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1. INTRODUCTION

This text is in a very preliminary status.

The starting point was my proof of the degree formula. For the
prime 2 this used the Hilbert scheme Hilb(2, X') and its canonical line
bundle L. One has for X smooth and proper of dimension d:

— 1
(1) deg(e1(L)*) = 3 deg(ca(=Tx))
This gives a simple short proof that for any X the Segre number
deg(ca(—Tx)) is 2-divisible.
Let’s have a look at the situation in characteristic 2. In this case there
exist a canonical smooth divisor j: P — Hilb(2, X') which represents L.

It fits into a commutative diagram

P(Qy) - Bla(X x X)

g g

P L Hib2,X)

Here Bla(X x X) is the blow up of the diagonal and ¢ is the inclusion
of the exceptional fiber which is the projective tangent bundle of X.
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Moreover p is the standard double cover. The morphism p is radicial
of degree 2. The pullback of L to Bla(X x X) is the canonical line
bundle of the blow up, and hence the pullback of L to P(Qx) is the
canonical line bundle of the projective bundle.

One may take also the following point of view: The canonical line
bundle has a connection with respect to itself with trivial 2-curvature.
By general principles it descends canonically to something, and that
something is P.

Let L = j*(L). Now, since P represents c;(L), we get the following
variant of (1):

(o) = a1

Hence % of the Segre number is the degree of a zero cycle on P.
One can do somewhat better: There is a commutative diagram

X I P(Qy)

d g

x@ e p
idl ﬁl
72

x® I p )@

Here F' and n o p are the relative Frobenius morphisms. One finds

(2) 2(71'(2) o n)*(cl(L)2d_1) = cy(—Txw@) = Fi (cd(—TX))

Hence one gets in characteristic 2 not only the 2-divisibility of the
image of the Segre class in CHy(Speck) = Z (the Segre number) but
of its image in CHp(X ).

In the case of curves this is long known: The line bundle 2y ) has
a canonical square root, namely F,(Ox)/Oxw. (See [2], [1], [5].)

Note: (2) is not yet contained in the text.

There is another result in this text, Proposition 1, which together
with Riemann-Roch and the Hattori-Stong theorem yields the follow-
ing: Let P € Z|cy, ..., cq4) be a polynomial of degree d (with deg ¢; = 1),
and suppose that there is a p-power ¢ such that for any compact almost
complex manifold X of dimension 2d the number P(X)/q is integral.
Then for any smooth variety X in characteristic p of dimension d, the
number P(X)/q is the degree of an integral zero cycle on X @),

Another example of such divisibilities has been provided by Deligne:
For a smooth surface X in characteristic 2, let F': X — X® be the
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relative Frobenius. Then one has in CHo (X ®):
3 163 (F(Ox) = (& + ) (Tyen)

Taking degrees, one gets
deg(ca(Fi(Ox))) = 3 Todd(X)

Note: (3) is not yet contained in the text.

I have learned Lemma 2 from Deligne. I don’t have a reference for
it. I am also wondering about a reference for Lemma 1, Lemma 3 and,
in particular, for Lemma 4.

2. PRELIMINARIES

References: [4, Section 7).

For the Frobenius maps we use the following notations. Let X be a
scheme in characteristic p.

The absolute Frobenius is denoted by

J=/x: X—X
If X = Spec R is affine, then f is given by the p-th power map
p:R— R
p(a) = a”
For a sheaf M of Ox-modules let
M = f(M)

be the pull back of M along f. Similarly, in the affine case X = Spec R
we denote for R-modules V'

VP =V @g, R

Here the tensor product is understood so that va ® b = v ® a’b and the
R-module structure on VP! is given by (v ® a)b = v ® ab.
The symmetric algebras are denoted by

S*M = sM, SV=EsV
k>0 k>0
There is a natural morphism
Jar: MP— SPAL
given locally by
jv: VI sPy

Jv(v®a) =vPa
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Let
B(M) = S*M/{ju(M™))
be the quotient of the symmetric algebra of M by the ideal sheaf gen-
erated by the image of jy;.

Similarly we understand B(V)....
The natural multiplication map

B(M) © B(M') — B(M @ M)

is an isomorphism.
For a line bundle L one has

B(L) = S'L/<L®P> — OX @L@l @L® D - @L@)(pfl)

Lemma 1. Suppose that M is a vector bundle on X of rank n. Then

(1) jua is a monomorphism.

(2) If M is invertible (n = 1), then jy is an isomorphism, so that
M = prer,

(3) B(M) is a vector bundle of rank p".

Proof. The question being local, we may assume that X = Spec R and

that M is given by a free R-module V with basis ¢;, ¢ = 1, ..., n.
Then S*V is the polynomial ring Rlei, ..., e,]. Moreover VI is free
with basis ¢; ® 1,9 =1, ..., n and jy is given by jy(e; ® 1) = €r.

