On Hilbert Satz 90 for K3 for quadratic extensions
by Markus Rost Regensburg, September 1988

This is a TEXed version (Sept. 1996) of the original preprint.

I. Preliminaries

Notation: K, F = KMF (for convenience)

1) For a variety X/F denote by AP(X, K,,) the homology of

D KiopuKw)-5H P K, ,Kv)-% @ K, 1K)

veX(P—1) ve X (P) ve X (p+1)

2) For X projective, the norm homomorphism in Milnor K-theory induces a map

N:A(X,K,)— K,F, N= Y Ngur

’UEX<0>

where Ay(X, K,,) denotes the cokernel of

D KpnKw) -5 P KK

’UEX(l) ’UEX(O)

3) Given a fibration 7 : X — Y, one has a filtration of the complex 1) by codimension
in Y which induces a spectral sequence

EPM = @ Al (v), Kyp) = AP(X, K,).

veY(y)

4) For a quadratic form ¢ : F* — F (which may singular) I denote by X, C P*~1 the
corresponding quadric.
Moreover I put

Dy () = N(Ao(Xy, Kn)) C K
If ¢ is singular, then D, (p) = K, F.
One has
_ [ KoF if @ is isotropic
Dolg) = {ZKUF if ¢ is non-isotropic.
If o represents 1, then D;(¢p) is the subgroup of F'* generated by all nonzero ().



I1. The results

Theorem A
Let X = X, with ¢ = <a,b> — <c>. Then there are natural isomorphisms

A2(X; Kg) = D0(<<CL, b>>) &) KQF/D0(<<CL, b, C>>)
AN(X, K3) = Di(<a,b>) & K1F/Di(<a,b,c>)

compatible with multiplication.

Consequences:

Theorem B
Let Y = X, with ¢ = <1, —a, —b>. Then, for n <2,

N :AYY, K, ;1) — K,F s injective.

Theorem C
a) Nrd : K9 D — K, F is injective for quaternion algebras D

b) KL% KyL 5 KyF is exact (L = F(y/a): Gal (L/F) = (o))
c) K3F/2— H3(F) is bijective.

Proof of Thm B = Thm C
a)  One has a commutative diagram
ANY, K3) = AY(Y: K&) = H'(Y; K3) = K,D

Nrd

KyF
Since r is surjective and N is injective one has Ker Nrd = 0.

b)  This follows from Theorem B as shown in my first preprint on
Hilbert 90 for K.

c)  This follows from b) by Merkuriev’s arguments.



IT1I. The basic result

Let f € Oanv be a polynomial and let ¢ be a Pfister form over . We are concerned with
the following subcomplex of the usual Milnor complex for AV:

B Dweo<f)») -5 @ Die<f(v)>)

ve(AN)(P—2) ve(AN)(p—1)
@ e (avyo Dot ® < f(v)>) — 0.

The homology groups of this complex are denoted by

APTHAYN D, (v @ <f>)) and AP(AN, D,(v @ <f>)).

Theorem D
Let ¢ = <1, —a, —b,abc>. Then

N : Ao(X@, Kl) —>K1F

is injective. Its image is Dy(<Ka, b>p/5) N K1 F C K1 F(\/c).

The injectivity of N is proved in [Merkuriev, Suslin; On the norm homomorphism in
degree 3|. There is a proof without using Quillen- K-Theory similar to Merkuriev’s proof
of Ag(Y, K;) — K F or a conic Y. I will consider this elsewhere.

The main technical result in the proof of Hilbert Satz 90 for K3 is the following:

Theorem E:
i) For any quadratic from ¢ over F":

AN(AN, D)) =0
ii) Leta,be F* ¢ =<1>,de F; Then for n =0, 1:

~ D, (<Ka,b KnF
AN AL, Dy (<0, bp — abds>) = LelSelzio)

where K = F(v/d) and (% € Op: is the polynomial corresponding to .
(so ¢(t) =)

iii)  A°(Al, Di(<a,bp — abd>) = Dy(<a>>) + Ng/p(D1(<a,b>k))
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iv) Let ¢ = <a> and c € F*. Then
AY(A? Dy(<a, b + ) = 0,

where 1/3 € Opz is the polynomial corresponding to 1.

We need the following (well known?) lemma:

Lemma
a) Di(Ka>pe) N K F = Di(<a>) + Di(<Kae>)
b) Let ¢ be a Pfister form; then

Di(¢) N Dy(<e>) = 2K F + Np( o) (D1 (Vr(ve)))-

Proof of a)
Let u € F(y/a,+/e)* such that Np( /a /e (e (u) € F*. Multiplying u by an element from
F(y/a)* we may assume u = o + Sy/a + vy/e; a, 3,7 € F. One must have a -y = 0. ...

