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1. Introduction

This text is in a very preliminary status.
The starting point was my proof of the degree formula. For the

prime 2 this used the Hilbert scheme Hilb(2, X) and its canonical line
bundle L. One has for X smooth and proper of dimension d:

(1) deg
(
c1(L)2d

)
=

1

2
deg

(
cd(−TX)

)
This gives a simple short proof that for any X the Segre number
deg

(
cd(−TX)

)
is 2-divisible.

Let’s have a look at the situation in characteristic 2. In this case there
exist a canonical smooth divisor j : P→ Hilb(2, X) which represents L.
It fits into a commutative diagram

P(ΩX)
i−−→ Bl∆(X ×X)

ρ

y ρ

y
P

j−−→ Hilb(2, X)

Here Bl∆(X ×X) is the blow up of the diagonal and i is the inclusion
of the exceptional fiber which is the projective tangent bundle of X.
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Moreover ρ is the standard double cover. The morphism ρ is radicial
of degree 2. The pullback of L to Bl∆(X × X) is the canonical line
bundle of the blow up, and hence the pullback of L to P(ΩX) is the
canonical line bundle of the projective bundle.

One may take also the following point of view: The canonical line
bundle has a connection with respect to itself with trivial 2-curvature.
By general principles it descends canonically to something, and that
something is P.

Let L = j∗(L). Now, since P represents c1(L), we get the following
variant of (1):

deg
(
c1(L)2d−1

)
=

1

2
deg

(
cd(−TX)

)
Hence 1

2
of the Segre number is the degree of a zero cycle on P.

One can do somewhat better: There is a commutative diagram

X
π←−− P(ΩX)

F

y ρ

y
X(2) π(2)◦η←−−− P

id

y η

y
X(2) π(2)

←−− P(ΩX)(2)

Here F and η ◦ ρ are the relative Frobenius morphisms. One finds

(2) 2
(
π(2) ◦ η

)
∗

(
c1(L)2d−1

)
= cd(−TX(2)) = F∗

(
cd(−TX)

)
Hence one gets in characteristic 2 not only the 2-divisibility of the
image of the Segre class in CH0(Spec k) = Z (the Segre number) but
of its image in CH0

(
X(2)

)
.

In the case of curves this is long known: The line bundle ΩX(2) has
a canonical square root, namely F∗(OX)/OX(2) . (See [2], [1], [5].)
Note: (2) is not yet contained in the text.

There is another result in this text, Proposition 1, which together
with Riemann-Roch and the Hattori-Stong theorem yields the follow-
ing: Let P ∈ Z[c1, . . . , cd] be a polynomial of degree d (with deg ci = i),
and suppose that there is a p-power q such that for any compact almost
complex manifold X of dimension 2d the number P (X)/q is integral.
Then for any smooth variety X in characteristic p of dimension d, the
number P (X)/q is the degree of an integral zero cycle on X(pd).

Another example of such divisibilities has been provided by Deligne:
For a smooth surface X in characteristic 2, let F : X → X(2) be the
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relative Frobenius. Then one has in CH0

(
X(2)

)
:

(3) 4c2

(
F∗(OX)

)
= (c2

1 + c2)(TX(2))

Taking degrees, one gets

deg
(
c2

(
F∗(OX)

))
= 3 Todd(X)

Note: (3) is not yet contained in the text.

I have learned Lemma 2 from Deligne. I don’t have a reference for
it. I am also wondering about a reference for Lemma 1, Lemma 3 and,
in particular, for Lemma 4.

2. Preliminaries

References: [4, Section 7].
For the Frobenius maps we use the following notations. Let X be a

scheme in characteristic p.
The absolute Frobenius is denoted by

f = fX : X → X

If X = Spec R is affine, then f is given by the p-th power map

ϕ : R→ R

ϕ(a) = ap

For a sheaf M of OX-modules let

M [p] = f ∗(M)

be the pull back of M along f . Similarly, in the affine case X = Spec R
we denote for R-modules V

V [p] = V ⊗R,ϕ R

Here the tensor product is understood so that va⊗ b = v⊗apb and the
R-module structure on V [p] is given by (v ⊗ a)b = v ⊗ ab.

The symmetric algebras are denoted by

S•M =
⊕
k≥0

SkM, S•V =
⊕
k≥0

SkV

There is a natural morphism

jM : M [p] → SpM

given locally by

jV : V [p] → SpV

jV (v ⊗ a) = vpa
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Let

B(M) = S•M/〈jM(M [p])〉

be the quotient of the symmetric algebra of M by the ideal sheaf gen-
erated by the image of jM .

