
o grs - (07) ((6))
= ao,r " Por(w(e)) .
In the third equality we used the cocycle property of a, ;. 0
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§5. A cohomological description of twisted cyclic algebras

(5.12) Lemma. For any o,7 € I' we have the formula

g, () log(T715)) = o, (7).

-1

Proof: Let ¢ (0)mpr(o)

e

=7 i.e., log,( ~)) = i and set j = log (7). Then

7(e) = 7 (e) and we get o7(e) = oml(e) = o (e). O
We come to the proof of our theorem:

Proof: (of (5.1)). Now what remains to show is
[¢y mod k*] = [p, mod k*] € H'(I', PGL(V)) .
We will show for every v € T,

log. (=&5)
é-'y v(e)/ | ¢y = Dy

for the representatives from above. Let v, 7 € T', then

T(e))

() log. (&5

log, (56&5) log,(5&y)  log,
&y « 'qv(T(e)) = & . vg y1(e) = & -7 (e)
by (5.5). And
py(7(e)) = ayr-7(e)
where

are = hi(y) - (ida @) (h (7)) - hx () - (ida @) (hr (7))~

= X(&)- ylos= (575 - X (&)™ Ly loax (5)

log, (27¢9)
)

:Sv

where for the representatives hK/\(v) and h;(\T) we used X (&,) and ylog (%) respec-
tively. Further we used in the second equation

(ida @y) (he (7)) = (ida @) (Y08 (7))

ym(e)

= (S'Y . Y)log"( ~(e) ).lOgT"(

y7(e)

= (& V)"

T(e))

a7 (e)
— yloe-(55)

We are done. O
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Chapter 111
The Notion of Chain Equivalence

§ 6. Kummer Elements and Kummer Relation

In §3 we have seen that a twisted cyclic k-algebra (A, L, K) gives rise to elements
X € Kx) and Y € Kk ) which are in a—what we are going to call—Kummer
relation, i.e., XY = (Y X, where ( € u, = u,(k) is a primitive n-th root of unity.
Since these elements generate L and K, they already give rise to our twisted cyclic
decomposition of A. We are going to use these Kummer elements in order to describe
twisted cyclic decompositions.

In this section we fix a field k and a positive integer n > 2 which is prime to the
characteristic of k, and ¢ denotes a primitive n-th root of unity in k. Let A be a central
simple k-algebra of degree n.

1. Kummer Elements

For every element X € A we have its reduced characteristic polynomial
Prd(X,t) = t" — Srdy(X)t" ' + .- 4 (=1)" Srd,(X) € k[t] ,

especially the reduced trace Trd(X) = Srd;(X) € k and the reduced norm Nrd(X) =
Srd,, (X) € k.

If A is a matrix algebra, then Nrd(X) and Trd(X) are just determinant and trace of the
matrix X. (Cf. [SchQH], chap. 8, §8, p. 296, or [BI]).

The condition Nrd(X) # 0 is equivalent to X € A*.

If A= M,(k), then Srd,(X) is a homogeneous polynomial of degree v in the n? entries
of the matrix X. The coefficients lie in Z (or better: in the image of Z in k).

(6.1) Definition. A Kummer Element in A is an element X € A such that
Prd(X,t) = t" —a,

where a € k*; or equivalently X € A*, Srd,(X)=0 forallv=1,...,n— 1.

(6.2) Notation. We denote the set of all Kummer elements of A by
W(A) = {X € A" : Prd(X,t) =t" —a} .

Since W(A) is stable under scaling by elements of k*, we also call the “projective
version”

W(A) = W(A)/k* = {[X] € A"/k" : X € W(A)}

the set of Kummer elements or more accurate Kummer lines.
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§ 6. Kummer elements and Kummer relation

(6.3) Example. In A = M,,(k), we have the Kummer elements X((), where ( is any
primitive n-th root of unity, and Yp:

Prd(Xo(¢),t) = Prd(Yo,t) = t" —1.
In fact, we have
W(M, (k) = {[GXo(¢()G™"]: G € GLa(k)} ,
since an X € W(A), scaled such that det(X) = 1, has eigenvalues EigVal(X) = u, (k)

and therefore is similar to X((¢) or Yp.

(6.4) Remark. For a Kummer element X € W(A) the reduced characteristic poly-
nomial Prd(X,t) = t" — a has n distinct roots. Hence Prd(X,¢) is also the minimal
polynomial of X.

(6.5) Lemma. We assume that (n!) is prime to the characteristic of k. For any X € A
the following conditions are equivalent:

(i) Prd(X,t) = t" — a,
(i) Trd(X) = Trd(X?) = ... = Ted(X"1) = 0.

Proof: We may assume k = k and A = M,,(k). Furthermore we can assume that X is

a triangular matrix with the diagonal elements aq,...,a, € k. Then (i) is equivalent
to

oy(ay,...,a,) =0 foralv=1,...,n—1,
where o, (T1,...,T,) € Z[T1,...,T,] is the elementary symmetric polynomial of degree

v. The condition (ii) is equivalent to
T(a1,...,ay) =0 forallv=1,...,;n—1,

where 7,(T%,...,T,) =1V +---+ T} € Z[T1, ..., T,].
The equivalence of these conditions immediately follows from Newton’s formula (cf.
[WaAL],§33, Aufgabe 1)

Ty — Tyo101 + Ty—202 — -+ (=1)" 'm0y _1 + (=1)"vo, = 0

for 1 < v < n, using the fact that v =1,...,n — 1 is invertible in k. O
(6.6) Proposition. Ifn = 2,3, then W(A) # 0.

Proof: n =2: We may assume A is a division algebra. (Otherwise A = My (k) and Yj
is a Kummer element.) Take any X' € A — k- 14 and set

Trd(X’
X = X'—irdé )1,

Then X € W(A), since Trd(X) = 0.
n =3: Cf. (19.2) in [BI]. O
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§ 6. Kummer elements and Kummer relation

(6.7) Lemma. If X,Y € GL,(k) are invertible matrices such that XY = (Y X, then
there are «, 3 € k* such that we have for the eigenvalues of X and Y :

Eigval(X) = a-u, and EigVal(Y) = 5 u, ,
and a™ = (—1)""ldet(X), 8" = (—1)""tdet(Y).

Proof: From Y 'XY = (X we see
¢ - BigVal(X) = EigVal((X) = EigVal(Y 'XY) = EigVal(X) .
Let o € EigVal(X) — {0}, then Ca, (%a,... € EigVal(X). We have

det(X) = [ ¢e

The same holds for Y. O

(6.8) Proposition. If X,Y € A* are invertible elements such that XY = (Y X, then
X,Y € W(A) are Kummer elements.

Proof: Since the reduced characteristic polynomial remains stable under base field
extension we may assume that k = k& and A = M, (k). Because of (6.7) there is an
a € k* such that X is similar to aX((¢) € W(A). The same holds for Y. O

(6.9) Corollary. If X,Y € A* are invertible elements such that XY = (Y X, then
also XY € W(A) is a Kummer element.

Proof: XY = (Y X implies (XY)Y = (Y (XY). 0

(6.10) Lemma. If XY € W(A) such that XY = (Y X, then for X'|Y' € A:

XY' = (V'X < Y €k[X]-Y =Y -k[X]
XY = (YX < X cklY]-X = X k[Y]

Proof: The direction “<” is clear since the elements of k[X| commute with X and the
elements of k[Y] commute with Y.
“=": Let XY’ =(Y'X, then

YlV'X = (Y 'XY' = XYY,

i.e., Y71Y’ commutes with X. Therefore YY" € k[X], since k[X] is a maximal
commutative subalgebra of A.—Analogous for X’. 0
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§ 6. Kummer elements and Kummer relation

2. Description of Twisted Cyclic Algebras via Elements in Kummer
Relation

We start with an important technical lemma:

(6.11) Lemma. Let X,Y € GL,(k) such that det(X) = det(Y) = (—=1)""! and
XY = (Y X. Then the pair (X,Y) is similar to (XO(C), YO), i.e., there exists a matrix
G € GL,, (k) such that

GXG™!' = Xo(¢) and GYG ' =Y.

Proof: Because of det(X) = det(Y) = (—=1)""! and (6.7) we know EigVal(X) =
EigVal(Y) = . Therefore there exists a G; € GL,, (k) such that G1 XG7' = Xo(¢).—
Note that ¢ € k because ( = XY X 'Y 1. Since conjugation by G; does not change
our assumption, we may for the proof assume that actually X = Xy(¢). Since

XY = (YX and XYy = (YpX,

we know by (6.10) that Y™1Yy = D € k[Xo(¢)] = Lo is a diagonal matrix. Let
D = diag(dy,...,d,) for di,...,d, € k*, then we know, since det(Y ~'Yy) = 1, that
dy -+ -dy, = 1. Define (we now use the “Hilbert’s Theorem 90-trick”)

G = diag(l,dl,dldg,...,dl---dnfl) .

Then
Yy 'GYy = diag(di,dida, ..., d1 - dy) ,
hence
G (Yy 'GYy) = diag(dy, da, ... dy) = Y'Y,
i.e.,

GYG™! =Y.
But since G € Ly is diagonal, we still have GXG™! = X = X(¢) and we are done. 0O

As an immediate consequence we get:

(6.12) Corollary. Let X,Y € GL,(k) with XY = (Y X, then there exists a G €
GL, (k) and o, 8 € k* such that

GXG™' = aXp(¢) and GXG ' = BY;.
In this case a™ = (—1)""1det(X), 3" = (—1)""1det(Y).

(6.13) Definition. Let A be a central simple k-algebra of degree n and X,Y € A*.
Then we say (X,Y) is a (-pair, or X and Y are in ((-)Kummer relation if

XY =YX,
where ( is a primitive n-th root of unity. We will also denote this fact by the symbol

X -y,
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§ 6. Kummer elements and Kummer relation

(6.14) Proposition. Let A be a central simple k-algebra of degree n and (X,Y) a
(-pair in A. Then X and Y generate A, we even have
A= P kXY

4,§=0,....,n—1
If there are elements «, 3 € k* in the ground field such that o™ = (—1)""!Nrd(X) = X"
and 3" = (—1)""INrd(Y) = Y™, then the morphism of k-algebras, given by
A~ A
XY (aXo(0)) (8Yo)

fori, 5 =1,...,n—1, is an isomorphism.

Proof: There is an isomorphism of k-algebras
A=Ak = Ay =M,(k),

which maps X to aXy({) and Y to (Y,: Take any isomorphism ¢: gl — Agy. Since
(X,Y) is a ¢-pair (¢(X),¢(Y)) is also one. Now, take the G € GL,, (k) of (6.12) and
compose ¢ with kg. Obviously

o= D X0V = @ F(eXQ) (V)

therefore

Now, in order to show the first part of the proposition, it is enough to prove it after the
(faithfully flat) base extension k|k; what we have done above.
The second part also follows, since the isomorphism kg o ¢ is already defined over k. O

Now we can characterize twisted cyclic algebras by (-pairs:

(6.15) Proposition. Let A be a central simple k-algebra of degreen and L, K C A two
commutative k-subalgebras of degree n. Then the following conditions are equivalent:
(i) (L, K) is a twisted cyclic decomposition of A,
(ii) There exist X € L and Y € K such that (X,Y) is a (-pair.

In this case

L = k[X] and K = k[Y].

and o
XG/C(L,K) = {CZXJ :i,j=0,...,n—1}

YeKxkr = {Cin 21,7 =0,...,n—1}.
Proof: Let (A,L, K) be a twisted cyclic k-algebra and a: A =% Aj a I'-isomorphism

as in the definition (3.3). Then take X := a™*(X((¢)) and Y := o }(Yp).
The other direction follows with the isomorphism of (6.14) in the case k = k. O
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§ 6. Kummer elements and Kummer relation

In (6.6) we said something about the existence of Kummer elements. Now we ask for
the existence of (-pairs.

(6.16) Proposition. Assume that p, = p,(k) C k. If A is a division algebra and
X € W(A) a Kummer element in A, then there exist Kummer elements Y € W(A)
such that (X,Y") is a (-pair.

Proof: k[X] is a commutative subalgebra of A of dimension n. Therefore it is a field,
in particular simple. The automorphism k[X] =% k[X], X — (71X can be extended
by Skolem-Noether to an inner automorphism ky for some Y € A*, i.e., we have
YXY~1=("1X. O

3. Galois Action on Kummer Elements and Twisted Cyclic Decomposi-
tions

Let k'|k be a Galois extension and A a central simple k-algebra. Then G := Gal(k'|k)
acts on the central simple k’-algebra Ay = A @y k'.

This action gives rise to actions on the set of Kummer elements and twisted cyclic
decompositions.

(6.17) Remark. For 0 € G and X € Ajs we have the identity
Prd(c X,t) = oPrd(X,t),

where o acts on the coefficients of the polynomial. Therefore, if X € W(Ay/) is a
Kummer element, then 0 X € W(Ay) is also one. The same holds for W(A4y).

(6.18) Proposition. The map
W(A) — W(Ar), X — X
has Galois descent, i.e., it induces the bijection

W(A) =5 W(A)C .

Proof: This follows from the Galois descent of the map A — Ay. 0

The Galois group G acts in the following way on the set of twisted cyclic decompositions
of Ak’ .

(6.19) Lemma. Let (L', K') be a twisted cyclic decomposition of the central simple k'-
algebra Ay:,. Then for o € G, the pair (cL',0K') is also a twisted cyclic decomposition
of Ak/.

Proof: Because of (6.15) there are X € L' = L' ®p k and Y € K' = K’ @ k such
that (X,Y) is a (-pair and L’ = k[X] and K’ = k[Y]. But this implies that (0X, oY)
is a o(-pair and oL’ = k[o X]|, o K’ = k[oY]. Again with (6.15) we are done. O
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(6.20) Proposition. The map

{twisted cyclic decompositions of A} — {twisted cyclic decompositions of A }
(LK) — (Lo, K, K oK)

has Galois descent.

Proof: The map is obviously injective and well defined (cf. (3.4)). Let (L', K’) be
a decomposition which is invariant under G. Then G acts semilinear on L' and K’.
Therefore we have for L := L' and K := K'C,

L' = Lok and K = K®pk';
cf. (18.1) in [BI]. O

4. Description of Split Twisted Cyclic Algebras

We will give a criterion for a triple (A, L, K) of k-algebras to be isomorphic to the
standard one. This will be used to prove the last remark of (3.4).

(6.21) Lemma. We assume u,, C k. Let (A, L, K) be a triple, where A is a k-algebra,
L and K are commutative k-subalgebras of A. Then the condition

(A,L,K) = (Ao, Lo, Ko)

is equivalent to the following set of two conditions:
(i) A= Ay, L = Ly, K = Ky as k-algebras;
(ii) One can number the primitive idempotents {ej,...,e,} of L and {f1,..., fn}

of K in a way such that the elements X := (le; + (%es + --- + ("e, € L and
Y =Cfi+Cfo+---+("f, € K are in a Kummer relation.

Note that the point (i) implies that L = k™ and K = k™ and therefore they have n
primitive idempotents.

Proof: If (A, L, K) = (Ao, Lo, Ky), the point (i) is clear. The point (ii) follows, since
it is true for the case (A4, L, K) = (Ao, Lo, Ko); this we can see putting together (3.9)
and (3.19).

The other direction follows with (6.14): Since X™ = Y™ = 1, we can set in this propo-
sition @« = # = 1, and that gives the isomorphism (A, k[X], k[Y]) = (Ao, Lo, Ky). But
for dimension reasons the inclusions k[ X] C L and k[Y] C K are actually equalities. O

(6.22) Proposition. Let (A, L, K) be a triple, where A is a k-algebra, L and K are
commutative k-subalgebras of A and k'|k is an algebraic (not necessarily separable) field
extension. Then we have the equivalence:

(A, L,K) is a twisted cyclic k-algebra of degree n <= (A, L, K); is a twisted cyclic
k'-algebra of degree n.

Proof: The direction “="is clear. .
For the other direction we may assume that &/ = k is an algebraic closure of k.
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Furthermore—because of (3.4)—we may assume that k = k is separably closed.

The separable closure of k is of course k, therefore (A, L, K) := (A, L, K);, is isomorphic
to (AO,LO,KO) = (Ao, Lo, Ko);, i.e., A is isomorphic to a matrix algebra. Thus A is
a central simple k-algebra; and hence, A is already split, since k is its own separable
closure. So A = M, (k) = Ao.

Since Lo =~ k" and Ky = k™ are diagonalizable, the same holds for L and K i.e., L and
K are separable k-algebras of degree n. Since

n = Homg(L, k) = Homy(L,k) and n = Hom; (K, k) = Homy (K, k) ,
L and K are separable k-algebras. And since k is separably closed, we get
L 2 k"> Ly and K = k" =2 Ky ;

in other words: The primitive idempotents e1, ..., e, of L and fi,..., f, of K already
lie in L and K respectively. Now

:k.el@...@k.en and K:k‘fl@"'@k"fn
as well as . 3 3 . 3 3
L=k-e1® - --®k-e, and K:k.fl@...@k.fn.
Since (fl,l?,f() >~ (Ay, Lo, Ky), we may, by (6.21), assume that the elements X :=
Cler +CPeg+ -+ (C"epand Y :=C1 1 + Cfo + - + (" f,, are in a Kummer relation.

