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INTRODUCTION

By a theorem of Albert [1, Theorem 11.9] a central simple algebra A of degree 4
contains a biquadratic subalgebra. The major point is to prove the existence of a
quadratic subalgebra. See [2] for a short proof.

One can show this also using the fact from projective geometry that, given 4
generic lines in 3-space, there are exactly 2 lines which meet them all. Namely,
for any (possibly non-split) A one considers a maximal commutative separable
subalgebra H of A and a generic element « € A. Such data determine geometrically
4 lines in projective 3-space: The subalgebra H determines geometrically 4 points
and for each of these points there is the line through it and its image under z. The
2 lines which meet all those lines determine a quadratic subalgebra L of A.

It seems to be rather complicated to give explicit generators for L in terms of H
and z, in particular in characteristic 2 (cf. Section 4).

However there is a way to construct quadratic elements (described in Sections 1-
2) which is algebraically simpler. This construction is symmetric with respect to
reversing the product in A (i. e., replacing A with A°P). It works smoothly for
central simple algebras A of degree 4 with involution of second kind and the base
ring can be any local ring. A geometric interpretation is given in Section 5.

Once a quadratic subalgebra L is at hand, it easy to extend it to a biquadratic
subalgebra: Let y be a generic element in the orthogonal complement of the cen-
tralizer of L. Then L and y? generate a biquadratic subalgebra. See Section 3.

In the Appendix we have added (mainly for fun) some formulas for the coefficients
of the characteristic polynomial in a central simple algebra of degree 4. They
occurred when trying to establish Lemma 1.
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1. PRELIMINARIES

Let F be a field and let A be a central simple algebra of degree 4 over F'. For
the characteristic polynomial of z € A we use the notation

N(t —x) =t* = T(2)t* + Q(x)t* — S(x)t + N(z)

where N: A — F' is the reduced norm of A.
For z € A we consider the linear form

d(z): A°A— F
(x)(y1 Ay2 Ays) = T(xyszyazys — Ty12y27Y3)
Lemma 1. For x, y € A one has
S(zy —yz) = ®(z)(1 Ay Ay?)
Proof. This amounts to
S(xy — yz) = T(z*y’xy — 2’yay?)
To prove this identity it suffices to consider the case A = M4(Q). One has
6S(u) = T(u)® — 3T (u?)T(u) + 2T (u®)

as can be easily seen from the case of diagonal matrices. Thus, if T'(u) = 0 one has

3S(u) = T(u?)
and the claim follows from this with « = 2y — yx and from T'(vw) = T'(wv). O

Remark 1. The formula for S in Lemma 4 in the Appendix yields a “denominator
free” proof of Lemma 1.

2. CONSTRUCTION OF QUADRATIC ELEMENTS

Let H be a commutative subalgebra of A of dimension 4 and let z € A.
The form ®(x) restricts to a linear form A>H — F. We consider the associated
dual map
a(z): A*H - H
defined by
(1) pAa(z)(w) = @(z)(p)w
for € A®H and w € A*H.
We fix a basis element w € A*H and write a = a(z)(w).
Corollary 1. Let
p=plx) =z0—az
Then
T(p)=5S(p)=0

Proof. Clearly T'(p) = 0 since p is a commutator. From Lemma 1 and (1) we get
S(pw=1Nara*Na=0
U

Let us write
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Corollary 2. Let
0 =0(x) = p*
One has
6> +Q(p)0 + N(p) =0

The characteristic polynomial of 0 is

(2 + Q(p)t + N(p))”

Let x € A with A(x) # 0. Then 6(x) generates a uniform quadratic subalgebra
of A. (A quadratic subalgebra L of A is called uniform if it is separable and if A is
as L-module of constant rank 8.)

Proof. The first claim is clear from Corollary 1. The second claim follows from
2
N(#* = 0) = N(t = p)N(t + p) = (t* + Q(p)t* + N(p))

The final claim is then clear as well. O

Suppose (A, H) = (My(F),D4(F)) where Dy(F) denotes the 4 x 4 diagonal
matrices. Write H = e1 F @ exF P esF @ eqF with e; the standard idempotents.
Then, with w =e; Aea Aeg A ey,

T23T34L42 — T24T43T32

. 31714743 — T34T41713
9 alz)(w) = dia
( ) ( )( ) g T41X12T24 — T42T21T14

T13T32221 — L12223L31

3) v =

oo RO
O = O =
= o O O
SO RO

one finds A(z) = 1.
Corollary 3 (Albert). There exists a uniform quadratic subalgebra in A.

Proof. Choose some H, w as above with H separable. By Corollary 2 it suffices to
find x € A with A(z) # 0.

As the computation for (3) shows, the polynomial A(x) is nonzero. Hence if F'
is infinite, there exists x with A(z) # 0.

If F is finite, then A = M,(F) and the claim is clear anyway. O

Remark 2. Note that we have made no assumption on the characteristic on F. In
fact, everything works over an arbitrary local ring.

Remark 3. Everything extends easily to the case of a central simple algebra of
degree 4 with involution of second kind.

Remark 4. One has a(x + h) = az) for h € H. Thus z — «a(x) is a cubic form
on A/H with values in Hom(A*H, H).
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3. EXISTENCE OF BIQUADRATIC SUBEXTENSIONS
Let L be a uniform quadratic subalgebra in A and let § € L be a generator.

Lemma 2. Fory e A let
o=o(y) =yl -0y
Then

Let
A'(y) = Q(0)* — 4N (o)
Let y € A with A'(y) # 0. Then 0 and o(y)? generate a biquadratic subalgebra
of A.
Suppose A = My(F),

1 0 0 O
g — 01 0 O
0 0 0 O
0 0 0 O
and
0 0 1 0
loo o0 o0
Y=11 00 0
00 0 O
Then A'(y) = 1.

