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Preface

This is is a special edition of my diploma thesis which contains also an
introduction to stable motivic homotopy theory. This also covers pointed
model categories and passing from unpointed to pointed model categories.
This introduction was made since the original task also contained the stable
case. But this was skipped for time reasons. A few people told me that this
thesis contains a nice introduction to motivic homotopy theory. Therefore
I decided to add the stable part to obtain a whole introduction.

Introduction

The Motivation from Algebraic Topology. The objects mainly stud-
ied in this thesis are smooth projective algebraic curves over an arbitrary
field k. If k = C there is a topological interpretation of such curves given in
[Sha94]:
If X/C is a smooth projective algebraic curve, then the set of C-rational
points X(C) is a connected and orientable surface. Furthermore there is a
notion of genus for smooth projective algebraic curves which turns out to
be the same as the genus for the associated orientable surface (the number
of handles attached to the 2-sphere). Since the genus g of an orientable
surface can be expressed using the Euler characteristic via e(X) = 2 − 2g,
it is homotopy invariant. Furthermore the genus gives a full classification
of connected orientable triangulable surfaces up to homeomorphism. But
for a smooth projective algebraic curve X/C the associated orientable sur-
face X(C) is indeed triangulable. Therefore the following is true: For two
smooth projective algebraic curves X,Y over C the associated orientable
surfaces X(C) and Y (C) are homotopy equivalent if and only if they are
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homeomorphic. Since connected orientable triangulable surfaces are CW-
complexes, the Whitehead Theorem provides: X(C) and Y (C) are weak
homotopy equivalent if and only if they are homeomorphic.

A Homotopy Theory for Algebraic Varieties. In the 1990’s Fabien
Morel and Vladimir Voevodsky developed a homotopy theory on smooth
algebraic varieties [MV99], the so-called A1- (or motivic) homotopy theory.
One of its purposes was to give a new construction of motivic cohomology
represented by a spectrum via a stable homotopy theory [Voe98]. This
is analogous to the representation of reduced cohomology theories via Ω-
spectra in algebraic topology.

From a naive point of view two morphisms f, g : X → Y of smooth
algebraic varieties over a ground field k are called A1-homotopic if there is
an A1-homotopy, that is a morphism H : X × A1

k → Y , such that

f = H|X×0 : X id×0−−−→ X × A1
k

H−→ Y

and
g = H|X×1 : X id×1−−−→ X × A1

k
H−→ Y.

A well-working machinery to get an unstable and a stable homotopy theory
is the theory of model categories. The disadvantage of the naive point of
view is, that it alone does not allow an application of this machinery. One
demanded property of the category is the existence of all small limits and
colimits. Therefore the category of smooth algebraic varieties first has to
be enlarged to fulfil this property. It turns out that it is useful to use a
known model category to get the new one, namely the model category of
simplicial sets. Finally this machinery indeed yields a notion of homotopy
and weak homotopy equivalences which generalizes the naive point of view
and provides the so-called (weak) A1- (or motivic) homotopy equivalences.

Motivic Homotopy Types of Projective Curves. The aim of this the-
sis is to study the homotopy types of smooth projective curves, that is, to
give an answer to the question: When are two such curves weak motivic
homotopy equivalent?

Motivated by the result about the associated orientable surfaces for curves
over C, there is the following

Conjecture. Let X,Y be two smooth projective algebraic curves over an
arbitrary field k. Then X and Y are weak motivic homotopy equivalent if
and only if they are isomorphic as algebraic curves.

Note that the question is different from the situation of the associated
orientable surfaces for k = C: An isomorphism of algebraic curves over C
corresponds to an isomorphism of complex manifolds between the surfaces.
That is, a homeomorphism between the surfaces is not enough to get an
isomorphisms between the algebraic curves. Furthermore the genus of an
algebraic curve does not classify a curve up to isomorphism. For example
the moduli space of the genus 1 for an algebraically closed field k is the
field k itself (using the j-invariant for elliptic curves) which contains always
more than one element. Nevertheless, it will be very helpful if the genus is
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homotopy invariant. This is true and therefore the proof of the conjecture
can deal with every genus of its own.

We get the following

Theorem A. The conjecture is true if g(X) > 0 or g(Y ) > 0.

Using the homotopy invariance of the genus, we can assume g(X) =
g(Y ) > 0 to prove Theorem A. It turns out that there are only trivial
homotopies between curves of genus > 0. Thus there will be no identification
under homotopy equivalence of such curves. The main argument of this fact
is even true for abelian varieties and therefore the conjecture is also true for
abelian varieties.

Unfortunately, the arguments for the curves of genus > 0 cannot work
for the curves of genus 0 as we will see. Therefore we will have to use other
arguments unless the field is algebraically closed because for these fields
there is only one curve of genus 0 up to isomorphism: P1. That is, Theorem
A implies that the conjecture is true for all algebraically closed fields.

Including the curves of genus 0, we get the following

Theorem B. The conjecture is true for all fields of characteristic 0.

Due to Theorem A, only the case of genus 0 is left to prove Theorem B.
There is a criterion about motivic equivalence of Brauer-Severi varieties in
Chow motives due to Nikita A. Karpenko [Kar00] which implies that two
curves of genus 0 are motivic equivalent if and only if they are isomorphic
as algebraic curves. Thus we have to make a connection between motivic
homotopy theory and Chow motives which should yield: If two curves of
genus 0 are weak motivic homotopy equivalent, then they are also motivic
equivalent. Unfortunately, this connection needs a hypothesis on the field k.
We will prove that this hypothesis holds for all fields of characteristic 0, but
it seems to hold for all perfect fields. This is the reason for the assumption
characteristic 0.

Therefore we will only be able to prove the conjecture for all algebraically
closed fields and fields fulfilling a certain hypothesis which are at least the
fields of characteristic 0.

Organization

Throughout the whole thesis the theory of categories as it can be found in
[Mac98] as well as the basic theory of algebraic geometry as it can be found
in [Liu02] are assumed.

In Section 1 we will introduce the objects which are mainly studied in
this thesis: Smooth projective curves, abelian varieties, and Brauer-Severi
varieties. Furthermore we will describe the main properties of these objects
which are necessary to study homotopy types.

In Section 2 we will introduce the notion of (co)simplicial objects which
is central for the further theory.

In Section 3 we will introduce the language and theory of model categories,
in particular simplicial model categories in subsection 3.6 and Bousfield
localization in subsection 3.7. This language is needed to introduce motivic
homotopy theory.
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In Section 4 we will introduce the language of Grothendieck sites, in par-
ticular the notion of (pre)sheaves. Furthermore we will need the associated
sheaf functor.

In Section 5 we will introduce several homotopy theories on simplicial
(pre)sheaves on an arbitrary Grothendieck site which is the basis for motivic
homotopy theory.

In Section 6 we will introduce the Nisnevich site on smooth schemes to
use this together with Section 5 and the Bousfield localization of Section 3
to get motivic homotopy theory. Furthermore several important properties
of this model category will be outlined, in particular the functoriality in
changing the base field. The last subsection 6.3 will deal with the so-called
A1-rigid schemes whose homotopical behavior is the key to understand the
homotopy types of curves of genus > 0 and abelian varieties.

Section 7 only appears in this special edition. Its aim is to introduce stable
motivic homotopy theory using the arbitrary machinery of Hovey [Hov01].
The final subsection compares this approach with Jardine’s approach [Jar00].

The aim of Section 8 is to establish a connection between motivic homo-
topy theory and Chow motives. Therefore we will introduce Chow motives
and Voevodsky’s triangulated category of effective motives. We will see that
the Chow motives embed fully faithfully in this category of effective motives
for all fields of characteristic 0. To see this, we will have to use motivic co-
homology. In the last subsection 8.5 we will establish a connection between
the motivic homotopy category and the triangulated category of effective
motives via a functor which will require a lot of work.

Finally in Section 9 we will study the homotopy types of smooth projective
curves, abelian varieties, and Brauer-Severi varieties. In particular we will
prove the homotopy invariance of the genus of a curve. The curves of genus>
0 and abelian varieties will be understood through the homotopical behavior
of the A1-rigid schemes. The curves of genus 0 as well as arbitrary Brauer-
Severi varieties will be understood using the connection to Chow motives as
developed in Section 8.
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1. Projective Curves, Abelian and Brauer-Severi Varieties

The aim of this section is to introduce the objects which will be studied in
this thesis: Projective curves, abelian varieties and Brauer-Severi varieties.

1.1. Basic Notation and Results. First of all, we have to fix notation
and our notion of varieties and curves.

Notation 1.1.1. Let k be a field. Denote by Sch/k the category of k-
schemes of finite type.

Definition 1.1.2. Let k be a field and k its algebraic closure. A X ∈ Sch/k
is called a k-variety if it is a separated k-scheme which is geometrically
integral, i.e. Xk = X ×Spec(k) Spec(k) is reduced and irreducible.

Remark 1.1.3. It follows immediately from EGA IV (4.5.1) and (4.6.1),
that for every k-variety V and every field extension L/k VL is also integral
over L.

Definition 1.1.4. A k-variety V is called a group variety if V is a group
scheme over k, i.e. there is given a factorization of the represented functor
Homk(−, V ) = V through the category of groups Gr:

Gr

F

��

(Sch/k)op V //

V
99tttttttttt
Set

where F is the forgetful functor.

Definition 1.1.5. A group variety A over k is called an abelian variety if
A is complete over k, i.e. it is proper.

Remark 1.1.6. The group structure of an abelian variety is commutative
(cf. [Mil86a, Corollary 2.4]).

Definition 1.1.7. We call a k-variety C a curve if dim(C) = 1 and C is
smooth, i.e. Ck is regular, and complete over k.

Remark 1.1.8. Let L/k be a field extension of k and C be a curve. Then
CL is also a curve over L since properness and smoothness are preserved by
base change and geometrical integrality is preserved by Remark 1.1.3.

Remark 1.1.9. Due to [Liu02, Exercise 7.5.4] every curve C is projective
since C is proper by definition. On the other hand every projective curve
C/k is proper. Therefore we are going to study exactly the smooth projective
curves.

Notation 1.1.10. Let k be a field. The following notations denote full
subcategories of Sch/k:

• Red/k reduced k-schemes
• Sm/k smooth, separated k-schemes
• SmProj/k disjoint unions of smooth, projective k-varieties
• V ar/k varieties over k
• Gr/k group varieties over k
• Ab/k abelian varieties over k
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Remark 1.1.11. The following inclusions hold:

Ab/k � � //
� _

ι1
��

Gr/k � � //
� _

ι2
��

V ar/k � � // Red/k

SmProj/k � � // Sm/k
' �

ι3

44jjjjjjjjjjjjjjjjjjj

where the inclusions ι1, ι2, ι3 are well known facts and the other inclusions
are clear by definition.

The next proposition is a general result about reduced k-schemes which
implies, that the equality of two given morphisms between those schemes
can be checked on k-rational points.

Proposition 1.1.12. Let k be a field and k its algebraic closure. Then the
functor

Red/k −→ Set
X 7→ X(k)

taking k-rational points is faithful.

Proof. It suffices to check this for affine X = Spec(R), such that R is a
finitely generated k-algebra with

√
0 = 0. So let f, g : Spec(R) → Spec(S)

be two morphisms in Red/k which correspond to morphisms f, g : S → R,
such that the induced maps f∗, g∗ : Spec(R)(k)→ Spec(S)(k) coincide. We
have to show that f = g. But Spec(R)(k) = Homk(R, k) and the same for S,
hence the induced morphisms f∗, g∗ : Homk(R, k) → Homk(S, k) coincide.
Consider the morphism f − g : S → R of abelian groups. Denote R =
k[X1, . . . , Xn]/(γ1, . . . , γm). We have to show that (f−g)(h) = 0 ∈ R for all
h ∈ S. By assumption (f − g)(h)(α1, . . . , αn) = 0 for all (α1, . . . , αn) ∈ kn

such that γi(αj) = 0 for all 1 ≤ i ≤ m and 1 ≤ j ≤ n because such an

(α1, . . . , αn) is the same as a morphism R → k and (S
f−g−−→ R → k) =

0 for all morphisms R → k because f∗ = g∗. According to the Hilbert
Nullstellensatz [Mat86, Theorem 5.4] (f − g)(h)r = 0 for an r ≥ 0, i.e.
(f − g)(h) ∈

√
0 = 0. �

1.2. The Genus and the Jacobian of a Curve. In this section the genus
and the Jacobian variety of a curve will be introduced.

The genus is a quite coarse invariant for curves which will allow us to
study every genus for itself in principle. In particular, we are interested in
curves of genus 0 which are called (smooth) conics and the curves of genus
1 are called elliptic curves.

The Jacobian variety of a curve is an abelian variety which carries a lot of
geometric information about the curve. For example, the genus of a curve
coincides with the dimension of its Jacobian.

Definition 1.2.1 (Genus of a curve). Let C be a curve over k. Then denote
by

g = g(C) := dimkH
1(C,OC)

the genus of the curve C where OC is the structure sheaf of C.
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Remark 1.2.2. The genus is invariant under arbitrary field extensions, i.e.
g(CL) = g(C) for every field extension L/k (cf. [Liu02, Definition 7.3.19]).

Lemma 1.2.3. Let f : X → Y be a finite morphism of curves. Then
g(X) ≥ g(Y ).

Proof. First of all, our curves are geometrically reduced by definition. Fur-
thermore they are normal because they are smooth and therefore [Liu02,
Corollary 7.4.19 and Proposition 7.4.21] give the claim. �

Now we are going to introduce the Jacobian variety of a curve. To do
this, we have to define the relative Picard functor.

Definition 1.2.4. Let C be a curve over k. The functor

P 0
C(T ) = {L ∈ Pic(C ×k T ) | deg(Lt) = 0 ∀t ∈ T}/q∗Pic(T )

on Sch/k is called the relative Picard functor where q : C × T → T is the
second projection, Pic(−) the Picard group, and Lt the fiber of the line
bundle L over the point t.

Lemma 1.2.5. Let C be a curve over k. Then there is a finite separable
field extension L/k, such that C(L) 6= ∅.

Proof. Due to [Liu02, Proposition 3.2.20] C(ks) 6= ∅, where ks is the separa-
ble closure of k, since C is geometrically reduced. C is also of finite type over
k and therefore a ks-rational point locally looks like k[X1, . . . , Xn]/I → ks,
i.e. it corresponds to (a1, . . . , an) ∈ (ks)n which are roots of I = (f1, . . . , fk).
Let us take L := k(a1, . . . , an). Then L/k is finite and separable and we
have an L-rational point k[X1, . . . , Xn]/I → L. �

Theorem 1.2.6 (Existence of the Jacobian variety). Let C be a curve over
k. Then there is a finite separable field extension L/k, such that the relative
Picard functor P 0

CL
on Sch/L is representable. Furthermore the representing

L-scheme is an abelian variety which is called the Jacobian variety of C and
denoted by JacC .

Proof. Due to the previous lemma there is a finite separable field extension
L/k, such that C(L) 6= ∅. Then the existence and the properties of the
Jacobian variety are covered in [Mil86b, §4]. �

Here comes a very powerful property of the Jacobian variety: It provides
the coincidence of the genus if the Picard group is the same.

Proposition 1.2.7. Let X,Y be curves over k, such that Pic(XL) ∼= Pic(YL)
as abstract groups for all finite separable field extensions L/k. Then g(X) =
g(Y ).

Proof. Due to Theorem 1.2.6 we can assume that the Jacobians of X and
Y exist. Take a number n such that (char(k), n) = 1 and a finite separable
field extension L/k such that all rational points of JacX [n] and JacY [n] exist
(these are finitely many which live in separable field extensions by [Mil86a,
Remark 8.4]). It is clear from the definition that JacCL

(L) = Pic0(CL).
Furthermore dim(JacC) = g(C) by [Mil86b, Proposition 2.1] and

Pic0(CL)[n] = JacC [n](L) ∼= (Z/nZ)2g(C)
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for C = X,Y by [Mil86a, Remark 8.4]. But Pic(CL) ∼= Pic0(CL) ⊕ Z and
therefore Pic0(CL)[n] = Pic(CL)[n]. Hence we have

(Z/nZ)2g(X) ∼= Pic(XL)[n] ∼= Pic(YL)[n] = (Z/nZ)2g(Y )

and therefore g(X) = g(Y ). �

1.3. Curves of Genus > 0 and Abelian Varieties. For our purpose,
the main tool to understand curves of genus > 0 and abelian varieties is the
following proposition.

Proposition 1.3.1. Let X ∈ Sm/k be a curve of genus g > 0 or an abelian
variety. Then every morphism A1 → X is constant.

Proof. First of all, due to [Mil86a, Lemma 3.2] every morphism A1 → X
extends to a morphism

P1 // X

A1
?�

OO >>}}}}}}}}

because every curve and every abelian variety over k is complete over k by
definition. Therefore it suffices to show that every morphism P1 → X has
to be constant. This is true for abelian varieties by [Mil86a, Corollary 3.8].
So let X be a curve of genus g > 0. Assume that there is a non-constant
morphism P1 → X of curves. Then f is finite according to [Liu02, Lemma
7.3.10]. Using Lemma 1.2.3 it follows that 0 = g(P1) ≥ g(X) which is
impossible. �

1.4. Brauer-Severi Varieties. In this section we will introduce Brauer-
Severi varieties which are essentially the same as Azumaya algebras. This
correspondence is the key to understand curves of genus 0 which will be
outlined in the next subsection. The approach presented here is mainly
taken from [Ser79] and [Jah00], but is also appears in [Ker90, Ch.30].

Definition 1.4.1. Let V ∈ Sch/k. Then V is called a Brauer-Severi variety
of dimension n if there is a finite, separable field extension L/k, such that
VL
∼= Pn

L. Any L with this property is called a splitting field for X.

Remark 1.4.2. Note that every Brauer-Severi variety is indeed a smooth
projective k-variety. Furthermore, because of the existence of the normal
hull, a splitting field can always be chosen to be a finite Galois extension
L/k.

Proposition 1.4.3. Let V be a Brauer-Severi variety over k. Then

V (L) 6= ∅ ⇐⇒ L/k is a splitting field for V.

Proof. This is due to Châtelet (cf. [Ser79, Ch.X §6 Exc. 1] or cf. [Jah00,
Theorem 4.5]). �

Our first aim is to quote a correspondence between isomorphism classes of
Brauer-Severi varieties and certain non-abelian group cohomology classes.
Confer [Ser79] for the theory of non-abelian group cohomology.
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Notation 1.4.4. Denote by BSk
n the isomorphism classes of Brauer-Severi

varieties of dimension n over k. Furthermore for L/k a field extension
BSL/k

n ⊆ BSk
n denotes the elements, such that L is a splitting field.

Remark 1.4.5. It is clear by definition that

BSk
n =

⋃
L/k

fin.sep.

BSL/k
n .

The following theorem is given in [Ser79, Ch.X §6] (or cf. [Jah00, Theorem
4.5 and Lemma 4.6]).

Theorem 1.4.6. Let L/k be a finite Galois extension and G := Gal(L/k)
the Galois group. Then there is a natural bijection of pointed sets

α
L/k
n−1 : BSL/k

n−1

∼=−→ H1(G,PGLn(L))

which is natural in extensions L′/L/k where L′/k is also Galois.

Corollary 1.4.7. Let ks be the separable closure of k and Gk = Gal(ks/k)
the absolute Galois group. Then there is a natural bijection

αk
n−1 : BSk

n−1

∼=−→ H1(Gk,PGLn(ks))

Proof. This follows immediately from the previous theorem and the defi-
nition of cohomology of profinite groups if PGLn(ks)Gal(ks/k′) = PGLn(k′)
for every intermediate field k ⊆ k′ ⊆ ks. But this is true since the exact
sequence

1→ (ks)∗ → GLn(ks)→ PGLn(ks)→ 1
induces the exact sequence

1→ (k′)∗ → GLn(k′)→ PGLn(ks)Gal(ks/k′) → H1(Gal(ks/k′), (ks)∗)

in cohomology H i(Gal(ks/k′),−) where the last entry vanishes by Hilbert’s
Theorem 90. �

Definition 1.4.8. Let k be a field. A finite dimensional central simple
algebra A over k is called an Azumaya algebra. Every field L/k with the
property that A⊗k L ∼= Mn(L) is called a splitting field for A.

Remark 1.4.9. Note that these algebras do not have to be commutative in
contrast to the k-algebras appearing in algebraic geometry. Recall from the
theory of central simple algebras (cf. [Ser79, Ch.X §5 Proposition 7]) that
there is always a finite separable splitting field L/k. If A⊗kL ∼= Mn(L), then
A is said to have the dimension n2 over k and the degree n. Furthermore
the structure Theorem of Wedderburn yields an unique skew field D, such
that A ∼= Mn(D). Denote by ind(A) := dimk(D) the index of A. Note that
there is always a splitting field L/k, such that ind(A) = dimk(L).

Azumaya algebras over a field k lead to the notion of the Brauer group
of the same field k. Its properties can be found in [Ker90, Ch.6].

Definition 1.4.10 (Brauer group). Let k be a field. Define an equivalence
relation on the set of Azumaya algebras over k by: For A,B Azumaya
algebras over k define

A ∼ B :⇐⇒ there are r, s ∈ N such that A⊗k Mr(k) ∼= B ⊗k Ms(k)
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Now define the Brauer group of k denoted by Br(k) as the set of the equiv-
alence classes of Azumaya algebras over k with respect to this equivalence
relation. The group law is given by

[A] + [B] = [A⊗k B].

The neutral element is [k] = {Mn(k) | n ∈ N} and the inverse of a class [A]
is given by the class of the opposite algebra [Aop].

Our next aim is to quote a correspondence between isomorphism classes of
Azumaya algebras and the same non-abelian group cohomology classes as for
the Brauer-Severi varieties. This will provide the demanded correspondence
between Brauer-Severi varieties and Azumaya algebras.

Notation 1.4.11. Denote by Azk
n the isomorphism classes of Azumaya

algebras of dimension n2 over k. Furthermore for L/k a field extension
AzL/k

n ⊆ Azk
n denotes the elements such that L is a splitting field.

Remark 1.4.12. It follows immediately that

Azk
n =

⋃
L/k

fin.sep.

AzL/k
n .

The following theorem is given in [Ser79, Ch.X §5 Proposition 8] (or cf.
[Jah00, Theorem 3.6 and Lemma 3.7]).

Theorem 1.4.13. Let L/k be a finite Galois extension and G := Gal(L/k)
the Galois group. Then there is a natural bijection of pointed sets

α
L/k
n−1 : AzL/k

n

∼=−→ H1(G,PGLn(L))

which is also natural in extensions L′/L/k where L′/k is also Galois.

With the same argument as for the BS we have

Corollary 1.4.14. Let ks be the separable closure of k and Gk = Gal(ks/k)
the absolute Galois group. Then there is a natural bijection

αk
n−1 : Azk

n

∼=−→ H1(Gk,PGLn(ks))

Bringing it all together (cf. [Jah00, Theorem 5.1]) we can conclude

Proposition 1.4.15. There is a bijection

Azk
n

∼=−→ BSk
n−1

A 7→ XA

with the following properties.

(1) For k′/k a field extension we have XA⊗kk′
∼= (XA)k′

(2) L/k is a splitting field for A if and only if it is a splitting field for
XA
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1.5. Curves of Genus 0. The key to understand curves of genus 0 is their
characterization as Brauer-Severi varieties which are associated to Azumaya
algebras as we have seen. To prove that curves of genus 0 are indeed Brauer-
Severi varieties we need the following proposition which is [Liu02, Proposi-
tion 7.4.1].

Proposition 1.5.1. Let C be a curve of genus 0. Then

C(k) 6= ∅ ⇐⇒ C ∼= P1

Corollary 1.5.2. Curves of genus 0 are exactly the Brauer-Severi varieties
of dimension 1.

Proof. Let V be a Brauer-Severi variety of dimension 1, i.e. V is a curve,
then VL

∼= P1 for a field extension L/k. Hence V has genus 0 over L and
therefore also genus 0 over k since the genus is invariant under change of
the base field.

Now let C be a curve of genus 0. Due to Lemma 1.2.5 there is a finite
separable field extension L/k, such that CL(L) 6= ∅. Therefore CL

∼= P1
L by

Proposition 1.5.1. �

Remark 1.5.3. The corollary immediately implies that BSk
1 consists exactly

of the isomorphism classes of curves of genus 0 over k.

Using Proposition 1.4.15 we get

Lemma 1.5.4. There is a bijection

{C | C curve over k, g(C) = 0}/∼= −→ Azk
2,

i.e. two curves of genus 0 are isomorphic if and only if their associated
Azumaya algebras of dimension 4 are isomorphic.

The next question is: How do these Azumaya algebras look like? In fact
they are well known, namely they are quaternion algebras as we will see.

Definition 1.5.5. Let char(k) 6= 2 and a, b ∈ k∗. A quaternion algebra
Q = (a, b) over k is a 4-dimensional k-algebra with the presentation

Q = (a, b) = 〈u, v | u2 = a, v2 = b, uv = −vu〉.
Now let char(k) = 2 and d ∈ k, a ∈ k∗. A quaternion algebra Q = [d, a) over
k is a 4-dimensional k-algebra with the presentation

Q = [d, a) = 〈u, v | u2 + u = d, v2 = a, vu+ uv = v〉.

Remark 1.5.6. All quaternion algebras can be realized as subalgebras of
matrix algebras as follows:
For char(k) 6= 2 let a, b ∈ k∗. If a is a square in k, Q = (a, b) = M2(k)
splits. If a is no square in k, let L = k(x) where x2 − a = 0. This is a
Galois extension with Galois group G = Z/2Z = {id, c} where c(l) = l is
the conjugation. Note that x+ x = 0 since (t− x) · (t− x) = t2 − a ∈ L[t].
Then Q = (a, b) can be realized as the full subalgebra of M2(L) generated
by the two matrices

u =
(
x 0
0 x

)
, v =

(
0 b
1 0

)
.
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For char(k) = 2 and given d ∈ k, a ∈ k∗ Q = [d, a) can also be realized
as follows: If d ∈ P(k) := {γ2 + γ | γ ∈ k} then Q = M2(k) splits (cf.
[Sch85, Ch.8 §11]). If d /∈ P(k) then L = k(x) where x2 + x + d = 0 is a
Galois extension with Galois group G = Z/2Z = {id, c} where c(l) = l is the
conjugation. Note that x+x = −1 = 1 since (t−x)·(t−x) = t2+t+d ∈ L[t].
Then Q can be realized as the full subalgebra of M2(L) generated by the
two matrices

u =
(
x 0
0 x

)
, v =

(
0 a
1 0

)
.

Lemma 1.5.7. An Azumaya algebra of dimension 4 over k is the same as
a quaternion algebra over k.

Proof. Let Q be a quaternion algebra. [Sch85, Ch.8 Examples 12.3 and
Theorem 12.2] implies that Q is a central simple algebra. Now let A be a
4-dimensional Azumaya algebra. Then it is shown in [Sch85, Ch.8 §11] that
A is a quaternion algebra. �

Lemma 1.5.8. For all quaternion algebras Q

Qop ∼= Q

where (−)op denotes the opposite algebra.

Proof. Let first be char(2) 6= 0, i.e. Q = (a, b). Then [Sch85, Ch.8 Examples
12.3 and Theorem 12.7] implies that (a, b) ⊗ (a, b) ∼ (a, b2) where ∼ is the
relation building up the Brauer group Br(k). Furthermore [Sch85, Lemma
12.6] gives us that (a, b2) splits, i.e. is zero in Br(k), because NL/k(b) = bb =
b2 and therefore b2 ∈ NL/k(L∗). But (a, b)op is the inverse of (a, b) in Br(k)
and therefore (a, b) ∼ (a, b)op. But since these two central simple algebras
have the same dimension it follows that (a, b) ∼= (a, b)op (cf. [Ser79, Ch.X
§5]). The same argument works for char(k) = 2, i.e. Q = [d, a), since [Sch85,
Ch.8 Examples 12.3 and Theorem 12.7] also implies that [d, a) ⊗ [d, a) ∼
[d, a2) and [d, a2) again splits because of [Sch85, Lemma 12.6]. �

Remark 1.5.9. Note that there is another proof of this lemma: First of
all, a quaternion algebra does not split if and only if it is a skew field, that
is, ind(Q) = 2 if Q does not split and ind(Q) = 1 if it splits. Now the result
follows using [Ker90, Satz 15.1].