But X and Y already lie in L and K respectively. Using the other direction of (6.21)
we get the claim. 0
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In this section we establish the first version of chains, give some elementary properties
and classify these by virtue of certain “structure morphisms”.

We fix a field k and positive integers n > 2 and ¢ such that n is prime to the characteristic
of k. Let A be a central simple k-algebra of degree n.

1. Definition of Chains

(7.1) Definition. A k-chain in A of length ¢ is an (¢ + 1)-tuple (Lyg,...,Ly) of sep-
arable commutative k-subalgebras of A such that (L;, L;y1) is a twisted cyclic decom-
position of A for alli =0,...,¢— 1.

(7.2) Notation. We denote the set of all k-chains in A of length ¢ by the expression

Chaing(A) .

(7.3) Remark. If £'|k is a field extension, then we have a natural injective map

Chaing(A) — Chaing(A ® k)
(Lo,...,Lg) [ — (L(),...,Lg)k/ y

where (Lo, . ,Lg)k/ = (LO Rk k/, vy Ly ®p k/); cf. (34)

Furthermore if £’|k is a Galois extension, then Gal(k’|k) acts on Chaing(A ®y k'), in the
way of (6.19). Analogously to (6.20) we have:

(7.4) Proposition. If k'|k is a Galois extension, then the map
Chaing(A) — Chaing(Ag/) ,

has Galois descent.

2. Chains with Fixed Starting and End Points

We fix two separable commutative k-subalgebras L, K C A of degree n.
Since we are interested in the question if two separable commutative subalgebras can
be connected by chains, we make the following definition.

(7.5) Definition. Let k’'|k be a field extension. A k’-chain in A from L to K of length
¢ is a k'-chain (Ly, ..., L)) € Chaing(Ay/) such that

L6 = Lk/ and LZ == Kk/ .
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(7.6) Notation. We make the following notations
Chaing(L, K; A) = {(L},...,L}) € Chaing(Ap) : L) = Ly, L, = Kj» }
and
Chaing(L, —; A)gr == {(Lg, ..., L)) € Chaing(Ax) : Ly = Ly} -
If k' = k, we leave the index “k”.
(7.7) Remark. Obviously
Chaing(L, K; A)g = Chaing(Ly, Ki/; Agr) -
If £'|k is a Galois extension, then Gal(k’|k) acts on this set, since the Galois action

leaves Ly and K} fixed. An easy consequence of (7.4) is:

(7.8) Proposition. We have the natural injective map
Chainy(L, K; A) — Chaing(L, K; A)i
(Lo,.. . ,Lg) — (Lo,. .. ,Lg)k/ .
If k' |k is a Galois extension, then this map has Galois descent.
We remind that we wrote I' = Gal(k|k) for the absolute Galois group of k.

Let %, be the category of the I'-modules C which are cyclic groups of order n. Then we
have on %, the following involutionary endo-functor

T := Homgz(—, tin): € — %n
C +— Homgz(C, ) ,
where g, = i, (k). The natural transformation ¢: id =% T o T is given by
Pc: ¢ — HOmz(HOHlZ<C, ,un)aun)
c— eve,

the evaluation morphism. The following is well known.

(7.9) Lemma. For any C,D € %, we have the identity
Isomr(C ®z D, p,) == Isomp (C,T(D)) .

Let (Lo, ..., L¢) € Chaing(A) be a k-chain, then (A, L;, L;+1) is twisted cyclic k-algebra
fori=0,...,¢0—1.
This induces the twisted cyclic structures

Ci = Ca,Li,L.4) onL;
and
Diyq = D(A,Li,L,-H) on L1
and the isomorphism of I'-modules
G = €A LsLisa): Ci @z Dig1 =5 pin = pin(k) ;
cf. 83, 2.
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(7.10) Definition. A coherent chain in A is a chain (Ly, ..., Ly) € Chainy(A) with

Cz:Dz forallizl,...,ﬁ—l.

(7.11) Notation. We write for the set of coherent chains of length ¢,
c-Chaing(A) := {(Lo,...,Ls¢) € Chaing(A) : (Lo, ..., Ls) is coherent}

and
c-Chainy(L, K; A) := c-Chaing(A) N Chaing(K, L; A) ,

and analogously for all other notations of this kind.
If (Lo, ..., Ly) € c-Chaing(A) is a coherent chain, then we can compose the I'-morphisms,
given by (7.9):
T'(c;): T(Ci) =5 T (Diga) = T H(Civa)
and we get
Co =5 THCY) =5 T?(Cy) =% - 25 TYCOy) = TYDy) ,

which we will denote by
P(Lo,...Lo): Co =2 TY(Dy) .

Thus we can classify coherent chains by means of this isomorphism.

(7.12) Notation. For C,D € 6, and p € Isomrp (C,T*(D)) we define

Chain} (L, K; A) :=
{(L(), ... ,Lg) € C—Chaing(L,K;A) :Co=C,Dy = D7p(L07~--,L£) = p} .

(7.13) Remark. Obviously we have the disjoint union

c-Chainy(L, K; A) = ] J] Chainf(L, K; A) ,
C,D p

where C' and D run through the set of twisted cyclic structures of L and K respectively
and p runs through the set Isomr (C, T*(D)).
(7.14) Proposition. If A is a division algebra and (n, go(n)) =1, then

c-Chaing(A) = Chaing(A) .

Proof: This follows immediately from the uniqueness of twisted cyclic structures,
proven in (1.30). 0
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(7.15) Corollary. If A is a division algebra and (n,¢(n)) = 1, and if we assume that
Chaing(L, K; A) # (0, then there are unique twisted cyclic structures C' and D on L and
K respectively, and we have the disjoint union

Chaing(L, K; A) = 1T Chain/ (L, K; A) .
pEIsomr (C, T4 (D))

(7.16) Definition. Let C' and D be some twisted cyclic structures on L and K re-
spectively and let p € Isomp(C,T¢(D)), then we say that L and K are ({,p)-chain
equivalent over k’, if the set

Chain} (L, K; A)r = Chain}) (L, Ky; Ap) # 0

is non-empty. (Note that C and D are also twisted cyclic structures on Ly and Kj:.)

(7.17) Proposition. Let k'|k be an algebraic field extension, then we have for any
(Lo, ..., L¢) € Chaing(A) the equivalence

(Lo, ...,Lyp) is coherent <= (Lg,..., L), is coherent .

In particular, there is the injective map

c-Chaing(A) — c-Chaing(Ayg/)
(Lo,...,Lg) — (Lo,...,Lg)k/ 5

which has Galois descent, if k'|k is a Galois extension.

Proof: One only has to observe that the associated twisted cyclic structures C; and
D; do not change under base extension. 0

Finally, we want to state a useful lemma, which we will need later.

(7.18) Lemma. Let (Lo,...,Ly) € Chaing(A) be a chain. Then (Lo, ..., Ly) is coher-
ent if and only if

K(Li’Lz‘—l) = IC(LhLi-Fl)
for i = 1,...,£ — 1.—More precisely: The last condition for i is equivalent to the
condition C; = D; for 1.

Proof: We fix an i € {1,...,£—1}. Let d € D; and c € C; be generators of the cyclic
groups and e € M|, a primitive idempotent of L;. Then (3.19) says

n—1
Kiriy = {C/ ZCydy(e) (', Ce un}
v=0
and

n—1
’C(LivLi+1) = {C/ Z §VCV(6> : QlaC S Mn} .
v=0
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§ 7. Chains of twisted cyclic extensions

It C; = D;, then we may choose ¢ = d and the claim K, r, ) =K, r,,,) is clear.

&L, L) =KL then by the following lemma

it+1)7
D; = D(AaLiflaLi)
= CA,LiLi_y)

CA,Li,Li)
- C,
where the first and last equality are the definitions, the second equality is the tautological
one and the third equality follows from (7.19). O
(7.19) Lemma. Let (A, L, K) be a twisted cyclic k-algebra of degree n, further [X] €
K(r,x)/tn and [Y] € K1)/ pin generators of the cyclic groups. Then
Clarx)={(L =5 L,X — &X): €€ pp}

and B B

D(A,L,K) = {(K =~ K,Y — £Y) 15 - ,un} .
Therefore C' and D depend solely on Kp, ) C L* and Kk,n) € K* respectively
Proof: This is just a corollary of (3.12) and (3.16): The k-automorphisms are defined

by the image of X and Y respectively. (3.16) shows that for these images there are only
the n possibilities of multiples by elements of . 0
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§ 8. Chains of Kummer Elements

If we want to consider k-chains in a central simple algebra A, we can make use of the
interpretation of twisted cyclic decompositions we got in (6.15).

We fix a field k£ and positive integers n > 2 and ¢ such that n is prime to the characteristic
of k. Let A be a central simple k-algebra of degree n.

1. Definition of Chains of Kummer Elements

First we define the chains of Kummer elements:

(8.1) Definition. A chain of Kummer elements in A of length ¢ is a { + 1-tuple
([Xol, .., [Xe]) € W(A)H! of Kummer elements such that consecutive elements are in
Kummer relation, i.e.,

XiaXi = GXiXi
fori=1,...,¢ and primitive n-th roots of unity ¢; € pi, = pn (k).

Note that the condition X;_; S, X; is independent of the choice of representatives

(8.2) Notation. We denote the set of chains of Kummer elements in A of length ¢ by
the symbol

K-Chaing(A) .
Let Z := ((1,...,¢¢) be a {-tuple of primitive n-th root of unity. Then we write

K—ChalneZ(A) = {([Xo], cey [Xg]) € K-Chaing(A) X1 X = CiXiXi—ly 1=1,... ,E} .
If Z=(¢,...,(), then we write just ¢ instead of Z:
K—Chaing(A) := K-Chain? (4) .

The notations K-Chainy([X],[Y]; A), K-Chain? ([X],[Y]; A),... are to be read in the
same obvious way like the corresponding ones in §7.

(8.3) Remark. Clearly, for Kummer elements [X], [Y] € W(A),

K-Chain/(A) = HK—ChaingZ(A) ,
Z

and herein

K-Chain([X], [Y]; 4) = ] K-Chain? ([X],[Y]; 4) ,
z
where Z runs through the /-tuples of primitive n-th roots of unity.

How are the different sets on the right hand side connected mutually?
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§ 8. Chains of Kummer elements

(8.4) Proposition. Let Z = ((1,...,¢) and Z' = (({,...,¢;) be two (-tuples of
primitive n-th roots of unity. Let v; € (Z/nZ)* for i =1,...,¢, be the unique elements
such that ¢; = (;*. Define ey :=1 and fori =1,...,¢

Vi Vi—2 (=1)*~7
€ = v = | | V; ,
Vi1 Vi-3 i=1

then the map
1/}?: K-Chainf (4) =% K—Chainezl(A)
((Xol, -, [Xe]) — (IX°L (X7 [X5°D)

is a bijection. Furthermore we have the functoriality
V7 =id and ¢0F = 0F oyf

where Z" is a third (-tuple of primitive n-th roots of unity. In the special case of
Z=((...,¢)and Z' = ({',..., ("), where (' = (¥, we get

o — {1/, if 7 is odd

1, ifi is even.

Proof: The map ¢% is well defined: First note that [X?] = [1]; moreover X;_; SR X;

. . €1 Gi o
implies X, '7" —— X7, since ¢;_1¢; = v; and

€1 y€ v—Cimlyv—€ _ r€_1€6 _ sup 4l
X XX, 17X, = =¢G =G -

(3

The functoriality is obvious and it implies the bijectivity by the standard argument. O

(8.5) Corollary. Let [X],[Y] € W(A) be two Kummer elements. In the situation of
(8.4) the map 1% induces the bijections

$Z': K-ChainZ ([X], —; A) - K-Chain? ([X], —; A)

and
$Z': K-Chain? ([X],[Y]; A) == K-Chain? ([X], [Y“]; A) .

In particular, we have the bijective map

vZ: [ K-Chainf([X],[v];4) = [ K-Chainf ([X],[Y");4).
1€(Z/nl)* 1€(Z/nl)*

Now we see that for many questions, it is enough to consider the case Z = ((,...,().
For these cases, we have the addendum:
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§ 8. Chains of Kummer elements

(8.6) Corollary. Let ¢ and ¢’ = (¥ be two primitive n-th roots of unity, such that
v e (Z/nZ)*.
If ¢ is even, we have the bijective map

y¢': K-Chain§([X], [Y]; A) =% K-Chain{ ([X],[Y]; A)
([X0]7 R [Xﬁ]) — ([X()], [Xf], [X2]7 SRR [XZ—l]J [XZ]) :
If ¢ is odd, we have the bijective map
¢ K-Chaing ([X], [Y]; A) = K-Chain{ ([X],[Y"]; A)
((Xol, - [Xe]) ¥ ([Xo], [X{], [Xa], .., [Xe—a], [X7]) -

(8.7) Notation. For any (-tuple Z of primitive n-th roots of unity and Kummer ele-
ments [X],[Y] € W(A), we define

K-Chain/ ([X],[Y}; ) := ] K-Chain/([X],[Y7];A).
1€(Z/nZ)*

(8.8) Remark. By virtue of the bijections 1[}?, we can canonically identify these sets
for different /-tuples Z and Z’.

2. The Notion of Chain Equivalence of Kummer Elements

Analogously to §7, 2. we make the following notations and definitions:

(8.9) Notation. Let k'|k be a field extensions, and let [X],[Y] € W(A) be two Kum-
mer elements, then we denote with

K-Chaing([X], [Y]; A)r := K-Chaing([X], [Y]; Ax’)
the set of all k’'-chains from [X] to [Y] in A of length /.

(8.10) Definition. Two Kummer elements [X],[Y] € W(A) are called (¢, Z,v)-chain
equivalent (or -related) over &/, if

K-Chaing ([X], [Y"]; A)p # 0,
where v € (Z/nZ)* and Z an {-tuple of primitive n-th roots of unity. If Z = ((,...,()
we write (¢,(,v) instead of (¢, Z,v).
(8.11) Remark. In the situation of (8.5) we can see:
[X],[Y] are (¢, Z,v)-related <= [X],[Y] are (¢, Z', € - v)-related .

Hence we always can reduce the question of being (¢, Z,v)-related to the question of
being (¢, ¢, v')-related, for suitable /.

(8.12) Lemma. Let [X],[Y] € W(A) be Kummer elements, (,(’ primitive n-th roots
of unity and v,V € (Z/nZ)*. Then we have the following equivalences:
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§ 8. Chains of Kummer elements

If ¢ is even, then

[(X],[Y] are (£,¢,v)-related <= [X],[Y] are (¢,¢’,v)-related .
If ¢ is odd and ¢¥" = ¢'”, then

[X],[Y] are (¢, ¢,v)-related <= [X],[Y] are (£,(’,v')-related .

Proof: The first part follows directly with (8.6). The second part has to be shown Just
in one direction: For Z = ((,...,() and Z’ = (( .., (") with the notations of (8.5) w

have ¢/ = (%, therefore (V' = (" = (v ie, vV =€ v E (Z/nZ)*. But (8.11) tells us
that: [X],[Y] are (¢, (,v)-related <~ [ ] [ | are (¢,(’, € - v)-related . O

(8.13) Remark. If [X] and [Y] are (¢, (,v)-related, then they are (¢ + 1, (, v)-related:
This follows from the fact that a chain of Kummer elements can be expanded at any
link: If (Xifl,Xi) is a C-pair, then (Xifl,Xilei) and (Xzlequ) are also C-pairs.
Cf. 56, 1.

3. Connection between K-Chains and c-Chains

To every chain of Kummer elements we can assign a chain of twisted cyclic extensions:

(8.14) Theorem. Let Z be a {-tuple of primitive n-th roots of unity and [X],[Y] €
W(A) any Kummer elements. Then we have a canonical bijection

Wz K-Chain? ([X], [Y]; Az =% c-Chaing(k[X], k[Y]; A)z
(Xol, ..., [Xd]) — (k[Xo), ..., k[X4)

and for another Z', we have the compatibility relation

bz o =y .

Proof: The map is well defined, since the algebras l%lXZ] are separable commutative
k-subalgebras of A = Aj. Because of (6.15) the pairs (k[X;_1], k[X;]) are twisted cyclic
decompositions of A. Furthermore one observes

Kaixarxig) = {(x0,...,[x* '
and

Kaxamxe.y = UX X},
therefore by (7.18) the chain (k[Xo],. .., k[X/]) is coherent. The last formula is clear.
Ingectivity of 1z: Let be given two chains ([Xo],...,[X,]) and ([X{],...,[X/]) out of

K-a\};aingz ([X],[Y]; A)z which are mapped to the same coherent chain via ¢z. Let i
be the least integer such that [X;] # [X[]. Since [Xo] = [X] = [X{] we know i > 1.

(2
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§ 8. Chains of Kummer elements

Furthermore we know that (X;_1,X;) and (X;_1, X}) = (X/_;, X]) are (;-pairs, where
Z = (¢1,---,Ce). Since

FXio1] = k[X/_,] and K[X,] = E[X]]

(2

the sets
Kaxaroa ) = Kaogex )

are equal and [X;] as well as [X] are the unique element of this set which is in (;-relation
with [X;_1] = [X]_;]. Hence [X;] = [X]], and we have shown injectivity.