Proof. This can be shown by inspection in the split case. Suppose A = My(F') and
that L is the subalgebra of matrices of the form

Then a commutator o = yf — Ay is of the form

(Y

with U, V' € Ms(F'). The characteristic polynomial of o is
t* — t? trace(UV) + det(UV)

o2 — uv o0
L0 VU
The element 02 commutes with the elements of I and generates together with L

a biquadratic subalgebra as long as (trace(U V))2 # 4det(UV). The last claim is
easy to check. (Il

and one has

Corollary 4 (Albert). There exists a biquadratic subalgebra in A.

Proof. If F is finite, then A = M, (F') and the claim is clear. Otherwise one chooses
L and @ as above and picks y with A’(y) # 0 (cf. Corollary 3 and its proof). O
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4. MORE QUADRATIC ELEMENTS

We have seen that for generic x the element 6(z) generates a uniform quadratic
subalgebra L. The centralizer Q of L is a quaternion algebra over L.
In the following we give a description of generators for (). This appears to be

somewhat complicated.
We assume char I’ # 2.
For 2 € A consider the linear form

o(x): A°H - F

p() () = D sen(s)T (@ hos) whae)ehs)) — 2T(x) () (1)
SES3

with w= hq /\hQ/\hg, h; € H, and let
B(x): A*H — H
be the linear map with
p A Bx)(w) = (@) (1w
for p € AH and w € A*H.
Let further

Y(x), ¥ (x): A*H — A
U(r) = zale) + L B()
¥'(2) = alw)e + 50()

We fix a basis element w € A*H and write v = ¥(z)(w), ¥’ = ¢/(z)(w).
Let Q be the subalgebra of A generated by v and 1’. Note that p =¥ —v¢’ € Q.
Let L C @ be the subalgebra generated by 6 = p2.

Lemma 3. One has ¢? = z//2 € F. The algebra L is in the center of Q.
Suppose H is separable. Then for generic x, L is a uniform quadratic subalgebra
of A and @Q is the centralizer of L in A.

Proof. T know only a tiresome check in the split case (4, H) = (M4(F), D4(F)). O

5. GEOMETRIC INTERPRETATION

There is an interpretation of our construction in terms of a classical theorem in
projective geometry: For 4 generic lines in P? there exist exactly 2 lines meeting
them all.

Let V be a 4-dimensional vector space, let A =End(V),let V=V, @ Vo d V3 &
V, be a decomposition into 1-dimensional subspaces and H be the subalgebra of
elements h € A with h(V;) C V;, i = 1, 2, 3, 4. Let further x € A be a generic
element.

In the projective space P(V') let L; be the line through the points [V;], [xV;] and
let K1, K5 be the lines meeting every L;.

The lines K7, Ko are in fact given by the 2 2-dimensional eigenspaces of the
element v (z) above.

Let V* = Vi* @ V5" @ V5 @ V" be the dual decomposition of the dual space (i.e.,
Vir(Vy) = 6 F).
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In the projective space P(V*) let L be the line through the points [V*
and let K7, K} be the lines meeting every L.

The lines Kj, K are in fact given by the 2 2-dimensional eigenspaces of the
element v’ (z) above.

Every line L in P(V*) defines a line L* in P(V). Let Sy, So be the two lines
which meet all of K1, Ko, (K1)*, (Kj)*.

The lines S7, So are in fact given by the 2 2-dimensional eigenspaces of the
element 6(x) above.

There is also an interpretation of the element p = p(z). Since p? is the identity
on S;, the element p is an involution on each S;. An involution on a line is given
by a pair of points. How to get a pair of points on S;? We have two pairs of points
already: the intersections of S; with Ky, Ky and with (K7)*, (K})*, respectively.
Now a pair of points on a line gives a point in the 2-fold symmetric product of the
line, a P2. The diagonal embedding of the line to that P? identifies it with a conic.
Thus the two pairs of points determine a line in P2, which intersects the conic in
a pair of points. This yields certainly the pair given by p (I haven’t really checked
this).

J, [Vira]

APPENDIX

Lemma 1 follows also from the additivity rule for S in the following Lemma.

Lemma 4. For x, y € A one has

T(x+y)=T(x)+T(y)

Qz+y)=Qx) +T(x)T(y) — T(zy) + Qy)

S(x+y) =S (w) Q)T (y) — T(x)T (zy) + T(2%y)
T(z)Q(y) — T(zy)T(y) + T(xy?) + S(y)

N(z+y) = N(w) +S(@)T(y) — Q(z)T(xy) + T(x)T(z%y) — T(xy)
(2)Q(y) — T(x)T (zy)T(y) + T(x)T(xy®) + T(z*y)T(y)
+ Q(ay) — T(2y?)

T(2)S(y) — T(zy)Q(y) + T(xy*)T(y) — T(xy”) + N(y)

Proof. In the power series ring A[[t]] one has

)

z Y
1+txl+ty

l+t(z+y)=(1+tz)[1 -t [(1+ty)

The middle term expands as follows:

2 T Y

1—¢ —
1+txl+ty

=1—t2y + 32z +y)y — t*e(@® + oy + )y + -

Taking norms gives in F[[t]]/(t?)
N(1+tz+y) =NA+te)N(1+ty)[1 — T (zy) + *T(2y + zy?)
+t* (Q(:L'y) - T(:E3y +2%y? + acy3))]

Multiplying out yields the claims. O
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Remark 5. This argument works for central simple algebras of any degree. By fur-
ther expansion one gets expressions for the coefficients of the characteristic poly-
nomial of x 4+ y as integral polynomials in the coefficients of the characteristic
polynomials of noncommutative monomials in x, y.
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