From this (1) and (2) are clear. As for (3), note that

Better:

B(Li®---®L,) =B(l1)® & B(L,)
U

Remark 1. Let K°(X) denote the Grothendieck group of vector bundles
on X. There is the ring homomorphism f*: K°(X) — K°(X) induced
by the absolute Frobenius. Since f* is on line bundles the p-th power
map (cf. Lemma 1 (2)), it follows that f* is the p-th Adams operation
in K-theory.

Let k be a field of characteristic p and let X be a scheme over k. The
structure morphism of X is denoted by mx: X — Speck. The relative
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Frobenius is described by the following commutative diagram

x L xw» X x

le 7TX(p)l le

Speck -, Spec k ELR Speck

Here the right square is Cartesian and defines X ® as the fiber product
of X and k over k with respect to the absolute Frobenius, with W and
Ty the corresponding maps. One has fyomyx = mx o fx. The relative
Frobenius F' is the unique map with Wo F' = fx and myw o F = 7.

The morphism W: X® — X is flat, since it is the pull back of the
flat morphism f;. If X is a localization of a scheme of finite type over £k,
then F' is finite.

Lemma 2. Suppose that X is smooth over k of dimension d. Then F
is flat and finite of rank p?.

For the induced maps F,: Ko(X) — KO(X(p)), F*: KO(X(p)) —
Ko(X) one has

F*(Fu(x)) = [B(Qx)] -«

for x € Ko(X).

Better:

F* o F, is multiplication by [B(Qx/k)].

Proof. For the first claim see [4]....
We consider the following commutative diagram of short exact se-
quences:

0 — I — Ox®,0x LOX—>0

| | al
0 — J — OX@OX(MOX L0y — 0

Here i denotes the multiplication maps with kernels I, J and the verti-
cal arrows are the natural maps. By definition one has I /1% = Qx /1 and
J/J* = Qy/xw. Moreover h induces an isomorphism [/I* — .J/J?.
Let

ot (Ox@,0x) =PI /I, er;(0x®0_, Ox) =PI/,
n>0 n>0

be the sheaves of graded rings associated to the filtrations induced by 1,
J, respectively, and let

gr(h): gr(Ox ®; Ox) — gr;(0Ox ®o_,, Ox)



6 MARKUS ROST

be the homomorphism induced from h. Since X is smooth, the natural
ring homomorphism

a: S*(I/1%) — gr(Ox @ Ox)
with « the identity on I/I? is an isomorphism. For x € J one has

xP = 0; namely, for a € Ox one has (a®1—-1®a)? = a?R1—1®a? =0
since a? is in Oy ). Hence gr(h)oa factors trough a ring homomorphism

ﬁl B(I/[2) — gI'J(OX ®OX(P) Ox)
It is not difficult to see by local considerations that [ is an isomorphism.
Composing 3 with the inverse of B(h): B(I/I?) — B(J/J?*) we obtain
an isomorphism

ﬁ: B(J/JQ) — gI'J(OX ®OX<P) Ox)

of Ox-modules.
Let M be a Ox-module. Then

F*(F*(M)) = M ®OX(P) OX = M ®(9X OX ®OX(P> OX

The J-filtration induces a filtration on F™ (F*(M )) with associated
graded module
M ®OX gr](OX ®OX(1’> OX)
O

Let E be a finitely generated field over k. We denote by EP C E the
image of the p-th power homomorphism EF — E and by
E=kEPCE
the subfield generated by E? and k. If E is generated as a field over k
by x1, ..., xy, then the same is true over E. Since 2z € E| it follows
that E is finite over E.
Let
EW) = B @ k
We consider the maps
el pw g
with f(a) = a® 1 and F(a ® b) = ab. Thus F o f is the natural
inclusion. Let m be the kernel of F'.
One has m? = 0. Indeed, let z € E® . Then 2” is in the field

EP Qup kP = EP
If F(z) =0, then F(2?) = 0 and therefore 27 = 0.
The ideal m is the unique maximal ideal of E®. Its residue class

field is o
E=F(EY)=kE’' CE
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We denote by ¢(E/k) the length of the ring E®).

Lemma 3. The extension E/E is finite.

The ring E® has finite length.

Let [E: E] = dimg E, let £ be the length of E®, and let d be the
transcendence degree of E/k. Then

[E:E] = tp?
Proof. Let k C F' C E be an intermediate field with F'/k separable and

E/F finite. For instance, if z1, ..., x4 is a transcendence basis of F/k,
one may take F' = k(z1,...,24). Consider the diagram

E®» 2 F — F

11

FO) T F o R

Since F/k is separable, F') is a field and rz is an isomorphism. Hence

dimp) E® = length(EW)[E : F)
On the other hand

dimp) EP) = [E?: F?] = [E: F|
Since F/k is separable, one has

[FF]=p!
(For instance, if F' = k(xy,...,7q), then F = k(2f,... 25).) Finally
[E:F|[F:F)=[E:E|[E:F]

The claim is now immediate. O

Lemma 4. Let X/k be of finite type. Then for W*, F,: CH.(X) —
CH, (X(p)) one has

F,=p"W~
on the cycle groups

C.(X)= P z

IEX(T)

See also [9, Proposition 2] for smooth schemes of finite type over a
finite field.

