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Introduction

By a theorem of Albert [1, Theorem 11.9] a central simple algebra A of degree 4
contains a biquadratic subalgebra. The major point is to prove the existence of a
quadratic subalgebra. See [2] for a short proof.

One can show this also using the fact from projective geometry that, given 4
generic lines in 3-space, there are exactly 2 lines which meet them all. Namely,
for any (possibly non-split) A one considers a maximal commutative separable
subalgebra H of A and a generic element x ∈ A. Such data determine geometrically
4 lines in projective 3-space: The subalgebra H determines geometrically 4 points
and for each of these points there is the line through it and its image under x. The
2 lines which meet all those lines determine a quadratic subalgebra L of A.

It seems to be rather complicated to give explicit generators for L in terms of H
and x, in particular in characteristic 2 (cf. Section 4).

However there is a way to construct quadratic elements (described in Sections 1-
2) which is algebraically simpler. This construction is symmetric with respect to
reversing the product in A (i. e., replacing A with Aop). It works smoothly for
central simple algebras A of degree 4 with involution of second kind and the base
ring can be any local ring. A geometric interpretation is given in Section 5.

Once a quadratic subalgebra L is at hand, it easy to extend it to a biquadratic
subalgebra: Let y be a generic element in the orthogonal complement of the cen-
tralizer of L. Then L and y2 generate a biquadratic subalgebra. See Section 3.

In the Appendix we have added (mainly for fun) some formulas for the coefficients
of the characteristic polynomial in a central simple algebra of degree 4. They
occurred when trying to establish Lemma 1.
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1. Preliminaries

Let F be a field and let A be a central simple algebra of degree 4 over F . For
the characteristic polynomial of x ∈ A we use the notation

N(t− x) = t4 − T (x)t3 +Q(x)t2 − S(x)t+N(x)

where N : A→ F is the reduced norm of A.
For x ∈ A we consider the linear form

Φ(x) : Λ3A→ F

Φ(x)(y1 ∧ y2 ∧ y3) = T (xy3xy2xy1 − xy1xy2xy3)

Lemma 1. For x, y ∈ A one has

S(xy − yx) = Φ(x)(1 ∧ y ∧ y2)

Proof. This amounts to

S(xy − yx) = T (x2y2xy − x2yxy2)

To prove this identity it suffices to consider the case A = M4(Q). One has

6S(u) = T (u)3 − 3T (u2)T (u) + 2T (u3)

as can be easily seen from the case of diagonal matrices. Thus, if T (u) = 0 one has

3S(u) = T (u3)

and the claim follows from this with u = xy − yx and from T (vw) = T (wv). �

Remark 1. The formula for S in Lemma 4 in the Appendix yields a “denominator
free” proof of Lemma 1.

2. Construction of quadratic elements

Let H be a commutative subalgebra of A of dimension 4 and let x ∈ A.
The form Φ(x) restricts to a linear form Λ3H → F . We consider the associated

dual map
α(x) : Λ4H → H

defined by

(1) µ ∧ α(x)(ω) = Φ(x)(µ)ω

for µ ∈ Λ3H and ω ∈ Λ4H.
We fix a basis element ω ∈ Λ4H and write α = α(x)(ω).

Corollary 1. Let
ρ = ρ(x) = xα− αx

Then
T (ρ) = S(ρ) = 0

Proof. Clearly T (ρ) = 0 since ρ is a commutator. From Lemma 1 and (1) we get

S(ρ)ω = 1 ∧ α ∧ α2 ∧ α = 0

�

Let us write
∆(x) = Q(ρ)2 − 4N(ρ)
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Corollary 2. Let

θ = θ(x) = ρ2

One has

θ2 +Q(ρ)θ +N(ρ) = 0

The characteristic polynomial of θ is(
t2 +Q(ρ)t+N(ρ)

)2
Let x ∈ A with ∆(x) 6= 0. Then θ(x) generates a uniform quadratic subalgebra
of A. (A quadratic subalgebra L of A is called uniform if it is separable and if A is
as L-module of constant rank 8.)