Proof of b)
Any element of D;(¢) is in D;(<a>>) for some a such that ¢p( z ~ 0. Hence we may
assume ¢ = <a>. But

N(F(Va)) N N(F(Ve)") = (F)* - N(F(va, Ve)"):
To see this suppose u € F'(y/a)*, v e F(y/e)* such that N(u) = N(v). One checks easily
N(u) = N(v) = (tr(u) +tr(v)) 2N (u + ) qed.

Proof of i)
By the norm principle we may assume that ¢ is isotropic. Then

AN(AY D, (p)) = AN(AYN, K,) = 0.

Proof of ii)
Put Q = AY(A', D, (<a, bp — abd>>>). In view of i) we find that € is the cokernel of

(*) Dyq1(Ka,bp(n) —abd>>) GB Dy (Ka,bp(v)—abd>>)
n+1(<<a>>}((n)) Dy (< <tl>>K(U))

veAl®

where 7 is the generic point of Al



Let W = {22 — ax3 — ba? + abd = 0} C A3. Then W = W\Y, where
W = X1 —a-baba>, Y = Xci—a—b>-
We have an exact sequence
ANY Kyyy) — A2(W, Kpy9) — A2(W, K, 5) — 0.

By Theorem D and the computation AY(Y, K, 1) = D,(<a,b>) it suffices to show
Q= A2(VV, Kn-i-?)'

Consider the projection 7 : W — Al (z, 15, 23) — x3. The corresponding spectral se-
quences yield exact sequences

(%) AN T ), Kngo) == @ AN (v), Kngr) — A2(W, Kppp0) — 0.
veAlW

The fibers 77 !(v) are affine conics given by 2z} — ax3 — (bp(v) — abd) = 0. Hence
() = Xc1—a—(bp(0)—abd)> \ {SpecL} and

Al (ﬂ-_l(v)y Kn+1) = Al (X<1,fa,f(b¢(v)fabd)>7 Kn+1)/Z*KnL

Taking norms gives a map from (*#) to (x) which yields the desired isomorphism
142<V[/7 Kn+2) == Q

Proof of iii)

We have
AYAY, Dy(<a, bp — abd>)) =
= Di(<a,bt* — abd>) N K F (in K F(t))

= {feF*|{a,bt? —abd, f} =0in K3F(t)/2}
= {feF |{ab f}=0in K3F/2, {a, f} = 0in KyF(Vad)/2}
= Di(<a,b>) N Di(<Ka>p(aa)

= Di(<a,b>) N (D (<a>) + Di(Kd>)) by the Lemma a)

= Di(<a>) + (Di(<a,b>) N Dy(<d>)

= Di(<a>)+ Ngyr(Di(<Ka, b>k)) by the Lemma b).
qed.



Proof of iv)
Consider the projection m : A?— Al (x,y) —y where z,y are coordinates such that

~

Y = 2% — ay®. 7 induces the following exact sequence (where d = y? — abc € F[y] = Oa1)
AV (AL, Da(<a,bp — abd>)) L @ A°(Ak ), Di(<a,bp — abd(v)>>)) =
veAr®
AY(A2, Dy(<a, b + ) =
AY (A, Da(<a,bp — abd>)) 25 @ A'(Ak,); Di(<a,bp — abd>)).
veAl™

We show that d’ is surjective and that d” is injective.

Surjectivity of d’
Consider the following diagram

KyL(y) d P KiL@r K(v) ——— 0
veAD)
NL/F lNL/F
A" (AL, Da(<a, bp — abd>) L @ A"(Ak,), Di(<a, b — abd(v)>)
veAl®
P« T .

D Di(<a,b> k) —— 0
Wez@)

D2(<<a, b>>F(Z))

The top row is the surjective tame symbol for A}.
Clearly D, (<a>) C A°(A', D,(<a,bp — abd(v)>>) hence Ny is well defined.