Surjectivity of ¥z: Let (Lo,...,Ls) € c-Chaing(k[X], k[Y]; A)z be a coherent chain.
For i =1,...,/ choose a generator [X;] of the cyclic group Kz, 1, ) (= Kz, 1,,,) for
i < 0). Then L; = k[X;] and ([X), ..., [X(]) € K-Chainf ([X],[Y]; A); for [Xo] := [X]
and some (-tuple Z’ of primitive n-th root of unity. This chain maps to (Lo, ..., L) via
V7. Because of 1z = 1z 0%, our surjectivity follows. 0
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Chapter IV

Geometry of Kummer Elements and Chains

The objects we considered in the last chapter have, in a natural way, a geometric struc-
ture: We will see that W(A), K-Chaing(A), K-Chaing([X], —; A), ... can be identified
with the k-rational points of smooth varieties.

8 9. The Variety of Kummer Elements

In this section we fix a field k and a positive integer n > 2 which is not divisible by the
characteristic of k. Let A be a central simple k-algebra of degree n and ¢ € p,, = pn (k)
a primitive n-th root of unity.

1. A as a k-Scheme

Since A is an n?-dimensional k-vector space, it gives rise, in the well known way, to an
. . . .. . 2
n?-dimensional affine space over k, which is isomorphic to A} as k-scheme.

(9.1) Definition. Let A := Homy_yi,(A, k) be the (k-vector space) dual of A and S(A)
its associated symmetric algebra, then we define the k-schemes

A(A) := Spec(S(A)) and P(A) := Proj(S(4)) .

(9.2) Remark. For every field extension k'|k we have the canonical identification of
the k’-rational points of A(A) with the elements of Ay = A @y k':

A(A)(Speck’) = Homy aiz (S(A), k')

= Homk_lin(/vl, k )

= Homk_lin(fvl, k) ® k’

= Ak/ .
Analogously

P(A)(Speck’) = (Ak/ — {O})/kz’* .
If we choose a k-basis aq, ..., a,2 of A, then the isomorphism of the (graded) k-algebras
E[X1,..., X,2] == S(A)
X; — ay

for i = 1,...,n? and the dual basis Gi,...,d,2 of ai,...,a,z2, induces isomorphisms

A(A) == A}f and P(A) =% IP’ZQ_l. Additionally we have a multiplication morphism
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§9. The variety of Kummer elements

on the affine scheme: The multiplication induces a morphism A ®r A — A, xRy — xy
of k-modules, and after dualizing we get

A— A Rk A.
If we compose vthis morphism with the double tensor product of the canonical injections
A®r A— S(A) ® S(A), we get the k-linear morphism
A — S(A) @y S(A) ;
by the universal property of the symmetric algebras. This factorizes in the form
A— S A Rk A

| |

S(A) —"— S(Ad) @i S(A) ,
where 1) is unique. Then it induces the morphism of k-schemes
Spec(v): A(A) xx A(A) — A(A),

which is on the k&’-rational points just the multiplication on Ay .

In §6, 1., we defined the maps

Srd,: A — k,
v =1,...,n, in particular the reduced norm Nrd = Srd,, and trace Trd = Srd;. Fur-
thermore we define the maps
TV: A — k

X +— Trd(X") .

(9.3) Lemma. Assume k is algebraically closed. Then the maps Srd, and TV are
regular functions on the scheme A(A), i.e., there are uniquely defined (homogeneous)

elements in S(A) = O(A(A))—which we also denote by Srd, and T"—such that they
represent these maps. Srd, and TV are homogeneous of degree v.

Proof: Choose an isomorphism a: A =% Ay = M,, (k) of k-algebras. This also induces
an isomorphism A(A) =% A(Ap) of k-schemes as well as the graded isomorphism of
the global section rings S(Ag) == S(A). Therefore we may assume that A = Ay. We
choose the canonical basis E;j, 7,7 = 1,...,n, of the k-vector space Ay, and we denote
with X;;, 4,7 = 1,...,n, its dual basis. Then

S(AO) = k[X117X127-'-7Xnn] )
and it is clear that Srd, is a homogeneous polynomial in the X;; of degree v, e.g.,
Srd1:Trd:X11+X22+---+Xnn.

The v-th power of the matrix (X;;) is given by n? homogeneous polynomials of degree
v. Therefore Trd((Xij)”) is also a homogeneous polynomial of degree v. 0
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§9. The variety of Kummer elements
(9.4) Remark. In the proof we have of course Srd,, T" € Z[X11, X12, .-, Xnn)-
Now let k again be an arbitrary field of characteristic prime to n.

(9.5) Lemma. The regular functions of (9.3) are already defined over the base field:

Srd,, T" € S(A) .
Proof: First of all

Srd,, TV € S(A) @, k = O(A(A) xx k) ,

where k is a separable closure. In fact this is true for A = Ay, as we have seen above,
and there are already k-isomorphisms a: A % Ay, hence a,: A(A) =% A(Ap), because
A is a central simple k-algebra.

Now all we have to show is that for f := Srd,,T" and v € I' = Gal(k|k), the diagram

A—1 L,k
id®7l [’7
A—L L,k

is commutative. This follows from the commutative diagram

A—= 5 My(k) >k
id ®’yl kx.o(id ®’y)l l’Y
A—= s M, (k) L5k

For the left part cf. §4,2. The commutativity of the right part is clear, since Srd, and
T" are invariant under any conjugation xx_, and commute with the Galois action. O

(9.6) Remark. 7% € S(A) already follows from Trd € S(A) since the morphism
“taking the v-th power” A(A) — A(A) is a morphism, which is defined over k. The k-
rationality of Trd is clear, since Trd is linear, so the k-rationality only has to be checked
on a k-basis of A and this is clear.

(9.7) Notation. We denote the distinguished open subschemes of A(A) and P(A),
associated to Nrd, by

GL1(A) := SpecS(A)nwa = D(Nrd) C A(A)

and

PGL;(A) := Spec(S(A)) D, (Nrd) C P(A) .

(Nrd) -

(9.8) Remark. For every field extension k’|k we have the identifications of the k’-
rational points GL1(A)(Speck’) = (A ®y k')* and PGL;(A)(Speck’) = A}, /k™. More-
over there are morphisms of k-schemes

GL1(A) x4 A(4) — A(A)
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and
GL1(A) xx P(A) — P(A4),
which are on the k’-rational points just the conjugation:
A;;/ X Ak/ — Ak/

(9,a) — gag™" .

2. W(A) and W(A) as Varieties over an Algebraically Closed Field

We want to see W(A) and W(A) as subvarieties of A(A) and P(A) respectively.

First we want to consider this in the algebraically closed setting. So in this subsection
let k be algebraically closed.

In the last subsection we have seen that the maps Srd,,T": A — k are homogeneous
elements of the global section ring (’)(A(A)). So we can make the following definition

(9.9) Definition. We define the subvarieties

(A) := V(Srdy,---,Srd,—1) € A(A)
(A) := Vi(Srdy,---,Srd,—1) C P(A)
W(A) == W(A)N D(Nrd) C A(A)
W(

A) := W(A)N Dy (Nrd) C A(A) ,

where D(Nrd) and D (Nrd) are the distinguished open subsets associated to Nrd.

(9.10) Remark. The closed, i.e., k-rational points of W(A) and W(A) are exactly
the Kummer elements and Kummer lines of A. Hence we used the same symbols as in
the sections above.

In the language of schemes we can define the varieties in the following way:

(9.11) Lemma. Let I := (Srdy,...,Srd,—1) € S(A) be the graded Ideal generated
by the elements Srdy,. .., Srd,_1 and let VT denote the radical of I. Then

W(A) := Spec(S(A)/VI)
W(A) := Proj(S(A)/VI)
W(A) = Spec(S(A)/VI)
W(A) = Spec(S(A)/VT) g, -

We will see that I is actually radical in S(A)Nyd-
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(9.12) Claim. If (n!) is prime to the characteristic of k, then T, ... T"1 is another
set of generators of the Ideal I:

(T*,..., 7" = (Srdy,...,Srd,_1) € S(A).

Proof: Like in (6.5) this follows from the formula
T —T"'Srdy +T""2Srdy — -+ + (—=1)" " *T* Srd,_; +(—~1)"vSrd, = 0,

v =1,...,n — 1, which follows from Newton’s formula: In the case A = Ay = M,,(k)
one diagonalizes the generic matrix, and then the formula directly follows. 0

(9.13) Remark. The morphisms GL;(A) x A(A) — A(A) and GL;(A) x P(A) —
P(A), mentioned in (9.8) induce morphisms

GLi1(A) x W(A) — W(A) and GL;(A) x W(A) — W(4),
i.e., GL1(A) acts on W(A) and W(A) by conjugation. The last action is transitive,
cf. (6.3), i.e., for any closed point [X] € W(A) the morphism
GL1(4) — W(4)
G — [GXG™

is surjective. The first action is not transitive—one misses the scaling; however the
morphism

GL1(A) x (Gm)p x W(A) — W(A)
(G,g9,X) — gGXG™!

gives a transitive action.

(9.14) Proposition. W(A) and W(A) are irreducible topological spaces.

Proof: This is a corollary of (9.13) since GL; (A) (which is open, dense in A(A) = A”2)
and GL1(A) x (Gp)y are irreducible and they map surjectively to W(A) and W(A)
respectively, by the action on some fixed element [X] € W(A) or X € W(A). O

(9.15) Corollary. The open subsets W(A) C W(A) and W(A) € W(A) are dense,
hence W(A) and W(A) are irreducible topological spaces.

Proof: We may assume A = Ay = M,,(k). Let X € W(A)—-W(A) or equivalently [X] €
W(A)-W(A),i.e., Prd(X,t) = t". Therefore X is nilpotent and (after conjugation with
a suitable element in GL;(A)) we may assume that X is a strictly (upper) triangular
matrix: The diagonal entries are zero.

For every A\ € k* and any primitive n-th root { € u,, of unity we have

X +AXo(C) € W(A) and  [X + AXo(C)] € W(A) ,

since Prd(X + AXy(¢),t) = t™ — A™. Hence X lies in the closure of W(A). The claim
follows. O

As a further consequence of the transitive action we immediately get
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(9.16) Proposition. The varieties W(A) and W(A) are non-singular.

Now we are going to give another proof of the non-singularity of W(A) and W(A). This
will be done by direct computation, using the Jacobi criterion.

(9.17) Lemma. Let A = Ay = M,,(k) and let Srd, € k[Xi1,X12,...,Xu,] be the
homogeneous polynomials of degree v from above. Then the partial derivatives of Srd,,
in the point X = X(¢) in the coordinate X;; is given by

98rd, _ /o ifi # j,
X, (XO(C)) = {(_l)v—lci(y—l)’ ifi=j.

Proof: Let X := (Xj;)i j=1,...n- We have
det(t —X) = t" — "1 Srdy(X) + - 4 (—1)" Srd,,(X) ;

therefore we know

Odet(t —X) -1 0 Srd; (X) e dSrda(X) (—1)40 0 Srd,, (X)
0Xi; B 0Xi; 0Xi; 0Xi;
On the other hand we have
ddet(t — X) ' _ Odet(t — (X + AEy))
0Xi; x o\ o
a - v =0 if 4 .
o | TIE=¢|| =0 if i j
Lv=1 A=0
] o ‘ u tn—1
9 Y L v _ L
N LAY | (G o Hi=i,
\ L v A=0
but ‘
th—1 = ()" n—1 | m—24ri | m—3,2i (n—1)i
e L =t t t ‘
— — + ¢+ ¢4 4 ¢
Comparing the last with the first formula completes the proof. O

(9.18) Theorem. The varieties W(A) and W(A) are non-singular k-varieties of di-
mension n? — (n — 1) and n? — n respectively.

Proof: We may assume A = Aj. Because of the transitive actions on W(A) and W(A)
mentioned in (9.13), all we have to prove (by virtue of the Jacobi criterion) is that the
(n — 1) x n?-matrix

- (oxy 0) .,
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has rank n — 1. Again, ¢ € p, is a primitive n-th root of unity. But by lemma (9.17)
this matrix has a (n — 1) x n minor of the form

v—1 ri(v—1
(G i)

We even know that besides this minor there are only trivial (zero) entries in the matrix.
But this minor is a (modified) minor of the Vandermonde matrix (¢*/); j—1 ., which
has full rank n. Therefore our minor has rank (n — 1) and we are done. 0

We immediately get from the proof:

(9.19) Corollary. The ideal I = (Srdy,...,Srd,—1) € OW(A)) = S(A)Nwa Is al-
ready the ideal of vanishing functions. Since W(A) is irreducible, I is a prime ideal,
especially /T = I in S(A)Nrd-

3. W(A) and W(A) as k-Schemes

Now let k again be an arbitrary field of characteristic prime to n. Then we define the
following k-schemes:

(9.20) Definition. For a central simple k-algebra A of degree n we define the k-
subschemes of A(A) and P(A)

WO(A) = Spec(S(fl)/(Srdl,...,Srdn_l))Nrd C

and
WO(A) := Spec(S(A)/(Srdy,...,Srd,—1))

(9.21) Remark. For any field extension k'|k we have
WO (Ar) = WY(A) X spec(k) Spec(k’) and WO (Ap) =WP(A) X pec(k) Spec(k’) .

(9.22) Proposition. W°(A) and W°(A) are smooth integral k-schemes of dimension

n?—(n—1) and n?—n respectively. For any field extension k’|k we have the identification

of k'-rational points and Kummer elements
WO (A)(Speck’) = W(Ap) and WOY(A)(Speck’) = W(Ap),
which is induced by the identification of (9.2).
Proof: The first part only has to be proven over an algebraic closure of k—what we

have done in the last subsection, since there W?(A) = W(A) and W°(A) = W(A). The
second part is clear. O
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We fix a field k and a positive integer n > 2 which is not divisible by the characteristic
of k. Let A be a central simple k-algebra of degree n and ¢ € p, = ju, (k) a primitive
n-th root of unity lying in k. Furthermore we choose a k-basis aq,as,...,a,2 of the
vector space A, and we denote its dual basis by aq, ..., a,z2.

1. The “Vectorbundle of Kummer Pairs”

We want to assign to the set
{(X,)Y)eW(A) xA: XY —(YX =0}

of Kummer pairs (in a slight broader sense, i.e., we don’t demand Y to be invertible)
the structure of a scheme—and more: of a vector bundle over the k-scheme W°(A).
Because of (6.10) for any Kummer element X € W(A), theset {Y € A: XY (Y X =0}
is a vector space of dimension n: Using the basis aq,as,...,a,2 one can interpret the
equation XY — (Y X =0 (in Y) as n? linear equations in the entries y1, s, ..., yn2 of
Y=y1-a1+ys-as+ -+ yp2-a,2 for y; € k. If k is algebraically closed it is clear by
(6.10) that our set is an n-dimensional vector subspace of A. Therefore the gradients
of the n? linear equations span an (n? — n)-dimensional vector space. That means, one
can leave out n of the n? equations. Since the gradients do not change under base field
extension, everything holds for a general field k.

We will write

R = OW°(A)) = (S(A)/(Srdy,...,Srd,—1))

Nrd

for the global section ring of the affine scheme W°(A)—cf. §9.

The bilinear map A x A — A, (z,y) — xy — (yx induces, after dualizing, a morphism
of k-modules.

If we compose ¢ with the morphism A®; A — R®; S(A), a®b— a®b, of k-modules,
we get a morphism A — R ®j S(A) which induces—by the universal property of the

symmetric algebra—a morphism

¢: S(A) — R®; S(A)

of graded k-algebras. We set f; := ¢(a;) = ¢(a;).
Applying the functor Spec to it, we get the morphism

Spec(d): WO(A) x5, A(A) — A(A),
which on the rational points is just the map
(@,y) — xy — Cyz .

So the fibre over the k-rational point zero is our choice for the scheme of Kummer pairs
(in the broader sense).
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(10.1) Lemma. The fibre of Spec(¢) over zero is given by
Spec(R @y, S(A))/(imp) = Spec(R @y S(A))/(6(S(4)+)) .

where (im ¢) is the ideal in R ®j S(A) generated by the elements of im(p)—or equiva-
lently by the elements of ¢(S(A),), which are of degree > 0.

(10.2) Remark. The ideal (¢(S(A)4+)) = (im) is a graded ideal, already generated

by the n? elements fi, fa, ..., fn2, which are of degree 1. The grading of R ®j S(A) is
given by the grading of the symmetric algebra S(R ®; A) = R ®y S(A).
Proof: (of Lemma (10.1)). The fibre is given by the spectrum of

(R @k S(A)) @g4) F

where the structure morphisms of the two S(A)-algebras involved in the tensor product

are ¢ and the projection S(A) — k with kernel S(A),. The last ring morphism is the
one which corresponds to the k-rational point 0 in A(A). Therefore

(R S(A) @g0a) k = (Rox S(A)) @g04y (S(A)/S(A)4)
= R®y S(A)/(¢(S(A)4))
A)

where (¢(S(A)4)) = (im) since the ideal S(A) is generated by the elements of A,

which are just the elements of S(A) of degree 1. a

(10.3) Definition. We define the k-scheme
EW (A)) := Spec(R®; S(A))/(im¢p) = Spec(R @k S(A))/(6(S(A)1)) .