Similarly we understand B(V )....
The natural multiplication map

B(M)⊗B(M ′)→ B(M ⊕M ′)

is an isomorphism.
For a line bundle L one has

B(L) = S•L/〈L⊗p〉 = OX ⊕ L⊗1 ⊕ L⊗ ⊕ · · · ⊕ L⊗(p−1)

Lemma 1. Suppose that M is a vector bundle on X of rank n. Then

(1) jM is a monomorphism.
(2) If M is invertible (n = 1), then jM is an isomorphism, so that

M [p] = M⊗p.
(3) B(M) is a vector bundle of rank pn.

Proof. The question being local, we may assume that X = Spec R and
that M is given by a free R-module V with basis ei, i = 1, . . . , n.
Then S•V is the polynomial ring R[e1, . . . , en]. Moreover V [p] is free
with basis ei ⊗ 1, i = 1, . . . , n and jV is given by jV (ei ⊗ 1) = ep

i .
From this (1) and (2) are clear. As for (3), note that

B(V ) = R[e1, . . . , en]/〈ep
1, . . . , e

p
n〉 =

n⊗
i=1

R[ei]/〈ep
i 〉

Better:

B(L1 ⊕ · · · ⊕ Ln) = B(L1)⊗ · · · ⊗B(Ln)

�

Remark 1. Let K0(X) denote the Grothendieck group of vector bundles
on X. There is the ring homomorphism f ∗ : K0(X)→ K0(X) induced
by the absolute Frobenius. Since f ∗ is on line bundles the p-th power
map (cf. Lemma 1 (2)), it follows that f ∗ is the p-th Adams operation
in K-theory.

Let k be a field of characteristic p and let X be a scheme over k. The
structure morphism of X is denoted by πX : X → Spec k. The relative
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Frobenius is described by the following commutative diagram

X
F−−→ X(p) W−−→ X

πX

y π
X(p)

y πX

y
Spec k

id−−→ Spec k
fk−−→ Spec k

Here the right square is Cartesian and defines X(p) as the fiber product
of X and k over k with respect to the absolute Frobenius, with W and
πX(p) the corresponding maps. One has fk ◦πX = πX ◦fX . The relative
Frobenius F is the unique map with W ◦ F = fX and πX(p) ◦ F = πX .

The morphism W : X(p) → X is flat, since it is the pull back of the
flat morphism fk. If X is a localization of a scheme of finite type over k,
then F is finite.

Lemma 2. Suppose that X is smooth over k of dimension d. Then F
is flat and finite of rank pd.

For the induced maps F∗ : K0(X) → K0

(
X(p)

)
, F ∗ : K0

(
X(p)

)
→

K0(X) one has

F ∗(F∗(x)
)

= [B(ΩX/k)] · x
for x ∈ K0(X).
Better:

F ∗ ◦ F∗ is multiplication by [B(ΩX/k)].

Proof. For the first claim see [4]....
We consider the following commutative diagram of short exact se-

quences:

0 −−→ I −−→ OX ⊗k OX
µ−−→ OX −−→ 0

h

y y id

y
0 −−→ J −−→ OX ⊗O

X(p)
OX

µ−−→ OX −−→ 0

Here µ denotes the multiplication maps with kernels I, J and the verti-
cal arrows are the natural maps. By definition one has I/I2 = ΩX/k and
J/J2 = ΩX/X(p) . Moreover h induces an isomorphism I/I2 → J/J2.
Let

grI(OX⊗kOX) =
⊕
n≥0

In/In+1, grJ(OX⊗O
X(p)
OX) =

⊕
n≥0

Jn/Jn+1,

be the sheaves of graded rings associated to the filtrations induced by I,
J , respectively, and let

gr(h) : grI(OX ⊗k OX)→ grJ(OX ⊗O
X(p)
OX)
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be the homomorphism induced from h. Since X is smooth, the natural
ring homomorphism

α : S•(I/I2)→ grI(OX ⊗k OX)

with α the identity on I/I2 is an isomorphism. For x ∈ J one has
xp = 0; namely, for a ∈ OX one has (a⊗1−1⊗a)p = ap⊗1−1⊗ap = 0
since ap is inOX(p) . Hence gr(h)◦α factors trough a ring homomorphism

