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INTRODUCTION

This text contains purely algebraic considerations in the mod 2 Lazard ring L.

We define operations

Sq*: L — L.
and prove a vanishing property for them (Theorem 2). We apply this to obtain the
canonical logarithm of the universal mod 2 Lazard formal group law. This approach
does not involve the usual game with binomial coefficients.

This text is preliminary in a manifold sense: We only define the logarithm, but do
not describe it in more detail. Missing are also the Landweber-Novikov operations.
The geometric analogies of the material are only mentioned partially in some side
remarks. No attempt has been made on the mod p-analogies.

1. BASIC DEFINITIONS

Let R be a Fs-algebra. By a mod 2 formal group law we understand a power
series
F(z,y) € R[[z,y]]

such that
(1) F(z,0) = F(0, ) z,
(2) F(z,F(y,2)) = F(F(2,y),2),

(3) (,x):F( )
(4) F(z,z) =

These equations are understood in the rings R[[x]], R][x,y, 2]], etc.
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It follows from (1) that
Flz,y)=xz+4+y+ Z ai ja'y!
i,j>1

with a; ; € R. Sometimes we write for simplicity
F(‘r7y) = Zai,jxiyj7
1)

thereby understanding i,5 > 0, i 4+j > 1, a1,0 = ap,1 = 1, and a; 0 = ap; = 0 for
1,7 > 1.
Let
Z = Fg[um]
be the polynomial ring in the variables u; ;, ¢,7 > 1 and let

ICL
be the smallest ideal such that
Funiv(z,y) =z +y+ Z u; 'y
i,j>1
becomes a mod 2 formal group law over the quotient
L=L/I.

The ring L is called the mod 2 Lazard ring and Fyn;, considered as element
of L[z, y]], is called the universal mod 2 formal group law.
For any mod 2 formal group law

Flz,y) =z +y+ Z ai ;x'y’ € R[[z,y]]
ij>1
there exist a unique ring homomorphism
pr: L — R
with
pr(ui ;) = ai;.

All formal group laws considered in this text are mod 2 formal group laws. We
will call them simply “formal group laws” and L will be called “the Lazard ring”.

We consider L as a Z-graded ring with

degu; ; =1—1i—j.
For a Z-graded ring R we extend the grading to any power series ring R[[x1, ..., 2,]]
by associating the degree 1 to each of variables ;.

This way Funiv(z,y) € L[[x,y]] is homogeneous of degree 1. Also, the equa-
tions (1)—(4) are homogeneous. It follows that the ideal I is a homogeneous ideal.
Therefore the Lazard ring carries a Z-grading

L=@r*
k<0
with
U5 € Y=g,



COMPUTATIONS IN THE MOD 2 LAZARD RING 3

Remark. The cobordism ring of a space X can be described as

N*(X) = PN (X),
keZ
NE(X) = [X,, S AMO).

One has N*(X) = 0 for k > dim X. For nonempty X the groups N*(X) are
nonzero in non-positive degrees. The Lazard ring L is isomorphic to the unoriented
cobordism ring N* = N*(point).

Once in a while we will refer to these facts for some explanations. We will
certainly not make use of them, because this text is supposed as a preparation to
establish the isomorphism L = AN*.

The negative grading on L introduced above coincides with the natural grading
on N*. For k > 0 one has L* = N* = 0 and for k > 0 the group L=F = N7F is
the group of bordism classes of k-dimensional smooth compact manifolds.

2. A PRELIMINARY COMPUTATION

Let F(x,y) be a (mod 2) formal group law over R. We consider the (continuous)
homomorphism over R[[t]]

7: R[[t, z]] — RI[[t, =],
x— F(t,x).
Note that 7 is an involution:
(z) = F(t,F(t,z)) = F(F(t,t),z) = F(0,2) = x.
Lemma 1. Let f € R[[t,z]] with 7(f) = f. Then there exist a unique element
g € R[[t,u]] such that
f(t,z)=g(t,xF(t, ).
Proof. Let uw = z7(x) = xF(t,x). Then
u =1z’ + ta
for some a € R|[[t,z]]. Using standard arguments for power series rings, it follows
that
R[[t,2]] = R[[t, u]] & zR[[t, u]].
Note that 7(u) = u, so every element of the subring R][[¢, u]] is T-invariant. Write f
as
f(t,x) = g(t, u) + zh(t,u).
Then 7(f) = f implies
F(t,x)h(t,u) = zh(t,u).
However