Proposition 1.5.10. Let C1, C2 be two curves of genus 0 over k with asso-
ciated quaternion algebras Q1 and Q2. Then

C1
∼= C2 ⇐⇒ Q1

∼= Q2 or Q1
∼= Qop

2 .

Proof. This follows immediately from the three preceding lemmas. �

2. Simplicial Objects

2.1. Basic Notation and Results.

Definition 2.1.1. Let C be a category. Then C is called complete if all
small limits exist. Dually it is called cocomplete if all small colimits exist.
Finally C is called bicomplete if it is both complete and cocomplete.
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Remark 2.1.2. Every bicomplete category has an initial and a terminal
object, since the initial object is colim∅ and the terminal object is lim∅.
Denote an initial object by 0 and a terminal object by ∗.

Example 2.1.3. It is well known that the category of sets Set is bicomplete.

Definition 2.1.4. Denote by ∆ the category which is defined by:

Ob(∆) = {[n] = (0 < . . . < n) | n ∈ N}

are ordered finite sets and a morphism f : [m] → [n] is a weak monotone
map of ordered sets, i.e. i < j ⇒ f(i) ≤ f(j). Denote by δi : [n] → [n + 1]
the unique injective monotone map whose image does not contain i.

Definition 2.1.5. Let C be a category. Then a simplicial object X in C is
a functor X : ∆op −→ C. Denote X([n]) = Xn. Simplicial objects form a
category, namely a functor category which is denoted by sC. Furthermore
a cosimplicial object C in C is a functor C : ∆ −→ C. Denote C([n]) = Cn.
The category of cosimplicial objects is denoted by cC. A (co)simplicial object
X is called discrete if Xn = X0 for all n ∈ N and the induced morphisms
Xn → Xm are always the identity. Furthermore denote the image of δi under
a (co)simplicial object X by ∂i := X(δi).

Remark 2.1.6. There are canonical fully faithful embeddings

C ↪→ sC
C ↪→ cC

where an object X ∈ C is mapped to the canonical discrete (co)simplicial
object.

Remark 2.1.7. If C is bicomplete, then so are sC and cC: Functor categories
with a bicomplete target are again bicomplete since all limits and colimits
can be formed objectwise.

Example 2.1.8. The categories of simplicial sets sSet and simplicial abelian
groups sAb are bicomplete.

Notation 2.1.9. LetK be a simplicial set. Denote by Z[K] the composition

∆op K−→ Set Z[−]−−−→ Ab

called the associated free simplicial abelian group.

Remark 2.1.10. Of course we get an adjoint functor pair

Z[−] : sSet � sAb : F

where F is the forgetful functor.

2.2. Realization and Simplicial Complex.

Notation 2.2.1. Denote by ∆n := Hom∆(−, [n]) the standard n-simplex
in sSet. Furthermore denote by ∂∆n ⊂ ∆n the boundary of ∆n and by
Λn

k ⊂ ∆n ∈ sSet the k-th horn which is the boundary of ∆n without the
k-th face.
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Let C be a bicomplete category and C : ∆ −→ C a cosimplicial object.
Then C induces a realization functor

| − | : sSet −→ C

where |K| is the coequalizer in C of the canonical diagram∐
f :[n]→[m]

Kn × Cm ⇒
∐
n

Kn × Cn

where S ×X for a set S and an object X ∈ C means the discrete product,
that is the coproduct qi∈SX. The two maps are induced by the maps K(f)
and C(f) for f : [n]→ [m] via

Km × Cn
K(f)×id−−−−−→ Kn × Cn

and

Km × Cn
id×C(f)−−−−−→ Km × Cm.

Furthermore C induces a simplicial function complex functor

S : C −→ sSet

where S(X)n = HomC(Cn, X). It is easy to see that |∆n| = Cn and that

| − | : sSet � D : S

is an adjoint functor pair.

Remark 2.2.2. Think about the geometric realization |K| as the objects
of the cosimplicial object glued together via the construction plan contained
in the simplicial set K.

Notation 2.2.3. Denote by Top the category of topological spaces and by
∇n the standard n-simplex in Top.

Remark 2.2.4. The cosimplicial object C : ∆ −→ Top with C(n) = ∇n

induces the well-known geometric realization functor |− | and the simplicial
complex S which give the adjoint functor pair

| − | : sSet � Top : S

with the property that |∆n| = ∇n.

3. Model Categories

In this section the concept of model categories will be introduced. This
is a method to describe and understand notions of homotopy and weak
equivalences in several categories in the same language, for example:
Top: Topological spaces with the usual homotopy relation via I = [0, 1]

and weak homotopy equivalences.
sSet: Simplicial sets with the homotopy relation via ∆1 which is not in

general an equivalence relation and weak equivalences via the geo-
metric realization functor | − |.

CHR: Chain complexes of R-modules with the usual homotopy relation
and quasi-isomorphisms as weak equivalences.
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In particular, this method gives a good description for the homotopy cat-
egory for all objects, even if the homotopy relation is not in general an
equivalence relation.

Furthermore this is a method to do homotopy theory. That is, if there
is the structure of a model category, this machinery provides a notion of
homotopy and weak equivalences.

We will need this to introduce a homotopy theory on Sm/k, the so-called
motivic (or A1-) homotopy theory.

The concept of model categories was first introduced by Quillen in [Qui67]
but the approach presented here is mainly taken from [Hov99] up to the
subsection about simplicial model categories which is taken from [GJ99]
and the subsection about Bousfield localization which is taken from [Hir03].

3.1. Basic Notation and Results.

Definition 3.1.1. Let C be a category.
(1) A map f ∈ C is called a retract of a map g ∈ C if this is the case

as objects in the category of arrows Ar(C) where the morphisms are
commutative squares.

(2) Let i : A → B and p : X → Y be morphisms in C. Then i has
the left lifting property with respect to p and p has the right lifting
property with respect to i if for every commutative diagram

A //

i
��

X

p

��

B // Y

in C there is a lift, i.e. a morphism h : B → X which makes both
triangles commutative.

Definition 3.1.2 (Model category). Let C be a bicomplete category (this
axiom is called MC1). C is called a model category if it is equipped with
three classes of morphisms, called cofibrations, fibrations and weak equiva-
lences which are all closed under composition and contain all identities and
satisfy 4 axioms:
MC2 (2 out of 3) Consider a commutative diagram

X
f
//

gf   A
AA

AA
AA

Y

g

��

Z

in C. If two of f, g, gf are weak equivalences then so is the third.
MC3 (Retracts) The classes of cofibrations, fibrations and weak equiva-

lences are closed under retracts.
MC4 (Lifting) The acyclic cofibrations have the left lifting property with

respect to all fibrations and the acyclic fibrations have the right
lifting property with respect to all cofibrations.

MC5 (Factorization) Every morphism f : X → Y can be functorially
factored in two ways:
• f = p ◦ i where p is a fibration and i an acyclic cofibration.
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• f = q ◦ j where q is an acyclic fibration and j a cofibration.
where a morphism is called an acyclic (co)fibration if it is both a weak equiv-
alence and a (co)fibration. Such three classes of morphisms of a bicomplete
category C satisfying these 4 axioms are called a model structure on C.

Remark 3.1.3. A functorial factorization is described in ([Hov99, Defini-
tion 1.1.1]) which essentially states that the factorization is functorial in the
category of arrows, that is for a commutative square

A
f
//

��

C

��

B
g
// D

we get a factorization of f and g through objects A′ and B′ and an induced
morphism A′ → B′ which makes the obvious diagram commutative. Further
the construction is functorial concerning the induced morphisms.

Notation 3.1.4. Weak equivalences are denoted by ∼−→, cofibrations by �
and fibrations by �.

Remark 3.1.5. For a model category C the opposite category Cop has a
canonical model structure, namely take the weak equivalences in Cop as
the opposite morphisms of the weak equivalences in C. Furthermore the
fibrations in Cop are the opposite morphisms of the cofibrations in C and the
cofibrations in Cop are the opposite morphisms of the fibrations in C.

The following lemma is [Hov99, Lemma 1.1.10].

Lemma 3.1.6. Let C be a model category. Then we have the following
characterizations of (acyclic) (co)fibrations:

• The cofibrations are exactly the maps with the left lifting property
with respect to all acyclic fibrations.
• The acyclic cofibrations are exactly the maps with the left lifting

property with respect to all fibrations.
• The fibrations are exactly the maps with the right lifting property

with respect to all acyclic cofibrations.
• The acyclic fibrations are exactly the maps with the right lifting prop-

erty with respect to all cofibrations.

Remark 3.1.7. The lemma immediately implies that a model structure
is uniquely determined by the weak equivalences and the fibrations or the
weak equivalences and the cofibrations respectively, because the third class
is characterized by a lifting property with respect to the two other classes.
Therefore sometimes only two classes will be given if a model structure is
declared and the third is understood via the lifting property. Of course, it
is better to know the third class more explicitly.

Example 3.1.8. The category Top of topological spaces together with the
classes

• w.e. = weak homotopy equivalences
• fib. = Serre fibrations
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is a model category (cf. [Hov99, Ch.2.4]).

Example 3.1.9. The bicomplete category sSet of simplicial sets together
with the classes

• w.e. = w.e. in Top after geometric realization
• fib. = Kan fibrations, i.e. the maps which have the right lifting prop-

erty with respect to all inclusions Λn
k ↪→ ∆n

• cof. = monomorphisms in sSet
is a model category (cf. [Hov99, Ch.3]).

Example 3.1.10. The bicomplete category sAb of simplicial abelian groups
together with the classes

• w.e. =w.e. of the underlying simplicial sets
• fib. =fib. of the underlying simplicial sets

is a model category (cf. [GJ99, III Theorem 2.8]).

Definition 3.1.11. Let C be a model category and X an object of C. Then
X is called

• fibrant if the canonical morphism X → ∗ is a fibration.
• cofibrant if the canonical morphism 0→ X is a cofibration.

Remark 3.1.12. Unfortunately not every object of a model category is
fibrant and cofibrant. But applying the functorial factorization to the map
0 → X yields a factorization 0 � QX

∼
� X such that QX is cofibrant

and X 7→ QX is a functor. This is called the cofibrant replacement functor.
The dual works for the maps X → ∗ which yields a fibrant replacement
functor X 7→ RX. Because of the 2 out of 3 axiom R and Q preserve weak
equivalences.

Definition 3.1.13. Let C be a model category and X an object of C.
• A cylinder object X × I for X is a factorization of the fold map
X qX → X into a cofibration X qX � X × I followed by a weak
equivalence X × I → X.
• A path object XI for X is a factorization of the diagonal map X →
X × X into a weak equivalence X → XI followed by a fibration
XI � X ×X.

Remark 3.1.14. Because of the factorization axiom for every object X a
cylinder and a path object always exist. Let f, g : X → Y be two maps
in a model category C. Analogous to the situation with topological spaces
cylinder objects lead to the notation of left homotopies H : X × I → Y and
path objects lead to the notation of right homotopies H : X → Y I between
f and g (cf. [Hov99, Definition 1.2.4]). Note that different cylinder resp.
path objects can lead to different homotopy types. Finally two maps are
called homotopic if and only if they are both left and right homotopic.

The next proposition (which is [Hov99, Corollary 1.2.6]) describes the
good behavior of the homotopy relations for good objects.

Proposition 3.1.15. Let C be a model category and let X be a cofibrant and
Y a fibrant object of C. Then the left homotopy and right homotopy relations
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on HomC(X,Y ) coincide and do not depend on a choice of a cylinder or a
path object. Furthermore, they are equivalence relations on HomC(X,Y ).

The next theorem is [Hov99, Proposition 1.2.8] and generalizes the White-
head Theorem for topological spaces.

Theorem 3.1.16 (Whitehead). Let f : X → Y be a morphism of a model
category C, such that X and Y are both fibrant and cofibrant. Then f is a
weak equivalence if and only if it is a homotopy equivalence.

Definition 3.1.17 (Proper model categories). Let C be a model category.
• C is called left proper if weak equivalences are preserved by cobase

change along cofibrations.
• C is called right proper if weak equivalences are preserved by base

change along fibrations.
• C is called proper if it is both left and right proper.

The following lemma is given in [GJ99, II Lemma 8.12].

Lemma 3.1.18 (Glueing Lemma). Let C be a proper model category and

X

∼
��

Aoo

∼
��

// // Y

∼
��

X ′ A′oo // // Y ′

a commutative diagram such that all vertical maps are weak equivalences and
the horizontal maps on the righthand are cofibrations as indicated. Then the
induced map

X qA Y −→ X ′ qA′ Y
′

on pushouts is a weak equivalence.

3.2. Pointed model categories. Now the pointed model categories are
introduced. We should think of them as categories where every object has
a chosen basepoint. More precisely:

Definition 3.2.1 (Pointed model category). Let C be a model category. C
is called pointed if it has a 0-object, i.e. the terminal and the initial object
coincide: The canonical morphism

0→ ∗

is an isomorphism.

Definition 3.2.2. Let C be an arbitrary model category. Define C∗ as the
category under the terminal object ∗ ↓ C. That is the objects are morphisms
∗ → X ∈ C which can be seen as pointed objects and the morphisms are
basepoint preserving maps, i.e. commutative diagrams