β : B(I/I2)→ grJ(OX ⊗O
X(p)
OX)

It is not difficult to see by local considerations that β is an isomorphism.
Composing β with the inverse of B(h) : B(I/I2)→ B(J/J2) we obtain
an isomorphism

β : B(J/J2)→ grJ(OX ⊗O
X(p)
OX)

of OX-modules.
Let M be a OX-module. Then

F ∗(F∗(M)
)

= M ⊗O
X(p)
OX = M ⊗OX

OX ⊗O
X(p)
OX

The J-filtration induces a filtration on F ∗(F∗(M)
)

with associated
graded module

M ⊗OX
grJ(OX ⊗O

X(p)
OX)

... �

Let E be a finitely generated field over k. We denote by Ep ⊂ E the
image of the p-th power homomorphism E → E and by

E = kEp ⊂ E

the subfield generated by Ep and k. If E is generated as a field over k
by x1, . . . , xN , then the same is true over E. Since xp

i ∈ E, it follows
that E is finite over E.

Let
E(p) = Ep ⊗kp k

We consider the maps

Ep f−→ E(p) F−→ E

with f(a) = a ⊗ 1 and F (a ⊗ b) = ab. Thus F ◦ f is the natural
inclusion. Let m be the kernel of F .

One has mp = 0. Indeed, let x ∈ E(p). Then xp is in the field

Ep ⊗kp kp = Ep

If F (x) = 0, then F (xp) = 0 and therefore xp = 0.
The ideal m is the unique maximal ideal of E(p). Its residue class

field is
E = F

(
E(p)

)
= kEp ⊂ E
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We denote by `(E/k) the length of the ring E(p).

Lemma 3. The extension E/E is finite.
The ring E(p) has finite length.
Let [E : E] = dimE E, let ` be the length of E(p), and let d be the

transcendence degree of E/k. Then

[E : E] = `pd

Proof. Let k ⊂ F ⊂ E be an intermediate field with F/k separable and
E/F finite. For instance, if x1, . . . , xd is a transcendence basis of E/k,
one may take F = k(x1, . . . , xd). Consider the diagram

E(p) rE−−→ E −−→ Ex x x
F (p) rF−−→ F −−→ F

Since F/k is separable, F (p) is a field and rF is an isomorphism. Hence

dimF (p) E(p) = length(E(p))[E : F ]

On the other hand

dimF (p) E(p) = [Ep : F p] = [E : F ]

Since F/k is separable, one has

[F : F ] = pd

(For instance, if F = k(x1, . . . , xd), then F = k(xp
1, . . . , x

p
d).) Finally

[E : F ][F : F ] = [E : E][E : F ]

The claim is now immediate. �

Lemma 4. Let X/k be of finite type. Then for W ∗, F∗ : CHr(X) →
CHr

(
X(p)

)
one has

F∗ = prW ∗

on the cycle groups

Cr(X) =
⊕

x∈X(r)

Z

See also [9, Proposition 2] for smooth schemes of finite type over a
finite field.

Proof. Let x ∈ X be a point with dim {x} = r and let y = F (x). Let
further OX,x, mx, κx = OX,x/mx be the local ring at x, its maximal
ideal, and its residue class field, respectively. Then

F∗([x]) = [κx : κy][y]
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and
W ∗([x]) = length

(
OX(p),y ⊗OX,x

κx

)
[y]

Since

OX(p),y ⊗OX,x
κx =

(
OX,x ⊗k,ϕ k

)
⊗OX,x

κx = κx ⊗k,ϕ k = κ(p)
x

the claim follows from Lemma 3.
Better:

For a morphism h : Z → X there are the Cartesian diagrams

Z(p) h(p)

−−→ X(p)
π

X(p)−−−→ Spec k

W

y W

y f

y
Z

h−−→ X
πX−−→ Spec k

If h is a closed immersion, then W ∗ ◦ h∗ = h∗ ◦ W ∗. If h is a open
immersion, then h∗ ◦W ∗ = W ∗ ◦ h∗, see [3], [8]. Thus we may replace
X by Spec κx. This case follows easily from Lemma 3. �

This can be generalized as follows:

Let S be a scheme over a field of characteristic p and let X be a
scheme over S. The structure morphism of X is denoted by πX : X →
S. The relative Frobenius is described by the following commutative
diagram

X
F−−→ (X/S)(p) W−−→ X

πX

y π
X(p)

y πX

y
S

id−−→ S
fS−−→ S

Lemma 5. Let S be smooth over k of dimension e and let X/S be of
finite type. Then for W ∗, F∗ : CHr(X)→ CHr

(
(X/S)(p)

)
one has

F∗ = pr−eW ∗ if r ≥ e

pe−rF∗ = W ∗ if r ≤ e

on the cycle groups

Cr(X) =
⊕

x∈X(r)

Z

Proof. No proof yet.