F(t,o) —x =t+at Z a; o
4,521

is not a zero divisor. Thus A = 0. O
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3. OPERATIONS DEFINED BY POWER SERIES
Let
F(z,y) = Zai,jmlyj
i5J
be a (mod 2) formal group law over R and let
q(x) = Zcix”l € R][z]]

i>0

be a power series with ¢y invertible in R. Then
R[[z]] — R[],
z—q()

defines an automorphism of R[[z]] over R. In particular there exist the inverse
power series

g ' (z) € R[[x]]
with

We put
Fy(z,y) = q(F(¢ " (2),q " (v))) € Rz, y]].

This is a formal group law, obtained from the formal group law F' by means of the
coordinate change x — ¢(z). Therefore there exist a ring homomorphism

0y=pr,: L—R
such that

(5) a(F(z,y)) = Z 0q(ui)a(z) q(y)’.

We extend 6, to the continuous homomorphism

0,: L[z1,...,2.]] — R[[x1,...,2.]],
x; — q(x;).
Then
G_q (Emiv(dfk,ﬂil)) = q(F(a:k,xl)).
by (5).

This means for instance that the following diagram is commutative:
Z
Lllz]] — R[]
(6) al al
Z

Here the maps a are the identity on L resp. R and map z to F(z,y). The homo-
morphisms 6, are understood as above: they extend 6,: L — R by u — ¢(u) for
u=2x,v, 2.
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Remark. These considerations are the formal group analogies of a construction in
(unoriented) cobordism theory, see [1]. Given the power series ¢(z), one may define
for topological spaces X a natural transformation

O,: N*(X) - N*(X)®r R.
Here the tensor product is understood via the isomorphism L — N*, given by the
canonical formal group law in N* (P> x P>°) = N*[[z,y]], and via pp: L — R,
given by the formal group law F'.

The homomorphisms 6,: L[[z1,...,x,]] — R[[z1,...,,]] are the formal analo-
gies of the operations ©, for X =P x --- x P>,

The commutative diagram (6) corresponds to the functoriality of ©, with respect
to the map P> x P>° — P°°  the sum map for the Eilenberg-MacLane space P> =
H(Z/2,1).

The operations considered in the next section are the formal analogies of the
Steenrod squares in cobordism theory.

4. STEENROD SQUARES

Now let
R= L[]
be the ring of Laurent series over L, let
F(z,y) = Funiv(2,y) = Y i ja'y’ € B[z, y]]
4,J

be the universal formal group law considered as formal group law over R (so that
pr: L — R is the inclusion), and let
xF(z,t) _
4(z) = ——— e Ll{t,2]]t""] C Rl[«]).

Then
2

€ 2 i—1,5—1
q(l’) :QT"FT—‘F.T Z Ui ;T 7,
i,7>1
and z — q¢(x) defines an invertible endomorphism of R[[z]] over R. Thus we
may apply the construction of the previous section and get a ring homomorphism
04: L — R. We write Sq = 6,. Thus Sq is the ring homomorphism
Sq: L — L[[t]][t™"]

such that

(7) q(z ui,jxiyj) = ZSQ(ui,j)Q(x)iQ(y)j-

Note that ¢ is homogeneous of degree 1, and therefore Sq is homogeneous of
degree 0 (with respect to the Z-gradings given by the grading on L and by degz =

degt =1). We write
Sq = Z t=FSqF

keZ
with additive homomorphisms
Sq*: L — L.
Then Sq” is homogeneous of degree k, that is
qu(Ln) C Ln+k'
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The maps Sq” are called Steenrod squares. In the following we establish the prop-
erties to be expected from operations with this name.
The Cartan formula