∗

~~~~
~~

~~
~

��@
@@

@@
@@

X // Y
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Remark 3.2.3. Note that C∗ is pointed since id : ∗ → ∗ is the initial object
which is also terminal.

There is an obvious adjoint functor pair

(−)+ : C � C∗ : F

where X+ := (∗ → Xq∗) is adding a disjoint basepoint and F (∗ → X) = X
is the forgetful functor which is faithful (but in general not full).

Now let C be pointed, that is every object X has exactly one basepoint
(0 = ∗) → X. That implies that X+ = X q ∗ = X q 0 ∼= X. Furthermore
for a given ∗ → X ∈ C∗ this isomorphism gives a commutative diagram

∗

||zz
zz

zz
zz

��?
??

??
??

?

(X)+
∼= // X

Therefore ((−)+, F ) is an equivalence of categories if C is already pointed.

Lemma 3.2.4. For a model category C the pointed category C∗ is bicomplete.

Proof. Let G : I → C∗ be a diagram, i.e. I is a small index category and
G is a functor. The limit of G can be built up in C and has a canonical
basepoint arising from all basepoints of F (i) where i ∈ I. For the colimit
we have to enlarge I to an index category J which is I with an extra initial
object ∗ and let G′ : J → C∗ be the continuation of G with G′(∗) = ∗. Now
the colimit of G′ in C has a canonical basepoint which gives the colimit of
G. �

Example 3.2.5. The coproduct of two pointed objects X,Y ∈ C∗ is given
by the colimit of the diagram

∗ //

��

X

Y

in C, that is the quotient of X q Y by identifying the basepoints, denoted
by X ∨ Y .

The pushout of a diagram of pointed objects

X //

��

Y

Z

is just the colimit of the diagram

∗

~~}}
}}

}}
}}

��   A
AA

AA
AA

A

X Yoo // Z

in C. The condition with the terminal object ∗ means nothing else as that
morphisms should be pointed. Therefore the pushout is nothing else as the
pushout of the diagram above after forgetting the basepoints pointed by
∗ → Y qX Z.
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Now [Hov99, Proposition 1.1.8] gives us a canonical model structure on
C∗:
Proposition 3.2.6. Let C be a model category. Then the category of pointed
objects C∗ has also a structure of a model category via: A morphism f ∈ C∗
is a weak equivalence (cofibration, fibration) iff this is the case for F (f).

Lemma 3.2.7. If C is left or right proper then so is C∗.
Proof. Let C be left proper. Consider a pushout diagram

X
��

��

∼ // Y

��

Z // Z qX Y

in C∗. Since Z qX Y = (∗ → F (Z) qF (X) F (Y )) and C is left proper it
follows that F (Z) → F (Z qX Y ) is a weak equivalence and therefore also
Z → Z qX Y . This is the left properness.

Now let C be right proper. Since pullbacks in C∗ are computed in C the
same argumentation works for the right properness. �

3.3. The Homotopy Category. The machinery of model categories pro-
vides an explicit (and set theoretically well behaved) description of the lo-
calized category (w.e.)−1C for C a model category and w.e. the class of weak
equivalences.

Definition 3.3.1. (Homotopy category) Let C be a model category. Then
denote by Ho(C) the homotopy category of C where the objects are the same
as the objects of C but

HomHo(C)(X,Y ) = HomC(RQX,RQY )/ ∼
where ∼ is the homotopy relation. Denote by γ : C −→ Ho(C) the canonical
functor called the localization functor. It is the identity on objects and a
morphism f : X → Y is mapped to the homotopy class of RQ(f) : RQX →
RQY .

Remark 3.3.2. As Proposition 3.1.15 implies, ∼ is an equivalence relation
on HomC(RQX,RQY ) since X and Y are replaced by objects which are
fibrant and cofibrant. Furthermore, by [Hov99, Lemma 1.2.2 and Theorem
1.2.10] one has that γ : C −→ Ho(C) is indeed the localization of C with re-
spect to the weak equivalences. To motivate this, we will show that γ takes
weak equivalences to isomorphisms. So let f : X → Y be a weak equiva-
lence. Since the cofibrant and fibrant replacement is weakly equivalent to
the original object and using the 2 out of 3 axiom we get a weak equivalence
RQ(f) : RQX → RQY . But now the Whitehead Theorem 3.1.16 implies
that this is a homotopy equivalence and therefore an isomorphism in Ho(C).

The following lemma describes the morphisms in the homotopy category
between certain objects and is given in [Hov99, Theorem 1.2.10].

Lemma 3.3.3. Let X be a cofibrant object and Y be a fibrant object of a
model category C. Then

HomHo(C)(X,Y ) = HomC(X,Y )/ ∼
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Notation 3.3.4. Denote the morphisms in Ho(C) by

[X,Y ] = HomHo(C)(X,Y )

3.4. Quillen Functors and Equivalences. Now the good functors be-
tween model categories are introduced, i.e. they induce functors on the ho-
motopy categories.

Definition 3.4.1 (Quillen functors). Let C and D be model categories and

F : C � D : G

an adjoint functor pair.
Then F is called a left Quillen functor if it preserves cofibrations and

acyclic cofibrations. G is called a right Quillen functor if it preserves fibra-
tions and acyclic fibrations. Note that F is a left Quillen functor if and only
if G is a right Quillen functor by [Hov99, Lemma 1.3.4].

Finally the pair (F,G) is called a Quillen functor if F is a left Quillen
functor or, equivalently, G is a right Quillen functor.

Example 3.4.2. The adjoint functor pair

Z[−] : sSet � sAb : F

where Z[−] is the free simplicial abelian group functor and F the forgetful
functor is a Quillen functor since F is obviously a right Quillen functor.

Example 3.4.3. Let C be a model category. Recall the adjoint functor pair

(−)+ : C � C∗ : F

together with the canonical model structure on C∗. This a Quillen functor
since F is obviously a right Quillen functor.

The following result extends Quillen functors on the pointed model cate-
gories.

Proposition 3.4.4. Let
F : C � D : G

be a Quillen functor. Then there is a Quillen functor

F∗ : C∗ � D∗ : G∗

on the canonical model structures of C∗ and D∗ such that there is a natural
isomorphism F∗(X+) ∼= (FX)+.

Proof. Since G is a right adjoint, it preserves the terminal object which is
a limit. Therefore G(∗ → Y ) = ∗ → G(Y ) gives the functor G∗ which is
clearly a right Quillen functor if there is a left adjoint. The left adjoint is
given by: Let F∗(∗ → X) be the pushout of the diagram

F (∗)

��

// F (X)

∗
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Obviously V ◦ G∗ = G ◦ V where V is the forgetful functor forgetting the
basepoint. Therefore we get

HomD∗(F∗(X+), Y ) ∼= HomC∗(X+, G∗(Y ))
∼= HomC(X, (V ◦G∗)(Y ))
∼= HomC(X, (G ◦ V )(Y ))
∼= HomD(F (X), V (Y ))
∼= HomD∗(F (X)+, Y )

which gives the claimed natural isomorphism F∗(X+) ∼= (FX)+. �

The following fundamental lemma which is a key tool for Quillen functors
is given in [Hov99, Lemma 1.1.12].

Lemma 3.4.5 (Ken Brown’s Lemma). Let C and D be two model categories
and F : C → D a functor. Suppose that F takes acyclic cofibrations between
cofibrant objects to weak equivalences. Then F takes all weak equivalences
between cofibrant objects to weak equivalences. Dually, if F takes acyclic
fibrations between fibrant objects to weak equivalences, then F takes all weak
equivalences between fibrant objects to weak equivalences.

Corollary 3.4.6. Let (F,G) be a Quillen functor. Then F preserves cofi-
brant objects and all weak equivalences between them. Dually, G preserves
fibrant objects and all weak equivalences between them.

Proof. This follows immediately from the definition of a Quillen functor and
Ken Brown’s Lemma. �

Corollary 3.4.7. Let F : C � D : G be a Quillen functor. Then the
composition F ◦Q induces a functor

LF : Ho(C) −→ Ho(D)

called the total left derived functor. Dually, the composition G ◦ R induces
a functor

RG : Ho(D) −→ Ho(C)
called the total right derived functor. Furthermore

LF : Ho(C) � Ho(D) : RG

is an adjoint functor pair.

Proof. The existence of LF follows immediately from the previous corollary
and the characterization Ho(C) = (w.e.)−1C and Ho(D) = (w.e.)−1D using
the universal property of a localized category:

C
γ

��

Q
// C F // D

γ

��

Ho(C) LF // Ho(D)

where Q is the cofibrant replacement functor. The existence of RG is dual
via G ◦ R where R is the fibrant replacement functor. The adjointness of
LF and RG is given in [Hov99, Lemma 1.3.10]. �
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Remark 3.4.8. Note that the diagram

C F //

γ

��

D
γ

��

Ho(C) LF // Ho(D)

commutes up to functor isomorphism since the cofibrant replacementQX ∼−→
X becomes an isomorphism in Ho(D). The dual holds for RG.

Example 3.4.9. Denote Ho(C∗) by Ho∗(C) and HomHo∗(C)(X,Y ) by [X,Y ]∗.
Then the Quillen functor

(−)+ : C � C∗ : F

gives us an adjoint functor pair

L(−)+ : Ho(C) � Ho∗(C) : RF

that is we have for a pointed object Y

[X+, Y ]∗ = [X,Y ]

Definition 3.4.10 (Quillen equivalences). A Quillen functor (F,G) is called
a Quillen equivalence if (LF,RG) is an equivalence of categories.

Example 3.4.11. Due to [Hov99, Theorem 3.6.7] the adjoint functor pair
of Remark 2.2.4

| − | : sSet � Top : S
is a Quillen equivalence.

We have already seen that Quillen functors can be extended on the pointed
model categories. For special situations this also holds for Quillen equiva-
lences which gives us the next Proposition which is given in [Hov99, Propo-
sition 1.3.17].

Proposition 3.4.12. Let
F : C � D : G

be a Quillen equivalence such that the terminal object ∗ of C is cofibrant and
F preserves the terminal object. Then the induced Quillen functor

F∗ : C∗ � D∗ : G∗
is also a Quillen equivalence.

3.5. Cofibrantly Generated Model Categories. In this section a spe-
cial kind of model categories is introduced. Especially there is a recognition
thorem which makes it quite easy to identify a certain category with three
classes of morphisms as a model category. Quite easy means: It is often
easier than to check the original axioms of a model category.

Definition 3.5.1 (Cofibrantly generated model category). Let C be a model
category. Then C is called a cofibrantly generated model category if there ex-
ist two sets of maps: I (called the generating cofibrations) and J (called the
generating acyclic cofibrations), such that the following axioms are fulfilled.

(1) I and J permit Quillen’s small object argument (cf. [Hov99, Theorem
2.1.14]).
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(2) A map is an acyclic fibration if and only if it has the right lifting
property with respect to every map of I.

(3) A map is a fibration if and only if it has the right lifting property
with respect to every map of J .

Example 3.5.2. The category sSet with the model structure introduced
in Example 3.1.9 is a cofibrantly generated model category with generating
cofibrations

I = {∂∆n → ∆n | n ∈ N}
and generating acyclic cofibrations

J = {Λn
k → ∆n | n > 0, 0 ≤ k ≤ n}

(cf. [Hov99, Theorem 3.6.5]).

Definition 3.5.3. Let I be a class of maps in a cocomplete category C.
(1) A map is I-injective if it has the right lifting property with respect

to all maps in I. Denote by I-inj all I-injective maps.
(2) A map is an I-cofibration if it has the left lifting property with

respect to all maps in I-inj. Denote by I-cof all I-cofibrations.
(3) A map is a relative I-cell complex if it is a transfinite composition

of pushouts of maps in I (cf. [Hov99, Definition 2.1.9]). Denote by
I-cell all relative I-cell complexes.

Remark 3.5.4. Of course I ⊆ I-cof.

Here is the theorem which yields a recognition for cofibrantly generated
model categories and is done in [Hov99, Theorem 2.1.19].

Theorem 3.5.5 (Recognition Theorem). Let C be a bicomplete category
and let W be a class of maps in C, such that W is closed under retracts and
satisfies the 2 out of 3 axiom. Let I and J be sets of maps in C such that

(1) Both I and J permit Quillen’s small object argument
(2) J-cell ⊆W ∩ I-cof
(3) I-inj ⊆W ∩ J-inj
(4) Either W ∩ I-cof ⊆ J-cof or W ∩ J-inj ⊆ I-inj

Then there is a cofibrantly generated model structure on C, such that W is
the class of weak equivalences, I is a set of generating cofibrations and J is
a set of generating acyclic cofibrations.

Remark 3.5.6. Note that Quillen’s small object argument indeed yields
functorial factorizations for the factorization axiom as required.

The next Proposition is [Hov99, Lemma 2.1.21] which gives us that the
Quillen functor

(−)+ : C � C∗ : F
yields a cofibrantly generated structure for C∗ if C is cofibrantly generated.

Proposition 3.5.7. Let C be a cofibrantly generated model category with
generating (acyclic) cofibrations I (J). Then C∗ with the canonical model
structure is cofibrantly generated with generating (acyclic) cofibrations I+
(J+).
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Here comes one advantage of cofibrantly generated model categories: It is
easier to check that adjunctions are Quillen functors. The following lemma
is given in [Hov99, Lemma 2.1.20]

Lemma 3.5.8. Let C and D be model categories such that C is cofibrantly
generated with generating (acyclic) cofibrations I (J) and let

F : C � D : G

be an adjoint functor pair. Then (F,G) is a Quillen functor if and only if
F (f) is a cofibration for all f ∈ I and an acyclic cofibration for all f ∈ J .

3.6. Simplicial Model Categories. Now we are going to introduce the
simplicial model categories. Those are model categories enriched over sim-
plicial sets, such that this enrichment is compatible with the model structure.

Definition 3.6.1 (Simplicial model category). A model category C is called
a simplicial model category if there is a mapping space functor

Map : Cop × C → sSet
and a product functor

⊗ : sSet× C → C
such that the product is associative, i.e.

(L×K)⊗X ∼= L⊗ (K ⊗X)

natural in X ∈ C, K,L ∈ sSet and ∆0 is a unit object, i.e. ∆0 ⊗X ∼= X.
Furthermore there have to be adjoint functor pairs

−⊗X : sSet � C : Map(X,−)

and
K ⊗− : C � C : (−)K

for all X,Y ∈ C and K ∈ sSet.
Furthermore the axiom (SM7) has to be fulfilled, that is for every cofi-

bration j : A→ B in C and every fibration q : X → Y in C

Map(B,X)
(j∗,q∗)−−−−→ Map(A,X)×Map(A,Y ) Map(B, Y )

is a fibration in sSet which is acyclic if j or q is acyclic.

Remark 3.6.2. Map(X,Y ) has to be the simplicial set

Map(X,Y )n
∼= HomsSet(∆n,Map(X,Y )) ∼= HomC(∆n ⊗X,Y )

for a simplicial model category C, using the Yoneda Lemma and one of the
demanded adjunctions.

Example 3.6.3. The category sSet together with the model structure al-
ready introduced is a simplicial model category if we take

K ⊗X := K ×X
(cf. [GJ99, I Proposition 11.5]).

Furthermore the model category of simplicial abelian groups sAb is a
simplicial model category if we take

K ⊗X := Z[K]⊗X
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(cf. [GJ99, III Proposition 2.13]) where the tensor product in sAb is built
up levelwise, that is for A,B ∈ sAb it is given by

(A⊗B)n = An ⊗Z Bn

Remark 3.6.4. Let Y be an object in a simplicial model category C. Be-
cause of the natural isomorphisms

HomC(X,Y K) ∼= HomC(K ⊗X,Y ) ∼= HomsSet(K,Map(X,Y ))

there is an adjoint functor pair

Map(−, Y ) : C � (sSet)op : Y (−).

Remark 3.6.5. If all axioms of a simplicial model category are fulfilled per-
haps up to (SM7), (SM7) is equivalent to axioms (SM7a) and (SM7b)
which are formulated in terms using XK resp. K ⊗X for special K ∈ sSet
using the demanded adjunctions and the fact that sSet is a cofibrantly gen-
erated model category (cf. [GJ99, II Corollary 3.12 and Proposition 3.13]).
We will notice only the axiom (SM7b) for arbitrary K ∈ sSet here:
For every cofibration j : A→ B ∈ C and every cofibration i : K → L ∈ sSet
the canonical map

K ⊗B qK⊗A L⊗A
i�j−−→ L⊗B

is a cofibration in C which is acyclic if j or i is acyclic. j�i is called the
pushout product of j and i.

Lemma 3.6.6. Let C be a simplicial model category and K ∈ sSet a sim-
plicial set. Then

K ⊗− : C � C : (−)K

is a Quillen functor.
Furthermore let X ∈ C be a cofibrant object. Then

−⊗X : sSet � C : Map(X,−)

is a Quillen functor.
Finally let Y be a fibrant object of C. Then

Map(−, Y ) : C � (sSet)op : Y (−)

is a Quillen functor.

Proof. It follows immediately from (SM7b) and the fact that every simpli-
cial set is cofibrant that K ⊗ − is a left Quillen functor. Furthermore it
follows immediately from (SM7) that Map(X,−) is a right Quillen functor
for a cofibrant Y ∈ C and that Map(−, Y ) is a left Quillen functor for a
fibrant Y ∈ C. �

Lemma 3.6.7. Let C be a simplicial model category and let X ∈ C be a
cofibrant and Y ∈ C be a fibrant object. Then f, g : X → Y are homotopic
if and only if they are homotopic via a homotopy H : ∆1 ⊗X → Y . Such a
homotopy is called a simplicial homotopy.

Proof. First of all, ∆1 ⊗ X is a cylinder object for X if X is cofibrant
according to [GJ99, II Lemma 3.5]. Then Proposition 3.1.15 implies that
for additionally Y fibrant the definition of a homotopy does not depend on
a choice of a cylinder object and the claim follows. �



28 MARKUS SEVERITT

A simplicial model structure also extends to the pointed model structure.
For this we have to define a pointed version of the action of simplicial sets.

Definition 3.6.8. Let C be a simplicial model category. Let X ∈ C∗ be
a pointed object and K ∈ sSet∗ a pointed simplicial set. Define a smash
product

∧ : sSet∗ × C∗ −→ C∗
via: K ∧X is the pushout of the diagram

∗ ⊗X qK ⊗ ∗ //

��

K ⊗X

∗

The next proposition establishes the promised extension of the simplicial
structure to the pointed model category.

Proposition 3.6.9. Let C be a simplicial model category. Together with the
product

sSet× C∗
(−)+×id−−−−−→ sSet∗ × C∗

∧−→ C∗
the pointed model category C∗ is a simplicial model category.

Proof. Take
Map∗(X,Y )n := HomC∗((∆

n)+ ∧X,Y )

as the simplicial mapping space. Furthermore for a pointed object X and a
pointed simplicial set K take (X)K

∗ as the pullback of the diagram

XK

��

∗ // X∗

It is easy to see that the following functor pairs are adjunctions:

(−)+ ∧X : sSet � C∗ : Map∗(X,−)

and
(K)+ ∧ − : C∗ � C : (−)K+

∗

Finally we have to check the axiom (SM7b). But this follows immediately
from the fact that (−)+ is a left Quillen functor and that the diagram

B ⊗K+ qA⊗K+ A⊗ L+ //

��

B ⊗ L+

��

B ∧K+ qA∧K+ A ∧ L+ // B ∧ L+

is a pushout in C and (acyclic) cofibrations are preserved under cobase
change. �

Simplicial structures also provide notions of mapping cylinders.
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Definition 3.6.10 (Simplicial mapping cylinder). Let C be a simplicial
model category and f : X → Y a map in C. Define the simplicial mapping
cylinder of f Cyl(f) as the pushout of the diagram

X
f
//

��

Y

∆1 ⊗X

where X ∼= ∆0 ⊗ X ι0⊗X−−−→ ∆1 ⊗ X is induced by the first embedding ι0 :
∆0 ↪→ ∆1, that is, the map which corresponds to the map [0] 0 7→0−−−→ [1], using
the Yoneda Lemma.

Remark 3.6.11. Let us denote by h : X → Cyl(f) the map induced by the
second embedding ι1 : ∆0 ↪→ ∆1, that is, it corresponds to [0] 0 7→1−−−→ [1], via

X ∼= ∆0 ⊗X ι1⊗X−−−→ ∆1 ⊗X −→ Cyl(f)

This gives a factorization of f :

Cyl(f)
p

""F
FF

FF
FF

FF

X

h
;;xxxxxxxxx f

// Y

Note that the canonical map p : Cyl(f)→ Y is induced by the diagram

X
f
//

��

Y

id
��

∆1 ⊗X
f◦πX // Y

where πX = ∆1⊗X → ∆0⊗X ∼= X is induced by the unique map ∆1 → ∆0.

Lemma 3.6.12. Let C be a simplicial model category and f : X → Y a map
between cofibrant objects. Then h : X → Cyl(f) is a cofibration, Cyl(f) is
cofibrant and p : Cyl(f)→ Y is a simplicial homotopy equivalence.

Proof. First of all, it follows immediately from Lemma 3.6.6 that

K ⊗X ι⊗X−−−→ L⊗X
is a cofibration for every inclusion ι : K ↪→ L in sSet since X is cofibrant.
Note that K ⊗X is also cofibrant for all K ∈ sSet. Furthermore we have
∂∆1⊗X ∼= XqX induced by the maps X ∼= ∆0⊗X ιi⊗X−−−→ ∂∆1⊗X, where
ιi : ∆0 ↪→ ∂∆1 are the two inclusions, since

HomC(∂∆1 ⊗X,Y ) = HomsSet(∂∆1,Map(X,Y )) = HomC(X qX,Y )

for all Y ∈ C. Note that we have the pushout diagram

∂∆1 ⊗X ∼= X qX
��

��

fqX
// Y qX
��

��

∆1 ⊗X // Cyl(f)
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and therefore
h = X � Y qX � Cyl(f)

is a cofibration as claimed. Now it is clear that Cyl(f) is cofibrant since
the unique map 0 → Cyl(f) is the same as the composition of the two
cofibrations 0 � X � Cyl(f). It is standard to see that p : Cyl(f)→ Y is
a simplicial homotopy equivalence since ∆1⊗− gives a cylinder object. �

Remark 3.6.13. Note that for X cofibrant the two cofibrations

X ∼= ∆0 ⊗X ιi⊗X−−−→ ∆1 ⊗X
are simplicial homotopy equivalences. This immediately implies that for a
map f : X → Y between cofibrant objects the map Y � Cyl(f) is an acyclic
cofibration.

Lemma 3.6.14. Let C be a simplicial model category and f : X → Y a
map between cofibrant objects. Then the cofibration X � Cyl(f) is acyclic
if and only if f is a weak equivalence.

Proof. This follows immediately from the commutative diagram

Cyl(f)
p

∼
""F

FF
FF

FF
FF

X
;;

h
;;xxxxxxxx f

// Y

and the 2 out of 3 axiom for weak equivalences where the indicated properties
of the maps follow from the Lemma 3.6.12. �

3.7. Bousfield Localization. Our next aim to introduce the concept of
Bousfield localization. This provides for special model categories that it is
possible to take a given model structure and add more weak equivalences.
That is, it provides a localization of the homotopy category.

Notation 3.7.1. Throughout this subsection let C be a simplicial model
category. Denote by map(X,Y ) := Map(QX,RY ) where Q is the cofibrant
and R the fibrant replacement functor.

Remark 3.7.2. If Y is fibrant, then map(X,Y ) is naturally weak equivalent
to Map(QX,Y ) since Map(QX,−) is a right Quillen functor by Lemma
3.6.6. Dually map(X,Y ) is naturally weak equivalent to Map(X,RY ) if X
is cofibrant.

Lemma 3.7.3. Let E be a fibrant object of C. Then

map(−, E) : C → sSet
respects weak equivalences.

Proof. First of all, map(−, E) is weak equivalent to Map(Q(−), E) by the
previous remark and Map(−, E) is a left Quillen functor because of Lemma
3.6.6. Therefore it preserves weak equivalences between cofibrant objects.
Furthermore Q respects weak equivalences and hence the claim follows. �

Lemma 3.7.4. A morphism f : X → Y ∈ C is a weak equivalence if and
only if f∗ : map(Y,E) → map(X,E) is a weak equivalence in sSet for all
fibrant E ∈ C.
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Proof. One direction is the previous lemma. By the previous remark again,
we are using Map(QY,X) for the other direction. Now suppose that Q(f)∗ :
Map(QY,E)→ Map(QX,E) is a weak equivalence of simplicial sets. Hence
it is especially a π0-isomorphism. Furthermore

π0Map(QY,E) ∼= Map(QY,E)0/ ∼
∼= HomC(QY,E)/ ∼
= [QY,E]
= HomHo(C)(QY,E)

using Lemma 3.6.7 and hence

(γ(Q(f)))∗ : HomHo(C)(QY,E)→ HomHo(C)(QX,E)

is an isomorphism for all fibrant E. Therefore the Yoneda Lemma implies
that γ(Q(f)) : QX → QY is an isomorphism in Ho(C) because it suffices to
check the Hom-isomorphisms only for fibrant objects. It follows that Q(f)
is a weak equivalence in C. But Q(f) is obtained from f via a commutative
diagram

X
f
// Y

QX

∼

OO

Q(f)
// QY

∼

OO

and hence f is a weak equivalence because of the 2 out of 3 property for
weak equivalences. �

Definition 3.7.5 (S-local objects and S-local weak equivalences). Let S ⊆
MorC be a class of morphisms. A fibrant object E ∈ C is called S-local if

f∗ : map(B,E)→ map(A,E)

is a weak equivalence of simplicial sets for all f : A→ B ∈ S.
A morphism g : X → Y ∈ C is called an S-local weak equivalence if

g∗ : map(Y,W )→ map(X,W )

is a weak equivalence of simplicial sets for all S-local W.

Remark 3.7.6. (1) Every f ∈ S is an S-local weak equivalence.
(2) Every weak equivalence of C is an S-local weak equivalence.

Proof. (1) is clear by definition of an S-local object. (2) is clear using Lemma
3.7.3. �

Remark 3.7.7. Using Lemma 3.7.3 and the 2 out of 3 property for weak
equivalences in sSet an S-local object is the same as an S′-local object if S′

is obtained from S by weak equivalent replacements of the morphisms in S,
notated S ∼ S′. That is every morphism g ∈ S′ is connected to a morphism
f ∈ S by a commutative diagram

A
f
//

��
�O
�O
�O

B

��
�O
�O
�O

C
g
// D

where the vertical ‘arrows’ are zigzag compositions of weak equivalences.
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Definition 3.7.8 (Left Bousfield localization). Let S ⊆ MorC be a class
of morphisms. A model structure LSC on C is called the left Bousfield
localization on C with respect to S if

• w.e. of LSC = S-local weak equivalences
• cof. of LSC = cofibrations of C

Remark 3.7.9. For a given model category C and a class of morphisms S
it is not clear if the left Bousfield localization exists. There is an existence
Theorem of Hirschhorn for good model categories which is given at the end
of the subsection. The existence is assumed in the following results.

Lemma 3.7.10. Let S, S′ be two classes of morphisms, such that S ∼ S′.
Then LSC = LS′C.

Proof. Of course, the cofibrations are the same. The equality of the weak
equivalences follows immediately from Remark 3.7.7 since the S-local (S′-
local resp.) weak equivalences only depend on the S-local (S′-local resp.)
objects. �

Here is the result that the left Bousfield localization provides a localization
of the homotopy category.

Proposition 3.7.11. Let LSC be the left Bousfield localization of C with
respect to S. First of all id : C → LSC is a left Quillen functor with the
property that it takes every cofibrant replacement of a map in S into a weak
equivalence in LSC. Furthermore this functor is universal with this property,
i.e. consider a left Quillen functor F : C → D which takes every cofibrant
replacement of a map in S into a weak equivalence in D. Then there is
exactly one Quillen functor LSC → D with

C F //

id
��

D

LSC

==

commutes.

Proof. This is done in [Hir03, Proposition 3.3.19 (1)]. �

The next theorem shows that the left Bousfield localization has a functo-
rial behavior with respect to Quillen functors.

Theorem 3.7.12. Let C and D be simplicial model categories and F : C �
D : G a Quillen functor. Let LSC be the left Bousfield localization of C with
respect to S and LF (QR(S))D the left Bousfield localization of D with respect
to F (QR(S)) where Q is the cofibrant and R the fibrant replacement functor
of the model category C. Then:

(1) (F,G) is also a Quillen functor between the localizations LSC and
LF (QR(S))D.

(2) If (F,G) is a Quillen equivalence between C and D then (F,G) is also
a Quillen equivalence between the localizations LSC and LF (QR(S))D.



MOTIVIC HOMOTOPY TYPES OF PROJECTIVE CURVES SE 33

Proof. Since QR(S) yields cofibrant replacements of the morphisms in S
part (1) is clear applying Proposition 3.7.11 to the composition

C F−→ D idD−−→ LF (QR(S))D

which is a left Quillen functor between C and LF (QR(S))D by assumption
and the first part of Proposition 3.7.11. Part (2) is done in [Hir03, Theorem
3.3.20 (1)(b)]. �

The next proposition yields an identification property for a left Bousfield
localization.

Proposition 3.7.13. Let M and N be two model structures on C and S ⊆
MorC a class of morphisms. Assume cofN = cofM and the N -fibrant
objects are exactly the objects which are S-local with respect to M. Then:
N is the left Bousfield localization of M with respect to S.

Proof. We have to check that wN = S-local weak equivalences with respect
to M. But this is clear using Lemma 3.7.4 and the definition of an S-local
weak equivalence. �

The next theorem yields the existence of the left Bousfield localization
for special model categories which includes the definition of cellular model
categories. Since we will not have to deal with this definition explicitly, this
definition will not be given in this thesis but the interested reader can find
it in [Hir03, Chapter 12]. The theorem will be applied to another quoted
theorem to get a new model structure. But note that the definition of cellular
model categories includes that the model structure is cofibrantly generated.

Theorem 3.7.14 (Hirschhorn). Let C be a simplicial left proper cellular
model category and S ⊆ MorC a set of morphisms. Then the left Bousfield
localization LSC exists and it has the following properties:

(1) LSC is a simplicial model category with the same simplicial structure
as C.

(2) The fibrant objects of LSC are exactly the S-local objects.
(3) LSC is again left proper and cellular.

Proof. This is done in [Hir03, Theorem 4.1.1]. �

4. Grothendieck Sites

The next aim is to introduce the concept of Grothendieck topologies on
arbitrary categories. This is a generalization of the concept of a topology
on a set X. It allows us to define presheaves and sheaves on a Grothendieck
topology similar to the notion of presheaves and sheaves on a topological
space.

4.1. Basic Notation.

Definition 4.1.1. (Small Grothendieck site) A small Grothendieck site T =
(C,CovT ) consists of a small category C and a set of coverings CovT , i.e. for
every U ∈ C there is a set of coverings CovT (U) consisting of families of
morphisms {φi : Ui → U}i∈I such that the following axioms hold:
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(1) Let {Ui → U} ∈ CovT (U) and V → U ∈ C. Then all pullbacks
Ui ×U V exist and {Ui ×U V → V } ∈ CovT (V ).

(2) Let {Ui → U} ∈ CovT (U) and a family {Vij → Ui} ∈ CovT (Ui)
for every i ∈ I. Then the set of maps {Vij → U} obtained by all
compositions is in CovT (U).

(3) Every isomorphism U ′ → U ∈ C belongs to CovT (U).
A set of coverings CovT satisfying these axioms is called a Grothendieck
topology on C.

Remark 4.1.2. Let T = (C,CovT ) be a small Grothendieck site and X ∈ C.
Then denote by C ↓ X the category overX, that is the objects are morphisms
V → X of C and the morphisms are commutative diagrams

V //

  A
AA

AA
AA

W

~~||
||

||
||

X

.

Denote by ιX : C ↓ X −→ C the forgetful functor. C ↓ X is again a small
Grothendieck site denoted by T ↓ X with the canonical coverings: For a
family of morphisms φi : Ui → U over X we define

{φi} ∈ CovT↓X(U → X) :⇐⇒ {ιX(φi)} ∈ CovT (U)

Example 4.1.3. There are at least three Grothendieck topologies on the
small category Sm/k as we will see in subsection 6.1.

Definition 4.1.4. (Presheaves and sheaves) Let T = (C,CovT ) be a small
Grothendieck site. A presheaf P is a functor

P : Cop −→ Set.
A presheaf P is called a sheaf if for every U ∈ C and every {Ui → U} ∈
CovT (U) the canonical diagram

P (U)→
∏

i

P (Ui) ⇒
∏
i,j

P (Ui ×U Uj)

is an equalizer diagram in Set.

Remark 4.1.5. The presheaves resp. sheaves form a category via taking the
canonical categorical structure of a functor category resp. a full subcategory.
Denote these categories by Pre(T ) and Shv(T )

Remark 4.1.6. It is clear that Pre(T ) as a functor category with the bi-
complete target category Set is again bicomplete because limits and colimits
can be formed objectwise.

4.2. The Associated Sheaf Functor. The next proposition gives the ex-
istence of the associated sheaf functor (cf. [Bor94, Theorem 3.3.12]).

Proposition 4.2.1. There is an adjoint functor pair

a : Pre(T ) � Shv(T ) : ι

where ι is the canonical inclusion functor and a is called the associated
sheaf functor. Furthermore a does nothing on sheaves, that is a◦ ι ∼= id, and
commutes with finite limits.



MOTIVIC HOMOTOPY TYPES OF PROJECTIVE CURVES SE 35

An immediate consequence of this adjunction is

Corollary 4.2.2. The category of sheaves is also bicomplete.

Proof. We make heavy use of the already seen fact, that Pre(T ) is bicom-
plete. Since a preserves colimits as a left adjoint and does nothing on
sheaves, colimits in Shv(T ) can be formed in Pre(T ) via ι followed by the
sheafification a. Since limits in Pre(T ) are formed objectwise, they com-
mute objectwise with equalizers in Set. Hence limits can directly be formed
in Pre(T ) via ι without sheafification because they are already sheaves. It
follows from the adjointness of a and ι together with a ◦ ι ∼= id that these
constructions indeed yield all small limits and colimits in Shv(T ). �

5. Homotopy Theories on Simplicial (Pre)Sheaves

In this section four model structures on simplicial (pre)sheaves on a small
Grothendieck site will be introduced, the so-called (local) projective and
(local) injective structure. This provides the technical background to in-
troduce motivic homotopy theory. The model structure used by Morel and
Voevodsky in [MV99] is the local injective one. But for our purpose it is
better to use the local projective structure which is Quillen equivalent to
the local injective one. Furthermore it will turn out in Theorem 5.4.5 that
the homotopy theories on presheaves and the homotopy theories on sheaves
lead to equivalent homotopy categories induced by the associated sheaf func-
tor. That is, there is no difference between presheaves and sheaves in the
homotopy categories.

5.1. Basic Notation and Results.

Notation 5.1.1. Throughout this section let T := (C,CovT ) denote a small
Grothendieck site. Furthermore consider sSet always with the model struc-
ture introduced in Example 3.1.9.

Definition 5.1.2 (simplicial (pre)sheaves). Denote by

sPre(T ) := Fun (∆op,Pre(T )) and sShv(T ) := Fun (∆op,Shv(T ))

the simplicial objects in the categories Pre(T ) and Shv(T ), which are called
the simplicial (pre)sheaves on T .

Remark 5.1.3. It is clear that sPre(T ) = Fun(Cop, sSet), i.e. sSet-valued
presheaves on T , because both categories are equal to the bifunctor category
BiFun(∆op × Cop,Set). Furthermore the sheaf-condition of the sSet-valued
presheaves is tested with equalizer diagrams in the category sSet, hence
objectwise for all [n] ∈ ∆. Therefore it is also true, that sShv(T ) are the
sSet-valued sheaves on T .

It depends on the context which description of simplicial (pre)sheaves is
used.

Remark 5.1.4. The categories of simplicial sheaves and presheaves are
both bicomplete since Pre(T ) and Shv(T ) are bicomplete (cf. section 4) and
functor categories with a bicomplete target category are again bicomplete
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because all limits and colimits can be formed objectwise. Furthermore there
is again an adjoint functor pair

a : sPre(T ) � sShv(T ) : ι

where ι is the inclusion functor and a the associated sheaf functor which is
built up objectwise, i.e. for X ∈ sPre(T ) the associated sheaf a(X) is given
by the composition

∆op X−→ Pre(T ) a−→ Shv(T )
where a : Pre(T ) → Shv(T ) is the associated sheaf functor of Set-valued
presheaves. Note that the associated sheaf functor again does nothing on
simplicial sheaves, that is a ◦ ι ∼= id, and commutes with finite limits.

Notation 5.1.5. Let X ∈ C. Then denote by X = HomC(−, X) the repre-
sented discrete simplicial presheaf.

Proposition 5.1.6. Every simplicial presheaf is canonically isomorphic to
a colimit of representable simplicial presheaves.

Proof. The proof is due to [Mac98, Ch.III §7 Theorem 1]. It yields that
there is an isomorphism

X
∼=←− colim(U,[n],x)U ×∆n

where the colimit is indexed over all U ∈ C, n ∈ N and x ∈ X(U)n and such a
triple is denoted as (U, [n], x). A morphism of tripels (U, [n], x)→ (V, [m], y)

is just a morphism (U, [n])
f−→ (V, [m]) in C×∆ such that X(f)(y) = x. Now

the structure morphisms of the colimit are given by: For a morphism of pairs
(U, [n])

f−→ (V, [m]) take the induced morphism by the Yoneda embedding

U×∆n f−→ V ×∆m. The claimed isomorphism is given by: Every x ∈ X(U)n

determines a morphism U ×∆n x−→ X by the Yoneda Lemma which yields
a morphism from every factor of the colimit to X. The collection of these
morphisms is of course compatible with the structure morphisms of the
colimit. �

Notation 5.1.7. Let U ∈ T andX ∈ sPre(T ). Denote byX|U the restricted
simplicial presheaf on the Grothendieck site T ↓ U , that is, the composition

(C ↓ U)op (ιU )op

−−−−→ Cop X−→ sSet
where C ↓ U is the category over U and ιU the forgetful functor.

Remark 5.1.8. If X is a simplicial sheaf, then so is X|U .

Notation 5.1.9. The categories of pointed simplicial (pre)sheaves are de-
noted by sPre∗(T ) := sPre(T )∗ and sShv∗(T ) := sShv(T )∗.

Remark 5.1.10. Note that pointed simplicial (pre)sheaves are the same as
sSet∗-valued (pre)sheaves on T , i.e.

sPre∗(T ) = Fun(Cop, sSet∗)
and the sheaves are the presheaves fullfilling the equalizer diagrams for the
coverings in sSet∗ which is true since equalizers in sSet∗ are computed in
sSet after forgetting the basepoints (cf. Lemma 3.2.4).
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Remark 5.1.11. The categories of pointed simplicial sheaves and pre-
sheaves are again bicomplete (cf. Lemma 3.2.4 which does not depend on
the model structure). Furthermore there is also an adjoint functor pair

a∗ : sPre∗(T ) � sShv∗(T ) : ι∗

induced by the associated sheaf functor and the inclusion functor on (un-
pointed) simplicial (pre)sheaves where a∗(∗ → X) = a(∗ → X) = ∗ → a(X)
and similar with ι∗.

Notation 5.1.12. Let U ∈ T and X ∈ sPre∗(T ). Denote by X|U the
restricted pointed simplicial (pre)sheaf, that is the composition

X|U := (C ↓ U)op (ιU )op

−−−−→ Cop X−→ sSet∗.

5.2. The Closed Symmetric Monoidal Structure. There is a closed
symmetric monoidal structure on simplicial (pre)sheaves (cf. [Mac98, Ch.XI
§1]).

Definition 5.2.1. Let X,Y be simplicial (pre)sheaves. Define the simplicial
function complex

Map(X,Y )n := HomsPre(T )(X ×∆n, Y )

on presheaves and

Map(X,Y )n := HomsShv(T )(X × a(∆n), Y )

on sheaves where ∆n is taken as the constant simplicial presheaf and a(∆n)
is the associated constant simplicial sheaf. The internal function complex is
given by

Map(X,Y )(U) := Map(X|U , Y|U )

on simplicial sheaves and presheaves. A straightforward calculation shows
that for X,Y simplicial sheaves Map(X,Y ) is again a simplicial sheaf using
Lemma 5.2.4.

Remark 5.2.2. The categories of simplicial sheaves and presheaves together
with the categorical product

−×− : sPre(T )× sPre(T ) −→ sPre(T )

and
−×− : sShv(T )× sShv(T ) −→ sShv(T )

are symmetric monoidal categories where X × Y is denoted by X ⊗ Y .
Moreover they are closed since there are adjoint functor pairs

−⊗X : sPre(T ) � sPre(T ) : Map(X,−)

and
−⊗X : sShv(T ) � sShv(T ) : Map(X,−).

Lemma 5.2.3 (Yoneda-Lemma over sSet). Let X ∈ C and F ∈ sPre(T ).
Then

Map(X,F ) ∼= F (X) ∈ sSet
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Proof. This follows from the natural isomorphisms (in n)

Map(X,F )n = Hom(X ×∆n, F )
∼= Hom(X,Hom(∆n, F ))
∼= Hom(X,Fn)
∼= F (X)n

�

Lemma 5.2.4. Let F,G be simplicial (pre)sheaves and X ∈ C. Then

Map(X,G) = G(−×X)

and
Map(F,G)(X) = Map(F,G(−×X))

for presheaves and for sheaves.

Proof. Here is the verification on presheaf-level: First of all note that

Map(F,G)(U) = Map(U,Map(F,G)) = Map(U ⊗ F,G)

by the Yoneda Lemma (over sSet). Then the first claim follows by the fact
that X ⊗Y = X × Y and again the Yoneda Lemma (over sSet). Finally we
have

Map(F,G)(X) = Map(F ⊗X,G)

= Map(F,Map(X,G))

= Map(F,G(−×X))

The argument for sheaves is similar. �

Furthermore this closed symmetric monoidal structure induces a canonical
closed symmetric monoidal structure on pointed simplicial (pre)sheaves.

Definition 5.2.5. Let X,Y be pointed simplicial (pre)sheaves. Define the
smash product X ∧ Y as the pushout of the diagram

∗ ⊗ Y qX ⊗ ∗

��

// X ⊗ Y

∗

which is the same as X⊗Y/(X∨Y ) and is canonically pointed by the image
of X ∨ Y . Furthermore define the pointed simplicial function complex

Map∗(X,Y )n := HomsPre(T )∗(X ∧∆n
+, Y )

on presheaves and

Map∗(X,Y )n := HomsShv(T )∗(X ∧ a(∆
n)+, Y )

on sheaves pointed by the trivial map X → ∗ → Y and the pointed internal
function complex by

Map∗(X,Y )(U) = Map∗(X|U , Y|U )
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Remark 5.2.6. The smash products yield symmetric monoidal structures
on pointed simplicial (pre)sheaves which are also closed since

− ∧X : sPre∗((Sm/k)Nis) � sPre∗((Sm/k)Nis) : Map∗(X,−)

and

− ∧X : sShv∗((Sm/k)Nis) � sShv∗((Sm/k)Nis) : Map∗(X,−)

are adjoint functor pairs for all pointed simplicial (pre)sheaves X.

5.3. Model Structures on Simplicial Presheaves. Here is the definition
which describes the simplicial structure on all four model structures.

Definition 5.3.1 (Simplicial structure). Let X,Y be simplicial presheaves
and K a simplicial set, then define

K ⊗X := K ×X with K considered as constant presheaf

and Map(X,Y ) is the simplicial function complex as declared above as well
as

XK := Map(K,X)
where Map is the internal function complex, also declared above. Note
that Map(K,X)(U) = Map(K,X(U)) where Map is the simplicial function
complex in sSet. Then

−⊗X : sSet � sPre(T ) : Map(X,−)

and
K ⊗− : sPre(T ) � sPre(T ) : (−)K

are adjoint functor pairs.

Remark 5.3.2. Using K ⊗X := a(K)×X and XK := Map(a(K), X) for
simplicial sheaves, we get a similar structure on sheaves using the closed
symmetric structure for simplicial sheaves.

There is a notion of homotopy groups for simplicial presheaves which is
given next.

Definition 5.3.3. Let X be a simplicial presheaf. Define π0(X) as the
sheafified presheaf

U 7→ π0(X(U))
on the site T where π0(X(U)) are just the connected components of the
simplicial set X(U).

Let U ∈ C, x ∈ X(U)0, and n > 0. Define πn(X|U , x) as the sheafified
presheaf

(V → U) 7→ πn(X(V ), xV )
of homotopy groups of simplicial sets on the site T ↓ U where xV ∈ X(V )0
is just the image of x under the canonical map X(U)0 → X(V )0.

Definition 5.3.4. Let f : X → Y be a map of simplicial (pre)sheaves. f is
called a

• local weak equivalence if f∗ : π0(X) → π0(Y ) is an isomorphism
of sheaves and for all n > 0 and U ∈ C the induced map f∗ :
πn(X|U , x)→ πn(Y|U , f(x)) is an isomorphism of sheaves for all base-
points x ∈ X(U)0
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• objectwise weak equivalence (resp. (co)fibration) if for all U ∈ C
f(U) : X(U) → Y (U) is a weak equivalence (resp. (co)fibration)
in sSet

Notation 5.3.5. For the (local) injective/projective model structure, we
will refer to the weak equivalences, fibrations and cofibrations as the (lo-
cal) injective/projective weak equivalences, fibrations and cofibrations. The
same is done later with the A1-local model structure. This might be a little
bit confusing, but it is necessary to keep apart the different model structures.

Referring to [Bla01, Theorem 1.1] there is a model structure on simpli-
cial presheaves using the objectwise weak equivalences as weak equivalences
called the injective model structure:

Theorem 5.3.6 (Joyal). The category of simplicial presheaves on a small
Grothendieck site together with the classes

• w.e. = objectwise weak equivalences
• cof. = objectwise cofibrations

forms a proper simplicial cofibrantly generated model category.

But using the same weak equivalences but the objectwise fibrations we
also have a model structure called the projectice model structure referring
[Bla01, Theorem 1.4]:

Theorem 5.3.7 (Hirschhorn-Bousfield-Kan-Quillen). The category of sim-
plicial presheaves on a small Grothendieck site together with the classes

• w.e. = objectwise weak equivalences
• fib. = objectwise fibrations

forms a proper simplicial cellular model category.

Sketch of the proof. Every cellular model category is by definition cofibrant-
ly generated. To get the cofibrantly generated model structure you can use
the Recognition Theorem 3.5.5. The generating cofibrations are

I := {∂∆n ⊗X → ∆n ⊗X | X ∈ C, n ∈ N}

and the generating acyclic cofibrations are

J := {Λn
k ⊗X → ∆n ⊗X | X ∈ C, n > 0, 0 ≤ k ≤ n}

where the ⊗-operation was defined in Definition 5.3.1 and X is the repre-
sented discrete simplicial presheaf in sPre(T ). After applying the Recog-
nition Theorem you have to check that J-inj are exactly the objectwise
fibrations and that I-inj are exactly the objectwise acyclic fibrations.

To check this and to check the conditions of the Recognition Theorem one
uses the fact that sSet is cofibrantly generated by I = {∂∆n → ∆n | n ∈ N}
and J = {Λn

k → ∆n | n > 0, 0 ≤ k ≤ n} introduced in Example 3.5.2
together with the adjunctions from Definition 5.3.1 and the Yoneda Lemma
over sSet 5.2.3.
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E.g. let F ∼ // //G be an acyclic fibration, i.e. an objectwise acyclic fibra-
tion, and consider a commutative diagram

∂∆n ⊗X //

��

F

∼
����

∆n ⊗X // G

in sPre(T ). Because of the adjunctions from Definition 5.3.1 this diagram
corresponds to a commutative diagram

∂∆n //

��

Map(X,F )

��

∼= // F (X)

∼
����

∆n // Map(X,G)
∼= // G(X)

in sSet where the isomorphisms come from Lemma 5.2.3. Now the second
diagram has a lift and hence the first. Therefore every objectwise acyclic
fibration is in I-inj. �

Now the local injective/projective model structures on simplicial pre-
sheaves are introduced both using the local weak equivalences as weak equiv-
alences. Here is the local injective model structure originally proved by J. F.
Jardine in [Jar87] and stated in [Bla01] as Theorem 1.2:

Theorem 5.3.8 (Jardine). The category of simplicial presheaves on a small
Grothendieck site together with the classes

• w.e. = local weak equivalences
• cof. = injective (i.e. objectwise) cofibrations

forms a proper simplicial cofibrantly generated model category.

Finally here is the local projective model structure introduced by Benjamin
A. Blander in [Bla01] as Theorem 1.5:

Theorem 5.3.9 (Blander). The category of simplicial presheaves on a small
Grothendieck site together with the classes

• w.e. = local weak equivalences
• cof. = projective cofibrations

forms a proper simplicial cellular model category.

Remark 5.3.10. As already claimed, these two local model structures are
Quillen-equivalent since

id : (sPre(T ), loc.proj.) � (sPre(T ), loc.inj.) : id

is a Quillen equivalence.

Proof. This is a Quillen functor since every local projective cofibration is a
local injective cofibration and of course this is also true for acyclic cofibra-
tions because the weak equivalences are the same. It follows easy that this
Quillen functor induces an equivalence of the homotopy categories. �
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5.4. Local Model Structures on Simplicial Sheaves. Consider now
the category of simplicial sheaves on a small Grothendieck site T as the full
subcategory of simplicial presheaves. It is possible to get the local injective
and the local projective model structure on simplicial sheaves from [Bla01,
Theorem 1.3 and Theorem 2.1]:

Theorem 5.4.1 (Joyal). The category of simplicial sheaves on a small Gro-
thendieck site together with the classes

• w.e. = local injective weak equivalences of the underlying presheaves
• cof. = local injective (i.e. objectwise) cofibrations of the underlying

presheaves
forms a proper simplicial cofibrantly generated model category.

Theorem 5.4.2 (Blander). The category of simplicial sheaves on a small
Grothendieck site together with the classes

• w.e. = local projective weak equivalences of the underlying presheaves
• fib. = local projective fibrations of the underlying presheaves

forms a proper simplicial cellular model category.

Remark 5.4.3. Due to the proof of [Bla01, Theorem 2.1] the local pro-
jective model structure on simplicial sheaves is cofibrantly generated by
the (acyclic) cofibrations a(I) resp. a(J) where I and J are the cofibrantly
generating (acyclic) cofibrations of the local projective model structure on
simplicial presheaves and a is the associated sheaf functor.

Remark 5.4.4. Recall the adjoint functor pair

a : sPre(T ) � sShv(T ) : ι

where ι is the inclusion functor and a the associated sheaf functor. This
functor pair is a Quillen equivalence for the local injective structure as well
as for the local projective structure due to [Bla01, Theorem 2.2]. Together
with Remark 5.3.10 we get the commutative diagram

(sPre(T ), loc.proj.)

id
��

a //
(sShv(T ), loc.proj.)

ι
oo

id
��

(sPre(T ), loc.inj.)
a //

id

OO

(sShv(T ), loc.inj.)
ι

oo

id

OO

of Quillen equivalences: The right vertical adjunction is a Quillen functor
because after the previous remark and Lemma 3.5.8 it suffices to show that
the generating (acyclic) cofibrations a(I) resp. a(J) are preserved by the
identity functor. This is true since the diagram commutes and the left
vertical adjunction as well as the below horizontal adjunction are Quillen
functors, i.e. the left Quillen functors id and a preserve (acyclic) cofibrations.

Therefore we get:

Theorem 5.4.5. The following homotopy categories are equivalent:

Ho((sPre(T ), loc.proj.)) ' Ho((sPre(T ), loc.inj.))
' Ho((sShv(T ), loc.proj.))
' Ho((sShv(T ), loc.inj.))
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5.5. The pointed model structures. Now we want to consider these four
model structures on pointed simplicial (pre)sheaves and we want to get
also a square of Quillen equivalences between them. As far as the author
knows this works only with a Grothendieck-site T = (C,CovT ), such that C
has a terminal object, that is the terminal object in sPre(T ) and sShv(T )
which is the constant discrete simplicial presheaf ∗ is representable. But
this does not matter for later applications since the underlying category of
our Grothendieck-site in sight is the category Sm/k which has of course the
terminal object ∗ = Spec(k).

For this reason

Notation 5.5.1. Throughout this subsection let T = (C,CovT ) denote a
small Grothendieck-site such that C has a terminal object.

Definition 5.5.2. Define the pointed local injective/projective model struc-
tures on pointed simplicial (pre)sheaves via the canonical way (cf. Proposi-
tion 3.2.6).

Remark 5.5.3. Note that these four model structures are again cofibrantly
generated (cf. Proposition 3.5.7), simplicial (cf. Proposition 3.6.9) and proper
(cf. Lemma 3.2.7).

Remark 5.5.4. Since the local projective model structure on sPre(T ) is
cofibrantly generated with generating cofibrations

I = {∂∆n ⊗X → ∆n ⊗X | X ∈ C, n ∈ N}

and the terminal object of sPre(T ) is representable by assumption on our
Grothendieck-site T it is cofibrant since 0 = ∂∆0 ⊗ ∗ → ∆0 ⊗ ∗ = ∗ is a
generating cofibration. Furthermore a(∗) = ∗ and hence Proposition 3.4.12
tells us that the square of Quillen equivalences of Remark 5.4.4 induces a
square of Quillen equivalences

(sPre∗(T ), loc.proj.)

id
��

a∗ //
(sShv∗(T ), loc.proj.)

ι∗
oo

id
��

(sPre∗(T ), loc.inj.)
a∗ //

id

OO

(sShv∗(T ), loc.inj.)
ι∗

oo

id

OO

We get again:

Theorem 5.5.5. The following homotopy categories are equivalent:

Ho∗((sPre(T ), loc.proj.)) ' Ho∗((sPre(T ), loc.inj.))
' Ho∗((sShv(T ), loc.proj.))
' Ho∗((sShv(T ), loc.inj.))

6. Motivic Homotopy Theory

The aim of this section is to develop a homotopy theory on the category
Sm/k. There is no chance of getting the structure of a model category on
Sm/k itself because this category is far away from bicompleteness. The
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canonical way to enlarge this category such that it becomes bicomplete is
to use the Yoneda embedding

Sm/k ↪→ Fun((Sm/k)op,Set)
X 7→ X = HomSm/k(−, X)

But this has a big disadvantage: For a scheme X ∈ Sm/k and open sub-
schemes U, V , such that X = U ∪ V there is a pushout diagram:

U ∩ V //

��

V

��

U // X

i.e. X is the categorical union of U and V . But in general this diagram does
not stay a pushout under the Yoneda embedding. So it is necessary to use
a smaller category. Since

Fun((Sm/k)op,Set) = Pre(Sm/k)

for every Grothendieck topology on Sm/k, we should find a suitable Gro-
thendieck topology, such that the Yoneda embedding factors through

Shv(Sm/k) ↪→ Pre(Sm/k).

Moreover, these kind of diagrams (or even a generalized one) should stay cat-
egorical unions. This property is for example satisfied by the Zariski topol-
ogy. Since Shv(Sm/k) is also bicomplete for every Grothendieck topology,
it is a suitable replacement of Pre(Sm/k).

Furthermore any smooth pair (Z,X) should be locally equivalent to a
pair of the form (An,Am) in the Grothendieck topology. This is for example
fulfilled by the étale topology.

A Grothendieck topology satisfying both demanded properties is the Nis-
nevich topology, but we will only proof the first property since we do not
need the second one for our studies.

After this we will be able to develop a homotopy theory on Sm/k because
we have already seen that it is possible to get the local projective model
structure on simplicial (pre)sheaves on any Grothendieck topology on Sm/k.
But as we will see this is not the right homotopy theory on Sm/k. Therefore
we have to change the model structure to obtain the A1-local model structure
on simplicial (pre)sheaves. This is, up to Quillen equivalence, the same
model structure as considered in [MV99].

Afterwards we will give a full classification of the homotopy types of the
so-called A1-rigid schemes which is going to be a key to understand the
homotopy types of projective curves and abelian varieties.

6.1. The Nisnevich Site. The approach presented here is mainly taken
from [MV99].

The small category Sm/k is equipped with three Grothendieck topologies
in the following way.

Definition 6.1.1 (Coverings). Consider a set of morphisms

{Ui
pi−→ X}i∈I ∈ Sm/k

This set is called a
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(1) Zariski covering if every pi is an open embedding and
⋃
pi(Ui) = X.

(2) Nisnevich covering if every pi is étale and for all x ∈ X there is an
i ∈ I and an y ∈ Ui such that pi(y) = x and the residue fields of x
and y coincide, i.e. k(x) ∼= k(y) via pi.

(3) étale covering if every pi is étale and
⋃
pi(Ui) = X.

Remark 6.1.2. An equivalent condition for a Nisnevich covering is: All
pi are étale and for every field L every morphism Spec(L) → X ∈ Sm/k
factors through a pi.