(10.4) Remark. Let k'|k be any field extension. Then we have the identity for the
k’-rational points

EWP (A))(Speck’) = {(X,Y) € W(Ap) x Ay : XY — (Y X =0} .

(10.5) Remark. The scheme £(W°(A)) is equipped with the two morphisms
0" S(WO(A)) — W%(A),

induced by R — (R®; S(4))/(im¢p), r —r® 1 and
m: EWP(4)) — A(A),

induced by S(4) — (R ®x S(A))/(im¢), s — 1 ® s, which are on the rational points
just the projections on the first and second factor.

Now we want to show that

mo: EWVO(4)) — WO(4) ,
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is a vector bundle. For this aim, we will define a locally free sheaf .7 of Oyy0(4)-modules
for which it is the vector bundle, associated to .%:

EW (A)) =V(F) (:= SpecS(F)) .

Let o: WY(A) — Spec(k) be the structure morphism and
M= Owo(A) ®kA = O'*(/vl) .

This is an Oyyo(4)-algebra, which is a free Oyyo(4)-module of rank n2.

A is the sheaf of Oyyo(4)-modules associated to the R-module M := R ®; A. Let
N := R-im(¢) € M be the R-submodule of M, generated by im(y); or say

N =R-fi+R-fo+---+R- fn2.

Let .4/ be the sheaf of Oyyo(4)-modules associated to the R-module N.
A is a sheaf of Oyo(4)-submodules of .#Z. We define the sheaf of Oyyo(4)-modules &
to be

F o= M]N
or in other words: .7 is the sheaf of Oyy0(4)-modules associated to the R-module M /N.
We are going to show first that M /N is a projective R-module of constant rank n.

(10.6) Lemma. Let p € Spec(R) = W°(A) be a prime ideal and k(p) its residue

field. Then the vectors fi, fa,..., fn2 € M @r k(p) = Agp) = /ﬁ(p)”2 span an (n? —n)-
dimensional vector subspace.

Proof: The elements fi, fa,..., fn2 € Aﬁ(p) describe the equation XY — (Y X = 0
for the Kummer element X = p in W(A,p)) € Awp). We have seen that the space
of solutions of this set of linear equations in A, is n-dimensional. Hence the linear
equations f1, fa,..., f,2 span a vector subspace of codimension n. O

(10.7) Lemma. Let a, b and m be positive integers with a < m, T a topological space,
P €T a point and Q a field with some topology such that {0} is closed in 2.

Ifforj =1,2,...,a+b, the maps F; = (F;j)i=1,...m: T — Q"™ are continuous functions
(Q™ is equipped with the product topology) such that the rank of the m x (a+b) matrices

(Fl(Q)a F(Q), ... ,Fa+b(Q)) = (Fz (Q)) St

,,,,,

for all @ € T and the (m x a) matrix
(Fl(P)aF2(P)7'--7Fa<P)) = (Fl(P>)1:1 ----- m

j=1,...,a

is a, then there exists an open neighbourhood U C T of P and continuous functions
ozl(f): U— Qforp=1,...,aandv=a+1,...,a+ b such that
(i) oz;(f) € w(Fij|U i=1,....om;j=1,...,a+ b), where w is the prime field of €2,
i.e., Q or Fy,; in other words, the oz,(f)
with coefficients in 7.

(ii) In U we have: F, = agy)Fl + O{gy)FQ 4+t agV)Fa forv=a+1,...,a+0b.

are quotients of polynomials in the Fjj|u
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Proof: After re-indexing in 7, we may assume that
det(Fij(P))i,jzl ..... a # 0
and hence there is an open neighbourhood U C T of P with
det (Fi;(Q)),
for all Q € U. Since forv=a+1,...,a+ b, we have
rank(Fl(Q), F(Q),... ,Fa(Q)) = rank(Fl(Q), F(Q),... ,Fa(Q),Fy(Q)) =a,

.....

there are uniquely defined elements oz,(f)(Q) € Qfor p=1,...,a such that

F(Q) = (QF(Q) + o (Q)F(Q) + - + PV (QF.(Q) .

In this way we get maps a/(f): U — Q with property (ii).

It remains to prove property (i). (Continuity is then for free!): By Cramer’s Rule we
have

04,(1/)(@) det (F;;(Q)) =

1,...,a

ij=
= det(Fil(Q)v-"7Fi,,u—1(Q):Fi1/(Q)aFi,,u—l—l(Q)7---aFia(Q))ifl

=1,...,a

On U the left determinant is invertible, hence we get property (i). 0
Putting together the last two lemmas yields the

(10.8) Proposition. Let p € Spec(R) be a maximal prime ideal. Then—if necessary,
after re-indexing of the f1, fs,..., fn2—we have

Proof: We use lemma (10.7): Let T'= W°(A)(Spec Q) = Hom(R, Q) be the topological
space (with the Zariski topology) of the geometric points of WY(A), where Q is an
algebraic closure of k, and set m := n?, a := n? —n, b := n. Using the identification

(via the @;’s) A = k" C Ag = Q" we define for j = 1,...,n2

Fi=f:T — MrpQ = Q"
z— fi(@),

where f;(z) is the image of f; under the morphism idy;®z: M = M ®gr R — M @ Q.
Then (10.6) shows that the prerequisites of (10.7) hold true for every point z € T with
p = ker(z). Note that, since R is an integral Jacobson ring, we can identify the elements
of R and M with their induced functions on 7.

Now, (i) tells us that the functions aff) are elements of R, and (ii) gives the claim, i.e.,
the equation (ii) first holds true for functions on 7', but that implies that it holds for
the elements of M. O
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(10.9) Proposition. The R-module M /N is projective of rank n, in other words: For
all p € Spec(R) the Ry-module (M /N), is free of rank n.

Proof: We only have to prove the second part for a maximal prime ideal p. We will
show: N, is a free direct summand of M, of rank (n? — n) with a free complementary
summand. Then we are done. But this is now easy to show. By (10.8) the R,-module
N, is generated by some (n? — n) elements fi, fa,..., fn2_, such that

fi(p)s f2(p), -+, fnz—n(p) € M(p) = M, ®g, k(p)

are linearly independent. We complete this set of vectors by n vectors to a basis of
M (p). We choose liftings g1, g2,...,9n € M, of them. We know from Commutative
Algebra that fi, fo,..., fn2—n, 91,92, ..., 9n is a basis of the R,-module M,. Hence

M, = Ny ®(g1,92,---+9n) = Ny ® Rpg1 ® Rpg2 @ -+~ © Rygn -

Now we are done. O

(10.10) Corollary. The sheaves .7, .# and .# of Oyyo(4)-modules are locally free of
rank n, n? and (n? — n) respectively.

(10.11) Theorem. The morphism
mo: E(WP(A)) — WO(A)
is a vector bundle of rank n; to be precise

EW’(4)) = V(F) (= SpecS(F)) .

Proof: Observe

EWP (A)) = Spec(R®y S(A

With (9.22) this theorem yields:

(10.12) Corollary. The morphism
mo: EWP(A)) — WO(A)

is smooth of relative dimension n, hence £(W°(A)) is a smooth integral k-scheme of
the dimension n® + 1 = dim(W°(A)) + n.
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Now we take degree zero components of R, M and N:
Ry = (S(A)/(Srdy,...,Srdyu—1))
My = Ry®; A
No = Ro-im(p) = Ro- fi+-+ Ro fuz .

Since WY(A) = Spec(Ry), the Ro-modules My and Ny induce their associated sheaves
of Owo(a)-modules %, Ny and Fo 1= M /4. Obviously, we have the same property:

(Nrd)

(10.13) Remark. The sheaves Fo, .#( and A of Oy 4y-modules are locally free of
rank n, n? and n? — n respectively.

(10.14) Definition. We define the following affine and projective bundles of rank n
over WY(A)

E(W°(A)) = V(Fy) € WOA) x, A(A)
and

E(W°(4)) = P(F) € W(A) x;, P(A) .

These bundles are just the once and twice projectivised versions of £ (WO(A)), and like
in the former case each of the k-schemes comes with two morphisms

mo: E(WY(4)) — W%(A4) and m: E(WP(4)) — W°(A)
which are the bundle morphisms, and
w1 E(WO(A)) —— WOA) x;x A(A) T2 A(A)

as well as
m: E(WO(A)) «— W(A) x;, P(4) 22 P(A) .
The inclusions are induced by (applying the functor V to) the canonical epimorphism

Mo — Fo of sheaves of Oyyo(4)-modules.
Again from (10.13) follows:

(10.15) Proposition. The morphisms
To: S(WO(A)) — W%A4) and mp: E(WO(A)) — W%(4)

are smooth of relative dimension n and (n — 1) respectively.
Also € (WO(A)) and E(WO(A)) are smooth integral k-schemes of dimension

dimW%(A4)+n=n?> and dimW°A)+(n—-1)=n?—1.
For any field extension k'|k we have the canonical identifications
E(W°(A))(Speck’) = {([X],Y) € W(Ap) x Ap : XY — (Y X =0}
and (here with PAy, = (Ax — 0)/k™)
E(W%(A))(Speck’) = {([X].[Y]) € W(Ap) x PAp : XY — (Y X =0} .

We take the open subschemes of £(W°(A)) and E(WO(A)) of pairs of invertible elements
(X,Y) and ([X],[Y]):
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(10.16) Definition. We define the open subschemes
WHA) = EW°(A)) N (W°(A) xx D(Nrd))
and

WHA) = E(W°(A)) N (W(A) x; D4 (Nrd)) .

(10.17) Remark. By virtue of (6.8) we also can write
WHA) == EW°(A)) N (WP (A) xx WO(A))
and

WHA) = E(W°(A4)) N (WO(A) xx WO(4)) .

We still have the projection morphisms, induced by 7g:

o WHA) — WO (A) and 7 WHA) — WO(A).
(10.18) Proposition. The fibres of the morphisms

o WHA) — WO (A) and 7 WHA) — WO(4) .

are non-empty, hence they have (full) dimension n and n — 1 respectively, and they are
dense in the corresponding fibres of mo: £(WP°(A)) — WP(A) and mo: E(W?(4)) —
WY(A).

Proof: One may assume that k is algebraically closed. Then the density and non-
emptiness follows from the fact that for any Kummer element X € W(A), one can find
an invertible element Y € A which is in (-relation with X. All fibres are irreducible,
since they are open subsets of vector spaces. O

(10.19) Theorem. The morphisms
o WHA) — WO (A) and 7 WHA) — WO(A4) .

are smooth of relative dimension n and n — 1 respectively. W'(A) and W'(A) are
smooth integral schemes of dimension (n? + 1) and (n? — 1) respectively. For any field
extension k'|k we have the canonical identifications

WH(A)(Speck’) = {(X,Y) € W(Ap) x W(Ap) : XY — (Y X =0}
and
WL(A)(Speck’) = K-Chain$ (A ) .
(10.20) Remark. Regarding (10.17) there are also morphisms
71 WHA) — WO(A) and 7i: WHA) — WO(A)
induced by the restriction of the morphisms
m: EWP(A)) — A(4) and m: E(WP(4)) — P(A)
which then factorize through W°(A) and W°(A).
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2. Construction of the Varieties of Chains

In the last subsection we constructed the k-schemes
ENA) = EW(A)) € WOA) xx A(A)
E'(4) == E(W°(4)) € W2(A) x, P(A)
WHA) € WP(A) xx WP(A)
W(4) © WOA) x WO(4) |

and all come with their projections n} and 7] to their first and second factor. They
represent chains in A of the length one (or better: pairs of elements in the relation
XY —(YX =0).

Now we want to make the analogous construction for chains of higher length.

Again, ¢ denotes a positive integer. We are going to construct k-schemes

(VO(A4)" i A(A)

(WO )) xr P(A)
(WO )>£—|—1

c (WO

together with the projections 7§, . . ., 7r€ to their /41 factors, with the obvious properties.
This will be done inductively.

-

N

N

(10.21) Definition. Given the objects E(A), EY(A), W!(A) and W*(A) with their
projection morphisms 7, . . .Wf , the analogous objects for the index (¢ + 1) are defined
in the following way:

EH(A) = WHA) xyyo(ay EY(A)
Et(A) = WHA) xywoa) B'(A)
i.e., the diagrams

241 441
(7r + ZII)

£1(4)

%
£ £
(TrO+1 ..... 7rz+1)l J(Tr(l)

)
Ty

WHA) ———— W(4)

and
(7‘('£+1 [-‘,—1)
E(4) S E(4)
(7T5+1 ..... 7r5+1)l lﬂé
7_‘_(
Wi (4) ———— W°(4)
are cartesian. They also explain the projection morphisms wg“, . Ffi%

The k-schemes W't (A) and W T (A) are the open subschemes deﬁned by
WHL(A) = £ (A) N (WO (A) ! x), D(Nrd))
WHHA) =BT (A) N (WA xp, D4 (Nd))

together with the restrictions of the projection morphisms.
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10.22) Remark. The upper two diagrams are embedded in the cartesian diagrams
g

WO(A)AHL 5, A(A) 2522 WO(A) x) A(A)

| |

WO(A)E-H PTy WO(A)

and
WO(A)H x;, P(A) 22252 WO(A) x), P(A)

l l

WO(A)Z—‘,—l PTy WO(A) ,

where the vertical arrows are the obvious projections. We count the factors starting
with zero!

(10.23) Remark. One can define the objects W*T1(A) and W**1(A) by the following

cartesian diagrams
041 z+1)

WEHL(A) e Mty W1L(A)
(7ré+1,...,7r5+1)l lﬂé
£
WHA) —— 5 WO(A)
and
(77“'17 041
WHH(A) ———— W'(4)
(mftt.. Trﬁ+l)l lﬂo

WHA) —— ™ WOA)

This follows from the fact that the definition of the objects W/t1(A4) and W (A) is
equivalent to saying that the diagrams

(£+1 £+1)

WL (A) S WA
incl\[ inncl
(ﬂ_e+1 17+1)
erti(a) T, i)

and
(ﬂl—}-l £+1)

W (4) T )
incl£ inncl
7r£+1 e+1)

E(A) —£ T glA)

are cartesian. Now we only have to compose these diagrams with the ones from (10.21).
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(10.24) Remark. Like in (10.17), we can write

Wﬁ-l—l(A) — gé-i—l(A) N (WO(A))E—FZ
442

W (A) = BN (A) N (Wo(4)) 7,

i.e., the last projections ﬂfii factorize through WO°(A) < A(A) and W°(A) — P(A)
respectively.
To see this, one just looks at the diagrams in (10.23) and uses (10.20).

(10.25) Remark. If we define
Fyecay = (1) (F) and  Fyeiay = (1) (Fo)
to be the pre-images of the Oyyo(4)-module .7 and the Owo(4)-module Fy under the
morphisms 75: W¥(A) — WO(A) and w5: W¥(A) — WP(A), then one has directly
ETNA) = V(Pyeay) and ETF(A) = P(Fyea)) -

{+1 {41 Y4 V4
0

The morphisms 7y"",..., 7,7 are the old morphisms m,..., 7, composed with the

bundle morphism.
041

And the new projection morphism 7,7, is then given in the same way as in the remark
after (10.14).

(10.26) Theorem. The morphisms

(m§th ) £ (A) — WHA) and  (mhth,.. L wlth): EFFHA) — WEH(A)
as well as

(w5t WL A) — WHA) and (i alTh): WP (A) — WE(A)

are smooth of relative dimension n and (n— 1) respectively. Therefore E‘(A) and E(A)
as well as the objects W*(A) and W*(A) are smooth integral k-schemes of dimension

n+1+l—-1)-n=L+n—-1n+1 and n*—-1+{L—-1(n—-1)={+n)(n—1)

respectively.
For any field extension k'|k we have the canonical identifications, induced by the mor-
phisms (7§, ..., 75):

WK(A)(SPGC k?/) = {(X(), ... ,Xg) € W(Ak/)é+1 X, 1 X, (X X, 1=0;1=1,... ,f}
W¥(A)(Spec k') = K-Chain$ (A) .

Proof: The smoothness follows from the cartesian diagrams in (10.21) and (10.23),
since it is stable under base extension. The dimension formulas follow by induction. O
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3. Chains with Starting Point

Let X € W(A) be a Kummer element, or equivalently a k-rational point
X: Spec(k) — W%(A) and [X]: Spec(k) — WY(A) .
(10.27) Definition. We define the fibres

ENX;A) == X xypo(a) EY(A)
EX([X]; 4) := [X] xwo(a) E(4)

WHXA) = X Xyyoia) WHA)

WX A) o= [X] xwoa) WH(A) ,

where the morphisms in the second factor of the product are the projections w§.