Sa*(ap) = > Sq"(@)Sd'(8)

h+l=k

follows from the multiplicativity of the total Steenrod square Sq.
Since L is concentrated in non-positive degrees, it follows that

Sqf(a) =0 forae L™ k> —n.
The next theorem sharpens this a priori vanishing property.
Theorem 2. Let o € L™. Then
8) 8q" () = o?,
(9) Sqf(a) =0 fork>n.
Proof. By (7) we have

F(z,y)F(F(z,y),t) _ qu(m’j) <xF(x,t)>i (yF(y,t)>j |

t t t

or

Sq(ui;) i '
F(z,y)F(F(z,y),t) = Z a1 (eF(@.1)) (yF(y,1))’.
irj
The left hand side is an element of L[[t, z,y]] and is invariant under the involutions
given by

Te: t—t, x— F(t,z), yw—uy,
Ty: tet, e, y— F(t,y).
Indeed, we have
72 (F(z,y)F(F(z,y),t)) = F(F(t,z),y)F (F(F(t,z),y),t))
= F(F(m,y),t)F(:z:,y).

Similarly for 7.
The involutions 7, 7, commute, so we may apply Lemma 1 to them successively
and find that

(10) Fe,y)F(Fle,y),t) = 3 Quy(tuz)

with u, = 2F(t,x), uy = yF(t,y), and Q; ; € L[[t]]. Comparing coefficients we get

Salug) _ Qi; (1)

Fiti—1

This proves (9) for o = u; ;.
Moreover, setting ¢t = 0 in (10), we get

F(z,y)” =Y Qi (0)ay™.
i

Hence Q; ;(0) = u7 ;. This proves (8) for a = u; ;.
Since L is generated by the u; ;, the claims follow from the Cartan formula. [
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Remark. The vanishing properties
(11) Sqf(a) =0 forae L™ —n>k>n.
have the following geometric analogue:

Proposition 3. Let M be a compact n-manifold. The pair (P(TM),L(TM))
consisting of the projective tangent bundle of M and its tautological line bundle is
bordant.

Proof. By the strict blow up of a manifold Y in a submanifold Z we understand
the manifold X — Y obtained from Y by “cutting along Z”, that is by replacing Z
by the sphere bundle S(NV) of the normal bundle of Z in Y. If ¥ has no boundary,
then X is a manifold with boundary S(NN). The usual (real) blow up of Y in Z
is the quotient of the strict blow up by the involution v — —v on S(N). See [6,
p. 56-57] for details.

Now let X — M x M be the strict blow up in the diagonal. The switch involution
on M x M lifts to an involution ¢ on X. This involution is fixed point free. The
double cover X — X /o has as boundary the double cover S(TM) — P(TM). The
latter is the sphere bundle of the line bundle L(TM) which therefore extends to a
line bundle on X/o. O

One may represent the pair (P(TM),L(TM)) by a map f: P(TM) — P.
Then the proposition means that f is bordant.

Since dimP(T'M) = 2n — 1, we may represent the pair by a map f: P(TM) —
P27~1. The bordism group of P" injects into the bordism group of P>. Therefore
the map f will be bordant also as map to P?"~1. Thus we get a relation

2n—1

0=1/] € N (PP 1) = D A

The 2n relations of (11) are the formal analogies of the vanishing of the 2n com-
ponents of [f].

All the Wu-relations among Stiefel-Whitney numbers are encoded in these re-
lations. For instance the 0-th component of [f] is just w,(—TM)[M] € Fy. The
formal analogue of this is Sq"(a) = 0 for o € L™™.

These relations appear in some form in the approaches to the cobordism ring by
Quillen [7], [1] and Buonchristiano and Hacon [2], [3], [4], [5]

5. A CONTRACTING PROPERTY OF Sq"

For our power series
cF(x,t
q(z) = 72 L

we consider now the associated homomorphisms 6, (see section 3), which we denote
by Sq as well. Thus we have ring homomorphisms

Sq: L{f1, ..., 2] — LI [z, - - 2]

extending Sq on L and with Sq(z;) = q(x;).
Note that if we restrict to the polynomial rings, we get homomorphisms

Sq: Llx1,..., 2, — L{[t,x1,...,z.]][t 7]
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Again we write

Sq = Z t7F8q*
kEZ
with additive homomorphisms

Sa*: Llfa,....a,]) = L.,
of degree k.