To describe the bottom row let

7 = {2* —y* + abcz® = 0} C IP?

and

Z =7\{z=0}.
Clearly Z ~ IP! and Z ~ A'\{rational point}. By i) the bottom row is exact.
The maps p, are induced by the double cover p : Z — Al, [z, y,1] —[y, 1]. It has y? = abc
as branching point and one has K(p~'(v)) = K(v)(m) for v € Al. Note that (with
v = p(w)) pu(Dn(Ka, B>k w))) C A°(Ak (), Dn(<Ka,bp — abd(v)>) because
D, (<a,b>) C A°(A', D, (<a,bp—abd>) if d is a square. By iii) we know that p, &Ny /p
is surjective on the right side (degree 1). Consequently d’ is surjective.



Injectivity of d”’
One has the following diagram
0 0

I

AI(A}?(y), D2(<<6L, b@ - abd>>)) d—”> @ AI(A}((U)’ D1(<<CL, b@ - a’bd>>))
veAlW

Di(<a,b>) — Di(<a, 0>y va) N KiF(y) ) (D1(<<a,b>>K(U)(m)) N K, K(v))

veAl®
ﬁ T

Di(<a,b>) ——— Di(<a, b>p(y) 4 P Di(<a, b> k) — 0
veAl®

Here the columns are exact and given by ii). The bottom row is exact, because
Dy (<a,b>>py)) N K1 F = Di(<Ka,b>) and by i). The middle row is exact, because
Kerd = Di(<a,b> g,y va) N K1 F and F(y)(V/d) = F(y)(v/y2 — abe) is rational over F.
Now an easy diagram chase does the job.



IV. Proof of Thm A

Proposition 1
Let Z = X«qaps- Then

AY(Z,Ky) = Dy(<a,b>) ® K, F.

Proof
Let X = X< _q-p>. Then the spectral sequences for Y x Z — Z,Y x Z =Y yield exact
sequences

0 — AYZ, A(Y, Ky)) — AYZ x Y, Ky) — AYNZ, A(Y, K,)) —2— ...

I
0 — AYY,AYZ, K,)) — AYNY x Z,K,) — AY, AY(Z, K,)) — 0.

Because Y is trivial over Z and Z is trivial over Y we find

AYZ, A%Y, Ky)) = AY(Z, K>)

AYZ, AYY, Ky)) = AYZ, K,) = K, F

AYY, A%(Z, Ky)) = ALY, K,) = Di(<a, b>>)

ANY, AYNZ,Ky)) = A=(Y, K\ F & K,F) = K;F & K, F.
(

The result follows immediately (consider e.g. the situation one degree lower and use mul-
tiplicativity) qed.

Let U = X\Z, where X is as in Theorem A and Z C X is considered as hyperplane
section. There is an exact sequence

ANZ, Ky) - AX(X, K3) — AU, K3).
One finds that the kernel of i, is the image of
Di(<a,b,c>) — Di(<Ka,b>) & K1 F
U — (2u, —u)

I omit the proof here. Clearly the hard point in the proof of Theorem A is the surjectivity
of i,. I show A%(U, K3) = 0.

Compactification of U
Let U C A% x IP? be the variety defined by

0= SL’% - CL.CC% - x%[(y% - ay%)b+ C] ) [1’1,.772,(133] € IP2 ) (ylvy2> € A27
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and let V = UnN{x3 =0} C A2 xzIP'. Note that U = U\ V and V = A2 x Spec L. We
have an exact sequence

A2<U, Kg) — 142(177 Kg) — Az(V, KQ)
Because A%(V, Ky) = 0 it suffices to show:

A2(l_], {{3) =0
Let 7 : U — A? be induced by the projection A% xTP? — A%, 7 induces a spectral sequence
E?q = @ Aq Kg p) = Ap+q<U Kg)
veA2®

It suffices to show EY? = 0 for p + ¢ = 2. Note that the fiber over v is the projective
conic Yoi _q_sw)> where f = (yi — ay3)b + ¢ € Opz. It is singular over
veW ={y} —ayi+b'c=0} C A%

Proof of E§’° =0
We have for n < 2:

Consider the diagram

@KQ —d @Kl )—)O

veaz® veAz®
l?" I
d2 0 90
0 —1 0 —1 )
P A(r 7 (v), Kz) — P A (x ' (v), K1) — E3° — 0
veaz® vea2®

b 2
P KoL or K(v)) - P Ki(L®r K(v)) — 0
veW (0) veWw (@)

Here r is induced by restriction and 7’ is induced by identifying L ®p K (v) with the
algebraic closure of K (v) in the function field of 7=!(v) for v e W.
The top row is exact, and so is the bottom row, because
W x Spec L ~ IP' x Spec L\{2 L-rational points}.

Since r ® r” is surjective we find E5° = 0.