(10.28) Proposition. The k-schemes £°(X; A) and E*([X]; A) as well as W(X; A)

and W*([X]; A) are smooth of dimension (¢n) and £(n — 1). For a field extension k'|k
we have the identification

WY([X]; A)(Speck’) = K-Chain$([X], —; A)p

Proof: Just note that the composition
mh EYA) — WA — WEA) — . — WO(A)

is smooth of relative dimension (¢n). Analogously for the other cases. O

(10.29) Remark. Like in (10.25) we can see that £(X; A) and E“T!([X]; A) are

vector bundles over W*(X; A) and Wé([X |; A). Therefore, by induction one observes
that all the schemes are irreducible, hence integral.
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We fix a field k and a positive integer n > 2 which is not divisible by the characteristic
of k. Let A be a central simple k-algebra of degree n and ¢ € p,, = pu,(k) a primitive
n-th root of unity. For simplicity we assume that k is algebraically closed.

The variety W'(A) is given in D, (Nrd) x D, (Nrd) (C P(A)?) by the homogeneous
equation XY — (Y X = 0. We will show that its topological closure in P(A)? is the
subvariety of W(A) x W(A) which is given by the same equation.

This is by no means obvious: We have to show that, given elements [X],[Y] € W(A)
with XY — (Y X = 0, there are elements [Y'] € W(A) in any neighbourhood of [Y] such
that XY’ — (Y’X = 0. In order to achieve this, we need some linear algebra.

1. Some Linear Algebra

In this subsection n is allowed to be any positive integer, and k may be an arbitrary
field, if we assume that all eigenvalues that appear already lie in k.

(11.1) Lemma. Let W =W, 2 Wyo1 2 2 Wy =W_1 =0 be a finite dimensional
filtered k-vector space. We set W; .= W,;/W,_1, m; := dimy W; and m,; := dimy W; for
i=0,...,n. Let f € Endy,, (W) be an endomorphism of the filtered k-vector space W,
ie, f(W;) C W; for all i, then we can make the following statement about the set of
eigenvalues: If
dim, W = # (U EigVal(f|Wi)> ,
i=1
—that means, if # EigVal(f|y,) = m; and the sets EigVal(f|yy,) are disjoint—then

i

EigVal(f) = ] EigVal(flyw,) -

i=1

is the disjoint sum. To be precise: For every eigenvector v € EigVec(f|y,,0) for the
eigenvalue 0 (i.e., if (f|y, — @)v = 0), there exists a lifting v € W; of © such that

(f—0)v=0.

Proof: This is certainly true for n = 1.
By induction on n, we may assume that v € EigVec(f|y, ,0) and 6 € EigVal(f|y, ), i.e.,
(flw, —0)v =0. Let v; € W be any lifting of . Then

vo = (f—0)vy € W1 .

By induction 6 ¢ EigVal(f|w,_,), therefore (f —0)|w, _
and hence there is a v3 € W,,_1 such that

(f —0)vs = —vsy .

, is an automorphism of W,,_,

For v := v1 4+ v3 we have
(f—@)v = Oa

and v is a lifting of . 0

103



§ 11. The topological closure of W'(A)

Now let V' be an n-dimensional k-vector space. Fix an element A € k* and a non trivial
nilpotent endomorphism g € Endg(V), i.e., g" = 0 and g # 0.
We set

Uy := {f€Endg(V): fog=A-go f}.

We will consider V' as an R-module, where R := k[t]/(t") and t acts on V as g.
Then g induces a filtration

V=V,DV, 1D DVy=V,=0,
with V; := ker(g*) for i = 0,1,...,n . Moreover we take the R-module
W = V/tV = V/im(g)
with its induced filtration
W=W,2W, 12 --2Wo=W_1=0,

where
W, = (V; +tV)/tV = V;/(V;NtV) = V; /tVigq ;
note that V; NtV = tV;,1! Furthermore we set

n; :=dimg V; , n:=dimg V , m; := dim; W, , m := dim; W
and
Wi = Wi/Wi,1 , my; = dimy Wl .

(11.2) Lemma. We have the formula: n =7 .  m; i .

Proof: Writing the nilpotent ¢ in its Jordan canonical form, one observes that, as
R-module,

V= PE/ ("),
v=1
l, >1forallv=1,...,r. Therefore

Vi @ M) o @ @Ikl ()

{v:l, <1} {v:l, >i}
and thus
Wi =Vi/tVin = P kltl/t) = @ k.
{v:l,<i} {v:l,<i}
Now it follows
m; = #{I/ZVZZ}
and
Zmi-z’ = Z#{I/:lyzi}-i = Zl” =n.
i=1 i=1 v=1
Note that m; is the number of the Jordan blocks of g of the size ¢ x i. O
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§ 11. The topological closure of W'(A)

In this situation let us fix an f € Uy. Then f € Endg, (V) and the induced endomor-
phism f € Endy,, (W) respect the filtrations.
We further set

EigVal(flyw,) :={0ij:j=1,...,€(i)}
with (i) := # EigVal(f|yy,) and then

EigVal(flyp.) = {0\ :i=1,...,e(i); v=0,...,0i—1}.

We know
and therefore -
#EigVal(f\Wi) < dimpy W, = m;-i.

(11.3) Proposition. Ifn=#(U;_, Eifg\\//'al(f\wi)), then

(i) EigVal(f) = [T, EigVal(fl,).
(ii) For every eigenvalue 6 € EigVal(f|y,) and eigenvector v € EigVec(f|y,,0) for 0,
there exists a lifting v € V; of v such that (f —6)v = 0.

Proof: (ii) implies (i), in the following way:

Let 6 and v be as in (ii). Then v € V; — V;_4, since v # 0. Therefore the vectors

v, gv, g%v,...,g" ‘v are all non-zero, and for v =0,...,i — 1,

(f=A"0)g"v = g"(\"f = AN"0)v = g"\'(f —0)v = 0,
hence

| EigVal(f|w,) C EigVal(f) .

i=1
Since the left hand side is already a set of order n, we have equality.
Because of (11.2) we know that this union is disjoint and more: All the sets

EigVal(f|y,) - A

fori=1,...,nand v =0,...,i — 1, are pairwise disjoint sets of order €(i) = m,.
Now we prove (ii):
Let 0 < j <. From (11.1), applied to the space W;/W, follows immediately

(1) EigVal(flw,/w,) = ][ EigVal(flw,) -

JH1<v<i

Let v € EigVec(f|w,,0) be an eigenvector to the eigenvalue 0 := 6;; € EigVal(f|y,). By
(11.1) this vector has a lifting

(v mod tViyq) € W; = Vi /tVigq
with v" € V;, which is an eigenvector of f|w, to the eigenvalue 0, i.e.,
(2) (f =00 = tviy,
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for some v; ; € Viy1. Now, for every ¢ = 0,1,2, ..., we are going to recursively construct
a triple of vectors
/ 1
Vi4q € Vi—i—q ) vi+q+1 € Vi—&-q—&-l ) Uq € Vq

(one may read V,, = V for ¢ > n) in the following way: For ¢ = 0 we set
v; = v, vj,, from above , v = 0.

For ¢ > 0 we get them from the vectors for ¢ — 1.
First we claim:
9 ) i+q
s & Bieval(flw,,w,) = |J Bigval(flw,) -
l=q+1

—~

Otherwise for some [ with ¢ <1 —1,
0;; = 0 = 0.\ € EigVal(f|yy,) - A? C EigVal(f|yy,) ,

which is a contradiction to the disjointness of the sets EigVal( f|y,) and EigVal( f|y,)-A%:
For i # [ this is clear, for i = [ observe that 0 < ¢ <l —1=1i—1.
Therefore (f — %”Wi .,/w, 18 an automorphism, and there is a viy4 € Vi with

0
M(f = E)Ui‘*‘q = _Ug—%q (mod Vg + tVitg41)

—mnote that Wiy /Wy = Vi, /(Vy+tVirgt1). So there are vectors v;, .1 € Viyqy1 and
v, € Vg such that

(3) ()\qf - Q)Ui+q + ,UZ/HLq = U;/ + t’l}i_|_q_|_1 .
Now we set
(4) v o= U + tUj41 +t21)i+2+"'€ Vi

this sum is finite, it stops after at most n steps. We have

(f =000 L (f = 0)vi + (f — O)tvigs + (f — O)f2via + -
= (f = O)v; +tNf — Qi1 + t2(N2f — 0o + . ..
D (f = 005+ H(—v] gy + to] g+ 0f) (0]t ) o
D b0y + (g 0]+ ) (0 g+ 0R)
= t0jq — U+ Vg — 0l + 0 —
=0
and we are done. O

(11.4) Lemma. The canonical map
¢: Uy — Endg, (W) — @End(Wi)
i=1

is surjective.
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§ 11. The topological closure of W'(A)

Proof: We choose a basis {vi;, ;i =1,...,n; j=1,...,m;; v =0,...,i —1} of V
such that the associated matrix of g has Jordan canonical form.

The set {vijo,...,vi;j@i—1)} corresponds to a Jordan block (i.e., elementary Jordan ma-
trix) of size ¢ x i. Setting v;;; := 0, we can write

9(ijv) = Vijws1)

forv=0,...,7— 1. We have

‘/7;: @ k‘”ljl/?

1<Ii<n
7j=1,...,my
max{l—i,0}<vr<I-1

and
Wi = @ k- V150 and V_Vz = @ k- Vij0 -
1<I<i j=1,...,m;
Jj=1,...,my
Let now

fi = Wijp)jp=1,..m; € Mpm, (k) = End(W))

be any endomorphism of W, for i =1,...,n, with respect to {vijo:j =1,...,m;}, the
basis of W; from above.
We define f € Uy C M, (k) in the following way:

m;
f(vijy) == N Z YijB * Vipy
f=1
fore=1,...,n, j=1,...,m;, v=0,...,72— 1. Then
Flaipn)) = Fijorn) = XD viis - vipo4)
A=1
and

"ﬁ’Li m;
9(f(ijn)) = g | N wijs-vipy | = XD Uiip - Vigw+1) »
5=1 A=1

therefore fog=M\-go f,ie., f € U,. Restricted to

m;
Wi = @k 'Uij() .
Jj=1

we see
m;
f(vijo) = Zyij,a'vwo = fi(vijo) -
B=1
Since the f; were chosen arbitrarily we are done. 0
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(11.5) Lemma. Let W be a k-vector space of dimension m, and let f € Endg(W)
be nilpotent. For any set of elements 01, ...,0, € k, there exists an endomorphism
f € Endy (W) such that for any o € k

EigVal(f + of) = {ab1,...,a0,,} .

Proof: Let vy,...,v,, € W be a basis of W such that the matrix Y associated to f
with respect to this basis is strictly (upper or lower) triangular, e.g., take the Jordan
canonical form. Then we set for Y—the matrix representing f—the diagonal matrix
with the entries 61,...,0,,. Then Y + aY is a triangular matrix with the diagonal

elements af,...,ab,,. 0
Let again V' be an n-dimensional k-vector space and g, V;, W;, ... as above. We choose
numbers 6;; € k*, i = 1,...,n; j = 1,...,m; such that all the numbers 0;;\" for
i=1,...,n;5=1,...,m;; v=0,...,1— 1, are pairwise distinct.

(11.6) Proposition. Let f € Endg (V') be nilpotent and f € Uy. Then there exists
an f € U, such that

f+af €Uy
for all o € k and

EigVal(f 4+ of) = {abij N ri=1,...,n; j=1,...,m;; v=0,...,i—1}.

Proof: Because of (11.3), it is enough to show that there is an f € U, such that
EigVal((f—{—ozf)\Wi) = {ab;;:j=1,...,m;} .

for i =1,...,n. By (11.5) we choose f; € End(W;) such that
EigVal( f|yy, +af) = {aby;:5=1,...,m;} .

Since the map ¢ in (11.4) is surjective we can find an element f € Uy which maps to
the tuple (f;). We know

EigVal((f + of)lw,) = EigVal(flw, + ofi)
= {ab;:j=1,...,m;} .

Therefore we are done. O

2. The Closure of W'(A)
In W(A) x W(A) C P(A) x P(A) we have the closed set

W' = {([X],[Y]) € W(4) x W(A): XY —CYX =0} .
This set contains the open subset

W= {([X],[Y]) € W(A) x W(A) : XY —(YX =0} .
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(11.7) Theorem. W' is the (Zariski) topological closure of W' in P(A)2.

Proof: All we have to show is that W' is dense in Wl.
We first show that W' is dense in

Q = {([X],[Y]) e W(A) x W(4) : XY — (Y X =0} .

So let ([X],[Y]) be an element in Q. We may assume that [X] ¢ W(A). Then take any
[X] € W(A) with XY — (Y X = 0; which always exists. Now
(X +aX],[Y]) e W!

for almost all o € k*, since Nrd(X + aX) # 0 for almost all . Therefore in any
neighbourhood of ([X],[Y]) are elements of W',

Now we prove that @ is dense in W'. Let ([X],[Y]) € W'. We may assume that
Y] & W(A). For reasons of symmetry we may assume that also [X]| & W(A), i.e., X
and Y are nilpotent. Otherwise we had the former case with switched components.
We further assume A = M, (k). In the situation of subsection 1., we set V = k",
A=(1 g=Xand f=Y. Then Y € Uy. Because of (11.6) there exists for the case

{027} = {¢°....¢"7)
—which is easily realized—a Y € Uy such that
EigVal(Y +aY) = {ac’,... a¢" !}
for all a € k*,i.e., Y +aY € W(A). So we may find a pair
((XL,[Y +aY]) € Q
in any neighbourhood of ([X],[Y]). O
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Chapter V
Chain Equivalence for Algebras of Degree 2 and 3

Let k be a field and n > 2 a positive integer which is not divisible by the characteristic
of k. Let A be a central simple k-algebra of degree n, and ¢ € p, = p,(k) denotes a
primitive n-th root of unity. We assume that { € k.

If X and Y are Kummer elements of A, we are interested in the question if they are
(¢, ¢, v)-related for a v € (Z/nZ)* and a positive integer ¢, i.e., if the set

K-Chain§ ([X], [Y"]; A) # 0

is non-empty for some ¢ and v.

If we are interested in this question for generic [X] and [Y] € W?(A), then we only have
to consider the case v = 1. That means the following:

If we have shown—for some fixed ¢ and (—that K—Chaing([X [,[Y];4) # 0 (or has
a certain constant order ¢) for generic [X] and [Y] € W%(A), then it is clear that
K-Chaing([X], [Y];A) # 0 (or has the order c) for generic [X] and [Y] € W(A),
since [Y] — [Y?] is an automorphism of W?(A). Moreover we then can say, that for
another primitive n-th root ¢’ the set K—Chaing ([X],[Y"]; A) # 0 (or has the order c)
for generic [X] and [Y] € WY(A). This follows from (8.6).

We may formulate the question in the language of schemes:

Let £ be a positive integer. Is the morphism of projection to the first and last factor

(6, mg): WE(A) — WO(A) x; WO(A)

surjective on the k-rational points, or is it dominant? If yes, then how big are the
fibres?
In (10.26) we saw

dim W9 (A) = ({+n)(n—1)

and from (9.22) we know
dim W2(A) x, W°(A) = 2n(n—1) .
Hence for dominance we need at least £ > n.

It is announced by M. RosT that for prime numbers n, the morphism (7{§,n)!) is
dominant of degree prime to n.

We are going to show this for the cases n = 2 and 3; we even will show that the degree
is actually 1 and 2 respectively.

It is clear that dominance and degree are independent under base change k’|k. So one
may treat and prove the questions of degree and dominance in the case (n, /) for just
one special central simple k-algebra A and then automatically get the results for every
central simple k’-algebra, where k' is any other field of the same characteristic as k.
Especially one may consider the extreme cases of A being a division algebra or a matrix
algebra.—Of course surjectivity depends on the base field and may change with it.
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§ 12. The case of algebras of degree 2

The group scheme GL;(A) acts on the schemes W*(A) and W°(A) x;, W°(A) by con-
jugation in every factor and the projection morphisms 75: W*(A4) — W%(A) as well as
pry: WO(A) x, WY (A) — WP(A) are GL; (A)-morphisms. Since GL; (A) acts transitively
on W%(A) we may ask our questions in the following formulation: Is the morphism

Tt WHX]; A) — W°(4)

dominant and what is the degree (which is the same as the degree above)?

§12. The Case of Algebras of Degree 2

We fix a field k of characteristic # 2. Let A be a central simple k-algebra of degree 2
and ¢ = —1.

1. Chain Equivalence for n =/ =2

We are going to prove that (almost) any two Kummer elements [X],[Y] € W(A) are
connected by one chain of length two.

We will split up this problem into the two cases that A is a division algebra or a matrix
algebra.

(12.1) Lemma. For [X] and [X'] € W(A) the condition XX’ — X'X = 0 implies
[X] = [X7].

Proof: X’ commutes with X, therefore X' € k[X], i.e., X’ = aX + 3, where o, § € k.
But
0 = Trd(X') = Trd(aX +8) = Trd(3) = 283,
hence X' = aX. |
(12.2) Notation. For any central simple k-algebra A of (arbitrary) degree n, with
characteristic of k not dividing n and any primitive n-th root ( of unity we denote
ulC, (X)) = u(C,[X]; 4) = {[Y] € W(A) : XY — (VX =0}
for any [X] € W(A). In other words
{[X]} x u(¢, [X]) = WH([X]; A)(Speck) .

