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Introduction

Morley’s theorem states that

The three points of intersection of the adjacent trisectors of the angles of any
triangle form an equilateral triangle.

This theorem is very curious. A standard source seems to be [4]. Among the many
existing proofs we mention here D. J. Newman’s proof [10] (also in [6, Ch. 20,
p. 163] and on the web) and the article [9]. For more sources see the end of the
text.

These notes evolved from a study of the fairly recent proof of Connes ([2]; see
also [7], [1]).

We briefly discuss the relation of Connes’ point of view of affine transformations
with triangles and quadrangles. Then we give a proof of Morley’s theorem a la
Connes [2]. Finally we consider a purely group theoretic lemma (Lemma 4) which
implies Connes’ lemma on affine transformations.

In the context of Morley’s angle trisector theorem we found it useful to look
also—as a toy model—at the fact that the angle bisectors of any triangle meet in
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2 MARKUS ROST

one point. We call this for short the incenter theorem since the point of inter-
section is the center of the incircle of the triangle. We have complemented many
considerations with the corresponding incenter variants.

Were we to give up, forever, understanding the Morley Miracle?
— D. J. Newman

1. Affine transformations and triangles

Let F be a field and let Aff(1, F ) denote the group of affine transformations of
the affine line over F . Elements f ∈ Aff(1, F ) will be denoted by

f(t) = at+ b or f =
(
a b
0 1

)
If a = 1, then f is a translation. Otherwise f has the unique fixed point

Fix(f) =
b

1− a
Note that if a 6= 1, but an = 1 for some n > 1, then fn = 1. Moreover, if f ,
g ∈ Aff(1, F ) commute, then f and g are both translations or have a common fixed
point.

Lemma 1. Let f0, f1, f2 ∈ Aff(1, F ). Suppose that the fi have no common fixed
point and that none of them is a translation. Let xi = Fix(fi).

Then f0f1f2 = 1 if and only if there exists c ∈ F such that

(1) fi(t) =
xi−1 − c
xi+1 − c

(t− xi) + xi

(with the indices reduced mod 3). The element c is uniquely determined by f0,
f1, f2.

Proof. Let di = det(fi). We may assume x0 = 0 and x1 = 1. The condition
f0f1f2 = 1 is equivalent to the conditions

d0d1d2 = 1, x2 =
d0(1− d1)
(1− d0d1)

=
1− d0d2

1− d2

Consider the change of variables

c =
1

1− d2
, d2 =

1− c
−c

Then our conditions give indeed

d0 =
1− (1− d2)x2

d2
=
x2 − c
1− c

, d1 =
1

d0d2
=
−c

x2 − c
�

Example 1. Consider an Euclidean triangle with vertices x0, x1, x2 ∈ C and let c
be its circumcenter. Then the affine transformation fi given by (1) is the rotation
with fixed point xi and angle twice the angle at xi (with appropriate orientation)
of the triangle.

This way Euclidean triangles appear as a special case of triples f0, f1, f2 ∈
Aff(1, F ) with f0f1f2 = 1. This is the view point of Connes in his proof of Morley’s
theorem. We state Connes’ generalization of Morley’s theorem [2]:
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Lemma 2 (Connes). Let t0, t1, t2 ∈ Aff(1, F ). Suppose none of t0t1, t1t2, t2t0,
t0t1t2 is a translation and that t30t

3
1t

3
2 = 1. Let ζ = det(t0t1t2).

Then 1 + ζ + ζ2 = 0 and

Fix(t0t1) + ζ Fix(t1t2) + ζ2 Fix(t2t0) = 0

The incenter theorem generalizes as follows:

Lemma 3. Let t0, t1, t2 ∈ Aff(1, F ). Suppose none of t0t1, t1t2, t2t0, t0t1t2 is a
translation and that t20t

2
1t

2
2 = 1.

Then the transformations t0t1, t1t2, t2t0 commute. In particular, their fixed
points coincide.

These lemmata will proved in Section 5.