Proof. It is well known that for a scheme S ∈ Sm/k a morphism Spec(L)→
S ∈ Sm/k is the same as a tuple (x ∈ S, k(x) ↪→ L over k), i.e. a factoriza-
tion of a morphism Spec(L) → X ∈ Sm/k through a pi is the same as an
y ∈ Ui and a commutative diagram

k(x) � � pi //
� q

##F
FF

FF
FF

FF
k(y)� _

��

L

over k. Hence, if for every x ∈ X there is an y ∈ Ui with k(x) ∼= k(y) via pi

a factorization exists. Conversely given an x ∈ X take L as k(x). Then by
assumption a factorization exists and hence k(x) ↪→ k(y) has a section i.e.
is surjective and therefore an isomorphism. �

Remark 6.1.3. An equivalent condition for an étale covering is: All pi are
étale and for every separably closed field L every morphism Spec(L)→ X ∈
Sm/k factors through a pi.

Proof. Consider the diagram of the proof of 6.1.2 which is equivalent to a
factorization. Assume that such a factorization always exists for L separably
closed. Then we can take L := k(x)s for x ∈ X, the separable closure of
k(x). Then a factorization yields an i ∈ I and an y ∈ Ui such that pi(y) = x,
hence

⋃
pi(Ui) = X. Conversely consider a morphism (x ∈ X, k(x) ↪→ L).

By assumption there is an i ∈ I and an y ∈ Ui such that pi(y) = x. Hence
pi yields a separable field extension k(x) ↪→ k(y) because pi is étale. Finally
a factorization exists because L is separably closed. �

Lemma 6.1.4. Let τ ∈ {Zar,Nis, ét}. Then

(Sm/k)τ := (Sm/k,Covτ ) with Covτ (X) = {τ -coverings of X}

is a small Grothendieck site. Furthermore we have the inclusions

CovZar(X) ⊂ CovNis(X) ⊂ Covét(X)

for all X ∈ Sm/k.

Proof. It is standard that the Zariski coverings provide a Grothendieck
topology on Sm/k. Using Remark 6.1.2 a straightfoward computation checks
the Nisnevich case and analogous the étale case with Remark 6.1.3. The in-
clusions also follow with these two remarks because every Zariski covering
has of course the required factorization property. �
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Hence we have

Shv((Sm/k)ét) ⊂ Shv((Sm/k)Nis) ⊂ Shv((Sm/k)Zar).

Because of these inclusions we have the following

Lemma 6.1.5. Every representable presheaf is an étale sheaf and therefore
also a Nisnevich sheaf.

Proof. We need two propositions from [Mil80]. The first is II 1.5:
F is an étale sheaf if and only if F is a Zariski sheaf and for all étale coverings
{V → U} (one element!) with V,U being affine schemes the diagram

F (U)→ F (V ) ⇒ F (V ×U V )

is exact in Set.
The second is I 2.17:

Every faithfully flat morphism f : Y → X of finite type gives for all Z an
exact diagram

Hom(X,Z)→ Hom(Y, Z) ⇒ Hom(Y ×X Y, Z)

in Set.
Now let F = Hom(−, X) be a representable presheaf. It is well known

that F is a Zariski-sheaf. Let Spec(A) → Spec(B) be an étale covering. In
particular, this is faithfully flat and the exactness of the diagram follows
from the second proposition. �

Remark 6.1.6. By the lemma above we have a factorization of the Yoneda
embedding

Sm/k � � //
� t

Y oneda ''OOOOOOOOOOO
Shv((Sm/k)Nis)� _

��

Pre((Sm/k)Nis)

as required for a suitable enlargement of the category Sm/k.

Notation 6.1.7. From now on we will identify an X ∈ Sm/k with its image
X ∈ Shv((Sm/k)Nis) ⊂ Pre((Sm/k)Nis).

Our next aim is to generalize the concept of a union diagram and to
check that these diagrams are pushouts in Sm/k and in Shv((Sm/k)Nis).
Furthermore the Nisnevich topology is generated by these kind of diagrams,
i.e. the sheaf property can be tested on these diagrams. More precisely:

Definition 6.1.8 (EDS). An elementary distinguished square (EDS) in
(Sm/k)Nis is a pullback

U ×X V //

��

V

p

��

U
i // X

such that i is an open embedding, p is an étale morphism and p−1(X−U)
p−→

X−U is an isomorphism using the reduced structure of a closed subscheme.
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Remark 6.1.9. Because of the pullback property an EDS can be rewritten
as

p−1(U) i′ //

p|p−1(U)

��

V

p

��

U
i // X

with i′ also an open embedding and p|p−1(U) also an étale morphism because
étale morphisms and open embeddings are closed under base change.

Remark 6.1.10. Such a pair (i, p) of an EDS gives a Nisnevich covering of
X.

Proof. First of all: As an open embedding i is an étale morphism. Now let
x ∈ X.
Case 1. x ∈ U , i.e. i(x) = x. Then the residue fields clearly coincide because
they are defined locally.
Case 2. x /∈ U , then there is an z ∈ p−1(X − U) such that p(z) = x. Since
for every closed embedding j : W ↪→ Y with j(w) = y the residue fields of
w and y conincide and p−1(X − U) ∼= X − U , the claim follows. �

Here is one of the demanded properties of the EDSs which is [MV99,
Proposition 3.1.4]

Proposition 6.1.11. A presheaf F on (Sm/k)Nis is a sheaf if and only if
F makes every EDS in a pullback diagram in Set, i.e.

F (X)
F (p)

//

F (i)

��

F (V )

��

F (U) // F (U ×X V )

is a pullback diagram in Set for all EDS (i, p).

Corollary 6.1.12. Every EDS is a pushout diagram in Sm/k.

Proof. Consider an EDS in Sm/k:

U ×X V //

��

V

p

��

U
i // X

Since for all Z ∈ Sm/k the presheaf F := Hom(−, Z) is by Lemma 6.1.5 a
Nisnevich-sheaf, Proposition 6.1.11 implies that the diagram

Hom(X,Z) //

��

Hom(V,Z)

��

Hom(U,Z) // Hom (U ×X V,Z)

is a pullback in Set. I.e. if we take Z as a test object for the pushout property
for the EDS, the pullback property of the second diagram is exactly the same
as the pushout property of the first for the test object Z. �
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This means that an EDS in Sm/k is indeed an algebraic geometric gen-
eralization of a (topological) union square:

U ∩ V //

��

V

��

U // U ∪ V
We have to check the following lemma to get the last demanded property of
these squares and the category Shv((Sm/k)Nis) as a suitable enlargement
of Sm/k.

Lemma 6.1.13. Every EDS is a pushout diagram in Shv((Sm/k)Nis). Es-
pecially

V/(U ×X V )
∼=−→ X/U

canonically in Shv((Sm/k)Nis).

Proof. Let (i, p) be an EDS. Consider this as a diagram in Shv((Sm/k)Nis)
and let F ∈ Shv((Sm/k)Nis) be a test object together with compatible
morphisms φ : U → F and ψ : V → F . Because of Proposition 6.1.11 the
diagram

F (X)
F (p)

//

F (i)

��

F (V )

��

F (U) // F (U ×X V )

is a pullback in Set and because of the Yoneda Lemma φ and ψ resp. are
compatible elements of F (U) resp. F (V ) in this diagram. Hence the pullback
property of this diagram in Set gives the pushout property for the EDS for
the test object F in Shv((Sm/k)Nis.

Now consider the diagram

U ×X V

��

// U

��

// ∗

��

V // X // X/U

in Shv((Sm/k)Nis) where ∗ is the terminal object in this category repre-
sented by Spec(k). X/U is by definition the pushout of the right square
which exists because of the bicompleteness of Shv(Sm/k)Nis). As we have
seen the left square is also a pushout in Shv((Sm/k)Nis). It is well known
that the composition of two pushout diagrams is again a pushout diagram,
i.e. the outer square is a pushout. But by definition the pushout of the outer
square is V/(U ×X V ). Hence the claim follows. �

6.2. The A1-local Model Structure. The approach presented here is
partly taken from [Bla01].

Troughout this section simplicial (pre)sheaves are always understood on
the small Grothendieck site (Sm/k)Nis. Using the local projective model
structure of section 5 on simplicial (pre)sheaves together with the embed-
dings

Sm/k ↪→ Pre((Sm/k)Nis) ↪→ sPre((Sm/k)Nis)
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or
Sm/k ↪→ Shv((Sm/k)Nis) ↪→ sShv((Sm/k)Nis)

where the right embeddings are taking discrete simplicial (pre)sheaves it is
possible to get a homotopy theory on Sm/k. But as we will see in Proposi-
tion 6.2.4 the local projective model structure itself leads to an unteresting
homotopy theory for smooth schemes.

Remark 6.2.1. Note that the results about the EDSs of the previous sub-
section still hold in sPre((Sm/k)Nis) and sShv((Sm/k)Nis).

The following lemma is the specialization of [Bla01, Lemma 4.1] and char-
acterizes local projective fibrant objects.

Lemma 6.2.2. An F ∈ sPre((Sm/k)Nis) is local projective fibrant if and
only if F is projective fibrant and it is flasque, i.e. for every EDS (i, p) the
diagram

F (X)
F (p)

//

F (i)

��

F (V )

��

F (U) // F (U ×X V )

(denoted by F (i, p)) is homotopy cartesian in sSet (cf. [GJ99, II (8.14)]).

The next lemma describes a big advantage of the local projective model
structure concerning smooth schemes.

Lemma 6.2.3. Every X ∈ Sm/k is local projective fibrant and cofibrant as
a presheaf and as a sheaf.

Proof. We are going to show this for X as a presheaf. Then the result
follows for X as a sheaf because the fibrations for sheaves are exactly the
fibrations for presheaves by definition and of course the presheaf-cofibrations
are contained in the sheaf-cofibrations because the lifting property is fulfilled.
X is a cofibrant presheaf because the projective model structure is cofi-

brantly generated by the cofibrations {∂∆n⊗X → ∆n⊗X | X ∈ Sm/k, n ∈
N} (cf. the proof of Theorem 5.3.7). To show thatX is fibrant we will use the
previous lemma. X is projective fibrant because every morphism of discrete
simplicial sets is a fibration and hence every morphism of discrete simplicial
presheaves is an objectwise fibration and therefore a projective fibration. It
follows from Proposition 6.1.11 that X(i, p) is a pullback diagram of discrete
simplicial sets for all EDSs (i, p). But [GJ99, II Remark 8.17] and the fact
that X(U) → X(U ×X V ) is already a fibration in sSet imply that X(i, p)
is homotopy cartesian in sSet. �

By the following proposition, the local projective model structure leads
to an uninteresting homotopy theory for smooth schemes. That is, this
model structure yields no identification of smooth schemes in the homotopy
category.

Proposition 6.2.4. Sm/k embeds fully faithfully in the local projective ho-
motopy category on simplicial (pre)sheaves.



50 MARKUS SEVERITT

Proof. Let X,Y ∈ Sm/k. Using Lemma 6.2.3 we have HomHo(X,Y ) =
[X,Y ]loc.proj. local projective homotopy classes where Ho denotes the homo-
topy category of the local projective model structure on simplicial sheaves or
presheaves on (Sm/k)Nis. But since these two model structures are simpli-
cial, Lemma 3.6.7 implies that local projective homotopies are always given
via ∆1⊗X = ∆1×X. But X and Y are discrete simplicial presheaves hence
there are only constant homotopies and therefore

HomHo(X,Y ) ∼= [X,Y ]loc.proj. = HomsPre(X,Y ) ∼= Homk(X,Y ). �

Therefore we have to enlarge the class of weak equivalences to get a larger
localization of the category via the homotopy category. A good method to
do this is to use a Bousfield localization as introduced in subsection 3.7.
Another demanded property is, that the affine line A1 should play the same
role as the unit interval I = [0, 1] in the usual homotopy theory of topological
spaces, that is, to generalize the naive point of view of the Introduction. But
to satisfy this, A1 should be weak equivalent to ∗ = Spec(k), i.e. trivial in
the homotopy category. Therefore the k-rational point 0 : Spec(k) → A1

should be a weak equivalence and also all morphisms obtained from it in
Sm/k, i.e. the morphisms U → U ×A1 for all U ∈ Sm/k obtained from the
point 0.

Definition 6.2.5 (A1-local objects and A1-local weak equivalences). Let
Z ∈ sPre((Sm/k)Nis). Then Z is called A1-local if it is local projective
fibrant and

g∗ : Map(U × A1, Z)→ Map(U,Z)

is a weak equivalence of simplicial sets for all g ∈ S := {U U×0−−−→ U×A1 | U ∈
Sm/k}, the set of maps obtained from the k-rational point 0 : Spec(k)→ A1.

A map f : X → Y ∈ sPre((Sm/k)Nis) is called an A1-local weak equiva-
lence if

(Qf)∗ : Map(QY,Z)→ Map(QX,Z)
is a weak equivalence of simplicial sets for all A1-local Z where Q is the local
projective cofibrant replacement functor.

Remark 6.2.6. In view of Remark 3.7.2 and the fact that U × A1 and U
are local projective cofibrant for all U ∈ Sm/k by Lemma 6.2.3, the A1-local
objects and A1-local weak equivalences are the same as the S-local objects
and S-local weak equivalences for the set of maps

S = {U U×0−−−→ U × A1 | U ∈ Sm/k}.

Thanks to Theorem 5.3.9 and Theorem 5.4.2 we can apply Theorem 3.7.14
(the existence of left Bousfield localization) to the local projective model
structure on simplicial (pre)sheaves on the site (Sm/k)Nis with respect to
the set of morphisms S defined above to get the following so-called A1-local
model structure.

Theorem 6.2.7. The categories of simplicial sheaves and presheaves on
(Sm/k)Nis together with the classes

• w.e. = A1-local weak equivalences
• cof. = local projective cofibrations
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form proper simplicial cellular model categories.

Proof. It is clear that the A1-local weak equivalences are exactly the S-
local weak equivalences since every U ∈ Sm/k is local projective fibrant by
Lemma 6.2.3. Therefore almost everything follows from Theorem 3.7.14 up
to the right properness. This is done in [Bla01, Lemma 3.1]. �

Remark 6.2.8. Note that by Theorem 3.7.14 (1) the simplicial structure is
again given by the same adjoints as defined in Definition 5.3.1. Especially
∆1 ⊗ F = ∆1 × F for F ∈ sPre((Sm/k)Nis).

Remark 6.2.9. It is clear that for every k-rational point p : Spec(k)→ A1

the diagram

X
X×p
//

id

;;X × A1 // X

commutes. Therefore for every U ∈ Sm/k the map U id×0−−−→ U ×A1 in S can

be replaced by U
id×p−−−→ U ×A1 for any other k-rational point p : Spec(k)→

A1 or by the projection π : U × A1 → U to get the same weak equivalences
according to Lemma 3.7.10.

The A1-local model structure used in [MV99] can be obtained completely
analogously with use of the local injective model structure on simplicial
(pre)sheaves instead of the local projective one and the same set of mor-
phisms S together with the left Bousfield localization.

Remark 6.2.10. Consider again the diagram of Quillen equivalences of
Remark 5.4.4

(sPre((Sm/k)Nis), loc.proj.)

id
��

a //
(sShv((Sm/k)Nis), loc.proj.)

ι
oo

id
��

(sPre((Sm/k)Nis), loc.inj.)
a //

id

OO

(sShv((Sm/k)Nis), loc.inj.)
ι

oo

id

OO

Now we have a(QR(S)) ∼ S, where Q is the cofibrant and R the fibrant
replacement functor of the local projective model structure: Every presheaf
involved in a morphism of S is a sheaf, local projective fibrant, and cofibrant
as a presheaf and as a sheaf by Lemma 6.2.3 and a is a left Quillen functor on
the local projective model structure. For the same reason id(QR(S)) ∼ S
on presheaves and on sheaves. Furthermore all simplicial presheaves are
local injective cofibrant and a as a Quillen functor preserves weak equiva-
lences between cofibrant objects. Hence a(QR(S)) ∼ a(RS) ∼ a(S) = S.
Therefore Theorem 3.7.12 (2) together with Lemma 3.7.10 imply that this
diagram gives also a diagram of Quillen equivalences between the A1-local
model structures.

Therefore we have:

Theorem 6.2.11. The following homotopy categories are equivalent:

HoA1((sPre((Sm/k)Nis), l.proj.)) ' HoA1((sPre((Sm/k)Nis), l.inj.))
' HoA1((sShv((Sm/k)Nis), l.proj.))
' HoA1((sShv((Sm/k)Nis), l.inj.))
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where HoA1 denotes the A1-local structure.

From now on we will only consider the A1-local model structure obtained
from the local projective model structure. This model structure gives us the
so-called motivic homotopy theory on Sm/k.

Definition 6.2.12 (Motivic homotopy category). Let

H(k) := HoA1(sPre((Sm/k)Nis)) ' HoA1(sShv((Sm/k)Nis))

be the homotopy category of the A1-local model structure on simplicial
(pre)sheaves. This category is called the motivic homotopy category of k.

Remark 6.2.13. Being only interested in homotopy types, i.e. isomorphism
classes in the homotopy category, there is no difference between taking
presheaves or sheaves for our purpose.

Definition 6.2.14. There is a canonical functor

hk : Sm/k → H(k)

obtained from the composition

Sm/k ↪→ Shv((Sm/k)Nis) ↪→ sShv((Sm/k)Nis)
γ−→ H(k)

or
Sm/k ↪→ Pre((Sm/k)Nis) ↪→ sPre((Sm/k)Nis)

γ−→ H(k)

where the last functor γ is the localization functor into the homotopy cat-
egory of the A1-local model structure. The index k of hk is omitted if the
ground field is clear.

One advantage of the A1-local projective model structure is the functori-
ality of the whole construction in changing the base field as it was developed
for example by Oliver Röndigs in [Rön05].

Proposition 6.2.15. Let L/k be a finite separable field extension. Then
f : k ↪→ L induces a functor

f∗ : H(k) −→ H(L)

such that the diagram

Sm/k

hk

��

f∗
// Sm/L

hL

��

H(k)
f∗
// H(L)

commutes up to functor-isomorphism where f∗(X) = XL for X ∈ Sm/k is
just the base change functor.

Proof. First of all, we take the morphism f : Spec(L)→ Spec(k) instead of
f . Note that f is smooth. Hence f induces the functor f∗ : Sm/L −→ Sm/k
via precomposition with f which induces

f∗ : sPre((Sm/k)Nis) −→ sPre((Sm/L)Nis)
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via precomposition with the opposite of f∗. Hence the diagram

Sm/k� _

��

f∗
// Sm/L� _

��

sPre((Sm/k)Nis)
f∗
// sPre((Sm/L)Nis)

commutes up to functor-isomorphism because there is the isomorphism

Homk(f∗(−), X) ∼= HomL(−, f∗(X))

which is natural in X. This isomorphism follows immediately from the
universal property of the base change f∗(X). Furthermore f∗ on presheaves
has the right adjoint

f∗ : sPre((Sm/L)Nis) −→ sPre((Sm/k)Nis)

which is defined by precomposition with the base change functor on Sm/k
(cf. [Rön05, Lemma 2.4]). Finally [Rön05, Proposition 2.15] implies that
(f∗, f∗) is a Quillen functor on the A1-local model structure since Röndigs
also uses the local projective model structure. Now we take the total left
derived functor f∗ := Lf∗ : H(k) → H(L) (cf. Corollary 3.4.7) and we get
the claimed diagram. �

Now we have to notice some important technical properties of this model
structure to be able to continue our studies.

Lemma 6.2.16. Every X ∈ Sm/k is A1-local cofibrant.

Proof. Since every X ∈ Sm/k is local projective cofibrant by Lemma 6.2.3
and the A1-local cofibrations are exactly the local projective cofibrations the
claim follows. �

Remark 6.2.17. The generating cofibrations of the A1-local model struc-
ture are of course the same as the generating projective cofibrations that is
the maps X ⊗ (∂∆n ↪→ ∆n) where X ∈ Sm/k and n ≥ 0.

The generating A1-local acyclic cofibrations are a little bit mysterious but
there is a subset J of them which fulfil some of their properties in special
situations.

Definition 6.2.18. Define a set J of maps in sPre((Sm/k)Nis) consisting
of the following maps:

• (Λn
i ↪→ ∆n)⊗X for all X ∈ Sm/k, n ≥ 1 and 0 ≤ i ≤ n.

• For every EDS

Y
� � j

//

��

V

p

��

U
� � i // X

the pushout products of the map

U qY Cyl(j) � Cyl(U qY Cyl(j)→ X)

with the inclusions ∂∆n ↪→ ∆n for all n ≥ 0 where Cyl(−) is the
simplicial mapping cylinder.
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• For every projection X × A1 → X where X ∈ Sm/k, the pushout
products of the map

X × A1 � Cyl(X × A1 → X)

with the inclusions ∂∆n ↪→ ∆n for all n ≥ 0.

Remark 6.2.19. Note that all U qY Cyl(j) and X are A1-local cofibrant:
According to Lemma 3.6.12 and Remark 3.6.13 Cyl(j) is A1-local cofibrant
and U � U qY Cyl(j) is a A1-local cofibration since U and Y are cofi-
brant by Lemma 6.2.16. Therefore the indicated cofibrations UqY Cyl(j) �
Cyl(UqY Cyl(j)→ X) and X×A1 � Cyl(X×A1 → X) are indeed A1-local
cofibrations by Lemma 3.6.12. Furhermore they are A1-local weak equiva-
lences by the following lemma and therefore acyclic cofibrations. Hence the
pushout products with the maps ∂∆n ↪→ ∆n are acyclic cofibrations because
of the simplicial model category axiom (SM7b). For the same reason the
maps (Λn

i ↪→ ∆n) ⊗ X are acyclic cofibrations since every X ∈ Sm/k is
cofibrant and the maps Λn

i ↪→ ∆n are clearly objectwise acyclic cofibrations.

Lemma 6.2.20. All maps

U qY Cyl(j) � Cyl(U qY Cyl(j)→ X)

and
X × A1 � Cyl(X × A1 → X)

of the previous definition are A1-local weak equivalences.

Proof. According to Lemma 3.6.14 it suffices to show that UqY Cyl(j)→ X
and X × A1 → X are A1-local weak equivalences since all involved objects
are A1-local cofibrant. Because of the commutative diagram

X
X×0
//

id

;;X × A1 // X

and the 2 out of 3 property for A1-local weak equivalences this is clear for
the second type of maps. For the first type note that there is a commutative
diagram

U qY V
��

∼
�� %%KKKKKKKKKKK

U qY Cyl(j) // X

where the vertical map is an acyclic cofibration since this is the case for V →
Cyl(j). Because of the 2 out of 3 property for A1-local weak equivalences
it suffices to show that U qY V → X are A1-local weak equivalences. For
this recall that every EDS is a pushout diagram in the category of simplicial
sheaves by Lemma 6.1.13. Furthermore colimits of sheaves are computed
as the sheafified colimits of the underlying presheaves, that is, the maps in
question read as U qY V → a(U qY V ). This a local weak equivalence by
[Jar87, Lemma 2.6]. �

The following lemma describes the role of this set J for fibrations and is
given in [DRØ03, Lemma 2.15].
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Lemma 6.2.21. A morphism f : X → Y , such that Y is A1-local fibrant,
is an A1-local fibration if and only if it has the right lifting property with
respect to J .

Furthermore this set of maps J admits the small object argument with
respect to N:

Lemma 6.2.22. J admits the small object argument with respect to N
[Hov99, Theorem 2.1.14], that is the domains of the maps of J are small
relative to J-cell with respect to N (cf. [Hov99, Definition 2.1.3]).

Proof. This follows immediately from [DRØ03, Lemma 2.5]. �

Remark 6.2.23. This means that the objects of J-cell for the factorization
can be chosen as sequential colimits

X0
f0−→ X1

f1−→ X2
f2−→ . . .

indexed over the natural numbers N where the fi are pushouts of coproducts
of maps in J .

The following lemma characterizes the A1-local fibrant simplicial (pre)-
sheaves.

Lemma 6.2.24. Let F be a simplicial (pre)sheaf. Then: F is A1-local
fibrant if and only if F is local projective fibrant and F (g) : F (U × A1) →
F (U) is a weak equivalence of simplicial sets for all g ∈ S.

Proof. Using Theorem 3.7.14 (2) the A1-local fibrant objects are exactly
the A1-local objects. Hence F is A1-local fibrant if and only if F is local
projective fibrant and

g∗ : Map(U × A1, F )→ Map(U,F )

is a weak equivalence of simplicial sets for all g ∈ S. But using Lemma 5.2.3
there is a commutative diagram

Map(U × A1, F ) ∼=

g∗

��

F (U × A1)

F (g)

��

Map(U,F ) ∼= F (U)

and hence using 2 out of 3 g∗ is a weak equivalence if and only if F (g) is a
weak equivalence. �

A1-local weak equivalences between A1-local fibrant objects are easy to
understand since they are objectwise weak equivalences by the following
lemma.

Lemma 6.2.25. Let F and G be A1-local fibrant (pre)sheaves. Then: f :
F → G is an A1-local weak equivalence if and only if f is a projective (i.e.
objectwise) weak equivalence.

Proof. If f is a projective weak equivalence it is clearly an A1-local weak
equivalence because ∼proj. ⊂ ∼loc.proj. ⊂ ∼A1−local. Now let f be an A1-
local weak equivalence. Because of Lemma 6.2.16 every U ∈ Sm/k is
A1-local cofibrant and therefore Lemma 3.6.6 implies that Map(U,−) is
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a right Quillen functor because the A1-local structure is simplicial and
therefore it preserves weak equivalences between fibrant objects. Hence
f∗ : Map(U,F ) → Map(U,G) is a weak equivalence for all U ∈ Sm/k.
But Map(U,F ) = F (U) by Lemma 5.2.3 and the same for G. Therefore
f(U) : F (U) → G(U) is a weak equivalence in sSet for all U ∈ Sm/k and
hence f is an objectwise, i.e. projective, weak equivalence. �

6.3. A1-rigid Schemes. Due to the Whitehead Theorem 3.1.16 the cofi-
brant and fibrant schemes are quite good objects to study homotopy types
of, because A1-local weak equivalences and homotopy equivalences are the
same between those objects. As we already know every smooth scheme is
cofibrant. So the question is: Which ones are fibrant?

Definition 6.3.1 (A1-rigid scheme). Let X ∈ Sm/k. X is called A1-rigid
if

Homk(U × A1, X)→ Homk(U,X)

is bijective for all U ∈ Sm/k where the map is induced by U → U × A1

obtained from the k-rational point 0 : Spec(k)→ A1.

Remark 6.3.2. The maps inducing the isomorphisms for the A1-rigid prop-
erty are exactly the same maps of the set S which is used to get the A1-local
model structure via Bousfield localization.

Lemma 6.3.3. Let X ∈ Sm/k. The following statements are equivalent:
(1) X is A1-rigid.

(2) Homk(U×A1, X)
(id×0)∗−−−−−→ Homk(U,X) is injective for all U ∈ Sm/k.

(3) Homk(U,X) π∗−→ Homk(U × A1, X) is surjective for all U ∈ Sm/k
where π : U × A1 → U is the projection.

Proof. Note that the diagram

Homk(U,X) π∗ //

id

55
Homk(U × A1, X)

(id×0)∗
// Homk(U,X)

commutes and π∗ is always injective. This gives the claim. �

Example 6.3.4. Gm is A1-rigid.

Proof. Note that Gm = k[X,X−1] as a represented presheaf induces the
functor Gm(U) ∼= OU (U)∗ on Sm/k. Being also a Zariski-sheaf the A1-
rigidity can be checked on affine U ∈ Sm/k. But such an affine U has
the form U = Spec(R) where R is a finitely generated k-algebra and hence
U × A1 = Spec(R[X]). Furthermore the diagram

Homk(U × A1,Gm)

��

= Gm(U × A1) ∼= R[X]∗

(X 7→0)

��

Homk(U,Gm) = Gm(U) ∼= R∗

commutes and (X 7→ 0) : R[X]∗ → R∗ is clearly an isomorphism and hence
also the left vertical arrow as claimed. �
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Example 6.3.5. P1 is not A1-rigid because the map

Homk(Spec(k),P1) π∗−→ Homk(Spec(k)× A1,P1)

is not surjective: Every image A1 → Spec(k) → P1 is a constant map, but
there are non-constant embeddings A1 ↪→ P1.

Here is the answer to the question: Which smooth schemes are fibrant?

Lemma 6.3.6. Let X ∈ Sm/k. Then: X is an A1-rigid scheme if and only
if X is A1-local fibrant.

Proof. Lemma 6.2.3 implies that every X ∈ Sm/k is local projective fibrant.
Now using Lemma 6.2.24 X is A1-local fibrant if and only if g∗ : X(U ×
A1) → X(U) is a weak equivalence of simplicial sets for all g ∈ S. But
these simplicial sets are all discrete ones (which are fibrant and cofibrant
simplicial sets). Hence these maps are weak equivalences if and only if they
are homotopy equivalences if and only if they are isomorphisms. �

One could think that studying homotopy types of A1-rigid schemes should
be nice because we can focus on homotopy equivalences. But everything is
boring because nothing happens there, that is, there are only trivial homo-
topies between those schemes. This is motivated by the fact that for an
A1-rigid scheme Y and a naive homotopy H : X × A1 → Y between two
maps f, g : X → Y these two maps have to be the same which follows im-