Proof. The first claim is clear from Corollary 1. The second claim follows from

N(t2 − θ) = N(t− ρ)N(t+ ρ) =
(
t4 +Q(ρ)t2 +N(ρ)

)2
The final claim is then clear as well. �

Suppose (A,H) =
(
M4(F ), D4(F )

)
where D4(F ) denotes the 4 × 4 diagonal

matrices. Write H = e1F ⊕ e2F ⊕ e3F ⊕ e4F with ei the standard idempotents.
Then, with ω = e1 ∧ e2 ∧ e3 ∧ e4,

(2) α(x)(ω) = diag


x23x34x42 − x24x43x32

x31x14x43 − x34x41x13

x41x12x24 − x42x21x14

x13x32x21 − x12x23x31


For

(3) x =


0 1 0 0
1 0 0 1
0 1 0 0
0 0 1 0


one finds ∆(x) = 1.

Corollary 3 (Albert). There exists a uniform quadratic subalgebra in A.

Proof. Choose some H, ω as above with H separable. By Corollary 2 it suffices to
find x ∈ A with ∆(x) 6= 0.

As the computation for (3) shows, the polynomial ∆(x) is nonzero. Hence if F
is infinite, there exists x with ∆(x) 6= 0.

If F is finite, then A = M4(F ) and the claim is clear anyway. �

Remark 2. Note that we have made no assumption on the characteristic on F . In
fact, everything works over an arbitrary local ring.

Remark 3. Everything extends easily to the case of a central simple algebra of
degree 4 with involution of second kind.

Remark 4. One has α(x + h) = α(x) for h ∈ H. Thus x 7→ α(x) is a cubic form
on A/H with values in Hom(Λ4H,H).
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3. Existence of biquadratic subextensions

Let L be a uniform quadratic subalgebra in A and let θ ∈ L be a generator.

Lemma 2. For y ∈ A let
σ = σ(y) = yθ − θy

Then
T (σ) = S(σ) = 0

Let
∆′(y) = Q(σ)2 − 4N(σ)

Let y ∈ A with ∆′(y) 6= 0. Then θ and σ(y)2 generate a biquadratic subalgebra
of A.

Suppose A = M4(F ),

θ =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


and

y =


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0


Then ∆′(y) = 1.

Proof. This can be shown by inspection in the split case. Suppose A = M4(F ) and
that L is the subalgebra of matrices of the form

a 0 0 0
0 a 0 0
0 0 b 0
0 0 0 b


Then a commutator σ = yθ − θy is of the form

σ =
(

0 U
V 0

)
with U , V ∈M2(F ). The characteristic polynomial of σ is

t4 − t2 trace(UV ) + det(UV )

and one has

σ2 =
(
UV 0
0 V U

)
The element σ2 commutes with the elements of L and generates together with L

a biquadratic subalgebra as long as
(
trace(UV )

)2 6= 4 det(UV ). The last claim is
easy to check. �

Corollary 4 (Albert). There exists a biquadratic subalgebra in A.

Proof. If F is finite, then A = M4(F ) and the claim is clear. Otherwise one chooses
L and θ as above and picks y with ∆′(y) 6= 0 (cf. Corollary 3 and its proof). �
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4. More quadratic elements

We have seen that for generic x the element θ(x) generates a uniform quadratic
subalgebra L. The centralizer Q of L is a quaternion algebra over L.

In the following we give a description of generators for Q. This appears to be
somewhat complicated.

We assume charF 6= 2.
For x ∈ A consider the linear form

ϕ(x) : Λ3H → F

ϕ(x)(µ) =
∑
s∈S3

sgn(s)T (x2hs(3)xhs(2)xhs(1))− 2T (x)Φ(x)(µ)

with µ = h1 ∧ h2 ∧ h3, hi ∈ H, and let

β(x) : Λ4H → H

be the linear map with
µ ∧ β(x)(ω) = ϕ(x)(µ)ω

for µ ∈ Λ3H and ω ∈ Λ4H.
Let further

ψ(x), ψ′(x) : Λ4H → A

ψ(x) = xα(x) +
1
2
β(x)

ψ′(x) = α(x)x+
1
2
β(x)

We fix a basis element ω ∈ Λ4H and write ψ = ψ(x)(ω), ψ′ = ψ′(x)(ω).
Let Q be the subalgebra of A generated by ψ and ψ′. Note that ρ = ψ−ψ′ ∈ Q.

Let L ⊂ Q be the subalgebra generated by θ = ρ2.