Now we first assume that A is a division algebra of degree 2.

(12.3) Proposition. If A is a division algebra and [X],[Y] € W(A) are Kummer
elements, then K-Chain$([X], [Y]; A) # 0. To be precise:

{((X], (XY —YX],[Y]) }, if[X]#][Y]

-Chain$ ; =
K-Chinf([X], [} 4) = { {ER Y - RO 2 D

Proof: The second case is clear, since ( = (7! = —1; and u(¢, [X]) # 0 because of
(6.16). If [X] # [Y], then by (12.1) the commutator XY — Y X # 0 is invertible, and
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§ 12. The case of algebras of degree 2

we obviously have X % (XY —YX) -5 Y, e.g., X(XY —YX) + (XY — VX)X =
XY - XYX+XYX-YX? = XY ~YX? = 0.
In particular [XY — Y X] € W(A)—cf. (6.8). All we have to show now is that there is

only one [Z] € W(A) with X . Z -°5 Y. In this case, since ¢ = (!, we have
2] € u(C, [X]) Nu(C, [Y])

and since u(¢,[X]) and u(¢,[Y]) are one-dimensional linear subspaces of P(A) they
intersect in exactly one point or they are equal. But only the first case is true: Otherwise

we got k[X]Z = k[Y]|Z, hence k[ X] = k[Y]. By (12.1) we had [X] = [Y]. O
Now we assume that A is a matrix algebra. First let A = Ag = Ms(k)

(12.4) Remark. From the definition of Kummer elements follows:

W(Ag) = {(Z _ba) :a2+bc¢o} .

Proof: Consider the equivalences

(3 8)ewcion = (5 2) (3 £) (3 )=z 7)o

— a=0=0, fy#0.
a

(12.6) Proposition. Let Xy = (7 'Y) and Y = (Zfa) € W(Ap) be two Kummer
elements. Then

K-Chain$ ([X,],[Y]; A )

{([Xo), [XoY — Y Xo], [Y])}, if be #0
= q {[Xol} x ( ¢ [Xo]) x{[Y]}, ifb=c=0,ie,[Xo] =[]
0, if (b#0,c=0)or (b=0,c#0).

Proof: Because of (12.5) we just have to solve the equation

Ga)et) = L)0 )

for v6 # 0. But this equation is equivalent to B¢+ vb = 0.

Ifb=c=0all 8,y € k* do the job.

If ¢b # 0, then 5= _ic, which gives us the one solution.

If (b#0,c=0) or (b=0,c#0) the equation is not solvable for 5 # 0. 0
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Now let A be any algebra isomorphic to Ag = M (k).

(12.7) Corollary. Let X,Y € W(A) be any Kummer elements. Then

K-Chain([X], [Y]; A) =

{(IX],[XY = YX],[Y])}, ifdet(XY —YX)#0
= é[X]}Xu(C,[X])X{[Y]}, if})l(Y—YXzo,j.e., [X] = [V]
) otherwise

Proof: The first two cases are clear. Note that the uniqueness in the first case can be
proved after base field extension such that [X] is conjugate to [X(]. The last case may

also be shown after base extension: Then we again may assume that [X] = [X(] and
Y = (“°") € W(A). But the condition det(XoY — Y Xg) = 0 and XoY — Y X # 0
just means (b # 0,c¢=0) or (b =0,c # 0): Observe XY — Y Xy = (20C _OQb). 0

2. The Geometric Point of View

In §9 and §10 we gave a description of W(A) and K-Chain§(A) as the k-schemes W°(A)
and W?(A).
The projection onto the first and last component

(w2, 72): W2(A) — WO(A) x;, WO(A)

is a morphism of k-schemes. In fact, we will show that it is—cum grano salis—a blowing
up in the diagonal.

We assume that k is algebraically closed and A = Ay = My (k) is a matrix algebra.

(12.8) Remark. Since W(A) is the subvariety of P(A) given by the polynomial Trd,

we can write W) — {[(CCL _baﬂ :(a,b,c)#(0,0,0)} .

One can identify W(A) with P? via
v W(A) = P?
[(‘i _ba)} — (2a:b—c:b+c¢)

or

Y W(A) =% P3
[(‘CL _ba>] — (2a:c—b:b+c) .
The inverse of, e.g., v is given by:

)
2

+

M‘

P Ha:fiy) = Ké

N|Q
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(12.9) Lemma. The diagram
((IX],[Y],[2]) € W(A) : XY +YX = 0,XZ + ZX =0} L (4) x W(A)
w:=¢xw’x¢l2 lew

B = {([u], [o],[w]) € (P})* : v(u) = 0,0(w) = 0} —L2ZEL), p2 o 2

is commutative with vertical isomorphisms. For [v] = (vg : vy : v2), [u] = (ug : uy : ug)
the expression v(u) = 0 stands for voug + viu; + voug = 0.

Proof: The relations XY +YX =0 and YZ + ZY = 0 are transformed by ¢ into
v(u) = 0 and v(w) = 0, where [u] = ¥([X]), [v] = ¥ ([Y]) and [w] = ¥([Z]): Set
X = (CCL _ba) and Y = (CC”,/ —bc;/)’ then

_{ 2aa’+bc’+cb’ 0 .
XY +YX = ( 0 2aa’+bc’+cb’> =0

<= 4aa’ + 2bc’ +2cb’ =0
< (20)2d )+ (b —c)(d =V)+(b+c)b +)=0
<~ v(u)=0.
Analogous for the other relation. The rest is clear. 0
The projection morphism py5: B — P% x P% is the blowing up of PZ x P? in its diagonal.
In order to show that, we need some lemmas.
(12.10) Lemma. The projection morphism onto the first and third factor
P13 = (prlapr?)): {(‘/Ba [y]az) < Ai X IP)11: X Ai tT e [y]} - Ai X Ai

is the blowing up of A2 x AZ in {0} x A?. Here the relation z € [y] means y172 = Y211
for x = (x1,22) and [y] = (y1 : y2).

Proof: By definition, the projection morphism on the first factor
pri: {(2.[y]) € AL x Pyrw € Y]} — A}

is the blowing up of AZ in {0}, and the morphism of the claim is the base extension
with A7 — Speck. 0

(12.11) Lemma. The projection morphism onto the first and third factor
piss {(@lul,2) € A2 x PLx A2 w2 € [y} — A2 x A3

is the blowing up of A x A% in its diagonal.

Proof: This follows from (12.10) by the following coordinate transformation

{(m,[y],z)EA%kaxAi:x—zG[g]} LA%XA%

| |

{(u,[v], w) € A x Pt x A2 tw € [v]} —22— AZ x A?
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where the left vertical arrow is given by (z, [y], 2) — (u, [v],w), with u =2 — z, w = z,
[v] = [y]; and the right vertical arrow is given by (x, 2) — (u,w). withu =2 — 2z, w = 2.
It induces an isomorphism between the diagonal of AZ x A? and {0} x AZ. O

(12.12) Proposition. The following morphism is an isomorphism
{(z,[y],2) CAI XPL xA2:x—z¢€ [y} =
{(u,[v],w) € A} x P} x A} : v(u) = 0,v(w) = 0}
defined by
((z1,22), (1 2 y2), (21, 22)) — ((x1,22), (Y122 — Y221 = Y2 : =), (21, 22))
((U1,U2), (7)2 : —01)7 (w1,w2)) — ((U17U2), (Uo ULt Uz), (wl,w2))
Here the expression v(u) = 0 means vg + v1uy + veus = 0, where [v] = (vg : v1 : v2) and

u = (uy,us).

Proof: We only have to prove that the two mappings are well-defined, since they are
(almost) obviously inverse to each other.
Let = (z1,22), 2 = (21,22) € A? and y = (y; : y2) € P;. Then
r—z€[y = (r1—21)y2 = y1(z2 — 22)
= (1 — 21)y2 + (22 — 22)(—y1) =0
= v(u) = vy +viuy +vouz = (Y122 — Y221) + T1y2 + T2(—y1) =0
and
r—z €[yl = v(w) = vy +viws +vows = (Y122 — y221) + 21y2 + 22(~y1) =0

for u =z, [v] = (y122 — Y221 : Y2 : —y1) and w = z.
On the other hand, let u = (u1,uz2), w = (w1,w2) € A? and [v] = (vo : v : ve) € P%,
then v(u) = 0 and v(w) = 0 implies

0=v(u) —v(w) = (u; —wi)vy + (ug — wz)ve

hence (u; —wy)(—v1) = (u2 —wa)(ve), i.e., x — z € [y] for x = u, [y] = (v2 : —v1) and
z = w.
But it also implies vg = —viw; — vows hence
v = (vg:v1:v2)
= (—vlwl — V2W3 : V7 - UQ)
= (vows + viwy @ —vy @ V)
= (y122 — Y221 1 Y2 : —Y1)

what we need for proving that one composition of the two mappings is the identity. O

(12.13) Corollary. The morphism pi3: B — P% x P% is the blowing up of P} x P%
in its diagonal.

Proof: All we have to show is that the map, restricted to the open sets of an open
covering of P? x P2 is a blowing up. Therefore we take a neighbourhood of a point
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([u], [w]) € P2xP2, [u] = (up : u1 : ug), [w] = (wo : wy : we). Applying a suitable unitary
transformation on all factors P% of the map p;3—it leaves the conditions v(u) = v(w) = 0
invariant—we may assume ug = wo = 1, and we consider the open neighbourhood

A2 x A2 — P2 xP?
((u1,u2), (wi,w2)) — ((1:ug :ug), (1:wy : ws))

the rest is just (12.12) with (12.11). O
Now we know with (12.9) that the map

s {((X],[Y],[Z2]) e WA : XY +YX =0,XZ+ZX =0} — W(A)?
is a blowing up in the diagonal. Restricting (or taking base extension) to the open
subscheme W(A) x W(A) we get the blowing up of W(A) x W(A) in its diagonal.
Additionally, for any [Xo] € W(A) we may take base extension with {[X]} x W(A4) —
W(A) x W(A). In all we get
(12.14) Theorem. The morphisms
{([X], V1], [Z]) € W(A) x W(A) x W(A) : XY +YX = 0,XZ+ZX = o} P15, W(A)?2
and

{([X], V1],[2]) € {[Xo]} x W(A) x W(A) : XY +YX =0, XZ + ZX = o} PIs WwiA)

are blowing ups in the diagonal and in {[Xo]} respectively. The left varieties are the
(Zariski) closures of W2(A) in W(A) x W(A) x W(A) and W?([Xq]; A) in W(A) x W(A).

(12.15) Remark. Comparing (12.14) with (12.7) one observes that the pre-image
(under prs) of the point (b # 0,c¢ = 0) and (b =0, c # 0) lie in (W(A4) — W(A)) x W(A).
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§13. The Case of Algebras of Degree 3 and Length 3

We fix a field of characteristic prime to 6 with a primitive 3-rd root ¢ € us(k) of unity
lying in k. Let A be a central simple k-algebra of degree 3. We choose a (-pair (X,Y),
ie, X, Y € W(A) such that XY — (Y X = 0.

1. Preliminaries and Conditions for Chains of Length 2

From (6.14) we know
A= P kXY
0<4,5<2

or, if we set L :=k[X]=k® kX ® kX2,
A=LaeYLaLY '.

(13.1) Notation. Every element T' € A has a unique presentation in the form
T =a+YB+7Y"!

with «, 3,7 € L. In this section, if we write T', we will always work with this presenta-
tion.
Y acts on L via conjugation:

KytL — L

X — YXY 1=(¢1X.

We denote this action by o +— @.

(13.2) Lemma. For o € L, we have the equivalences

(a <= a — ackX?,
(a <— a=(ad <<= ackX,
(0%

o <— ack.

ol
I
T~
Q

a
a

Furthermore, if we write o = ag + an X + s X? for oy, a1, oo € k, then
Trd(a) = Trd(@) = 3ayp .
Proof: Observe for a = ag + a1 X + as X? that @ = ag + ("t X + Can X 2. O

(13.3) Lemma. ForT =a+YB+~Y 1 € A we have

Trd(T) = Trd(«)
Trd(T?) = Trd(a?) + 2 Trd(57) .
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§ 13. The case of algebras of degree 3 and length 3

Proof: Note that X, YV, X2, Y2, YX, YX? XY? X?2Y? are Kummer elements
(cf. (6.9)) hence their reduced trace is zero.

Trd(T) = Trd(a) + Trd(YB) + Trd(yY ™)
= Trd(«) ,
Trd(T?) = Trd(e? + YY1 +4Y 1Y ()
= Trd(a?) + Trd(By) + Trd(v3)
= Trd(a?) + Trd(8y) + Trd(3y) .

(13.4) Lemma. For invertible T' € A*, the following conditions are equivalent:
(i) T € W(A) is a Kummer element,
(ii) Trd(a) = 0 and Trd(a?) = —2Trd(By) .

Proof: Since the characteristic of k is prime to (3!) we know from (6.5) that (i) is
equivalent to Trd(T) = Trd(T?) = 0, and this is by (13.3) equivalent to (ii). O

Any Kummer element X; € W(A) which is in (-relation with Xy := X, i.e., XoX; —
(X1 Xy =0, has the form X; =Y\ fora A € L*.

What are the conditions for an element 7" € A to be the third entry in a (-chain
(Xo]. [X1], [T]) € K-Chaing (4)?

(13.5) Lemma. Let X1 ;=YX withA € L and T = a+ YB3 +~yY ! € A, then the
following conditions are equivalent:

(i) X, T —(TX, =0
(i) aX = (AN, FA=(yA, BA = (BA.

Proof: Observe
X\T = (TX; = (YA (a+YB+9Y 1) = Cla+YB+7Y ) (YA)
— YA+ YAY B+ Y MYl —CaY A — CYBY A — (yA
= (AW — (YA + Y (ha — (@) + Y2(A8 — (BA) .
The coefficients are zero if and only if (i) holds. O

(13.6) Proposition. If for T = a+ Y +~Y 1 € W(A) the conditions
(I) Trd(aX?) =0
(II) Trd(ByX) =0

(IIT) B e L* or (III") € L*

hold, then there exists an X; € W(A) with

XOX1 — CXIXO =0 and XlT— CTXI =0.

Proof: With (13.2) and (13.4) we know for @ = ag+ o X + a2 X ? that ag = £ Trd(a) =
3 Trd(T) = 0.
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§ 13. The case of algebras of degree 3 and length 3

Condition (I) implies that oy = 5 Trd(aX ') = Trd(aX?)/(3X?) = 0. Therefore
a = asX?, hence o? = a3X* and Trd(a?) = 0. Because of (13.4) we get Trd(8v) = 0.
Together with condition (II) we get 5y € kX.

Now we assume that (III’) holds true: In this case set
A:=p0X and X;:=YAXeW(4),

and then we have XoX; — (X1 Xy = 0. Moreover the equations of (13.5)(ii) are valid:
From o = a X? follows a = (@, hence ok = (@A

% = X implies @ = C(%), i.e., ﬁi = {E/\.
Finally, 3y € kX shows Ay € kX2, hence ¥\ = (Y.
If we assume (III"") then set

Ai=7"1X? and X;:=YAeW(A),

and the rest follows analogously. 0

(13.7) Proposition. Let T = a+ Y3 +~Y ! € A such that there is an X; € W(A)
with
XoX1 — (X1 Xo =0 and X:T—(TX; = 0.
Then
(I) Trd(aX?) =0, i.e, a; =0
(II) Trd(ByX) = 0.

Proof: Because of the first Kummer relation, X; = YA for a A € L*. The situation,
applied to (13.5), gives us

QX = CaA, A = (YA, BA=(BA .

Since \ is invertible, we can divide it out of the first equation and get o = (e, hence by
(13.2) a € kX2, which implies (I).

Conjugating the third equation by Y we get S\ = ¢S\; multiplying this one with the
second equation yields BAFA = (2BAYA, i.e., 76 = ¢~ 140, hence we get v3 € kX, which
shows (II). 0

(13.8) Proposition. IfforaT =a+YB+~yY "t € A*, with 3 € L* or y € L*, there

exists an X, € W(A) such that ([Xo],[X1],[T]) € K-Chain§(A), then [X;] is unique
with this property.

Proof: Any X; with Xo —— X; —= T has the form X; = Y'A for a A € L*. Then if

B € L*, we know from the proof of (13.7) that (%) = C(%), ie., % € kX or \ € kpBX.
But that means A is unique up to scaling with an element of k*. Therefore [Y')] is
unique.

Analogous if v € L*. 0
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§ 13. The case of algebras of degree 3 and length 3

(13.9) Example. There are exactly two chains of length three connecting [X] with
[Y], namely

(IX], [XY],[XY?,[Y]) and ([X],[X*Y][XY],[Y]) .