mediately from the A1-rigidity of Y for X. The formal proof is given in the
next theorem.

Theorem 6.3.7. The full subcategory of A1-rigid schemes in Sm/k embeds
fully faithfully via h into the motivic homotopy category of k. Especially:

h(X) ∼= h(Y ) in H(k)⇐⇒ X ∼= Y in Sm/k

for X and Y A1-rigid schemes.

Proof. Let X and Y be A1-rigid schemes. Then HomH(k)(X,Y ) = [X,Y ]A1

(A1-local homotopy classes) because X and Y are A1-local fibrant and cofi-
brant by the previous lemma and Lemma 6.2.16. According to Lemma 3.6.7
A1-local homotopies are always given via ∆1 ⊗ X = ∆1 × X because this
model structure is simplicial. But X as well as Y are discrete simplicial
presheaves hence there are only constant homotopies and it follows that

HomH(k)(h(X), h(Y )) = HomsPre(X,Y ) = Homk(X,Y ). �

7. Stable Motivic Homotopy Theory

The aim of this section is to develop a stable homotopy theory on the
category Sm/k. As we have already developed an unstable homotopy theory
we can use this to build spectra together with a stable model structure. A
well working machinery for this was given by Mark Hovey in [Hov01] where
the notion of T -spectra as well as the approach to the projective and the
stable model structure are mainly taken from.
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7.1. The pointed A1-local model structure. First of all we need a
pointed model category.

Definition 7.1.1. Define the pointed A1-local injective/projective model
structures on pointed simplicial (pre)sheaves via the canonical way (cf.
Proposition 3.2.6).

Remark 7.1.2. The two pointed A1-local projective model structures are
again cofibrantly generated (cf. Proposition 3.5.7), simplicial (cf. Proposi-
tion 3.6.9) and proper (cf. Lemma 3.2.7). Moreover the pointed A1-local
structure on presheaves is cellular: sSet∗ is cellular by [Hir03, Proposition
12.1.4] and therefore the projective model structure on pointed simplicial
presheaves is also cellular by [Hir03, Proposition 12.1.5]. Now the pointed
local projective model structure can be identified as a left Bousfield localiza-
tion of the projective one (cf. [Bla01, Lemma 1.3]) and is therefore cellular.
Finally the pointed A1-local model structure is again a left Bousfiled local-
ization by construction and therefore again cellular.

The simplicial structure is given by: Let X,Y be pointed simplicial
(pre)sheaves and K a simplicial set. Then

K ⊗X = (K)+ ∧X
gives the product and

Map∗(X,Y )n = HomsPre∗(∆
n
+ ∧X,Y )

the simplicial mapping object. Furthermore the cotensor is given by

(X)K = Map∗(K+, X)

Consider again the commutative square of Quillen equivalences

(sPre((Sm/k)Nis),A1−loc.proj.)

id
��

a //
(sShv((Sm/k)Nis),A1−loc.proj.)

ι
oo

id
��

(sPre((Sm/k)Nis),A1−loc.inj.)
a //

id

OO

(sShv((Sm/k)Nis),A1−loc.inj.)
ι

oo

id

OO

from Remark 6.2.10. The terminal object ∗ = Spec(k) of sPre((Sm/k)Nis)
is A1-local projective cofibrant because it is representable. Furthermore it is
a simplicial sheaf and therefore a(∗) = ∗. Hence Proposition 3.4.12 tells us
that we have a commutative square of Quillen equivalences for the pointed
A1-local model structures:

(sPre∗((Sm/k)Nis),A1−loc.proj.)

id
��

a∗ //
(sShv∗((Sm/k)Nis),A1−loc.proj.)

ι∗
oo

id
��

(sPre∗((Sm/k)Nis),A1−loc.inj.)
a∗ //

id

OO

(sShv∗((Sm/k)Nis),A1−loc.inj.)
ι∗

oo

id

OO

As in the unpointed case we will only consider the pointed A1-local pro-
jective model structures.

Definition 7.1.3. Let

H∗(k) := HoA1,∗(sPre((Sm/k)Nis)) ' HoA1,∗(sShv((Sm/k)Nis))
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denote the pointed unstable motivic homotopy category.

From now on we will only consider pointed simplicial presheaves.

Remark 7.1.4. Note that the Quillen functor

(−)+ : sPre((Sm/k)Nis) � sPre∗((Sm/k)Nis) : F

where X+ = X q ∗ is the functor adding a disjoint basepoint and F is the
forgetful functor induces an adjoint functor pair

L(−)+ : H(k) � H∗(k) : RF

with the property that L(−)+ ◦ h(X) = X+ for all X in Sm/k since these
objects are all A1-local cofibrant by Lemma 6.2.16.

Hovey’s machinery needs a Quillen endofunctor as input. As the following
Proposition tells us we can get one by smashing with a cofibrant object.

Proposition 7.1.5. Let Y be a cofibrant pointed simplicial presheaf. Then
the adjoint functor pair

− ∧ Y : sPre∗((Sm/k)Nis) � sPre∗((Sm/k)Nis) : Map∗(Y,−)

arising from the closed monoidal structure is a Quillen functor on the pointed
A1-local model structure.

Proof. This follows immediately from [DRØ03, Corollary 2.19]. �

7.2. T -spectra. Now we are going to consider the Morel-Voevodsky object
A1/A1−{0}. The original approach to the stable motivic homotopy theory
uses this object to smash with and build spectra. But we need a Quillen
endofunctor. Therefore this object should be replaced by a cofibrant one
which is weak equivalent to the original one. For this we use the simplicial
mapping cylinder. This construction appears for example in [Rön05].

Definition 7.2.1. Let i : U ↪→ Y ∈ Sm/k an open or closed embedding.
Using the simplicial structure of the pointed A1-local structure, consider the
simplicial mapping cylinder Cyl(i+). Since U and Y are projective cofibrant
and (−)+ is a left Quillen functor, i+ : U+ → Y+ is a map between cofibrant
objects. Thus Lemma 3.6.12 tells us that we get a canonical diagram

Cyl(i+)
p

∼
##G

GG
GG

GG
GG

U+

;;

h
;;vvvvvvvv

i+
// Y+

where p is a simplicial homotopy equivalence. Denote the quotient of h by
Y//U := Cyl(i+)/U+.

Lemma 7.2.2. Y//U is cofibrant and the canonical map Y//U → Y/U
induced by the map p : Cyl(i+)→ Y+ is an A1-local weak equivalence.

Proof. First of all Y//U is cofibrant since the diagram

U+
��

h
��

// ∗

��

Cyl(i+) // Y//U
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is a pushout diagram by definition of the quotient Y//U and therefore
∗ → Y//U is a cofibration. It suffices to show that Y//U → Y/U is an
objectwise weak equivalence. For this consider the injective model struc-
ture, that is objectwise cofibrations and objectwise weak equivalences. Re-
call that this model structure as well as the pointed version is simplicial and
proper (cf. Lemma 3.2.7 and Proposition 3.6.9). Consider the commutative
diagram

∗

��

U+
oo

id
��

// h // Cyl(i+)

p

��

∗ U+
oo // // Y+

Note that i : U ↪→ Y is an injective cofibration since it is a monomor-
phism and therefore i(V ) : U(V ) = Homk(V,U)→ Homk(V, Y ) = Y (V ) is a
monomorphism of discrete simplicial presheaves for all V ∈ Sm/k. Further-
more U and Y are also injective cofibrant. Therefore h is also an injective
cofibration by Lemma 3.6.12 and i+ : U+ → Y+ is an injective cofibration
since (−)+ is a left Quillen functor. Recall that p : Cyl(i+) → Y+ is a sim-
plicial homotopy equivalence. Therefore the glueing Lemma 3.1.18 tells us
that Y//U → Y/U is an injective weak equivalence, that is, an objectwise
weak equivalence. �

Definition 7.2.3. Denote by T := A1//A1−{0} the cofibrant replacement
as constructed above of the Morel-Voevodsky object.

Definition 7.2.4. Denote by ΣT := − ∧ T the T -suspension functor and
by ΩT := Map∗(T,−) the T -loopspace functor.

Remark 7.2.5. The adjoint functor pair

ΣT : sPre∗((Sm/k)Nis) � sPre∗((Sm/k)Nis) : ΩT

is a Quillen functor on the pointed A1-local model structure by Proposition
7.1.5. Note that ΣT (∗) = ∗.

Notation 7.2.6. Denote by Σ0
T = id and Σm

T = ΣT ◦ Σm−1
T for m ≥ 1

the m-times iteration of the T -suspension and by ev : ΩTA ∧ T → A the
evaluation map which is adjoint to id : ΩTA→ ΩTA.

Definition 7.2.7 (T-spectra). A T-spectrum X = (Xn)n≥0 is a sequence
of pointed simplicial presheaves together with structure maps σ : ΣTXn →
Xn+1 for all n. A morphism f : X → Y of T -spectra is a sequence of maps
fn : Xn → Yn such that they are compatible with the structure maps, that
is

ΣTXn

ΣT fn

��

σX // Xn+1

fn+1

��

ΣTYn
σY // Yn+1

commutes for all n. Denote the category of T -spectra by

SpT := SpN((sPre∗((Sm/k)Nis),A1 − loc.proj.), T )

where the last notation is the one of Mark Hovey in [Hov01].
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Remark 7.2.8. Note that because of the adjointness of ΣT and ΩT the
structure maps can equally be given as

σ̃ : Xn → ΩT (Xn)

where σ̃ is the adjoint of the structure map σ : ΣTXn → Xn+1.

Definition 7.2.9 (Suspension spectra). For all n ≥ 0 there is an adjoint
functor pair

Σ∞n : sPre∗((Sm/k)Nis) � SpT : Evn

where Evn(X) = Xn is the evaluation functor and (Σ∞n A)m = Σm−n
T A for

m ≥ n and ∗ otherwise is the n-th suspension spectrum of A. The structure
maps are given by the identities respectively the basepoint of A.

Notation 7.2.10. Denote Σ∞0 by Σ∞T .

Lemma 7.2.11. The category of T -spectra SpT is bicomplete.

Proof. Let G : I → SpT be a diagram, i.e. I is a small index category and
G is a functor. Define

(colimG)n := colim(Evn ◦G) and (limG)n := lim(Evn ◦G).

ΣT preserves colimits as a left adjoint and therefore we can define the struc-
ture maps for the colimit via

ΣT (colim(Evn ◦G)) ∼= colim(ΣT ◦ Evn ◦G)
colim(σ◦G)−−−−−−−→ colim(Evn+1 ◦G)

For the limit there is at least a natural map ΣT (limH) → lim(ΣT ◦ H for
every diagram H : J → sPre∗((Sm/k)Nis). Therefore we get the structure
maps for the limit via

ΣT (lim(Evn ◦G) −→ lim(ΣT ◦ Evn ◦G)
lim(σ◦G)−−−−−→ lim(Evn+1 ◦G).

�

Now there are two possible prolongations of the adjoint functor pair
(ΣT ,ΩT ) on T -spectra.

Definition 7.2.12 (The fake suspension/loops functor). Let X be a T -
spectrum. Denote by Σf

TX the T -spectrum obtained by (Σf
TX)n = ΣTXn

and the structure maps are given by

ΣT (Σf
TX)n = Xn ∧ T ∧ T

σ∧id−−−→ Xn+1 ∧ T = (Σf
TX)n+1.

Σf
T is called the fake suspension functor.
Denote by Ωf

TX the T -spectrum obtained by (Ωf
TX)n = ΩTXn and the

structure maps are the adjoints to

(Ωf
TX)n = ΩTXn

ΩT (σ̃)−−−−→ ΩT (ΩTXn+1) = ΩT (Ωf
TX)n

where σ̃ are the adjoints to the structure maps of X. Ωf
T is called the fake

T -loops functor.

Remark 7.2.13. Due to [Hov01, Lemma 1.5]

Σf
T : SpT � SpT : Ωf

T

is an adjoint functor pair.
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This prolongation is easily defined but it does not generalize the situation
from spectra in topology. The right definition for this is

Definition 7.2.14 (The real suspension/loops functor). Let X be a T -
spectrum. Denote by ΣTX the T -spectrum obtained by (ΣTX)n = ΣTXn

and the structure maps are given by

ΣT (ΣTX)n = Xn ∧ T ∧ T
id∧t−−→ Xn ∧ T ∧ T

σ∧id−−−→ Xn+1 ∧ T = (ΣTX)n+1

where t is the twist isomorphism. ΣT is called the real suspension functor.
Denote by ΩTX the T -spectrum obtained by (ΩTX)n = ΩTXn and the

structure maps

ΣT ((ΩTX)n) = ΣT (ΩTXn)→ ΩTXn+1 = ΩT (X)n+1

are the adjoints to

ΣT (ΣT ΩTXn) = ΩTXn ∧ T ∧ T
1∧t−−→ ΩTXn ∧ T ∧ T = ΣT (ΩTXn ∧ T )

ΣT (ev)−−−−→ ΣT (Xn) σ−→ Xn+1

where ev is the evaluation map and t again the twist isomorphism. ΩT is
called the real T -loops functor.

Remark 7.2.15. Note that

ΣT : SpT � SpT : ΩT

is also an adjoint functor pair.

Remark 7.2.16. The difference between the fake and the real suspen-
sion/loops functors seems to be subtle but it is the crucial point in stable
homotopy theory.

Notation 7.2.17. Let X be a pointed simplicial presheaf. Since the sym-
metric group Sn is generated by transpositions < i, i+1 > for i = 1, . . . , n−1
every permutation σ ∈ Sn of n factors X ∧ . . . ∧ X can be realized as the
composition of twist isomorphisms X ∧ X ∼= X ∧ X where the factors are
numerated via (1, . . . , n). Denote this induced isomorphisms as Pσ. It is
clear that Pσ ◦ Pτ = Pσ◦τ . Note that the twist isomorphism of the last two
factors n− 1 and n is just P<n−1,n>.

Lemma 7.2.18. There are two important technical identities:

Σf
T ◦ Σ∞n = Σ∞n ◦ ΣT

and
ΣT ◦ Σ∞n ∼= Σ∞n ◦ ΣT

Proof. The first one is a straightforward calculation because on both sides
no twists are produced for the structure maps.

For the second one we have to be careful since the real suspension functor
produces twists in the structure maps. It is clear that

(ΣT ◦ Σ∞n (X))m = Σm+1−n
T X = (Σ∞n ◦ ΣT (X))m

for m ≥ n and both are ∗ for m < n.
Define the isomorphism

f = (fm)m≥0 : ΣT ◦ Σ∞n (X) −→ Σ∞n ◦ ΣT (X)
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via: fm = id for m ≤ n and for k ≥ 1

fn+k : X ∧

(
k∧

i=1

T

)
∧ T −→ X ∧

(
k∧

i=1

T

)
∧ T

as (fn+k−1 ∧ T ) ◦ (X ∧ P<k,k+1>). We have to check that this collection of
isomorphisms is a morphism of T -spectra, that is that the diagram

X ∧
(∧k+1

i=1 T
)
∧ T

fn+k∧T

��

id∧t // X ∧
(∧k+2

i=1 T
)

fn+k+1

��

X ∧
(∧k+1

i=1 T
)
∧ T id // X ∧

(∧k+2
i=1 T

)
commutes for all k ≥ 0 which is true since id ∧ t = X ∧ P<k+1,k+2> and

(X ∧ P<k+1,k+2>)2 = X ∧ (P<k+1,k+2>)2 = X ∧ P<k+1,k+2>2 = id.

�

Remark 7.2.19. The proof for ΣT ◦ Σ∞n ∼= Σ∞n ◦ ΣT looks a little bit
complicated but it illustrates the role of the twist isomorphism and how
it can be compensate in suspension spectra by an action of the symmetric
group Sn.

Nevertheless note that there is another (very short) proof for this isomor-
phism: Both sides have right adjoints, namely Evn ◦ΩT and ΩT ◦Evn which
clearly conicide since Evn does not see the structure morphisms with the
twist produced by ΩT on T -spectra. Therefore the two functors ΣT ◦ Σ∞n
and Σ∞n ◦ ΣT are both left adjoint to the same functor and therefore they
are isomorphic by the Yoneda-Lemma.

7.3. The projective model structure on T -spectra. First of all the
projective model structure on T -spectra will be introduced. This is necessary
to get the stable model structure via Bousfield localization.

Definition 7.3.1. A map f = (fn)n≥0 ∈ SpT is called a level equivalence
(resp. (co)fibration) if fn is an A1-local weak equivalence (resp. (co)fibration)
for all n ≥ 0.

Definition 7.3.2. Denote by I (J resp.) the generating cofibrations (acyclic
cofibrations resp.) of the A1-local model structure on simplicial presheaves.
Recall that I+ and J+ fullfil this property for the pointed model structure
(cf. Proposition 3.5.7). Then define

(I+)T :=
⋃
n

Σ∞n (I+) and (J+)T :=
⋃
n

Σ∞n (J+)

Now we can introduce the projective model structure on T -spectra which
is given in [Hov01, Theorem 1.13].

Theorem 7.3.3. The category of T -spectra SpT together with the classes
• w.e. = level equivalences
• fib. = level fibrations

forms a proper simplicial cellular model category. The generating cofibra-
tions are (I+)T and the generating acyclic cofibrations are (J+)T .
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Remark 7.3.4. The cellular structure is done in [Hov01, Theroem A.9].
The simplicial structure is given in the proof of [Hov01, Theorem 6.3] and

looks like this:
Let X,Y be T -spectra and K a simplicial set. Then define X ⊗ K as the
spectrum obtained by (X ⊗K)n := Xn ∧K+ which involves the simplicial
action of the pointed A1-local model structure and the structure maps are
given by

ΣT (Xn ∧K+) ∼= ΣTXn ∧K+
σ∧id−−−→ Xn+1 ∧K+

where the first isomorphism involves the twist isomorphismK+∧T ∼= T∧K+

of the symmetric monoidal structure. Define the cotensor XK by (XK)n =
XK

n where the second is the cotensor of the pointed A1-local model structure.
The structure maps ΣTX

K
n → XK

n+1 are given as the adjoints to

ΣTX
K
n ∧K+

∼= ΣT (XK
n ∧K+)

ΣT (ev)−−−−→ ΣTXn
σ−→ Xn

where ev is the evaluation map adjoint to id : XK → XK . Finally the
simplicial mapping object MapSp(X,Y ) is given as the equalizer of the two
maps

α, β :
∏
n

Map∗(Xn, Yn) ⇒
∏
n

Map∗(Xn,ΩTYn+1)

where α is the product of the maps

Map∗(Xn, Yn)
Map∗(Xn,σ̃)−−−−−−−−→ Map∗(Xn,ΩTYn+1)

where σ̃ is the adjoint of the structure map of Y and β is the product of the
maps

Map∗(Xn, Yn)
Map∗(σ̃,Yn+1)−−−−−−−−−→ Map∗(ΣTXn, Yn+1) ∼= Map∗(Xn,ΩTYn+1).

Note that the isomorphism arises from the fact that ΣT commutes with the
simplicial action as already seen above.

There is a well known characterization of the (acyclic) projective cofibra-
tions given in [Hov01, Proposition 1.14].

Proposition 7.3.5. A map i : X → Y of T -spectra is a projective cofibra-
tion iff the induced maps io : X0 → Y0 and jn : Xn qΣT Xn−1 ΣTYn−1 → Yn

for n ≥ 1 are A1-local cofibrations. In the same fashion i is an acyclic
cofibrations iff i0 and jn for n ≥ 1 are acyclic A1-local cofibrations.

Proposition 7.3.6. The adjoint functor pairs

Σf
T : SpT � SpT : Ωf

T

of fake suspension/loops functors as well as

ΣT : SpT � SpT : ΩT

of real suspension/loops functors as well as

Σ∞n : sPre∗((Sm/k)Nis) � SpT : Evn

are Quillen functors on the projective model structure on T -spectra.
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Proof. Evn is obviously a right Quillen functor since it takes of course
(acyclic) level fibrations to (acyclic) A1-local fibrations. Since (ΣT ,ΩT )
is a Quillen functor on the A1-local model structure on pointed simplicial
presheaves both the real and the fake loops functors preserves (acyclic) level
fibrations since the structure maps do not matter for this. �

7.4. The stable model structure on T -spectra. In this part we want to
apply Bousfield localization to the projective model structure on T -spectra
to get the stable model structure where the fibrant objects are going to be
exactly the ΩT -spectra which are analogous to the Ω-spectra in algebraic
topology. Furthermore both the fake and the real suspension/loops functors
become Quillen equivalences.

Lemma 7.4.1. The domains and codomains of the generating pointed A1-
local cofibrations

I+ = {∂∆n
+ ∧X+ → ∆n

+ ∧X+ | X ∈ C, n ∈ N}
are pointed A1-local cofibrant.

Proof. It suffices to show that ∗ → K+∧X+ is a cofibration for all simplicial
sets K and X ∈ Sm/k. First of all every such X is A1-local cofibrant, that
is 0→ X is an A1-local cofibration. Furthermore Lemma 3.6.6 tells us that
K ⊗ − is a left Quillen functor and therefore 0 = K ⊗ 0 → K ⊗ X is a
cofibration. Since (−)+ is also a left Quillen functor we have the cofibration

∗ = 0+ −→ (K ⊗X)+ = K+ ∧X+

�

Definition 7.4.2 (ΩT -spectra). A T -spectrum X is called an ΩT -spectrum
if X is level fibrant and all adjoints of the structure maps σ̃ : Xn → ΩTXn+1

are A1-local weak equivalences.

Definition 7.4.3. Define the localizing set S as

S := {Σ∞n+1ΣTC
ζC
n−−→ Σ∞n C}

where C runs through the set of domains and codomains of I+ and n ≥ 0.
The map ζC

n is adjoint to id : ΣTC → ΣTC = Evn+1Σ∞n C.

Remark 7.4.4. Note that since the domains and codomains of I+ are cofi-
brant by the last Lemma this definition coincides with Mark Hovey’s defi-
nition [Hov01, Definition 3.3].

Thanks to Theorem 7.3.3 and the existence of the left Bousfield local-
ization Theorem 3.7.14 we have the following stable model structure on T -
spectra.

Theorem 7.4.5. The category of T -spectra SpT together with the classes
• w.e. = S-local equivalences
• cof. = projective cofibrations

forms a left proper simplicial cellular model category.

The next Theorem characterizes the stable fibrant objects and is given in
[Hov01, Theorem 3.4].
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Theorem 7.4.6. The stable fibrant objects are exactly the ΩT -spectra. Fur-
thermore

Σ∞n+1ΣTA
ζA
n−→ Σ∞n A

is a stable equivalence for all A1-local cofibrant pointed simplicial presheaves
A and n ≥ 0.

Proposition 7.4.7. The adjoint functor pairs

Σf
T : SpT � SpT : Ωf

T

of fake suspension/loops functors as well as

ΣT : SpT � SpT : ΩT

of real suspension/loops functors as well as

Σ∞n : sPre∗((Sm/k)Nis) � SpT : Evn

are Quillen functors on the stable model structure on T -spectra.

Proof. For the real and fake suspension/loops functors we use the fact that
they are Quillen functors on the projective model structure by Proposition
7.3.6 together with the universal property of the left Bousfield localization
Proposition 3.7.11. For this we have to check that Σf

T (Qf) and ΣT (Qf) are
stable equivalences for all f ∈ S. Since Σ∞n and ΣT are left Quillen functors
and they both respect the initial object, the domains and codomains of the
maps of S are already cofibrant. Therefore Qf = f for all f ∈ S. But such
an f has the form ζC

n . Lemma 7.2.18 tells us that that Σf
T ◦Σ∞n = Σ∞n ◦ΣT

and therefore Σf
T (ζC

n ) = ζΣT C
n . Since ΣTC is cofibrant the last Theorem

tells us that Σf
T (f) is a stable equivalence. Furthermore ΣT ◦Σ∞n ∼= Σ∞n ◦ΣT

by Lemma 7.2.18 and therefore ΣT (f) = ΣT (ζC
n ) ∼= ζΣT C

n is also a stable
equivalence with the same argument.

Σ∞n : sPre∗((Sm/k)Nis) � (SpT , stable) : Evn is the composition of the
two Quillen functors

sPre∗((Sm/k)Nis)
Σ∞n //

(SpT ,proj.)
Evn

oo

id //
(SpT , stable)

id
oo

and therefore a Quillen functor itself. Note that the first adjunction is
a Quillen functor by Proposition 7.3.6 and the second is the localization
functor of a left Bousfield localization and therefore a Quillen functor by
Proposition 3.7.11. �

Moreover the real and fake suspension functors are stabilized via the stable
model structure, that is they become Quillen equivalences. But to get the
result for the real suspension functor we have to make some preparations.

Definition 7.4.8. A pointed simplicial presheaf S is called symmetric if
the cyclic permutation

cyc := P<1,2,3> : S ∧ S ∧ S → S ∧ S ∧ S

is A1-homotopic to the identity, that is there is a homotopy

H : S∧3 ∧ A1
+ → S∧3
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such that the diagram

S∧3 ∧ (Spec(k))+
S∧3∧(ι0)+

//

id ))SSSSSSSSSSSSSS
S∧3 ∧ A1

+

H
��

S∧3 ∧ (Spec(k))+
S∧3∧(ι1)+
oo

cyc∧(Spec(k))+uukkkkkkkkkkkkkk

S∧3 ∧ (Spec(k))+

commutes where ι0, ι1 : Spec(k) ↪→ A1 are the points 0 and 1. Note that
S∧3 ∧ (Spec(k))+ ∼= S∧3.

The following Lemma is due to Voevodsky and given in [Jar00, Lemma
3.13].

Lemma 7.4.9 (Voevodsky). The Morel-Voevodsky object A1/A1−0 is sym-
metric.

Theorem 7.4.10. The Quillen functors

Σf
T : SpT � SpT : Ωf

T

and
ΣT : SpT � SpT : ΩT

on the stable model structure are Quillen equivalences.

Proof. It follows directly from [Hov01, Theorem 3.9] that the fake suspension
functor is a Quillen equivalence on the stable model structure. For the real
suspension functor we want to apply [Hov01, Theorem 10.3], that is first
we have to check that our suspension object T is weakly equivalent to a
symmetric object but as we have seen in Lemma 7.2.2 the canonical map
T → A1/A1 − 0 is a weak equivalence and A1/A1 − 0 is symmetric by
Voevodsky’s Lemma. Furthermore we have to know that the domains of
the generating A1-local cofibrations are cofibrant but this is true by Lemma
7.4.1. �

Now we are ready to define the stable motivic homotopy category together
with the canonical homotopy functor from Sm/k.

Definition 7.4.11 (Stable motivic homotopy category). Let

SH(k) := Ho(SpT , stable)

be the homotopy category of the stable model structure on T -spectra. This
category is called the stable motivic homotopy category of k. There is canon-
ical functor

shk : Sm/k −→ SH(k)
obtained from the composition

Sm/k
hk−→ H(k)

L(−)+−−−−→ H∗(k)
LΣ∞T−−−→ SH(k)

Remark 7.4.12. Since every X in Sm/k is A1-local cofibrant and (−)+ is
a left Quillen functor

shk(X) = Σ∞T X+

for all X in Sm/k. The index k of shk is omitted if there is no doubt about
the involved base field.



68 MARKUS SEVERITT

As in the unstable case there is a functoriality of the whole construction
in changing the base field also developed for example by Oliver Röndigs in
[Rön05].

Proposition 7.4.13. Let L/k be a finite separable field extension. Then
f : k ↪→ L induces a functor

f∗ : SH(k) −→ SH(L)

such that the diagram

Sm/k

shk

��

f∗
// Sm/L

shL

��

SH(k)
f∗
// SH(L)

commutes up to functor-isomorphism where f∗(X) = XL for X ∈ Sm/k is
just the base change functor.

Proof. Recall that f : Spec(L)→ Spec(k) is smooth. First of all notice that
the Quillen functor (f∗, f∗) on unpointed simplicial presheaves from Propo-
sition 6.2.15 induces an adjoint functor pair (f∗, f∗) on pointed simplicial
presheaves via

f∗(Spec(k)→ X) = Spec(L)→ f∗(X)

and
f∗(Spec(L)→ Y ) = Spec(k)→ f∗(Y ).

It follows from Proposition 3.4.4 that this is also a Quillen functor. Further-
more this this gives a commutative diagram

Sm/k� _

��

f∗
// Sm/L� _

��

sPre((Sm/k)Nis)

(−)+
��

f∗
// sPre((Sm/L)Nis)

(−)+
��

sPre∗((Sm/k)Nis)
f∗
// sPre∗((Sm/L)Nis)

where the upper square commutes up to functor isomorphism and the lower
square commutes. Now f∗Tk

∼= TL by [Rön05, Lemma 2.20] where Tk and
TL are the cofibrant replacements of the Morel-Voevodsky objects for k and
L. Therefore the pointed adjoint functor pair (f∗, f∗) induces an adjoint
functor pair

f∗ : SpTk
� SpTL

: f∗
on spectra via (f∗(X))n := f∗(Xn) and the structure maps are given by

f∗(Xn) ∧ TL = f∗(Xn) ∧ f∗(Tk)
∼=−→ f∗(Xn ∧ Tk)

f∗(σ)−−−→ f∗(Xn+1).

The right adjoint is given by (f∗(Y ))n := f∗(Yn) and the structure maps are
given by

f∗(Yn) ∧ Tk −→ f∗(Yn) ∧ f∗f∗(Tk) = f∗(Yn ∧ TL)
f∗(σ)−−−→ f∗(Yn+1)
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where the morphism Tk → f∗f
∗Tk is adjoint to id : f∗Tk → f∗Tk. This is a

Quillen functor by [Rön05, Proposition 2.21]. Now we have the commutative
diagram

Sm/k

��

f∗
// Sm/L

��

sPre∗((Sm/k)Nis)

Σ∞Tk
��

f∗
// sPre∗((Sm/L)Nis)

Σ∞TL
��

SpTk

f∗
// SpTL

up to functor isomorphism since a straightforward calculation shows that the
lower square commutes. Now take f∗ : SH(k) −→ SH(L) as the total left
derived functor of the Quillen functor f∗ : SpTk

� SpTL
: f∗ (cf. Corollary

3.4.7) and we get the claimed diagram. �

Remark 7.4.14. Let L/k be again a finite separable field extension. Con-
sider the diagram

Sm/k
hk //

f∗

��

H(k)

f∗

��

L(−)+
// H∗(k)

f∗

��

LΣ∞Tk // SH(k)

f∗

��

Sm/L
hL // H(L)

L(−)+
// H∗(L)

LΣ∞TL // SH(L)

The first square commutes up to functor isomorphism by Proposition 6.2.15
and the other squares commutes by the proof of the last Proposition.

7.5. The comparison with Jardine’s construction. J.F. Jardine has
also given a construction of the stable motivic homotopy category in [Jar00,
Theorem 2.9] with the A1-local injective model structure on pointed simpli-
cial presheaves as input. This construction will not be given in detail but
the aim of this subsection is to show that this gives an equivalent homotopy
category to our SH(k). Note that the input of Jardine’s construction is a
compact object T to build T -spectra (cf. [Jar00, Ch. 2.2]).

Lemma 7.5.1. The Morel-Voevodsky object A1/A1 − 0 and its cofibrant
replacement A1//A1 − 0 are compact.

Proof. First of all A1 − 0 and A1 are compact by [Jar00, Lemma 2.2 (3)].
Then the compactness of A1/A1−0 follows immediately from [Jar00, Lemma
2.2 (1)] and the compactness of A1//A1−0 = Cyl((A1−0 ↪→ A1)+)/(A1−0)+
follows immediately from [Jar00, Lemma 2.2 (5)]. �

Notation 7.5.2. Denote Jardine’s stable model structure on T -spectra for
a compact T as (SpT , J− stable).

Furthermore note that our construction of T -spectra and the stable model
structure works also with the A1-local injective model structure on pointed