2. Affine transformations and quadrangles

This section will not be used later on. We assume charF 6= 2.
For (generic) points x0, x1, x2, x3 ∈ F consider the affine transformations

(2) fijk` =
(xi + xj)− (xk + x`)
(xi + xk)− (xj + x`)

(t− xi) + xi

where i, j, k, ` stand for any permutation of 0, 1, 2, 3.
If one takes in (1)

c =
x0 + x1 + x2 − x3

2
one finds

fi = fi,i+1,i−1,3

This way Lemma 1 shows that triples f0, f1, f2 ∈ Aff(1, F ) with det(fi) 6= 1
and f0f1f2 = 1 (and no common fixed point) are in characteristic different from 2
essentially just quadruples of points in F . Thus the symmetric group S4 is a
group of symmetries of such triples of affine transformations (this is true also in
characteristic 2, and more generally over any commutative ring F ).

Example 2. Let x0, x1, x2, x3 ∈ C be an Euclidean orthocentric quadrangle. This
means that all pairs xi−xj , xk−x` are orthogonal, or, equivalently, that (at least)
one of the xi is the orthocenter of the triangle formed by the other points xj , xk, x`.

Let c be the circumcenter and let h = x3 be the orthocenter of the triangle x0,
x1, x2. Then

2c+ h = x0 + x1 + x2

(In fact, c, h and the center of mass (x0 + x1 + x2)/3 lie on the Euler line of the
triangle.)

It follows that the affine transformation fijk` is the rotation with fixed point xi
and angle twice the angle at xi (with appropriate orientation) of the triangle xi,
xj , xk.

3. Proof of Morley’s theorem

Let F be an algebraically closed field with charF 6= 3 and let ζ ∈ F be a
primitive cube root of 1.

Let x0, x1, x2 ∈ F . In the following the letters i, j, k stand for any permutation
of 0, 1, 2. We assume that xi 6= 0 and xi 6= xj .
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Choose sij ∈ F ∗ such that

s3
ij =

xj
xi
, sijsji = 1, s01s12s20 = ζ

It is easy to see that such families sij exist and that any such family is determined
by s01, s12. Moreover, there are exactly 9 such families which one can get by
multiplying s01, s12 by powers of ζ.

We write
ζijk = sijsjkski

Thus ζijk = ζjki, ζijk = ζ−1
ikj and ζ012 = ζ.

3.1. The Euclidean case. As for the proof of Morley’s theorem we use the fol-
lowing setup.

One takes F = C, ζ = e2πi/3 and assumes that the circumcenter of the trian-
gle x0, x1, x2 is the origin. In other words, |x0| = |x1| = |x2| where | · | is the
Euclidean norm. Moreover one assumes that the triangle is positively oriented.

Then
x2

x1
∈ S1 = { s ∈ C | |s| = 1 }

is twice the angle of the triangle at x0. We choose the unique family sij with

arg sij =
1
3

arg
xj
xi

where 0 ≤ arg s < 2π is defined for s ∈ S1 by s = ei arg s.

3.2. Trisectors. Consider the 6 elements

yij
def= sijxi = s2

jixj = ζijkskjs
2
kixk

In the Euclidean case, the elements yij are points of the circumcircle. They
trisect each of the arcs between the points xi.

One has
y3
ij = x2

ixj , yijyjkyki = ζijkx0x1x2

3.3. The geometric mean. Consider the 3 elements

zi = sijsikxi

One has
z3
i = z0z1z2 = x0x1x2

Moreover
zi+1 = ζzi

which can be seen for instance from
z1

z0
=
s12s10x1

s01s02x0
= s12s20s01s

3
10

x1

x0
= ζ

Hence
z0 + ζz1 + ζ−1z2 = 0

In the Euclidean case, the elements zi are points of the circumcenter and form
an equilateral triangle.
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3.4. Morley points. Let gjk be the affine transformation with

gjk(t) = sjk(t− xi) + xi

We define the Morley points mi by

gij(mi) = gik(mi)

In the Euclidean case, the transformation gjk is the rotation with center xi and
angle sjk. Moreover mi is the fixed point of g−1

ik ◦ gij which can be easily seen
as one of the “intersections of the adjacent trisectors” in Morley’s theorem. This
description is due to Connes [2].