Indeed, one get the chains by expanding the (-pair ([X],[Y]) to ([X],[XY],[Y]) and
then again expanding in the first or second link—cf. (6.9). But they are the only ones:
Let ([X],[X1],[T],[Y]) € K-Chain$(A) be a ¢-chain. Then we know for T = o+ Y 3 +
7Y =1 from (6.10) that T € k[Y] - X, i.e.,

=0y =0y =F=v%=7=0

or T=a1X +Y3 X +v XYL Furthermore we know from (13.7) that
(I) a3 =0 and
(II) iy = 0.
This has two (projective) solutions ($1 = 0,71 # 0) and (81 # 0,y; = 0) which lead to
the two chains from above.
Note that the two solution-chains are already k-rational!

2. Existence of Connecting Chains of Length 3

Now we formulate the main theorem of this section which roughly says that almost any
two Kummer elements can be connected by exactly two chains of length three.

(13.10) Theorem. The morphism
5 W3([X]; A) — WO(A)

is a dominant morphism of degree 2. In other words, there is an open non-empty,
therefore dense, subset U C WY(A) with the following property: If [Z] € U then
(73)71([Z]) is a set of two points of degree (of the residue field extension) 1 or one point

of degree 2.

(13.11) Remark. We can formulate the theorem in the following way: Let k’|k be
a field extension in some algebraic closure k of k and let [Z] € W(Ap) NU be a k'-
rational point, i.e., Kummer element, lying in U. Then there exists a field extension
I|k" of degree one or two such that

K-Chaing([X], [Z]; A1) = K-Chaing([X],[Z]; A5) ,
and this is a set of two elements.
At the beginning of this chapter we mentioned that the degree of (73)—and therefore
the whole theorem—does not depend on the special choice of the central simple algebra
A (of degree 3) and the field k for a fixed characteristic. So for the proof we choose and

fix A and k in a way such that A is a division algebra. (In particular & is not separably
closed!)
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§ 13. The case of algebras of degree 3 and length 3

Let
fli A — k

T +— Trd(aX?)

and
f22 A — k

T — Trd(fyX) ,
where T =a + Y3 +~7Y L.

For a 3-dimensional vector subspace E C A we say that the system (fi, f2) is non
degenerate in F if the following two conditions hold:

(i) file #0

(ii) The quadratic form fs5 restricted to E Nker(f;) is non degenerate.
Note, that by (i) the vector space E' := E N ker(f;) has dimension 2. Condition (ii)
means that the quadratic form ¢ := f2|gs is non degenerate.

Let & := A ®y Owo(ay—s0, & is the dual to the sheaf of Owo(4)-modules .#, which
we know from §10—, and let & be the the Oyo(4)-submodule of &7 of rank 3, which is
given by the equation

TZ —C¢ZT =0 where T € A and [Z] € W°(A) .
—Cf. §10. There we can see that & is the dual of .%.

(13.12) Lemma. There exists an open and dense subscheme U C W°(A) such that for
each point u € U, the system (f1, f2) is non degenerate in &(u) = &, Qo k(u) C

A @y k(u).

WO (A),u

Proof: The non degeneracy condition is an open condition and the variety WO(A) is
irreducible by (9.22). Therefore it suffices to find one point u € WY(A) such that (f1, f2)
is non degenerate in &'(u).

We put v = [Y]. Then &(u) = X - k[Y] and we have T'= a; X + Y31 X + 11 XY ! for
a1, b1, 71 € k(u).

The system (f1, f2) restricted to &(u) is given by

(a1, B1,m) — (3X°a1,3X°Bim)

which is obviously non degenerate. 0

Let V C P(A) x; WY(A) be the subscheme defined by the equations

(1) TZ — ¢ZT =0

(2) Trd(aX?) =0

(3) Trd(ByX) = 0.
where [T] = [a + Y8 +~Y '] € P(A) and [Z] € WO(A).
As we have seen in §10, equation (1) defines the 2-dimensional projective bundle P(.%) =
Proj (S(c?)) on WY(A). Thus V is the subscheme of P(.%) given by the system (f1, f2).
Let p: V. — WY(A) be the restriction of the projection P(A) x; WY(A) — W°(A)
and let € W°(A) be the generic point of W°(A), with residue field F := () and
Vi, = p~1(n) the fiber over 7.
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§ 13. The case of algebras of degree 3 and length 3

(13.13) Proposition. We have the following facts:

(i) One has V,, = Spec(K) where the F-algebra K is a separable extension of F of
degree 2.

(ii) The F-algebra Af is a division algebra.
(iii) If K is a field, the K-algebra Ak is a division algebra.

Proof: (i) follows from (13.12).

For (ii) note that A is a division algebra and that WY(A) has a smooth k-rational point,
e.g., [X]or [Y].

(iii) follows since [K : F] = 2 is prime to the index of A. O

Let S C P(A) x; WY(A) be the closed subscheme given by the equations
Nrd(8) = Nrd(y) = 0 where [T] =[a+Y3+~Y ] € P(A).

(13.14) Proposition. V, NS = 0.

Proof: Let x € V,, and let H := k(x) be the residue field. Thus H = K if K is a field
or H=Fif K= F®F. The point x € V,, is of the form

([T%),Z,]) € P(A)(Spec H) x W(A)(Spec F)
where [Z,] € W°(A)(Spec F) is the generic element, i.e., the F-rational point localized
in the generic point n and [T,] = [a + Y3 + 1Y ~1] with «, 3, v € H[X].
If x € V;; NS then Nrd(5) = Nrd(y) = 0. Since Ay is a division algebra by (13.13)(ii)
and (iii), we must have even 3 = v = 0. Further, since Trd(a) = 0 and Trd(aX?) = 0
(the first equation holds, because [T] is a Kummer element and the second by the
equation (2)) we have [T}] = [X?].
But then
T.Z, = CZ,T,
implies
X%*Z, = (Z,X*.
This would mean that the generic element of WY(A) stands in Kummer relation to X2,
This is a contradiction. a

Let
= (73, 7m5): W3([X]; A) — P(A) x, P(A) .

g
By proposition (13.7) the image of g is contained in V. Therefore we have a commutative
diagram

v —2 5 wWo4) .
By proposition (13.6) and (13.14) we have
V, Cim(g) .

Hence there exists a point y € W?([X]; A) such that g(y) € Vj, i.e., y maps under 73
to the generic point of W(A).
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§ 13. The case of algebras of degree 3 and length 3

Since dim W*([X]; A) = dim WY(A), the point must be the generic point of W?([X]; A).
Hence

g_l(vn) = {y}
consists of only one point. It follows that
Vo = {9(¥)}

is irreducible and V,, = Spec(K') where K|F is a field extension. Moreover by proposition
(13.8) the morphism, i.e., field extension, Spec(K) = /{(g(y)) — k(y) must be of degree
one, hence an isomorphism. This proves our theorem.
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In the last section we proved that almost any two Kummer elements can be connected
by a chain of length 3, if necessary, after a base field extension of degree 2. For chains
of length 4 this is true for any two Kummer elements and over the base field itself if A
is a skew field.

We fix a field of characteristic prime to 3 with a primitive 3-rd root ¢ € us(k) of unity
lying in k. Let A be a central simple k-algebra of degree 3.

Moreover, we assume that A is a division algebra.

We choose a (-pair (X,Y), i.e., X, Y € W(A) such that XY — (Y X = 0. From above
we know

A=LaYLeLY !,
with L = k[X].

(14.1) Notation. For any Kummer element Z € W(A) we set

e((,Z2):={2'€A: 27 —(CZ'Z =0} .

For example
e(¢,X) = k[X]Y = YEk[X] =YL
and
e(¢3,X) = kX]Y ™' = Y 'k[X] = LY !,

(14.2) Theorem. If A is a division algebra then any two Kummer elements of A can
be connected by a (-chain in A of length 4, i.e., the map induced by (7§, 7})

K-Chain$(A4) — W(A) x W(A)

is surjective.

For completeness we reproduce the proof with minor changes given in M. RosT [RoCLJ].

Additionally to the elements X and Y, we take an arbitrary Kummer element Z € W(A)
and we will show that there exist invertible elements X7, X5, X5 € A* = A — {0} such
that the following conditions hold:

(1) X1 €e((,X)

(2) X1 Xs — (XoX1 =0

(3) XoX3—(X3X2=0

(4) X3 €e(C?2)

(5) Xs € X2k @ e(C2,X) = X2k @ LY L
(6) X3 € e(C,X)@e(ct,X) = YL@ LY
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§ 14. The case of algebras of degree 3 and length 4
(14.3) Remark. The conditions (1)—(4) just mean that
X = X -5 Xy -5 Xy 5z

is a (-chain.
(14.4) Lemma. dim; (e(¢?,2) N (e(¢, X) ®e(¢? X))) > 1.

Proof: This follows from
dimge(¢®, Z) =3 and dimg(e(¢, X) B e((? X)) =6

and the fact that these vector spaces lie in the 8-dimensional vector subspace of the A
of trace zero elements. Hence the vector spaces have non-trivial intersection. O

Now let X3 be a non-zero element of e(¢?, Z) N (e(¢, X) @ e(¢?, X)), i.e., the points (4)
and (6) hold for X3 and it remains to find X; and Xs such that (1)—(3) and (5) are
valid.
Now, X3 has the form

X3 — YM/+Mlly—1
for some u/, 1/’ € L.
In two trivial cases it is easy to find the remaining elements.

Case I: If ' = 0, then X3 = pY ! for u € L*.
Then the elements
X=X =vpu' and X,:=X?
fulfill the remaining conditions. In fact we have:
X1 =YuteYL =e((, X) hence (1),
X1 =YuteVYL=e((1 X?) =e((}, X3) hence (2),
X3 =puY e LY =¢(¢, X?) hence (3),
X5 € kX? hence (5).
Case II: Tf /' = 0, then X3 =Y u for p € L*, hence X3 € e(¢, X).
Then the elements

X1 :=X3X =Y(pX) and Xo:=X3X = X3X;

fulfill the remaining conditions. In fact:

X1 €YL €e((,X) hence (1),

X1X2 = XgXX%X = CX3X3XX3X == CXQXl hence (2),
X2X3 = X32XX3 = CX%XgX = CXgXQ hence (3),
Xo=YuYpX € Y2L = LY ! =¢(¢?, X) hence (5).

For the rest we may assume that p/, u” € L*. Since the only property of Y we need is

X - Y, we may change Y to (Y ). Then we have
Xy =Yu+Y!
for p=p'p" € L*.
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§ 14. The case of algebras of degree 3 and length 4

(14.5) Lemma. Let T =Y pu+Y ™! for any p = mo +m1 X + myX? € L for m; € k.
Furthermore let co be the second coefficient of the reduced characteristic polynomial of
T. Then cy = —3my.

Proof: Trd(T) = Trd(Yp)+Trd(Y 1) = 0 and Trd(7?) = 2 Trd(u) = 6mo—cf. (13.3).
Since 2cy = Trd(T')? — Trd(T?), it follows that 2co = —6mg. This proves the claim for

characteristic # 2. For characteristic 2, consider c; = —3mg as a polynomial identity
in the variables m;. It suffices to verify this identity for a standard {-pair in M3(Z[(]).
This follows from the characteristic 0 case. O

This lemma gives us for X3 :=T
p=mX+moX? and Xz=Y(mi X +mpyX?)+Y !
for some mq, msy € k.

Case III: If m; = 0, then X3 = myY X2 +Y 1.
Then the elements

X;:=Y and X,:=(YX)'=XxX"'y!

fulfill the remaining points. In fact:
(1) is clear. X1Xo = YX 'Y ~! = (XYY ~! = (X5X; hence (2). The point (3)
follows from

XoX3 = (XY H(meY X2 +Y )

= meX + X Y2

= (MY XY 14y 1x—1ty!

= (X3Xo .
Point (5) is obvious since X 1Y =1 € LY 7! € e(¢?, X).
Finally we have
Case IV: If mp # 0, let

b:=Y 7 €k* c:=C""mib/Npp(p) €k*, XN :=cuX € L*
and set
X1 =YX and Xp:=X?%*(14 (YN

With these settings, (1) and (5) are obvious, and (2) is easily seen:

X -5 YA ie, YA —°, X2 and therefore e(¢,YA) = X2k[(Y V)]
It remains to verify (3):

X2A+ YN HYp+Y ™ = (Yp+Y HX21+ (YN,
This is equivalent to either of the following lines:
XA+ @)Y u+Yh) = XY u+CY )L+ (YN,

i.e.,

L+ NV u+Y) = ( Y+ Y D)1+ (YNT,
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i.e.,
Yp+Y P4 A+ Y2 = Gyu+ Y L+ Yty 4y iy

We use the identity A='p = (2Y uA =Y ~1, which follows from puA=! = A"ty =1 X1,
in order to get the equivalent version

Y+ 2y "2 = Cypu+Y Ity b,
Now with Y3 = b~! and the notation A\ := YAY ! from (13.1) we reformulate our
problem to proving the equation

Yu+ YN = Y+ Yba

or equivalently

X1 = Cu+ bt

This immediately follows from
(14.6) Lemma. uxj +Ab=? uxj Y
Proof: We have to show

Since B
Nrw(p) =ppp and A=cpX

we have for the left hand side

(1-CuAX = (1-C)ucaX ciX
(1 =) (uppc) e X?
= (1-¢)CmibeX? .

For the right hand side we have
b(A=2X) = b(ciX —cuX)
= beX (CRi-C*h)
= beX (C(mi¢X —maC®X?) — C(miPX + ma(X?))
= beX (CCmiX — (mX)
= beX (P -0OmX

and we are done. O
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Chapter VI
Relation to the Product Map of Tori

Out interest lies in the degree of the morphism
™ W([X]; A) — W2(A)

for a central simple k-algebra of degree n and [X] € W(A), or equivalently in the degree
of

(2, 1) WP (A) — WOA) x, WO(A) .

n

Cf. chapter V. There we mentioned that it does not depend on k and the special form
of A but only on n.

Now, in the whole chapter, k is assumed to be algebraically closed (and therefore A =
M;, (k).

We are going to construct an explicit map which has—up to the factor (n"~!)—the
same degree as ..
Later we will see that this morphism can be interpreted as a multiplication map of tori.

§15. A Covering of W(A)

If we projectivise the variety GL,, in another way as the usual, namely regarding the
column vectors in the matrices, we will see that we can get an n-fold covering of the
variety of Kummer lines.

We fix an algebraically closed field £ and a positive integer n > 2 not divisible by the
characteristic of k. Let ¢ € u,(k) be a primitive n-th root of unity and A a central
simple k-algebra of degree n.

Furthermore we fix a (-pair (X,Y) in A, i.e., Kummer elements X, Y € W(A) such
that XY — (Y X =0, and we set L := k[X], K := k[Y].

Let D := Rp;(Gwm) be the torus of L-units.

(15.1) Example. Since k is algebraically closed we have essentially only the one case:
A = M,(k), X = Xo(¢) and Y = Yy. Then D is the torus of invertible diagonal
matrices.

1. The Variety GL;(A)/D

The torus D acts on GL;i(A) by the right multiplication. Now we are going to divide
out this action (i.e., subgroup) and fix the following
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(15.2) Notation. The variety
GL1(4)/D

is defined to be the units of A modulo the units of L. The canonical epimorphism is
denoted by
{}: GL1(4) — GL1(A4)/D

v — {v}:=0vD .

(15.3) Remark. In our standard case of (15.1) we easily see that GLi(A)/D =
GL,, x /D =: P"GL,, , is the open subvariety of (]P’Z_l)” = IP’Z_l X kuP’Z_l, defined
by the condition

([v1],-- -, [vn]) €P"GLy <= (v1,...,0,) € GLy -
The v;’s are column vectors!
Therefore we know
(15.4) Remark. GL;(A)/D is a smooth k-variety of dimension n(n — 1).
There are several operations on GL;(A)/D:
The multiplication on GL;(A) induces on GL;(A)/D the left-action
(g, {v}) — g{v}:={gv} .
This action is transitive.
Another action is given by multiplying with Y:
(15.5) Lemma. The right multiplication with Y induces a (right-)action of Z/nZ on
GL1(A)/D given by
GL,(A)/D x (Z/nZ) — GLy(A)/D
({v}, (m mod nZ)) +— o™{v}:={vY™}.
This action is fixed point free, especially it is faithful.
Proof: Since Y normalizes D, i.e., DY = Y D, the action is well defined. If {v} is

a fixed point, i.e., {vY™} = {v} = {vla}, then by the upper left-action we see that
{Y"™} ={14},i.e, Y™ € D. But since KN L we have m =0 (mod n). 0

(15.6) Remark. These two actions respect each other, i.e., for g € GL;(A4) and m € Z
we have

go"™{v} = {gvY™} = oMg{v},

(15.7) Example. In our standard situation of (15.1) one has

o™ ([or],- s [onl) = (vrgml, s ongm]) = ([vom@)s- - [Vom @)
for m € Z, ([v1],...,[vn]) € P"GL,, k, and the indices are viewed modulo n. Further we
view o on the right hand side as the permutation 0 = (12 ... n) € S,.
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This follows from
(V1,...,0n) - Yo = (vo,...,0p,0v1)

in GL,, (k).

2. The Covering

In (6.3) we mentioned that every Kummer element (or better: Kummer line) of M,, (k)
is conjugate to [Xo({)], or

k(X): GL1(A) — W(A)
g — [9Xg7"] = [rg(X))]

is a surjective morphism. In other words GL;(A) acts transitively on W(A) by conju-
gation.