simplicial presheaves as considered in [MV99]. Denote the resulting model
category by (SpT , inj.− stable).
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Proposition 7.5.3. Let T = A1//A1−0 be the cofibrant replacement of the
Morel-Voevodsky object. Then our construction with the injective structure
as input yields the same model category as Jardine’s construction, that is

(SpT , inj.− stable) = (SpT , J− stable)

Proof. Recall that our construction was the left Bousfield localization with
respect to a certain set of maps S of the projective model structure on SpT .
Proposition 3.7.13 tells us that it suffices to show that Jardine’s cofibra-
tions are the same as ours and that the fibrant objects are the same. The
coincidence of the cofibrations is clear since Jardine also takes projective
cofibrations. To check that the fibrant objects are the same recall that by
Theroem 7.4.6 our stable fibrant objects are exactly the ΩT -spectra. But
[Jar00, Lemma 2.7 and 2.8] tells us that Jardine’s stable fibrant objects are
also exactly the ΩT -spectra and therefore the claim follows. �

Proposition 7.5.4. Let again T = A1//A1 − 0. Then there is a Quillen
equivalence

id : (SpT , stable) � (SpT , inj.− stable) : id

Proof. Recall that there is a Quillen equivalence

(sPre∗((Sm/k)Nis),A1−loc.proj.)
id //

(sPre∗((Sm/k)Nis),A1−loc.inj.)
id
oo

of the two pointed A1-local model structures. Now [Hov01, Theorem 5.7]
gives us the required Quillen equivalence since the domains of the generating
cofibrations of the left model category are cofibrant by Lemma 7.4.1. �

Definition 7.5.5. Let θ : T1 → T2 be a map of pointed simplicial presheaves.
This induces a functor

θ∗ : SpT2
−→ SpT1

on spectra via θ∗(X)n = Xn and the structure maps are given by

Xn ∧ T1
Xn∧θ−−−→ Xn ∧ T2

σ−→ Xn+1

Proposition 7.5.6. Let again T = A1//A1 − 0 and S = A1/A1 − 0. Then
the weak equivalence θ : T → S from Lemma 7.2.2 of compact objects induces
an equivalence of homotopy categories

θ∗ : Ho(SpS , J− stable) −→ Ho(SpT , J− stable)

Proof. This follows immediately from [Jar00, Proposition 2.13]. �

Remark 7.5.7. Note that the left homotopy category is the original con-
struction of the stable motivic homotopy category.

Finally we get the comparison of all constructions which follows directly
from the last three Propositions:

Theorem 7.5.8. Let T = A1//A1 − 0 and S = A1/A1 − 0 again. Then the
following homotopy categories are equivalent:

SH(k) ' Ho(SpT , inj.− stable)
= Ho(SpT , J− stable)
' Ho(SpS , J− stable)
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8. Categories of Motives

The aim of this section is to introduce the category of Chow motives
first considered by Grothendieck and the triangulated category of effective
motives given by Vladimir Voevodsky in [Voe00]. The approach presented
here is mainly taken from [MVW06]. For the language and theory of abelian,
derived and triangulated categories confer [Wei94] and [Nee01].

8.1. Chow Motives and SmCor(k). Recall that SmProj/k denotes the
category of disjoint unions of smooth projective k-varieties.

Definition 8.1.1 (Chow motives). Define the category of Chow motives
CH(k) as follows: The objects are exactly the objects of SmProj/k but for
X,Y ∈ SmProj/k the morphisms are defined by

HomCH(k)(X,Y ) :=
⊕
Yi

CHdimYi(X × Yi)

where the Yi run through the connected components of Y and CHn(Z) are
the cycles of codimension n of Z modulo rational equivalence (cf. [Ful98]).
The composition of morphisms is given by: Let X,Y, Z ∈ SmProj/k. Then
there is a bilinear homomorphism

CH∗(X × Y ) ⊗ CH∗(Y × Z) −→ CH∗(X × Z)
(α , β) 7→ β ◦ α := πXZ∗((α× Z) · (X × β))

where πXZ : X×Y×Z → X×Z is the projection and · is the multiplication of
the graded Chow ring CH∗(X×Y ×Z). This induces an associative bilinear
homomorphism

HomCH(k)(X,Y )⊗HomCH(k)(Y, Z) −→ HomCH(k)(X,Z)

(cf. [Ful98, Definition 16.1.1, Proposition 16.1.1 and Example 16.1.1]). Note
that the identity morphism is given by the diagonal ∆X ∈ CHdimX(X ×X)
if X is connected.

Remark 8.1.2. There is a canonical functor

SmProj/k
Γ−→ CH(k)

defined by Γ(X) = X on objects. The action on morphisms is Γ(X
f−→ Y ) =

Γf , the rational equivalence class of the graph of f if X is connected. Note
that the diagram

X

f

��

Γf
// X × Y

f×id

��

Y
� � ∆Y // Y × Y

is a pullback diagram and the diagonal morphism ∆Y is a closed embed-
ding since Y is a separated scheme. Therefore the graph Γf is indeed a
closed embedding because closed embeddings are closed under base change.
Furthermore if we take the reduced structure of a closed subscheme, Γf be-
comes integral and therefore a subvariety of X × Y because X is already
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irreducible. Hence Γf lives indeed in HomCH(k)(X,Y ). Furthermore it is
finite and surjective over X if X is connected since the composition

X
Γf−→ X × Y πX−−→ X

is the identity on X.

Definition 8.1.3 (Finite correspondences). Let X,Y ∈ Sm/k such that
X is connected. An elementary finite correspondence from X to Y is a
closed integral subset W ⊆ X × Y whose associated integral subscheme
(i.e. taking the reduced structure) is finite and surjective over X. If X is
not connected we understand by an elementary finite correspondence from
X to Y one from a connected component of X to Y . The group of finite
correspondences from X to Y Cor(X,Y ) is defined as the free abelian group
generated by the elementary correspondences from X to Y .

Example 8.1.4. Note that

Cor(X, Spec(k)) =
⊕
Xi

Z

where the Xi run through the connected components of X since these are
the elementary correspondences Xi ⊆ Xi = Xi × Spec(k).

Definition 8.1.5 (SmCor(k)). Define the Suslin-Voevodsky category of
smooth correspondences SmCor(k) as follows: The objects are exactly the
smooth k-schemes as in Sm/k but for X,Y ∈ Sm/k the morphisms are
defined as the finite correspondences Cor(X,Y ) from X to Y . The compo-
sition of morphisms is defined similarly as in CH(k) but without passing to
rational equivalence classes. This is well defined (cf. [MVW06, Lecture 1]).

Remark 8.1.6. There is a canonical faithful functor

Sm/k
[−]−−→ SmCor(k)

defined by [X] = X on objects. The action on morphisms is [X
f−→ Y ] = Γf

(the graph of f) ifX is connected. Since the arguments of Remark 8.1.2 work
for allX ∈ Sm/k, we get that Γf is an elementary finite correspondence from
X to Y if X is connected. The faithfulness of [−] is clear since a morphism

f : X → Y ∈ Sm/k is determined by its graph via f = X
Γf−→ X×Y πY−−→ Y .

Therefore we should think about the category SmCor(k) as the category
Sm/k endowed with more morphisms.

Remark 8.1.7. SmCor(k) is an additive category with direct sum

[X]⊕ [Y ] = [X q Y ]

and zero object ∅. The universal property of the direct sum follows imme-
diately from the fact that Cor(

∐
Xi, Y ) =

⊕
Cor(Xi, Y ).

Definition 8.1.8 (Symmetric monoidal structure). For X,Y ∈ SmCor(k)
let

X ⊗ Y := [X × Y ]
be the tensor product. The functoriality is given via: Let V be an elementary
correspondence from X to X ′ and W an elementary correspondence from
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Y to Y ′. Then V ×W gives a finite correspondence via
∑
niZi ∈ Cor(X ⊗

Y,X ′ ⊗ Y ′) where the Zi are the irreducible components of V × W and
ni = lOZi,V×W

(OZi,V×W ) is the geometric multiplicity of Zi in V ×W (cf.
[Ful98, Ch.1.5]).

This gives SmCor(k) a symmetric monoidal structure with unit Spec(k).

Remark 8.1.9. Note that the direct sum commutes with the tensor prod-
uct, that is

Y ⊗ (
⊕

i

Xi) ∼=
⊕

i

(Y ⊗Xi).

Therfore SmCor(k) is an additive symmetric monoidal category in the sense
of [MVW06, Definition 8A.3].

8.2. (Pre)Sheaves with Transfers. Now we will introduce the objects
that will lead to the objects of the triangulated category of effective motives.

Definition 8.2.1 ((Pre)Sheaves with transfers). A presheaf with transfers
X on Sm/k is an additive functor

X : SmCor(k)op −→ Ab
which is called a Nisnevich sheaf with transfers if the composition

(Sm/k)op [−]op

−−−→ SmCor(k)op X−→ Ab
is an abelian sheaf on the Grothendieck site (Sm/k)Nis.

Notation 8.2.2. Denote the category of presheaves with transfers on Sm/k
by Pretr(k) and the category of Nisnevich sheaves with transfers on Sm/k
by Shvtr

Nis(k). Furthermore denote by

V : Pretr(k) −→ Pre((Sm/k)Nis)

the forgetful functor V (X) = F ◦X ◦ [−] where F : Ab→ Set is the forgetful
functor from abelian goups to sets.

The next proposition follows immediately from [MVW06, Theorem 13.1].

Proposition 8.2.3. There is an adjoint functor pair

(−)Nis : Pretr(k) � Shvtr
Nis(k) : ι

where ι is the forgetful functor. The functor (−)Nis is called the associated
sheaf functor. Furthermore the abelian sheaf XNis ◦ [−] is nothing else than
the sheafified abelian presheaf X ◦ [−]. Therefore (−)Nis ◦ ι ∼= id and (−)Nis

commutes with finite limits.

Remark 8.2.4. There is of course again an extension of this adjunction on
simplicial (pre)sheaves with transfers

(−)Nis : sPretr(k) � sShvtr
Nis(k) : ι

built up objectwise, that is for a simplicial presheaf with transfersX : ∆op →
Pretr(k) take XNis as the composition

∆op X−→ Pretr(k)
(−)Nis−−−−→ Shvtr

Nis(k)

Corollary 8.2.5. Both Pretr(k) and Shvtr
Nis(k) are bicomplete abelian cat-

egories and the sheafification (−)Nis is an exact functor.
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Proof. The bicompleteness is analogous to Corollary 4.2.2: In Pretr(k) do
everything objectwise since all objectwise built small limits and colimits
provide additive functors. The limits in Shvtr

Nis(k) are the same as the limits
of the underlying presheaves and the colimits are the sheafified colimits of
the underlying presheaves. The rest is standard since an additive functor
category with abelian target category is again abelian if you do everything
objectwise which provides the abelian structure for Pretr(k). The abelian
structure on Shvtr

Nis(k) follows. �

The next theorem is a standard result on additive functor categories where
the target category is an abelian category with enough projective and injec-
tive objects. It is stated as [MVW06, Theorem 2.3].

Theorem 8.2.6. The abelian category Pretr(k) of presheaves with transfers
has enough projectives and injectives.

Notation 8.2.7. Let X ∈ Sm/k. Denote by Ztr(X) the represented
presheaf with transfers, that is

Ztr(X)(U) = Cor(U,X).

Furthermore denote Z := Ztr(Spec(k)) which is nothing else than the con-
stant Zariski-sheaf Z on Sm/k since Cor(X, Spec(k)) =

⊕
Xi

Z where the
Xi run through the connected components of X.

Remark 8.2.8. By the Yoneda Lemma

HomPretr(k)(Ztr(X), F ) ∼= F (X)

for all F ∈ Pretr(k). Therefore

HomPretr(k)(Ztr(X),−) : Pretr(k) −→ Ab

is an exact functor and Ztr(X) is a projective object in Pretr(k).

The following lemma follows immediately from [MVW06, Lemma 6.2].

Lemma 8.2.9. Let X ∈ Sm/k. Then the represented presheaf with transfers
Ztr(X) is a Nisnevich sheaf with transfers.

Definition 8.2.10. Let (X,x) be a pointed scheme in Sm/k, that is, there
is given a k-rational point x : Spec(k) → X. Then define Ztr(X,x) as the
cokernel of the map x∗ : Z→ Ztr(X) in Pretr(k) associated to x since Z was
Ztr(Spec(k)).

Remark 8.2.11. x∗ clearly splits the canonical map Ztr(X) → Z induced
by the canonical map X → Spec(k). Hence there is a natural splitting
Ztr(X) ∼= Z⊕ Ztr(X,x).

Definition 8.2.12. Let (Xi, xi) for i = 1, . . . n be pointed schemes in Sm/k.
Then define Ztr((X1, x1)∧. . .∧(Xn, xn)) = Ztr(X1∧. . .∧Xn) as the cokernel
of the map⊕

i

Ztr(X1 × . . .× X̂i × . . .×Xn) id×...×xi×...id−−−−−−−−−→ Ztr(X1 × . . .×Xn)

where X̂i means that Xi is replaced by Spec(k).
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Notation 8.2.13. For a pointed scheme (X,x) and q > 0 denote

Ztr((X,x)∧q) := Ztr((X,x) ∧ . . . ∧ (X,x)︸ ︷︷ ︸
q times

).

Furthermore denote Ztr((X,x)∧0) := Z and Ztr((X,x)∧q) := 0 for q < 0.

Remark 8.2.14. Of course Ztr((X,x)∧1) = Ztr(X,x).

The following lemma generalizes the fact that Ztr(X) ∼= Z ⊕ Ztr(X,x)
and is given in [MVW06, Lemma 2.13].

Lemma 8.2.15. For pointed schemes (Xi, xi) in Sm/k, where i = 1, . . . , n,
the presheaf with transfers Ztr((X1, x1)∧ . . .∧(Xn, xn)) is a direct summand
of Ztr(X1 × . . .×Xn).

This lemma together with the already known facts about the represented
presheaves with transfers imply the following

Corollary 8.2.16. For pointed schemes (Xi, xi) in Sm/k, with i = 1, . . . , n,
the presheaf with transfers Ztr((X1, x1)∧ . . .∧ (Xn, xn)) is a Nisnevich sheaf
with transfers and a projective object of Pretr(k).

Following [MVW06, Lecture 8] there is a tensor product

⊗tr : Pretr(k)× Pretr(k) −→ Pretr(k)

with the property that

Ztr(X ⊗ Y ) = Ztr(X)⊗tr Ztr(Y )

for all X,Y ∈ SmCor(k). Furthermore there is an internal function complex

Hom(F,G)(X) = HomPretr(k)(F ⊗tr Ztr(X), G)

such that for every F ∈ Pretr(k)

−⊗tr F : Pretr(k) � Pretr(k) : Hom(F,−)

is an adjoint functor pair (cf. [MVW06, Lemma 8.3]).
There is also a tensor product on sheaves

⊗tr
Nis : Shvtr

Nis(k)× Shvtr
Nis(k) −→ Shvtr

Nis(k)

defined by F ⊗tr
Nis G := (ι(F ) ⊗tr ι(G))Nis, the sheafification of the tensor

product on presheaf-level. Since Ztr(X ⊗Y ) is already a Nisnevich sheaf we
again get the property

Ztr(X ⊗ Y ) = Ztr(X)⊗tr
Nis Ztr(Y )

The internal function complex for sheaves is given by

Hom(F,G)(X) = HomShvtr
Nis(k)(F ⊗

tr
Nis Ztr(X), G)

since a straightforward calculation shows that Hom(F,G) is a sheaf for
sheaves F and G using the following lemma. It is clear that

−⊗tr
Nis F : Shvtr

Nis(k) � Shvtr
Nis(k) : Hom(F,−)

is again an adjoint functor pair.
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Lemma 8.2.17. Let F,G be (pre)sheaves with transfers. Then there are
natural isomorphisms

Hom(Ztr(X), G) ∼= G(−⊗X)

and
Hom(F,G)(X) ∼= Hom(F,G(−⊗X))

for presheaves and for sheaves.

Proof. Here is the verification on presheaf-level: The first claim follows by
the Yoneda Lemma and the fact that Ztr(X)⊗tr Ztr(Y ) = Ztr(X⊗Y ). Then
we have

Hom(F,G)(X) = HomPretr(k)(F ⊗tr Ztr(X), G)
∼= HomPretr(k)(F,Hom(Ztr(X), G))
∼= HomPretr(k)(F,G(−⊗X))

The argumentation on sheaves is similar. �

The previous constructions lead to the following proposition.

Proposition 8.2.18. Both (Pretr(k),⊗tr,Z) and (Shvtr
Nis(k),⊗tr

Nis,Z) are
closed symmetric monoidal categories.

Remark 8.2.19. Since the monoidal structure on (pre)sheaves with trans-
fers is closed, these categories are additive symmetric monoidal.

Remark 8.2.20. There is an extension of the closed symmetric structures
of the (pre)sheaves with transfers on simplicial (pre)sheaves with transfers:
The tensor products

⊗tr : sPretr(k)× sPretr(k) −→ sPretr(k)

and
⊗tr

Nis : sShvtr
Nis(k)× sShvtr

Nis(k) −→ sShvtr
Nis(k)

are given by (X ⊗tr Y )n = Xn ⊗tr Yn and (X ⊗tr
Nis Y )n = Xn ⊗tr

Nis Yn.
The internal simplicial function complexes have to be

Hom(F,G)(U)n
∼= HomsPretr(k)(F ⊗tr Ztr(U)⊗tr Z[∆n], G)

on presheaves and

Hom(F,G)(U)n
∼= HomsShvtr

Nis(k)(F ⊗
tr
Nis Ztr(U)⊗tr

Nis Z[∆n], G)

on sheaves.

Proposition 8.2.21. There are adjoint functor pairs

(−)tr : sPre((Sm/k)Nis) � sPretr(k) : V

and
(−)tr : sShv((Sm/k)Nis) � sShvtr

Nis(k) : V
where V is the forgetful functor, determined by the property that on presheaf-
level

(U ×∆n)tr = Ztr(U)⊗tr Z[∆n]
for all U ∈ Sm/k. Furthermore the functors (−)tr are strict symmetric
monoidal. For a simplicial (pre)sheaf X we call Xtr the associated simplicial
(pre)sheaf with transfers.
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Proof. Let X be a simplicial presheaf. Proposition 5.1.6 yields that X can
canonically be written as a colimit of representable functors

X = colim(U,[n],x)U ×∆n

Define
Xtr := colim(U,[n],x)Ztr(U)⊗tr Z[∆n]

This gives the demanded adjunction: First of all

HomsPretr(Ztr(U), G) ∼= G(U) ∼= HomsPre(U, V (G))

which is natural in U . Then we get a chain of natural isomorphisms

HomsPretr(Ztr(U)⊗tr Z[∆n], Y ) ∼= HomsPretr(Ztr(U),Hom(Z[∆n], Y ))
∼= HomsPre(U, VHom(Z[∆n], Y ))
∼= HomsPre(U,Map(∆n, V (Y )))
∼= HomsPre(U ×∆n, V (Y ))

and therefore we are done.
Now let X be a simplicial sheaf. Define Xtr := (ι(X)tr)Nis where ι was

the forgetful functor from simplicial sheaves to simplicial presheaves. Of
course ι ◦ V = V ◦ ι and therefore

HomsShvtr
Nis

((ι(X)tr)Nis, Y ) = HomsPretr(ι(X)tr, ι(Y ))

= HomsPre(ι(X), V (ι(Y )))
= HomsPre(ι(X), ι(V (Y )))
= HomsShv(X,V (Y ))

which verifies the second demanded adjunction.
It follows immediately from the definitions that both functors (−)tr are

strict symmetric monoidal, that is, there is a natural isomorphism (X ×
Y )tr

∼= Xtr ⊗tr Ytr for simplicial presheaves X and Y resp. (X × Y )tr
∼=

Xtr ⊗tr
Nis Ytr for simplicial sheaves X and Y . �

Remark 8.2.22. It is clear that Xtr = Ztr(X) for all X ∈ Sm/k. Fur-
thermore Ktr = Z[K] for every simplicial set K considered as a constant
simplicial presheaf, since Z[−] commutes with all colimits as a left adjoint.

Remark 8.2.23. Summarizing the previous results we have a commutative
diagram

sPre((Sm/k)Nis)

a

��

(−)tr
//
sPretr(k)

V
oo

(−)Nis

��

sShv((Sm/k)Nis)

ι

OO

(−)tr
//
sShvtr

Nis(k)
V
oo

ι

OO

since for a simplicial presheaf with transfers X we have a(V (X)) = V (XNis)
by Proposition 8.2.3 and of course V ◦ ι = ι ◦ V . Furthermore (−)tr ◦ a =
(−)Nis ◦ (−)tr since both functors are left adjoint to the same forgetful
functor sShvtr

Nis(k)→ sPre((Sm/k)Nis).
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Now note that there is homotopical content in the adjunction

(−)tr : sPre((Sm/k)Nis) � sPretr(k) : V

that is, there is a model structure on sPretr(k) such that this adjoint functor
pair becomes a Quillen functor. This is done for the projective as well as
for the A1-local structure in [RØ06]. We only need the projective structure
which is given in [RØ06, Theorem 2.3].

Theorem 8.2.24. The category of simplicial presheaves with transfers to-
gether with the classes

• w.e. = projective (i.e., objectwise) weak equ. after applying V
• fib. = projective (i.e., objectwise) fibrations after applying V

forms a proper simplicial cofibrantly generated model category. The gener-
ating cofibrations are given by

I = {Ztr(U)⊗tr Z[∂∆n ↪→ ∆n] | U ∈ Sm/k, n ≥ 0}

and the generating acyclic cofibrations are given by

J = {Ztr(U)⊗tr Z[Λn
k ↪→ ∆n] | U ∈ Sm/k, n > 0, 0 ≤ k ≤ n}

Remark 8.2.25. It follows immediately from the definitions of the projec-
tive model structure on simplicial persheaves with transfers that the adjoint
functor pair

(−)tr : sPre((Sm/k)Nis) � sPretr(k) : V

is indeed a Quillen functor since V is obviously a right Quillen functor.
Furthermore the simplicial structure is given by

K ⊗X = Z[K]⊗tr X

for K ∈ sSet and X ∈ sPretr(k).

8.3. The Triangulated Category of Effective Motives.

Definition 8.3.1. For an abelian category A denote by Ch−(A) the abelian
category of bounded above cochain complexes in A and by Ch≤0(A) the full
subcategory with the objects X ∈ Ch(A) such that Xn = 0 for n > 0. A
morphism f : X → Y in Ch−(A) is called a quasi-isomorphism if it induces
isomorphisms in cohomology, that is

Hn(f) : Hn(X)→ Hn(Y )

is an isomorphism for all n ∈ Z where

Hn(X) = Ker(Xn ∂−→ Xn+1)/Im(Xn−1 ∂−→ Xn)

is the usual cohomology of a cochain complex.
Denote byD−(A) the derived category, that is, the localization of Ch−(A)

with respect to the quasi-isomorphisms (cf. [Wei94, Ch.10]).

Remark 8.3.2. There is a canonical inclusion

ι : A ↪→ Ch−(A)

where ι(A) is the cochain complex with A concentrated in degree 0.
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Remark 8.3.3. Note that the derived category D−(A) of an abelian cat-
egory A has a canonical structure of a triangulated category (cf. [Wei94,
Ch.10]): The shift functor is given by X 7→ X[1] where X[1]n = Xn+1. The
exact triangles are given by the triangles isomorphic to the strict triangles

X
f−→ Y → Cone(f)→ X[1]

where Cone(f) is the mapping cone (cf. [Wei94, Ch.1.5]).

Remark 8.3.4. Recall that the category Ch≤0(A) for an abelian category
A can be understood as the full subcategory of the functor category AN of
additive functors valued in A. Hence it is an abelian category, since we can
do everything objectwise, and we have the following coincidence:

The categories Ch≤0(Pretr(k)) and Ch≤0(Shvtr(k)) are nothing else than
the categories of presheaves resp. sheaves with transfers valued in Ch≤0(Ab).
That is, they are additive functors X : SmCor(k)op → Ch≤0(Ab) for
presheaves which additionally fulfil the usual equalizer diagrams for the Nis-
nevich coverings in Ch≤0(Ab) if they are sheaves.

Furthermore the categories Ch−(Pretr(k)) and Ch−(Shvtr
Nis(k)) are fully

faithful contained in the categories of presheaves resp. sheaves with transfers
valued in Ch−(Ab), but they are not the same.

Proposition 8.3.5. The adjoint functor pair

(−)Nis : Pretr(k) � Shvtr
Nis(k) : ι

induces an adjoint functor pair

(−)Nis : Ch−(Pretr(k)) � Ch−(Shvtr
Nis(k)) : ι

where ι is the forgetful functor, with the property that (−)Nis maps quasi-
isomorphisms to quasi-isomorphisms.

Proof. The sheafification is just defined objectwise: For a cochain complex
of presheaves with transfers X the sheafification XNis is the cochain com-
plex with (XNis)n = (Xn)Nis and boundary morphisms δNis : (Xn)Nis →
(Xn+1)Nis. Since the cohomology H∗(X) of a sheaf complex X is computed
as the sheafified cohomology presheaf with transfers

SmCor(k)op X−→ Ch−(Ab) H∗
−−→ Ab

it is clear that (−)Nis respects quasi-isomorphisms. �

Remark 8.3.6. There is a canonical tensor product on Ch−(Pretr(k)):
For two bounded above cochain complexes X and Y their tensor product
X ⊗tr Y is given by finite direct sums

(X ⊗tr Y )n =
⊕

i+j=n

Xi ⊗tr Y i

and differential maps induced by the maps

Xi ⊗tr Y j ∂X⊗id+(−1)j id⊗∂Y−−−−−−−−−−−−−→ (Xi−1 ⊗tr Y j)⊕ (Xi ⊗tr Y j−1)

which yields again a bounded above cochain complex.
The tensor product on Ch−(Shvtr

Nis(k)) can be defined analogously, but
note that there is also the description X ⊗tr

Nis Y = (ι(X)⊗tr ι(Y ))Nis since
(−)Nis commutes with coproducts as a left adjoint.
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Our next aim is to extend the tensor product on the derived category
D−(Shvtr

Nis(k)) such that it becomes a tensor triangulated category in the
sense of [MVW06, Definition 8A.1]. Note that this definition of a tensor
triangulated category includes that the shift functor commutes with the
tensor product and that for an exact triangle

A→ B → C → A[1]

the induced triangles

A⊗D → B ⊗D → C ⊗D → (A⊗D)[1]

and
D ⊗A→ D ⊗B → D ⊗ C → (D ⊗A)[1]

are again exact triangles.

Definition 8.3.7 (The total derived tensor product). Let X and Y be two
bounded above complexes of presheaves with transfers. There are quasi-
isomorphisms P '−→ X and Q

'−→ Y where P and Q are complexes of pro-
jective objects since Pretr(k) has enough projectives. Then define

X ⊗tr
L Y := P ⊗tr Q

The definition for sheaves is

X ⊗tr
L,Nis Y := (ι(X)⊗tr

L ι(Y ))Nis.

Remark 8.3.8. Note that the definition does not depend on the choice of
the complexes P and Q up to chain homotopy, that is, it is well-defined in
the derived category. There is a natural morphism

X ⊗tr
L Y → X ⊗tr Y

which induces
X ⊗tr

L,Nis Y → X ⊗tr
Nis Y.

This yields indeed the demanded structure (cf. [MVW06, Definition 14.2]).

Proposition 8.3.9. The triangulated category D−(Shvtr
Nis(k)) together with

the total derived tensor product ⊗tr
L,Nis is a tensor triangulated category.

Now we are going to define the triangulated category of effective motives
DMeff

− (k).

Definition 8.3.10. Define EA1 as the smallest thick localizing subcategory
of the triangulated category D−(Shvtr

Nis(k)) which contains the cone of

Ztr(X ⊗ A1)
Ztr(π)−−−−→ Ztr(X)

for every projection π : X × A1 → X. That is, EA1 is generated by these
cones, arbitrary direct sums and by the properties:

• If A → B → C → A[1] is an exact triangle in D−(Shvtr
Nis(k)), then

if two out of A,B,C are in EA1 then so is the third.
• If A⊕B is in EA1 then so are A and B
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Definition 8.3.11 (DMeff
− (k)). Define the triangulated category of effective

motives DMeff
− (k) as

DMeff
− (k) := D−(Shvtr

Nis(k))/EA1

the Verdier localization of the triangulated category D−(Shvtr
Nis(k)) with

respect to the thick localizing subcategory EA1 .

Remark 8.3.12. The existence of the Verdier localization is proved in
[Nee01, Theorem 2.1.8] and yields a canonical triangulated localization func-
tor

l : D−(Shvtr
Nis(k)) −→ DMeff

− (k)

which is the identity on objects. The triangulated structure on DMeff
− (k) is

just given as follows: The exact triangles are the triangles which are isomor-
phic to the triangles which come from the exact triangles of D−(Shvtr

Nis(k))
via l. The shift functor is just the same on objects. The localization func-
tor l has the property that l(X) ∼= 0 in DMeff

− (k) for all X ∈ EA1 . Hence
every map Ztr(X ⊗ A1) → Ztr(X) becomes an isomorphism under l since
the cone becomes zero and isomorphisms can be detected by their cones in
triangulated categories. That is, a morphism is an isomorphism if its cone
is zero.

Remark 8.3.13. The category DMeff
− (k) can be understood as a localization

of D−(Shvtr
Nis(k)) in the following way:

A morphism f in D−(Shvtr
Nis(k)) is called an A1-weak equivalence if its

cone lies in EA1 . Denote all A1-weak equivalences by WA1 . Then

DMeff
− (k) = D−(Shvtr

Nis(k))[W
−1
A1 ]

is the localization with respect to the A1-weak equivalences.

DMeff
− (k) has similar good properties as D−(Shvtr

Nis(k)) (cf. [MVW06,
Lecture 14]):

Proposition 8.3.14. The triangulated category of effective motives DMeff
− (k)

together with the total derived tensor product ⊗tr
L,Nis is a tensor triangulated

category.

Notation 8.3.15. Denote the tensor product in DMeff
− (k) just by ⊗.

Definition 8.3.16. Define the functor M : Sm/k −→ DMeff
− (k) as the

composition

Sm/k

Ztr(−)

��

Shvtr
Nis(k)

� � // Ch−(Shvtr
Nis(k)) // D−(Shvtr

Nis(k))
l // DMeff

− (k)

M(X) is called the motive of X and is nothing else than the complex with
the represented Nisnevich sheaf with transfers Ztr(X) concentrated in degree
0.
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Remark 8.3.17. Note that

M(X × Y ) ∼= M(X)⊗M(Y ) in DMeff
− (k)

because

Ztr(X)⊗tr
L,Nis Ztr(Y ) = (Ztr(X)⊗tr

L Ztr(Y ))Nis

= (Ztr(X)⊗tr Ztr(Y ))Nis

= Ztr(X ⊗ Y )

since Ztr(X) and Ztr(Y ) are projective presheaves with transfers.

8.4. Motivic Cohomology. The aim of this subsection is to define motivic
cohomology using an approach of Voevodsky which was given in [Voe00] and
to give an application to Chow motives which provides a fully faithful em-
bedding CH(k) ↪→ DMeff

− (k). Note that there are other possibilities to define