Let us compute mi. The defining equation is

sij(mi − xk) + xk = sik(mi − xj) + xj

This gives

(sij − sik)mi = (xj − xk)− (sikxj − sijxk)

= (s3
ij − s3

ik)xi − (s2
ij − s2

ik)sijsikxi

Hence

mi = (sijsik + s2
ij + s2

ik)xi − (sij + sik)sijsikxi

= zi + yji + yki − ζ−1
ijkyjk − ζ

−1
ikjykj

= zi + vji + vki

where
vij = yij − ζ−1

ijkyki

Next note that
vij + ζijkvjk + ζ−1

ijkvki = 0

Indeed, one has

(y10 − ζy21) + ζ(y21 − ζy02) + ζ−1(y02 − ζy10) = 0

and

(y20 − ζ−1y12) + ζ(y01 − ζ−1y20) + ζ−1(y12 − ζ−1y01) = 0

since all terms cancel out.
Hence

m0 + ζm1 + ζ−1m2 = 0

which is Morley’s theorem.

Remark 1. The only thing which might be new in this deduction is that the Morley
triangle appears as a superposition of three terms, the triple z0, z1, z2, the triple
v10, v21, v02, and triple v20, v01, v12, each of which is subject by itself to the
equilaterality relation X0 + ζX1 + ζ−1X2 = 0:

m0 = z0 + (y10 − ζy21) + (y20 − ζ−1y12)

m1 = z1 + (y21 − ζy02) + (y01 − ζ−1y20)

m2 = z2 + (y02 − ζy10) + (y12 − ζ−1y01)

I don’t know a geometric or algebraic interpretation of this observation.
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4. The incenter

Let F be an algebraically closed field with charF 6= 2.
Let x0, x1, x2 ∈ F . In the following the letters i, j, k stand for any permutation

of 0, 1, 2. We assume that xi 6= 0 and xi 6= xj .
Choose sij ∈ F ∗ such that

s2
ij =

xj
xi
, sijsji = 1, s01s12s20 = −1

It is easy to see that such families sij exist and that any such family is determined
by s01, s12. Moreover, there are exactly 4 such families which one can get by
multiplying s01, s12 by powers of −1.

4.1. The Euclidean case. As for the classical fact that the angle bisectors of an
Euclidean triangle meet in one point, the incenter, we use the following setup.

One takes F = C, and assumes that the circumcenter of the triangle x0, x1, x2

is the origin. In other words, |x0| = |x1| = |x2| where | · | is the Euclidean norm.
Moreover one assumes that the triangle is positively oriented.

Then
x2

x1
∈ S1 = { s ∈ C | |s| = 1 }

is twice the angle of the triangle at x0. We choose the unique family sij with

arg sij =
1
2

arg
xj
xi

where 0 ≤ arg s < 2π is defined for s ∈ S1 by s = ei arg s.

4.2. Bisectors. Consider the 3 elements

yij
def= sijxi = sjixj = −skjskixk

One has yij = yji.
In the Euclidean case, the elements yij are points of the circumcircle. They

bisect each of the arcs between the points xi.
We also write

zi = yjk = −sijsikxi
One has

z2
i = xjxk, z0z1z2 = −x0x1x2

4.3. Incenters. We write
z = z0 + z1 + z2

Let gjk be the affine transformation with

gjk(t) = sjk(t− xi) + xi

and let mi be the fixed point of g−1
ik ◦ gij .

In the Euclidean case, the transformation gjk is the rotation with center xi and
angle sjk. The fixed point mi is therefore the intersection of the bisectors of the
angles at xj and xk. Thus m1 = m2 = m3 is the incenter of the triangle x0, x1, x2.