Since the elements of GL;(A) which commute with X are exactly the elements of D,
we immediately get the

(15.8) Claim. The morphism (X ): GL1(A) — W(A) of k-varieties induces the mor-
phism

M := Mx: GL1(A)/D — W(A)
{v} — M{v}:=[vXv'],

such that kK(X) = M o {}. This morphism is surjective.
(15.9) Remark. For any v € GL{(A) we have Nrd(X) = Nrd(vXv™1).

(15.10) Lemma. For any v, w € GL1(A) the following conditions are equivalent
(i) vXv! =wXw™?
(i) {v} = {w}.

In other words, the lifted morphism

M: GL1(A)/D — GL1(A)

{’U} — v X0t

is a well defined morphism and it is an injective map.
Proof: vXv ! =wXw ! <+—= whwX=Xwlv <= wlvel. O

On W(A) we also have an action of GL;(A), namely the conjugation. The morphism
M respects the action of GL;(A):
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(15.11) Lemma. For any g € GL1(A) the diagram
GL;(A)/D —1— W(A)
GL1(A)/D —— W(A)

is commutative, i.e., M is GLj(A)-equivariant.

Proof: This is clear since for any v € GL;(A),

Mg{v} = M{gv} = [guXv'g™"] = rgloXv '] = rgM{v} .

About the action of Z/nZ on GL;(A)/D we know the following

(15.12) Lemma. For any v € GL;(A) and m € Z,
M(o™{v}) = ¢ M{v}

hence
M(o™{v}) = M{v} .
In other words M is (Z/nZ)-invariant.

Proof: M(c™{v}) = M{vY™} = oY XY ™y~ ! = ("o Xv ! = " M{v}. O
Patching together these lemmas we get

(15.13) Proposition. For {v}, {w} € GL,(A)/D the following conditions are equiv-
alent

() Mo} = M{w)
(ii) {v} = o"™{w} for some m € Z.

Then (m mod nZ) € Z/nZ is unique.

Proof: (i) is equivalent to M{v} = AM{w} for some X € G, . With remark (15.9)
we see that this is equivalent to

M{v} = ¢ " M{w}
for some unique (m mod nZ) € Z/nZ. By (15.12) this is equivalent to
M{v} = Mo™{w}
and this is equivalent to (ii), by virtue of (15.10). O
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(15.14) Theorem. The action of (Z/nZ) on GL1(A)/D induces free actions on the
fibres of the morphism

M = Mx: GL1(A)/D — W(A) .

(15.15) Corollary. deg(Mx) = n.

(15.16) Remark. We get
dimW(A) = dim GL(A)/D = n* —n .
Furthermore we get the morphism
(GL1(A4)/D)/(Z/nZ) — W(A)
which is bijective. The two varieties are birational equivalent and since GLj(A) acts
transitively on both varieties—compatible with the morphism—, it is an isomorphism;
which again shows smoothness.

(15.17) Example. In our case of (15.1), the morphism
MXO(C): PnGLnyk — W(A)

can be interpreted in the following way: For ([vi],...,[vs]) € P"GL,  the element
M([v1],-..,[vn]) € GL,k is the (unique) matrix with eigenvalues ¢!,...,¢" to the
eigenvectors vy, ..., v, respectively.
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By virtue of the covering M = Mx: GL1(A)/D — W(A) we will also find a covering of
the chain variety W*([X]; A) for any positive integer /.
In order to do that we first have to find out how the (-relation is reflected in GL;(A)/D.

We use the same assumptions as in §15. Furthermore we assume that X™ = Y™ € k*.
In this case there exists by Skolem-Noether an element ¢ € GL;(A) = A* such that

X! =Y and Yo ! = X 1.

Just take the automorphism of A which maps the (-pair (X,Y) to the (-pair (Y, X ~1).
As a consequence we can write

Y = M{¢} = Mx{¢} .

(16.1) Example. In the situation of (15.1) take ¢ to be the matrix ((~%); j—1
one can see in the proof of (3.7).

.....

1. The Kummer Relation

(16.2) Lemma. Let dy, do € D, then the condition ¢d1¢p~! = da, i.e., ¢pdy = da
implies the condition [d1] = [d2] = [14] in P(D) C P(A).

Proof: If pdi¢p~' =dy thend; € L and dy = ¢~ 'dap € 'L = K. Since LN K =k,
the claim follows. O

(16.3) Corollary. For dy, dy € D, the following conditions are equivalent
(i) [di] = [d2] in P(D)

(i) {d1¢} = {d20}

(iii) {vdi¢} = {vda¢} for any v € GL1(A).

Proof: The direction “(i)=-(ii)” is clear; so is the equivalence of (ii) and (iii).
Now assume (ii). This means there exists a d € D with d;¢ = da¢d or equivalently

dytdip = ¢d
and this implies [dy 'd1] = [L4], i.e., [d1] = [da]. 0
(16.4) Remark. The corollary (16.3) just says that for any fixed v € GLi(A) the

morphism

P(D) — GL,(A)/D
[d] — {vdo}

is injective.
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(16.5) Lemma. Let v, w € GL;(A). Then the following conditions are equivalent

(i) (M{v}, M{w}) is a ¢-pair
(ii)) {w} = {vdep} for some d € D.
In this case, [d] is unique in P(D).

Proof: “(i)=(ii)”: By (6.14) there is a G € GL1(A) such that
GM{v}G™' = X and GM{w}G™' =Y.
Therefore
M{Gv} = M{14} and M{Gw} = M{¢} .
By (15.10) we get
{Gv} = {14} and {Gu} = {¢},
i.e.,
Gv = d; and Gw = ¢do
for some dq, do € D. Combining the two equations gives
w =G ody = vd; édy
hence {w} = {vd¢} for d := d;*.
“(ii)=-(i)”: Set G := vd. Then
M{v} =GXG™' and M{w} = GYG™'.
The first equation is clear, the second is
GYG™' = GM{¢}G™! = M{G¢} = M{vdp} = M{w} .

Uniqueness: {vdi¢} = {vda¢}, then multiplying with v=1 we get {d1¢} = {d2¢)} and
(16.3) yields the claim. 0

The injective morphism
Wy P(D) — GL1(A)/D
[d] — {vde}

parametrizes all elements lying (via M ) over Kummer elements which are in {-relation
with M{v}.

There are two operations of (Z/nZ) on P(D):
The first one is given in the following way. Let m € Z, then

P(D) — P(D)
[d] — [X7"d] = [dX™™]

gives the action of (m mod nZ) on P(D).
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(16.6) Lemma. For m € Z, the following diagram is commutative.
P(D) —== GL,(A)/D
bf P(D) —2— GL,(A)/D

where the left vertical arrow is the action of (m mod nZ) on P(D).
Proof: X 1¢ = ¢Y implies {vdX "¢} = {vdpY™}.

The second action is given in the following way. Let m € Z then

P(D) — P(D)
(] — [Y~™dY™]

gives the action of (m mod nZ) on P(D).

(16.7) Lemma. For m € Z, the following diagram is commutative.

P(D) —2 GL{(A)/D

T

P(D) -2 GLi(A)/D

where the left vertical arrow is the second action of (m mod nZ) on P (D).
Proof: {vY™Y ™dY™¢} = {vdY™¢} = {vdpX™} = {vde}.

(16.8) Claim. Both actions are compatible, i.e., they commute.
Therefore we get an action of (Z/nZ x Z/nZ) on P(D) described by
(Z/nZ x Z/nZ) x P(D) — P(D)
((m mod nZ, p mod nZ), [d]) (m’p)[d] =YX TPdY™|

Proof:
(m,o)(O:p)[d] = [Y "X PdY"™]
= [X"PY""ady™¢ ™
_ (07p)(m70)[d] )

(16.9) Example. In the standard situation of (15.1) we get for d = diag(dy, ...

(Pl diag(dy, . .. dp)] = [diag(C™Pdism, ¢ Pdosm, - ¢ Pdnyp)] -

135
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We choose an element v € GL1(A), then the morphism
wD: P(D) 2% GL;(A)/D 2L W(A)
[d —  {vd¢} — M{vdg}
has as its image the elements of u((, M{v}), the Kummer elements which are in a

(-relation with M{v}. This follows from (16.5).

(16.10) Proposition. The morphism

wV: P(D) — u(¢, M{v})
is surjective and the first action of (Z/nZ) on P(D) induces a free action an each fibre.
Proof: The surjectivity follows from (16.5). The fact that the action induces actions

on the fibres follows from (16.6) together with (15.12).
Free action: Let

Wi ([dh]) = wiM ([da])
for [di], [d2] € P(D), then
M{Udlqb} = M{Udgqb} .
With (15.13)
{vdigp} = 0™ {vd2d} = {vd2pY ™} = {vde X "¢}

for unique (m mod nZ) € Z/nZ.
Hence [dy] = [d2 X ~™] for the unique (m mod nZ) € Z/nZ, by (16.3). |

2. The Covering

We consider the following morphism of k-varieties:

(16.11) Notation. For any v € GL1(A) and any positive integer { we define the
morphism

o P(D)Y =P(D) x --- x P(D) — GL1(A)/D
([di], ..., [de]) ¥ {vdiddagp---deg} .

There is an action of (Z/nZ)* on P(D)* given in the following way:
(Z/nZ)* x P(D)* — P(D)*
(@1, vae), ([da], . [de])) w— (0], Pody)

where b; :=a;,_1 and ¢; ;== a; +a;_o fort=1,...,f and ag = a_1 = 0.
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(16.12) Remark. The action of e; = (1,0,...,0) on ([d1],...,[ds]) yields
([di X7, [V oY), [X 3], [dd], .. .) .
The action of e; = (0,...,0,1,0,...,0) on ([d1],...,[d¢]) yields for i < ¢ — 2
(oo [dica], [di X [Y 7 i Y, [X  Ndiga)], [digs)], .- .)
The action of eg—1 = (0,...,0,1,0) on ([d1],...,[ds]) yields
(. [de—i], [de—1 XY, [Y 1Y) .
The action of e, = (0,...,0,1) on ([d41],...,[ds]) yields

(... [decq], [de XY .

On GL;(A)/D the group (Z/nZ)* may act in the following way
(Z/nZ)* x GLy(A)/D — GLy(A)/D
((@,...,a0), {v}) — {LY*} =0%{v}.

(16.13) Lemma. With these actions, the morphism o P(D)* — GLy(A)/D is
(Z/nZ)*-equivariant.

Proof: One observes that the action of e; = (0,...,1,...,0) commutes with d)ff): Note
that fori < /¢ —2
;X oY "t i\ YOX diyo = diddiniddiie
and
(Wdi 1 X oY 1Yoy = {Vdp_10did X} = {v'dy_1dded}
for any v' € GL1(A). Further
{v'de X719} = {V'depY} = ofv'deg} .
We used X 1Y ! = ¢ and YopX ! = ¢. O

(16.14) Notation. Putting together ool we define
OO = (0V,...,00): P(D)* — (CGLy(A)/D)"
(ld),- [de)) — ({vdio}, {vdiddadl, ... {vdi ... dro})
The group (Z/nZ)* may act on (GLl(A)/D)Z in the following way
(Z/nZ)" x (GLy(A)/D)" — (GLy(A)/D)
((@,...,a0), {vi}, ..., {ve})) — (e {v1},...,0%{ve}) .

(16.15) Lemma. With these actions, the morphism O P(D)* — (GLl(A)/D)E
is (Z/nZ)*-equivariant.

Proof: This is a direct consequence of (16.13). O

137



§16. A covering of chain varieties
(16.16) Proposition. The morphism O, P(D)* — (GLl(A)/D)e is injective.

Proof: We get this from (16.3) by induction:

{vdip} = {vdi¢p} = [di] = [d]]
then
{vdipdag} = {vdi¢dyp} = {vdipdyd} == [do] = [dy]

and so on. 0

Now we compose O with (¢-times) the morphism M = Mx:GL;(A)/D — W(A) in
order to get
Q= Mo QP P(D) — {M{v}} x W(A)*

(we just added a trivial first component) and by (16.5) we see that this morphism
factorizes through

WHM{v}; A) — {M{v}} x W(A)".

(16.17) Theorem. The morphism

QF: P(D)" — W' (M{v};A)
(ldi], ..., [de]) — (M{v}, M{vdi¢}, M{vdipdag}, ..., M{vdig-- - ded})

is surjective and the action of (Z/nZ)* on P(D)* induces free actions on the every fibre
of the map.

Proof: The surjectivity is now easily shown:

Let (M{v}, M{v.},...,M{v;}) € W(M{v}; A), then by (16.5) we see inductively that
there exist [d1], ..., [d¢] € P(D) such that {v;} = {v;_1d;¢} fori =1,...,¢ with vy := v,
and therefore

QO ([dh], ..., [de)) = (M{v}, M{v1},..., M{v}) .
Now, the fibre of
M’ (GLy(A4)/D)" — W'(M{v}; A)
over the given point is by (15.13) the orbit

{(Jal{vl},...,a‘”{w}) 2 a1,...,0¢ € Z/nZ} = (Z/nZ)g ~({v1}, .o {ve}) -

But this set of n’ elements is exactly what we get if we let (Z/nZ)’ act on the tuple

([d1],...,[de]) € P(D)* and then map it via 0P to (GLl(A)/D)é. This proves the
claim. a

(16.18) Remark. As a consequence we get again statements like the irreducibility of
W*([X]; A) and the dimension formula: dim W*([X]; A) = dim P(D)* = ¢(n — 1).

Now we go back to our problem at the beginning, the case ¢ = n.
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§16. A covering of chain varieties
We have the commutative diagram
P(D)" — WM {u); 4)
Ak
GL(A)/D —x W(A)

therefore
degm, -deg Qg”) = deg d}fj") -deg Mx .
By (16.17) and (15.15) we get

degn™ - n™ = degw(™ -n
(16.19) Corollary. For any v € GL;1(A), the morphism

oM. P(D)* — GL1(A)/D
([d1]7 ) [an — {Ud1¢d2¢' e dn(b}

has degree
dego(™ = n"~ . degn .
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First of all, we are going to “de-projectivise” the morphism djq(jn) forv=1=14 € A*.
Then we will reformulate the map a second time such that it can be interpreted as the
product map of tori.

We keep the notations and assumptions of §16.

(17.1) Notation. We denote with

D:DXGm---XG D

m

the quotient of D™*! by the group action
G’y x D" — D

((tl,...,tn),(dl,...,dn+1)) [ — (tl,...,tn)-(dl,...,dn+1) Z:( /1,..., ;ﬂH_l)

where / .

d; = tz‘_lditi—l fori:2,...,n

We define V,, to be the morphism

(di,...,dpt1) — digpdadp-- - dpodpiq -

(17.2) Remark. The following diagram is commutative:

D — I GLy(A)

I

P(D)" —*— GL;(A)/D

where p D —s P(A)
(dl,...,dn+1) — ([dl],,[dn]) .
Note that
p (i), [dn]) = {(d1,...,dp,d) :d €D} = {(dy,...,dyn)} x D .

D acts on D and GL;(A) in the following way:
DxD — D
(d,(dy,...,dn)) — (du,...,dnd)

and

(d,g) — gd
The following is clear:
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(17.3) Lemma. With these actions, the morphisms p and {} are D-invariant and V¥,
is D-equivariant. These actions induce free actions an all fibres of p and {}.

From this lemma one instantaneously gets
(17.4) Proposition. deg¥, = degdjﬁ) = n"" 1. degn?.

Since ¢?X¢~2? = X!, conjugation with ¢? is an automorphism of D.

(17.5) Lemma. For any i =1,...,n, the following diagram is commutative
D —2» 5 GL,(A)
lez Zlgb—?.
D L) GLl(A)
where B -
(dlv cee 7dn+1) = (¢_2d1¢27 ) ¢_2di¢27 di+17 s 7dn+1)
and

(67 D — GLl(A>
(di,...,dn) — diddy---ddid  dip10- - Ppdpyy
Therefore: deg V,, = deg «;.

Proof: Clear. 0

—1

In this way we can change ¢ to ¢~ in any place without changing the degree of the

map.

Let’s assume that n is an odd number.

(17.6) Proposition. The morphism

(di, - dns1) — (di(¢pdag™")ds(¢pdagp™") - dn(ddni19™"))

has degree: deg V! = degV,,.

Proof: One changes the ¢ to ¢~! at the places after ds, dy,...,d,—1 and multiply
additionally with ¢~! from the right. 0

Now projectivising again the morphism and writing S and T for the projective tori
associated to L and K = ¢Lo~! we get
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(17.7) Corollary. The multiplication morphism

<I>n:S><T><S><T><---><S><T:(S><T)”T+1 — PGL(A)
([di], [da], ..., [dnt1]) ¥ dida -+ dpia

has degree
= n""!.degn” .

deg®, = degV¥,, =

(17.8) Remark. Ifnis even, then one analogously gets: The multiplication morphism

P SXTXSXTX---xSxTxS=(SxT)2 xS — PGL{(A)
(ldi], [do], ..., [dnta]) ¥— dida - dpga

has degree
= n""!.degn” .

deg ®,, = degV¥,, =
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