�

Let πX : X → Spec k be a scheme of finite type over k. Let K0(X)
denote the Grothendieck group of coherent OX-module sheaves on X.
Let K0(X)(d) ⊂ K0(X) be the subgroup generated by sheaves M with
dim supp M ≤ d.
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Proposition 1.

(πX)∗
(
K0(X)(d)

)
⊂ (π

X(pd))∗
(
CH0(X

(pd))
)
⊗ Z(p)

Proof. For d ≥ 0 and a OX-module sheaf M on X let

Θd(M) = F∗(M)− pdf ∗(M)

This is a sheaf on X(p). Note that

(πX(p))∗
(
Θd(M)

)
= (1− pd)(πX)∗(M)

This needs proof!!!

Clearly dim supp Θd(M) ≤ dim supp M . The two diagrams

CHd(X) −−→ K ′
0(X)(d)/K

′
0(X)(d−1) −−→ 0

F∗,f∗
y F∗,f∗

y
CHd(X

(p)) −−→ K ′
0(X

(p))(d)/K
′
0(X

(p))(d−1) −−→ 0

for F∗, f ∗, respectively commute and have exact rows. By Lemma 4
one has dim supp Θd(M) ≤ d − 1 if dim supp M ≤ d. Argue directly
for sheaves!!!

Let us define for d > 0

θd : K0(X)(d) → K0(X
(p))(d−1) ⊗ Z(p)

θd([M ]) = (1− pd)−1[Θd(M)]

Then

(πX)∗ = (πX(p))∗ ◦ θd : K0(X)(d) → K0(k)⊗ Z(p) = Z(p)

Consider the map

θ̄d = θ1 ◦ θ2 ◦ · · · ◦ θd : K0(X)(d) → K0(X
(pd))(0) ⊗ Z(p)

Hence

(πX)∗
(
K0(X)(d)

)
⊂ (π

X(pd))∗
(
K0(X

(pd))(0)

)
= (π

X(pd))∗
(
CH0(X

(pd))
)
�

Simplify this! For perfect k look at

F ′ = (W−1) ◦ F : X → X. Then F ′ acts with eigenvalue pr on

CHr(X)....

Corollary 1. If k is perfect of characteristic p, then

(πX)∗
(
K0(X)

)
⊂ (πX)∗

(
CH0(X)

)
⊗ Z(p)

In other words, the Euler characteristic of a OX-module sheaf on X is
the degree of a p-integral zero cycle on X.
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3. Exploiting Riemann-Roch

[6][7]

4. Examples

Lemma 6. Suppose dim X = 1. Then

F∗(OX − ΩX/k) = OX(p) − ΩX(p)/k

F∗(OX + ΩX/k) = p
(
OX(p) + ΩX(p)/k

)
Moreover, if p = 2, then

2
(
F∗(OX)− 2OX(2)

)
= ΩX(2)/k −OX(2)

and

F∗
(
F∗(OX)− 2OX(2)

)
= F∗(OX(2))− 2OX(4)

and if p is odd, then

F∗(OX)− pOX(p) =
p− 1

2

(
ΩX(p)/k −OX(p)

)
Notation: bundles versus classes. Better notations!

Lemma 7. Suppose dim X = 2 and p = 2. Then

F∗(OX − Ω2
X/k) = 2

(
OX(2) − Ω2

X(2)/k

)
4F∗(OX) = ...

Lemma 8. Suppose dim X = 2 and p = 3. Then

....

9F∗(OX) = ...

Lemma 9. Suppose dim X = 2 and p > 3. Then

....

p2F∗(OX) = ...

5. Further Remarks

[X → X(p)] ∈ Ω(X(p)) new natural elements in bordism (= in any
oriented cohomology theory).

Compress [X]: Over Z(p), [X] is represented by sums [Y → X(pd)].L,
dim Y = 0, L= Lazard ring.
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