In general we have

(3) gij(z) = gik(z)

so that m1 = m2 = m3 = z.
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Proof of (3). Let us compute mi. The defining equation is

sij(mi − xk) + xk = sik(mi − xj) + xj

This gives

(sij − sik)mi = (xj − xk)− (sikxj − sijxk)

= (s2
ij − s2

ik)xi − (sij − sik)sijsikxi
Hence

mi = (sij + sik − sijsik)xi = zk + zj + zi

�

One can set up things also this way: Choose a, u1, u2, u3 with

xi = au2
i

Then one can take
sij = −uj

ui
, zi = −auiuj

and for the incenter one has

z = −a(u0u1 + u1u2 + u2u0)

5. A group theoretic lemma

Lemma 4. Let t0, t1, t2 be elements of a group G.
Suppose that G is metabelian (i. e., [G,G] is abelian) and

(t0t1t2)3 = (t20t
2
1t

2
2)3 = t30t

3
1t

3
2 = 1

Then

(4) [[t0t1, t1t2], t2t0] = (t0t1t2)[[t2t0, t0t1], t1t2](t0t1t2)−1

Proof. We have to show

[[t0t1, t1t2], t2t0](t0t1t2) ?= (t0t1t2)[[t2t0, t0t1], t1t2]

One multiplies out and collects appropriate terms.

(t0t21t2t
−1
1 )[(t−1

0 t−1
2 t−1

1 )(t2t0t1)(t2t0t1)(t−1
2 t−2

1 t−2
0 t−1

2 )(t0t1t2)]
?= (t0t1t2)(t2t20t1t

−1
0 )(t−1

2 t−1
1 t−1

0 )[(t1t2t0)(t1t2t0)(t−1
1 t−2

0 t−2
2 t−1

1 )]

The terms in square brackets are commutators and therefore commute. Moreover
(t2t0t1)3 = (t1t2t0)3 = 1. This yields

(t0t21t2t
−1
1 )[(t1t2t0)−1(t−1

1 t−2
0 t−2

2 t−1
1 )]−1

?= (t0t1t2)(t2t20t1t
−1
0 )(t−1

2 t−1
1 t−1

0 )[(t−1
0 t−1

2 t−1
1 )(t2t0t1)−1(t−1

2 t−2
1 t−2

0 t−1
2 )(t0t1t2)]−1

Then, using (t0t1t2)3 = 1,

t0t
2
1t

3
2t

2
0t1(t1t2t0)

?= (t0t1t2)(t2t20t1t
−1
0 )(t0t1t2)(t−1

2 t−2
1 t−2

0 t−1
2 )−1(t2t0t1)(t−1

0 t−1
2 t−1

1 )−1

Finally, using (t20t
2
1t

2
2)3 = 1,

t0t
2
1t

3
2t

2
0t1

?= (t0t1t2)(t2t20t1t
−1
0 )(t0t1t2)(t2t20t

2
1t2)(t2t0t1) =

= (t0t1t22)(t20t
2
1t

2
2)2(t0t1) = (t0t1t22)(t20t

2
1t

2
2)−1(t0t1) = t0t

−1
1 t−1

0 t1
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This amounts to t30t
3
1t

3
2 = 1. �

Corollary 1. Let t0, t1, t2 be elements of Aff(1, F ) with t30t
3
1t

3
2 = 1. Suppose

d0d1d2 6= 1 where di = det(ti).
Then (4) holds.

Proof. One uses the fact that any affine transformation whose determinant is a
primitive n-th root of unity has order n itself (n > 1).

Let t = t0t1t2 and d = det(t) = d0d1d2. Then d3 = d3
0d

3
1d

3
2 = 1 and d 6= 1.

Therefore d2 + d + 1 = 0. Thus t3 = 1. Similarly one finds (t20t
2
1t

2
2)3 = 1. By

Lemma 4 the claim is clear. �

Formula (4) translates apparently the cyclic permutation ti 7→ ti+1 into multi-
plication with a cube root of unity.