Remark. These operations are the formal versions the Steenrod squaring operations
on N*(P® x -+« x P®).
Let
I=(x,...,2.)L[[x1,...,2.]] C L[[z1,...,2/]]
be the ideal generated by the z;.

We write
Lla1,...,z]| = PU*
keZ
with U” the homogeneous component of degree k.
Proposition 4. One has
Sq*(I"tFnuty c PR Ut
We will need and prove this only in the following special case:

Proposition 5. Forn > 0 one has
SqO(InJrl N Ul) C I2n+1 N Ul.

Proof. Since Sq° is homogeneous of degree 0, it suffices to show: Let n >0, a_,, €
L=, let further p = (p1,...,p,) be a multi-index with Y ps; = n + 1, and let
a=a_nxP. Then
Sq° () € 1?1,
We have

— Z t7*Sq*(a_p)t~ Y H(%F(x&t))pﬁ.

k<—n
Here we have used Theorem 2 to get the upper bound for the index k.
Multiplying both sides by ¢ we get
(12) tSq(a) = Z t"Sq™" " (a_y) H(ISF(:ES, t))"
h>0 s
with h = —k — n.
On the other hand we have
(13) tSq(a) = Sq* (@) + tSq°(a) + t2Sq (a) + - - - .
Since
F(z,t) =z +t+ ztP(x,t)
for some P € L[[t, z]], we have

[[F ety € 1" a1 + 2Lt 21, 2]
S
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Therefore, by (12),
tSq(a) € I*"*2 4t L 2Lt 1, . .., 2]

and (13) yields
Sq' () +tSq” () € 1?2 412+t
This proves the claim. 0

6. THE LOGARITHM
We apply this to the case r = 1 and write z = z1. So let I = zL[[z]] and

Ll = PU*.

keZ
Then
Ul=2F® 2L 'L 2.

Proposition 6.

(14) Sq°(z) —z € I*NUY,
and for m > 0 one has

(15) (S)™(I?nUY) c 1>+,
Proof. We have

zF(z,t 22 i1,
Sq(z) = (0 _ 2 +2z+ Z w2 T

t t =
1,521

and therefore

Sq°(2) = z + 2* Z Uip112"
i>0

This proves (14). Claim (15) follows from Proposition 5. O

Corollary 7. For any ly € U*, the series of elements
gm = (Sqo)m(g()) € Ul
is convergent in the I-adic topology on U'. The limit

loo = lim £,

depends alone on the class of £y in U'/(I*> NUY).
Since U'/(I? N U') = Fg, there is only one nontrivial such limit. It is obtained
for ¢y(z) = z and given by
¢ = lim (Sq°)™(2).
m—00
It is called the canonical logarithm of the universal formal group law. In the fol-

lowing we show that ¢ is indeed a logarithm.
Obviously we have

(16) Sq"(0) = ¢.



10 MARKUS ROST

The commutative diagram (6) yields the commutative diagram

Sq°

o SR

Ll[z,y]] — Rz, y]]-
with a(z) = F(z,y). Let B,: L{[z]] — L[[z,y]], By: L{ly]] — L[[z,y]] be the
inclusions. Further let
I= (@9l o]l

Lemma 8. Let £ € L[[2]] with degf =1 and let £’ = Sq"(¢).
Let further n > 0 and suppose that

a(l) = B.(0) + B,(¢) mod I+,

Then
a(l') = B (') + B,(¢') mod "1,

Proof. This follows from Proposition 5 and the fact that «, 3., 3, are compatible
with Sq°. O

Corollary 9. ((F({7!(z), (7 (y)) =z +y.
This clear from the Lemma and (16).

Remark. For the moment we have completely omitted a further description of the
logarithm. It is desirable to give the formal analogy of the description of the
coefficients of the logarithm in [8].
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