Proof of E;’l = 0.
We have the following diagram with exact columns:

0 0

! !

P A7 (v), K3) — P A (r(v), Kr) — P ANrH(v), K1)
venz® veaz® veaz®
I I I
@D Da<a, f(v)>) & P Di(<a, f(v)>) -5 P Do(<a, f(v)>)

veA2® veA2® veA2?

! ! !

0 0 0

The homology of the top row is E21’1. But the bottom row is exact by Theorem E iv)

(page 3).
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V. Proof of Thm A —> Thm B

Let AYY,K,)~” =Ker N Cc AY(Y, K,,).
Specialization arguments (which will be considered elsewhere) show that it suffices to
show that

(%) recoyr s ANY, Ks)™ — AN (YVe(x), K3)™

is surjective (where X is as in Thm A). To prove this I consider the following groups and
maps (to be described below) (n = 2,3)

A (Yp(x),Kn)™
Tr(x)/F(AL(Y,Kn)™)

«

AO(XvAl(YvKn)) N Dn—1(<a7b>>p(x>)ﬂKn_1F
Tr(x) (ALY, Kp)) Dp_1(Ka,b>)
B
A%(X,AL(Y,Ky)) ~
m(AL(X XY, Kn))

)

Ker (A2 (X, Kn) — A2 (XF(y), Kn)) —= n_QF/Dn_2(<<a, b, C>>)

Here ¢ denotes the isomorphism from Theorem A and N is induced by the norm map.
Below I define «, 3,d,v and I show that a, (3,7, d are injective (in fact they are isomor-
phisms with the exception o = 0) and that N = ~yed~y. Clearly this implies (x), because
Noa=0.

Definition and injectivity of o
For n = 2 we know already A!(Y, K,,)~ = 0. For n = 3 consider the commutative diagram

ANY, K3)™ — AN (Yr(x), K3)~ 0

l

ANY, Ks) — ANV, Ks) = @D A'(Yicw), K2)

veX (1)
N N lN
veX )

Here d’' is the differential E? L Ell’l from the spectral sequence

EP? = P A (Yi() Ks—p) = AP(X x Y, K3).

veX ()
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The columns are exact by definition or by the knowledge for the Ks-case. Hence
A'(Yrx), K3)~ C Kerd = A°(X, AN(Y, K3)).
We define « to be the induced map. It is injective because Ko F' — Ky F(X).

Definition of 3
Just projection. 7 is induced by the spectral sequence EY? = AP(X, A1(Y, K,))
= APTIU(X x Y, K,).

Injectivity of 3
The spectral sequences for X x Y — X and Y x X — Y yield exact sequences

0,1
d2

0— AY(X, AV, K,)) == AYX x VY, K,) - AY(X, ALY, K,)) = . ..
0— ANY, A%(X, K,)) —= ANY x X, K,)) — A%(Y, AY(X, K,,)) — 0

Because X is trivial over Y we have
i) Al(Y, AO(X, K,)) = Al(Y, K,)
ii) AO(Y, Al(X, K,)) = AO(Y, K,_1) ® Pic(X).

We have to show Im7 = Im 7 o1 by i).
But

Im7r~ _ Im~7 =0:
Immoi  Im#os ~ )

here the last equation follows from the obvious factorization of the isomorphism in ii) via

AYX, AYY, K,)).

Definition and injectivity of 4
Consider

0,1 )
AX XY, K,) 5 AYX, A(Y, K,)) 5 A2(X, AYY, K,)) — AX(X x Y, K,)
- ANY, A%(X, K,)

N
A2(X, Kn) m A2<XF(Y)7 Kn)

Here 7, dg’l and ¢ are from the spectral sequence for X x Y — X, 7 is from the spectral
sequence for X x Y —Y and r is induced by multiplication with A%(Y, Ky) = CH'(Y).
Clearly dg’l omr = 0 and 7 o dg’l = 0. Moreover, r is bijective for n < 3, because
KK = A%Yg, K,,) for m < 2.
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Now put § =r~1o dg’l. J is injective because there are no more differentials starting from
or landing in Eg’l.

Definition and injectivity of ~
v(U mod D, _s(<Ka,b,c>)) =U - {c} mod D,_1(<a,b>). By quadratic from theory -y
is well defined and injective (n < 3).

Proof of N = ~ed3

We know already that v is injective. If n = 2 we know that N is bijective; because
the target group is 0 or Z/2 both maps must coincide.

For n = 3 use multiplication with K; and the injectivity of ved5. Q.E.D.
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