Proof of Lemma 2. One finds that

[[t0t1, t1t2], t2t0]

is the translation with vector(
2∏
0

(1− didi+1)

)(
Fix(t0t1)− Fix(t1t2)

)
where di = det(ti). By (4) one gets(

Fix(t0t1)− Fix(t1t2)
)

= d
(
Fix(t2t0)− Fix(t0t1)

)
with d2 + d+ 1 = 0. The claim is now clear. �

Corollary 2. Morley’s theorem.

Proof. [Connes, [2]] For an Euclidean triangle with vertices x0, x1, x2 ∈ C one
takes for ti the rotation with fixed point xi and angle 2/3 the angle at xi (with
appropriate orientation) of the triangle. Then indeed t30t

3
1t

3
2 = 1 and the fixed points

Fix(titi+1) are the intersections of the trisectors in Morley’s theorem. �

Remark 2. Lemma 4 suggests to consider the group Ĝ generated by elements t and
σ with relations

σ3 = 1, (tσ)9 = (t2σ)9 = (t3σ)3 = 1
and some commutation relations. Indeed if we put ti = σitσ−i, then (tσ)3 = t0t1t2
etc.

However I don’t know whether this really helps. Anyway, let us note the following
general formulas for elements x and σ in a group with relation σ3 = 1:

[σxσ−1, σ2xσ−2] = (σx)3(x−1σ)3

and
[x, [σxσ−1, σ2xσ−2]] = (xσ)3(σx−1)3(σ−1x)3(x−1σ−1)3

Remark 3. Let sij = titj . In the situation of Lemma 4 the elements ti are in the
subgroup generated by the s12, s20, s01. Maybe one can simplify things by using
the sij as generators. Similarly for Lemma 5.

We conclude with similar (and much simpler) considerations for the incenter
theorem.
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Lemma 5. Let G be a group and let t0, t1, t2 be elements of G with t20t
2
1t

2
2 = 1 and

(t0t1t2)2 = 1. Then the elements t0t1, t1t2, t2t0 commute.

Proof. By symmetry, it suffices to show that t0t1 and t2t0 commute. Indeed,

(t0t1)(t2t0)(t0t1)−1(t2t0)−1 = (t0t1t2)t0(t−1
1 t−1

0 )(t−1
0 t−1

2 )

= (t0t1t2)−1t0t
−1
1 t−2

0 t−1
2

= t−1
2 t−2

1 t−2
0 t−1

2 = t2(t20t
2
1t

2
2)−1t−1

2 = 1

�

Corollary 3. Let t0, t1, t2 be elements of Aff(1, F ) with t20t
2
1t

2
2 = 1. Suppose

d0d1d2 6= 1 where di = det(ti). Then t0t1, t1t2, t2t0 have the same fixed point.

Proof. Let t = t0t1t2 and d = det(t) = d0d1d2. Then d2 = d2
0d

2
1d

2
2 = 1 and d 6= 1.

Therefore d + 1 = 0. Thus t2 = 1. By Lemma 5 the elements t0t1, t1t2, t2t0
commute. Hence their fixed points coincide. �

Corollary 4. The bisectors of the angles of a triangle meet in one point.

Proof. For an Euclidean triangle with vertices x0, x1, x2 ∈ C one takes for ti the
rotation with fixed point xi and angle the angle at xi (with appropriate orientation)
of the triangle. Then indeed t20t

2
1t

2
2 = 1 and the fixed points Fix(titi+1) are the

intersections of the bisectors. �

More sources

Here is a list of other possible sources for Morley’s theorem: [3, 5, 8, 11] and, of
course, the web:

http://www.google.com/search?q=morley+triangle
http://www-cabri.imag.fr/abracadabri/GeoPlane/Classiques/Morley/Morley1.htm

http://www.cut-the-knot.org/triangle/Morley/index.shtml
http://mathforum.org/library/drmath/view/51789.html

Under the last address one finds a proof of Conway.
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