Proof. Let # € X be a point with dim {z} = r and let y = F(x). Let
further Ox ., m,, kK, = Ox./m, be the local ring at z, its maximal
ideal, and its residue class field, respectively. Then

Fo([2]) = [k s my][y]
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and
W*([z]) = length(Oxw , @0y, Ka)[Y]
Since
Ox) y ®0x, ko = (Ox2 Okp k) R0y, Ko = Ko Qpp b = k)
the claim follows from Lemma 3.
Better:
For a morphism h: Z — X there are the Cartesian diagrams

20 M xw) X0 gheck

U

7z I X X Speck

If h is a closed immersion, then W* o h, = h, o W*. If h is a open
immersion, then h* o W* = W* o h*, see [3], [8]. Thus we may replace
X by Spec k,. This case follows easily from Lemma 3. O

This can be generalized as follows:

Let S be a scheme over a field of characteristic p and let X be a
scheme over S. The structure morphism of X is denoted by 7x: X —
S. The relative Frobenius is described by the following commutative
diagram

x 5 (x/9) L x

WXJ( 7TX(p)l le

id

s 4 5 g
Lemma 5. Let S be smooth over k of dimension e and let X/S be of
finite type. Then for W*, F,: CH,.(X) — CHT((X/S)(I’)) one has
F.=p W~ ifr>e
P E, =W* ifr <e
on the cycle groups

C.(X)= P z

xEX<T)

Proof. No proof yet.
O

Let mx: X — Speck be a scheme of finite type over k. Let Ky(X)
denote the Grothendieck group of coherent Ox-module sheaves on X.
Let Ko(X)@) C Ko(X) be the subgroup generated by sheaves M with
dim supp M < d.
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Proposition 1.
(mx)+ (Ko (X) (@) C (T )+ (CHo(X"D)) ® Zy)
Proof. For d > 0 and a Ox-module sheaf M on X let
©4(M) = F.(M) —p"f*(M)
This is a sheaf on X, Note that
(Txw)« (©a(M)) = (1 = p?)(mx)«(M)

This needs proof!!!
Clearly dim supp ©4(M) < dimsupp M. The two diagrams

CHy(X) —  K\(X)@/Ky(X)a1y — 0
Fo f* Ffl
CHd(X(p)) N K(’)(X(p))(d)/K(’)(X(p))(d,l) — 0

for F,, f*, respectively commute and have exact rows. By Lemma 4
one has dimsupp O4(M) < d — 1 if dimsupp M < d. Argue directly
for sheaves!!!

Let us define for d > 0

s Kol X)) — Kol XP) sy 1
Oa([M]) = (1 = p?)"'[Oa(M)]
Then
(mx)s = (Tx@ )x 0 04: KO(X)(d) — Ko(k) ® Zy) = Zy)
Consider the map
O = 010050004 Ko(X) ) — Ko( X)) ® Zgp)
Hence
(7))« (Ko(X)(@) C (7 ) (Ko (X)) = (g, ) (CHp (X *))
O

Simplify this! For perfect k look at
F'=(W™HoF: X — X. Then F' acts with eigenvalue p" on
CH,(X)....

Corollary 1. If k is perfect of characteristic p, then
(WX)*(KO(X)) - (WX)*(CH0<X)) ® Z(p)

In other words, the Euler characteristic of a Ox-module sheaf on X is
the degree of a p-integral zero cycle on X.
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3. EXPLOITING RIEMANN-ROCH
[6][7]
4. EXAMPLES

Lemma 6. Suppose dim X = 1. Then

F(Ox — Qxr) = Oxm — Qxo i

F.(Ox + Qx/k) = p(Oxm + Qxo 1)
Moreover, if p= 2, then

2(F.(Ox) —20x@) = Qxe@ i — Oxe

and

F* (F*(OX) - 2OX(2)) - F*(Ox(2)) - 20)((4)

and if p is odd, then

p—1
F.(Ox) — pOxw = T(Qx<m/k — Oxw)
Notation: bundles versus classes. Better notations!

Lemma 7. Suppose dim X = 2 and p = 2. Then
F(Ox — Q%) = 2(Oxe) — Q%1 1)
4F,(Ox) = ...
Lemma 8. Suppose dim X = 2 and p = 3. Then

9F.(Ox) = ...
Lemma 9. Suppose dim X = 2 and p > 3. Then

pQF*(Ox) = ...
5. FURTHER REMARKS

[X — X®)] € Q(X®) new natural elements in bordism (= in any
oriented cohomology theory).

Compress [X]: Over Z,), [X] is represented by sums [Y — X @)L,
dimY = 0, L= Lazard ring.
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