Lemma 3. One has ψ2 = ψ′
2 ∈ F . The algebra L is in the center of Q.

Suppose H is separable. Then for generic x, L is a uniform quadratic subalgebra
of A and Q is the centralizer of L in A.

Proof. I know only a tiresome check in the split case (A,H) =
(
M4(F ), D4(F )

)
. �

5. Geometric interpretation

There is an interpretation of our construction in terms of a classical theorem in
projective geometry: For 4 generic lines in P3 there exist exactly 2 lines meeting
them all.

Let V be a 4-dimensional vector space, let A = End(V ), let V = V1 ⊕ V2 ⊕ V3 ⊕
V4 be a decomposition into 1-dimensional subspaces and H be the subalgebra of
elements h ∈ A with h(Vi) ⊂ Vi, i = 1, 2, 3, 4. Let further x ∈ A be a generic
element.

In the projective space P(V ) let Li be the line through the points [Vi], [xVi] and
let K1, K2 be the lines meeting every Li.

The lines K1, K2 are in fact given by the 2 2-dimensional eigenspaces of the
element ψ(x) above.

Let V ∗ = V ∗1 ⊕ V ∗2 ⊕ V ∗3 ⊕ V ∗4 be the dual decomposition of the dual space (i.e.,
V ∗i (Vj) = δijF ).
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In the projective space P(V ∗) let L′i be the line through the points [V ∗i ], [V ∗i x]
and let K ′1, K ′2 be the lines meeting every L′i.

The lines K ′1, K ′2 are in fact given by the 2 2-dimensional eigenspaces of the
element ψ′(x) above.

Every line L in P(V ∗) defines a line L∗ in P(V ). Let S1, S2 be the two lines
which meet all of K1, K2, (K ′1)∗, (K ′2)∗.

The lines S1, S2 are in fact given by the 2 2-dimensional eigenspaces of the
element θ(x) above.

There is also an interpretation of the element ρ = ρ(x). Since ρ2 is the identity
on Si, the element ρ is an involution on each Si. An involution on a line is given
by a pair of points. How to get a pair of points on Si? We have two pairs of points
already: the intersections of Si with K1, K2 and with (K ′1)∗, (K ′2)∗, respectively.
Now a pair of points on a line gives a point in the 2-fold symmetric product of the
line, a P2. The diagonal embedding of the line to that P2 identifies it with a conic.
Thus the two pairs of points determine a line in P2, which intersects the conic in
a pair of points. This yields certainly the pair given by ρ (I haven’t really checked
this).

Appendix

Lemma 1 follows also from the additivity rule for S in the following Lemma.

Lemma 4. For x, y ∈ A one has

T (x+ y) = T (x) + T (y)

Q(x+ y) = Q(x) + T (x)T (y)− T (xy) +Q(y)

S(x+ y) = S(x) +Q(x)T (y)− T (x)T (xy) + T (x2y)

+ T (x)Q(y)− T (xy)T (y) + T (xy2) + S(y)

N(x+ y) = N(x) + S(x)T (y)−Q(x)T (xy) + T (x)T (x2y)− T (x3y)

+Q(x)Q(y)− T (x)T (xy)T (y) + T (x)T (xy2) + T (x2y)T (y)

+Q(xy)− T (x2y2)

+ T (x)S(y)− T (xy)Q(y) + T (xy2)T (y)− T (xy3) +N(y)

Proof. In the power series ring A[[t]] one has

1 + t(x+ y) = (1 + tx)
[
1− t2 x

1 + tx

y

1 + ty

]
(1 + ty)

The middle term expands as follows:

1− t2 x

1 + tx

y

1 + ty
= 1− t2xy + t3x(x+ y)y − t4x(x2 + xy + y2)y + · · ·

Taking norms gives in F [[t]]/(t5)

N
(
1 + t(x+ y)

)
= N(1 + tx)N(1 + ty)

[
1− t2T (xy) + t3T (x2y + xy2)

+ t4
(
Q(xy)− T (x3y + x2y2 + xy3)

)]
Multiplying out yields the claims. �
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Remark 5. This argument works for central simple algebras of any degree. By fur-
ther expansion one gets expressions for the coefficients of the characteristic poly-
nomial of x + y as integral polynomials in the coefficients of the characteristic
polynomials of noncommutative monomials in x, y.
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