motivic cohomology as given in [FSV00], [MVW06], and [Voe98]. The ap-
proach in [Voe98] uses stable motivic homotopy theory and the analogue
of the Eilenberg-MacLane spectrum. But these approaches will not be dis-
cussed here.

Definition 8.4.1. Define the cosimplicial object ∆• in Sm/k as

∆n = Spec(k[X0, . . . , Xn]/
n∑

i=0

Xi = 1)

The structure maps are given by: For f : [n] → [m] ∈ ∆ define f∗ : ∆n →
∆m by

f∗(Xi) =
∑

j∈f−1(i)

Xj

for i = 0, . . . ,m where the empty sum is 0. This means in particular that
f∗(Xi) = 0 for all i /∈ f([n]).

Remark 8.4.2. Note that ∆n ∼= An.

Definition 8.4.3. Let X be a presheaf with transfers. Then define the
cochain complex C∗X ∈ Pretr(k) as

C−nX := X(−×∆n)

for n ≥ 0 and C−nX = 0 for n < 0. The differential maps

C−(n+1)X = X(−×∆n+1) δ−→ X(−×∆n) = C−nX

are the alternating sum of the maps induced by the face maps ∂i : ∆n →
∆n+1.

Remark 8.4.4. For a X ∈ Sm/k the complex C∗(Ztr(X)) is called the
Suslin-complex of X. Further the following fact is straightforward: If X is a
Nisnevich sheaf with transfers, than C∗X is a complex of Nisnevich sheaves
with transfers.

Definition 8.4.5 (Motivic complexes). Take Gm as the pointed scheme
(A1−0, 1). Then for every q ≥ 0 the motivic complex Z(q) ∈ Ch−(Shvtr

Nis(k))
is defined as

Z(q) := C∗Ztr(G∧q)[−q]
Z(1) is called the Tate object.
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Remark 8.4.6. Z(q) is indeed an object of Ch−(Shvtr
Nis(k)):

It is a bounded above cochain complex of presheaves with transfers since
Z(q)i = Ci−qZtr(G∧q) vanishes for i > q by definition of C∗. Furthermore
Ztr(G∧q) is a Nisnevich sheaf with transfers by Corollary 8.2.16 for all q ≥ 0
and therefore Z(q) is a complex of Nisnevich sheaves with transfers using
the previous remark.

Definition 8.4.7 (Motivic cohomology). Let X ∈ Sm/k. Define the mo-
tivic cohomology Hp,q

mot(X,Z) with integral coefficients of X as the abelian
group

Hp,q
mot(X,Z) := HomDMeff

− (k)(M(X),Z(q)[p]).

Motivic cohomology can be compared with Chow groups. This is done
by the next proposition that follows from [MVW06, Proposition 14.16 and
Corollary 19.2].

Proposition 8.4.8. Let k be a perfect field. Then we have a natural iso-
morphism

H2i,i
mot(X,Z) ∼= CHi(X)

Notation 8.4.9. Let X ∈ DMeff
− (k) be a complex of Nisnevich sheaves with

transfers. Denote by
X(1) := X ⊗ Z(1)

the twist with the Tate object via the tensor product in DMeff
− (k).

Voevodsky has proven in [Voe02] the following Cancellation Theorem.

Theorem 8.4.10 (Cancellation). Let k be a perfect field, X,Y ∈ DMeff
− (k).

Then tensoring with Z(1) induces an isomorphism

HomDMeff
− (k)(X,Y )

∼=−→ HomDMeff
− (k)(X(1), Y (1))

Proposition 8.4.11. Let k be a field of characteristic 0. Then there is a
fully faithful embedding

CH(k) ↪→ DMeff
− (k)

with the property that it acts on objects by X 7→M(X).

Proof. First of all note that by the Cancellation Theorem for every l ≥ 0
and n ∈ Z there is a natural isomorphism

HomDMeff
− (k)(X(l)[n], Y (l)[n]) ∼= HomDMeff

− (k)(X,Y )

Now let X and Y be connected smooth projective varieties and let d =
dim(Y ). Then we have a chain of natural isomorphisms

CHd(X × Y ) = H2d,d
mot (X × Y,Z)(1)

= HomDMeff
− (k)(M(X × Y ),Z(d)[2d])(2)

= HomDMeff
− (k)(M(X)⊗M(Y ),Z(d)[2d])(3)

= HomDMeff
− (k)(M(X)(d)[2d],M(Y )(d)[2d])(4)

= HomDMeff
− (k)(M(X),M(Y ))(5)
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where equation (1) follows from the previous proposition. Equation (2) is
our definition of motivic cohomology and equation (4) is a duality which
follows from [MVW06, Theorem 16.24] since Y is proper.

These natural isomorphisms define the functor on morphisms. �

Remark 8.4.12. Note that all equations of the proof are valid for a perfect
field k up to the dualizability of the motives of smooth projective varieties
M(X) in DMeff

− (k) where characteristic 0 is needed. There are preprints like
[RØ06] which imply that this dualizability holds for all perfect fields k using
the dualizability of these objects in the stable motivic homotopy category
SH(k). But the author does not know the details.

Remark 8.4.13. Note that this proposition and its proof appears also in
[MVW06, Proposition 20.1], but there is a little mistake in the proof given
there: The number d = dim(X) is used instead of d = dim(Y ).

8.5. The Functor H(k) −→ DMeff
− (k). The aim of this subsection is to

construct a functor H : H(k) −→ DMeff
− (k) such that the following diagram

commutes up to functor isomorphism:

Sm/k

M %%J
JJJJJJJJ

h // H(k)

H
��

DMeff
− (k)

Recall that the motivic homotopy category H(k) can be obtained as the
A1-local homotopy category of sPre((Sm/k)Nis). Therefore the first step
is to construct a functor H ′ : sPre((Sm/k)Nis) −→ DMeff

− (k) such that the
diagram

Sm/k

M ''OOOOOOOOOOO
� � // sPre((Sm/k)Nis)

H′

��

DMeff
− (k)

commutes up to functor isomorphism. Then we make use of the fact that
the homotopy category H(k) is the localization of sPre((Sm/k)Nis) with
respect to the A1-local weak equivalences. That is we have to check that H ′

maps every A1-local weak equivalence to an isomorphism in DMeff
− (k) to get

the induced functor H:

Sm/k

M ''OOOOOOOOOOO

h

((
� � // sPre((Sm/k)Nis) //

H′

��

H(k)

Hww

DMeff
− (k)

A few words of caution: It is quite canonical to construct the functor H ′,
but it requires a lot of work to check the demanded property that H ′ maps
every A1-local weak equivalence to an ismorphism in DMeff

− (k).
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Before we are going through the technical details, note that the essential
reasons for this property of H ′ are only two properties of the Nisnevich site
and the category DMeff

− (k) as it will turn out in Lemma 8.5.14:
(1) Every EDS

Y
� � j

//

��

V

p

��

U
� � i // X

is a pushout diagram in the category of Nisnevich sheaves as we have
seen in Lemma 6.1.13.

(2) Every projection π : X × A1 → X becomes an isomorphism in
DMeff

− (k) since this is exactly done by the Verdier localization.
One necessary step for the construction of H ′ is the translation of sim-

plicial objects to negative cochain complexes. This is a well known theory
which is quoted next.

Definition 8.5.1. Let A be an abelian category. Denote by

N : sA −→ Ch≤0(A)

the normalized cochain complex functor, that is for a simplicial object A in
A take N(A)0 = A0 and for n ≥ 1

N−n(A) =
n−1⋂
i=0

Ker(∂i : An → An−1)

and the differential d : N−n(A)→ N−(n−1)(A) is given by d = (−1)n∂n.

Remark 8.5.2. Note that N is part of an equivalence of categories known
as the Dold-Kan correspondence (cf.[Wei94, Ch.8.4] or [GJ99, III Theorem
2.5]). Furthermore for a discrete simplicial object A ∈ A the normalized
cochain complex N(A) is nothing else than the cochain complex with A
concentrated in degree 0.

Remark 8.5.3. Note that the Dold-Kan correspondence acts on the abelian
categories Pretr(k) and Shvtr

Nis(k) in the following way:
Let X : SmCor(k)op → sAb be a simplicial (pre)sheaf with transfers. Then
N(X) is nothing else than the composition

SmCor(k)op X−→ sAb N−→ Ch≤0(Ab)
since (pre)sheaf kernels and intersections are limits and therefore they are
computed objectwise.

The next proposition describes the homotopical behavior of the Dold-Kan
correspondence for A = Ab, the abelian category of abelian groups, and is
given in [GJ99, III Corollary 2.7].

Proposition 8.5.4. Let A be a simplicial abelian group. Then there is a
natural isomorphism

πn(A, 0) ∼= H−n(NA).

From this we immediately get the following
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Corollary 8.5.5. Let f : A→ B be a weak equivalence of simplicial abelian
groups, that is, f is a weak equivalence on the underlying simplicial sets.
Then N(f) : NA→ NB is a quasi-isomorphism.

Unfortunately, the Dold-Kan correspondence is not strict symmetric mo-
noidal, but the maps in question are quasi-isomorphisms:

Proposition 8.5.6. Let X and Y be simplicial (pre)sheaves with transfers.
Then there is a natural quasi-isomorphism

N(X ⊗tr Y ) ' N(X)⊗tr N(Y )

for presheaves and

N(X ⊗tr
Nis Y ) ' N(X)⊗tr

Nis N(Y )

for Nisnevich sheaves.

Proof. It suffices to show this for presheaves since the sheafification (−)Nis

commutes with all constructions and respects quasi-isomorphisms. The
claim for presheaves follows immediately from the Eilenberg-Zilber Theo-
rem (cf. [Wei94, Theorem 8.5.1] or [GJ99, IV Theorem 2.4]) applied to the
abelian category Pretr(k) and the fact that the Moore complex C used there
is naturally quasi-isomorphic to the normalized complex N . �

Since the objects of the triangulated category of effective motives DMeff
− (k)

are bounded above cochain complexes in Nisnevich sheaves with transfers
Shvtr

Nis(k), we have to map the simplicial presheaves to these objects. There-
fore we have to use the functor (−)tr to get simplicial (pre)sheaves with
transfers, the Dold-Kan correspondence to get negative cochain complexes,
and the sheafification. A question that arises naturally is the following: At
which stage should we sheafify? According to the following remark, it does
not depend on the stage.

Remark 8.5.7. Both squares of the diagram

sPre((Sm/k)Nis)

(−)tr

��

a // sShv((Sm/k)Nis)

(−)tr

��

sPretr(k)
(−)Nis

//

N
��

sShvtr
Nis(k)

N
��

Ch≤0(Pretr(k))
(−)Nis

// Ch≤0(Shvtr
Nis(k))

commute. This is already known for the upper square and the lower square
commutes since (−)Nis commutes with finite limits of presheaves with trans-
fers.

Notation 8.5.8. Denote this composition of functors of the previous remark
by Ĥ.
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Remark 8.5.9. Since it is a composition of left adjoints, Ĥ is also a left
adjoint and preserves all colimits. Furthermore the diagram

Sm/k //

[−]

��

sPre((Sm/k)Nis)

bH
��

SmCor(k)
Ztr(−)

// Shvtr
Nis(k) // Ch≤0(Shvtr

Nis(k)

commutes sinceN(Ztr(X)) is the cochain complex with Ztr(X) concentrated
in degree 0 and Ztr(X) is already a Nisnevich sheaf with transfers.

Definition 8.5.10 (The functor H ′). Define the functor H as the compo-
sition

H := sPre((Sm/k)Nis)
bH−→ Ch≤0(Shvtr

Nis(k))→ DMeff
− (k)

and the functor H ′ as the composition

H ′ := sPre((Sm/k)Nis)
Q−→ sPre(Sm/k)Nis)

H−→ DMeff
− (k)

where Q is the A1-local cofibrant replacement functor.

To avoid confusions here is an overview of these three functors:

sPretr(k)

N

��

sPre((Sm/k)Nis)
(−)tr

oo

H

%%J
JJJJJJJJJJJJJJJJJJJJ

bH
��

sPre((Sm/k)Nis)
Q
oo

H′

��

Ch≤0(Pretr(k))
(−)Nis

// Ch≤0(Shvtr
Nis(k)) // DMeff

− (k)

Lemma 8.5.11. Let f : X ↪→ Y ∈ sPre((Sm/k)Nis) be an A1-local cofibra-
tion. Then Ĥ(f) is a monomorphism in Ch≤0(Shvtr

Nis(k)).

Proof. Since sheafification is exact and the Dold-Kan correspondence N is
an equivalence of categories, it suffices to show this for ftr in sPretr(k). The
functor (−)tr preserves colimits as a left adjoint and monomorphisms are
closed under retracts and cobase change. Furthermore every cofibration is a
retract of a map in I-cell where I = {(∂∆n ↪→ ∆n)⊗U} and monomorphism
are the same as objectwise monomorphisms in the category of abelian groups
Ab. Thus it suffices to show this for the maps in I. Recall that Ztr(U)(V ) =
Cor(V,U) is a free abelian group for all V ∈ Sm/k and thus it is flat. Hence
we have the equality

(((∂∆n ↪→ ∆n)⊗ U)tr)(V )m = (Ztr(U)⊗tr (Z[∂∆n ↪→ ∆n])(V )m

= Ztr(U)(V )⊗Z (Z[∂∆n
m] ↪→ Z[∆n

m])

for all V ∈ Sm/k and n ∈ N which shows that all maps of I become
monomorphisms. �
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Corollary 8.5.12. Consider a pushout diagram

A //

��

j

��

C
��

f
��

B // D

in sPre((Sm/k)Nis where the two vertical maps are A1-local cofibrations as
indicated. Then the cones Cone(Ĥ(j)) and Cone(Ĥ(j)) are quasi-isomorphic
in Ch≤0(Shvtr

Nis(k)).

Proof. By the lemma above, every cofibration is mapped to a monomorphism
in Ch≤0(Shvtr

Nis(k)) via Ĥ. Furthermore Ĥ respects pushouts, that is, we
get the induced pushout diagram

Ĥ(A) //
� _bH(j)
��

Ĥ(C)� _bH(f)
��

Ĥ(D) //

��

Ĥ(D)

��

Coker(Ĥ(j))
∼= // Coker(Ĥ(j))

in Ch≤0(Shvtr
Nis(k)) where it is standard that the cokernels are isomorphic.

Due to [Wei94, 1.5.8] the cokernels of monomorphism are quasi-isomorphic
to the cones. Hence Cone(Ĥ(ji)) and Cone(Ĥ(fi)) are quasi-isomorphic. �

Lemma 8.5.13. Let f : X → Y be an objectwise weak equivalence of A1-
local cofibrant simplicial presheaves. Then Ĥ(f) : Ĥ(X) → Ĥ(Y ) is a
quasi-isomorphism in Ch≤0(Shvtr

Nis(k)).

Proof. First of all we have to check that ftr is an objectwise weak equiva-
lence, that is ftr(U) : Xtr(U)→ Ytr(U) is a weak equivalence in sSet, for all
U ∈ Sm/k. For this consider the projective model structure on simplicial
presheaves, that is the weak equivalences are the objectwise weak equiva-
lences and the cofibrations are the same as the A1-local cofibrations. Since
we have also a projective model structure on sPretr(k) by Theorem 8.2.24
and (−)tr is a left Quillen functor by Remark 8.2.25, ftr is an objectwise
weak equivalence.

Now it follows immediately from Corollary 8.5.5 and Remark 8.5.3 that
N(ftr) is a quasi-isomorphism in Ch≤0(Pretr(k)). Finally Proposition 8.3.5
implies that (−)Nis respects quasi-isomorphisms and the claim follows. �

Recall the set of morphism J from Definition 6.2.18 which are all A1-local
acyclic cofibrations. Then we have the following crucial lemmas concerning
this set of maps.

Lemma 8.5.14. H maps every map j ∈ J to an isomorphism in DMeff
− (k).

Proof. First of all, the maps of the type (Λn
i ↪→ ∆n)⊗X for X ∈ Sm/k are

objectwise weak equivalences between cofibrant objects since they are the
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generating projective acyclic cofibrations. Hence these maps become quasi-
isomorphisms in Ch≤0(Shvtr

Nis(k)) by the previous lemma and therefore of
course isomorphisms under H.

For the other types of maps of J recall that for a map f : A→ B between
cofibrant objects the projection p : Cyl(f) → B is an objectwise weak
equivalence between cofibrant objects by Lemma 3.6.12 (using the projective
model structure). Hence p : Cyl(f) → B becomes a quasi-isomorphism in
Ch≤0(Shvtr

Nis(k)) under Ĥ by the previous lemma.
Now consider a map

U qY Cyl(j) � Cyl(U qY Cyl(j)→ X)

for an EDS as it appears in the definition of J . This map becomes quasi-
isomorphic to the image of U qY Cyl(j)→ X under Ĥ. Note that we have
the commutative diagram

U qY Cyl(j)

UqY p

��

// X

U qY V

99sssssssssss

where U qY p is also an objectwise weak equivalence between cofibrant ob-
jects (using the projective model structure again). Therefore U qY p also
becomes a quasi-isomorphism under Ĥ. Furthermore a(U qY V ) ∼= X by
Lemma 6.1.13. Therefore we get

Ĥ(U qY V → X) = N((a(U qY V → X))tr) = (Ztr(X) id−→ Ztr(X))

by Remark 8.5.7 and Remark 8.5.9. Therefore the considered map becomes
quasi-isomorphic to id : Ztr(X) → Ztr(X) under Ĥ and hence an isomor-
phism in DMeff

− (k).
Furthermore the maps of the type

X × A1 � Cyl(X × A1 → X)

become quasi-isomorphic to Ztr(X × A1) → Ztr(X) in Ch≤0(Shvtr
Nis(k))

under Ĥ by Remark 8.5.9 and therefore isomorphisms in DMeff
− (k) since

this is exactly done by the Verdier localization D−(Shvtr
Nis(k))→ DMeff

− (k).
Recall that the maps of J are defined as the pushout products of these

two types of maps with ι : ∂∆n ↪→ ∆n, that is, they fit into diagrams of the
type

∂∆n ⊗A
��

∂∆n⊗f

��

ι⊗A
// ∆n ⊗A

∆n⊗f

��

��

��

∂∆n ⊗B //

ι⊗B //

∂∆n ⊗B q∂∆n⊗A ∆n ⊗A
ι�f

))TTTTTTTTTTTTTTT

∆n ⊗B
where f : A � B denotes a map of one of these two types which becomes
an isomorphism under H as already seen. Because of the simplicial model
structure, Lemma 3.6.6 implies that the two vertical maps in the diagram
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are indeed cofibrations. We have to show that H(ι�f) is an isomorphism in
DMeff

− (k). Using Corollary 8.5.12 the cones of the images of these two ver-
tical maps become isomorphic in DMeff

− (k) under Ĥ. Furthermore DMeff
− (k)

is a triangulated category where isomorphisms are detected by their cones.
Therefore it suffices to show that K ⊗ A K⊗f−−−→ K ⊗ B becomes an isomor-
phism under H for an arbitrary simplicial set K. That is, we have to check
that the cone of Ĥ(K ⊗ f) becomes 0 in DMeff

− (k).
For this observe that Ĥ(K ⊗ f) = N(ftr ⊗tr Z[K])Nis since (−)tr is strict

symmetric monoidal and therefore it is quasi-isomorphic to

Ĥ(A)⊗tr
Nis N(Z[K])Nis

bH(f)⊗tr
NisN(Z[K])Nis−−−−−−−−−−−−−−→ Ĥ(B)⊗tr

Nis N(Z[K])Nis

by Proposition 8.5.6. Furthermore the map Ĥ(f) : Ĥ(A) → Ĥ(B) can
be replaced quasi-isomorphically by a map f̂ : Â → B̂ between projective
objects of Pretr(k) as described above since all representable objects Ztr(X)
are projective. Since N(Z[K]) is a constant presheaf of cochain complexes of
free abelian groups, it is a cochain complex of projective presheaves. That
is, −⊗tr

NisN(Z[K])Nis respects quasi-isomorphisms since the cohomology is
computed objectwise in Ch≤0(Ab) for presheaves and sheafification respects
quasi-isomorphisms. Thus Ĥ(f ⊗K) is quasi-isomorphic to

Â⊗tr
Nis N(Z[K])Nis

bf⊗tr
NisN(Z[K])Nis−−−−−−−−−−−→ B̂ ⊗tr

Nis N(Z[K])Nis

Since all involved objects of this map are complexes of projectives, the total
derived tensor product calculates as

Â⊗tr
L,Nis N(Z[K])Nis = (Â⊗tr

L N(Z[K]))Nis

= (Â⊗tr N(Z[K]))Nis

= Â⊗tr
Nis N(Z[K])Nis

and similar for B̂. Summarizing all this the map H(f ⊗K) is isomorphic to

H(A)⊗H(K)
H(f)⊗H(K)−−−−−−−−→ H(B)⊗H(K)

in DMeff
− (k). Since this category is a tensor triangulated category we get

Cone(H(K ⊗ f)) ∼= Cone(H(f)) ⊗ H(K)) in DMeff
− (k) which is zero since

Cone(H(f)) is already zero. �

Lemma 8.5.15. Let f in sPre((Sm/k)Nis) as it appears in the small object
argument applied to J (cf. Remark 6.2.23). Then H(f) is an isomorphism
in DMeff

− (k).

Proof. Recall that such a map f arises from a sequence

X0
f0−→ X1

f1−→ X2
f2−→ . . .

via f = (X0 → colimi≥0Xi) where every fi is a cobase change of coproducts
of maps of J . Denote such a coproduct as

ji :
∐
j∈Ji

D(j)
‘

j−−→
∐
j∈Ji

C(j)
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where Ji ⊆ J and D(j) and C(j) resp. denote the (co)domain of j. First
of all, we have to check that all maps H(fi) are isomorphisms in DMeff

− (k).
For this note that we have the pushout diagram∐

j∈Ji
D(j) //

��

ji

��

C
��

fi

��∐
j∈Ji

C(j) // D

in sPre((Sm/k)Nis. By Corollary 8.5.12 the cones of Ĥ(ji) and Ĥ(fi) are
quasi-isomorphic. Furthermore Ĥ(ji) = ⊕j∈JiĤ(j) since Ĥ respects all
colimits. By Lemma 8.5.11 we get that Ĥ(ji) and all Ĥ(j) for j ∈ Ji

are monomorphisms. Therefore we have quasi-isomorphisms Cone(Ĥ(ji) '
Coker(Ĥ(ji) and Cone(Ĥ(j) ' Coker(Ĥ(j) for all j ∈ Ji. Hence we have a
chain of quasi-isomorphisms

Cone(Ĥ(ji)) ' Coker(Ĥ(ji)) ∼=
⊕
j∈Ji

Coker(Ĥ(j)) '
⊕
j∈Ji

Cone(Ĥ(j)).

The last quasi-isomorphism follows from the fact that cohomology of cochain
complexes commutes with direct sums. By the proof of the previous lemma
we get Cone(Ĥ(j)) = 0 in DMeff

− (k) for all j ∈ J . Hence Cone(Ĥ(fi)) = 0
in DMeff

− (k). Therefore all maps H(fi) are isomorphisms in DMeff
− (k) since

isomorphisms in DMeff
− (k) are detected by their cones.

Furthermore we have Ĥ(f) = (Ĥ(X0)→ colimiĤ(Xi)) since Ĥ preserves
all colimits. Now we have the exact sequence

0→
⊕
i≥0

Ĥ(Xi)
id−shift−−−−−→

⊕
i≥0

Ĥ(Xi)→ colimi≥0Ĥ(Xi)→ 0

where the shift map is induced by the maps fi : Xi → Xi+1. The exactness
follows from the fact that sheafification is exact and that

0→
⊕
i≥0

N((Xi)tr)
id−shift−−−−−→

⊕
i≥0

N((Xi)tr)→ colimi≥0N((Xi)tr)→ 0

is an exact sequence on presheaf-level which can be checked levelwise in
the category of abelian groups Ab: The right-exactness is clear since the
cokernel of (id − shift) is nothing else than the colimit. Since we can work
with elements in Ab, a straightforward calculation shows the injectivity of
(id− shift).

Note that we get a commutative diagram

Ĥ(X0) //

''NNNNNNNNNNN
Cone(id− shift)

q

��

colimi≥0Ĥ(Xi)

in Ch≤0(Shvtr
Nis(k)) where q is a quasi-isomorphism by the exactness of the

sequence above and [Wei94, 1.5.8]. Since every map H(fi) is an isomorphism
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in the triangulated category DMeff
− (k), it follows from [Nee01, Lemma 1.6.6]

that H(X0)→ Cone(id− shift) is an isomorphism in DMeff
− (k). Hence

H(f) : H(X0)→ H(colimiXi)

is an isomorphism in DMeff
− (k) as claimed. �

Lemma 8.5.16. There is a functorial fibrant replacement functor via a
factorization X

j−→ Xf p−→ ∗ for every X ∈ Sm/k, such that p is a fibration,

j an acyclic cofibration and H(X
j−→ Xf ) is an isomorphism in DMeff

− (k).

Proof. Recall again the set of maps J from Definition 6.2.18. According to
Lemma 6.2.22 J admits the small object argument [Hov99, Theorem 2.1.14]
with respect to N. That is, we have a a functorial factorization

X
j−→ Xf p−→ ∗

such that j is a map as it appears in Remark 6.2.23 and in the previous
lemma, and p is in J-inj. Hence p has the right lifting property with respect
to all maps of J . Thus Lemma 6.2.21 implies that p is an A1-local fibration
since a terminal object ∗ is always fibrant. The map j in J-cell is an acyclic
cofibration since every map of J-cell is in J-cof and every map in J-cof is
an acylic cofibration. This is the case since J-cell is in J-cof by [Hov99,
Lemma 2.1.10] and all maps of J are acyclic cofibrations. Finally the map
j : X → Xf becomes an isomorphism in DMeff

− (k) via H by the previous
lemma. �

Remark 8.5.17. Note that this fibrant replacement functor X 7→ Xf does
not have to be the same as the canonical one X 7→ RX since we are not
taking all generating acyclic cofibrations of the A1-local model structure for
the small object argument.

Proposition 8.5.18. Let f : X ∼−→ Y be an A1-local weak equivalence of
simplicial presheaves. Then H ′(f) is an isomorphism in DMeff

− (k).

Proof. Since H ′ = H ◦ Q, where Q is the A1-local cofibrant replacement
functor which respects A1-local weak equivalences, we can assume that X
and Y are cofibrant and we can check the property for H. By the previous
lemma, we get a commutative diagram

Xf
f ′

∼
// Y f

X
OO

∼
OO

f

∼
// Y
OO
∼
OO

where Xf and Y f are again cofibrant, f ′ is an A1-local weak equivalence
because of the 2 out of 3 property and H maps the fibrant replacements to
isomorphisms. Furthermore Lemma 6.2.25 implies that f ′ is an objectwise
weak equivalence between cofibrant simplicial presheaves. Therefore Ĥ(f)
is a quasi-isomorphism of complexes by Lemma 8.5.13. Hence H also maps
f ′ to an isomorphism and the claim follows. �
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Corollary 8.5.19. The diagram

Sm/k

M ''OOOOOOOOOOO
� � // sPre((Sm/k)Nis)

H′

��

DMeff
− (k)

commutes up to functor isomorphism.

Proof. Recall that every X ∈ Sm/k is A1-local cofibrant and Xtr = Ztr(X)
is already a Nisnevich sheaf with transfers. Hence

(N(Ztr(X)))Nis = (Ztr(X))Nis = Ztr(X),

the cochain complex concentrated in degree 0, since Ztr(X) is a discrete
simplicial object. This is of course the same as M(X), the motive of X.
Furthermore the natural map QX

∼−→ X is an A1-local weak equivalence
between cofibrant objects. Hence it becomes an isomorphism in DMeff

− (k)
by the previous proposition and therefore M(X) ∼= H ′(X). �

Corollary 8.5.20. H ′ induces a functor H : H(k) → DMeff
− (k), such that

the following diagram commutes up to functor isomorphism:

Sm/k

M %%J
JJJJJJJJ

h // H(k)

H
��

DMeff
− (k)

Proof. This follows from the previous proposition and the fact that H(k)
is the localization of sPre((Sm/k)Nis) with respect to the A1-local weak
equivalences. �

9. Homotopy Types of Projective Curves

The aim of this section is to understand what happens to curves when
applying the homotopy functor

h : Sm/k −→ H(k)

That is to answer the question: When are two curves C1, C2 motivic homo-
topy equivalent, that is, h(C1) ∼= h(C2)?

Since the arguments are the same, we are also dealing with abelian vari-
eties and Brauer-Severi varieties.

9.1. Curves of Genus > 0 and Abelian Varieties. The main tool to
answer our question for the curves of genus > 0 and abelian varieties is to
see that they are A1-rigid.

Lemma 9.1.1. Let X ∈ Sm/k be a curve of genus g > 0 or an abelian
variety. Then X is A1-rigid.
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Proof. Due to Lemma 6.3.3 we have to check the injectivity of Homk(U ×
A1, X)→ Homk(U,X) for all U ∈ Sm/k. Consider a commutative diagram

U //

��

U × A1

f

��

U × A1
g

// X

We have to show that f = g. Let k be the algebraic closure of k. Then
the functor (−)(k) : Red/k → Set taking k-rational points is faithful by
Proposition 1.1.12. Hence it suffices to show that in the induced diagram
of k-rational points the induced maps f(k) and g(k) coincide. The induced
diagram reads as

U(k)
y 7→(y,0)

//

y 7→(y,0)
��

U(k)× A1(k)

f(k)
��

U(k)× A1(k)
g(k)

// X(k)

Now let (y, x) ∈ U(k)×A1(k). We have to show that f(k)(y, x) = g(k)(y, x).
But f(k)(y, x) can be described as the composition

Spec(k)
x //

(x,y)

%%

A1
k

via y
//

constant

::
Uk × A1

k

f
// Xk

where the morphism A1 → X is constant because of Proposition 1.3.1.
Therefore f(k)(y, x) = f(k)(y, 0) and analogous g(k)(y, x) = g(k)(y, 0). But
f(k)(y, 0) = g(k)(y, 0) by the commutativity of the induced diagram and
hence the claim follows. �

Here comes the answer for abelian varieties and curves of genus > 0:
There is no identification under motivic homotopy equivalence.

Theorem 9.1.2. The full subcategories of abelian varieties Ab/k and curves
of genus > 0 embed via h fully faithfully in the motivic homotopy category
of k. Especially:

h(X) ∼= h(Y ) in H(k)⇐⇒ X ∼= Y in Sm/k

for X and Y abelian varieties or X and Y curves of genus > 0.

Proof. This follows immediately from the previous lemma and Theorem
6.3.7. �

Unfortunately, this method does not work for curves of genus 0 since we
have already seen that P1 is not A1-rigid.
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9.2. Homotopy Invariance of the Picard Group and the Genus.
Now we will show the homotopy invariance of the genus. This provides that
no curves of different genus are motivic homotopy equivalent and we can
continue with studying the curves of genus 0 for themselves.

Proposition 9.2.1. The Picard group is homotopy invariant, i.e. for X,Y ∈
Sm/k

h(X) ∼= h(Y ) in H(k) =⇒ Pic(X) ∼= Pic(Y ) in Gr

Proof. Let P∞ = colimnPn. Then P∞ is a group object in H(k) and

HomH(k)(X,P∞) = Pic(X)

for every X ∈ Sm/k by [MV99, Proposition 4.3.8]. Therefore the claim
follows. �

Remark 9.2.2. Note that there is another proof of this invariance for per-
fect fields k using the commutative diagram

Sm/k

M %%J
JJJJJJJJ

h // H(k)

H
��

DMeff
− (k)

up to functor isomorphism of section 8.5 and the fact that

Pic(X) = CH1(X) = H2,1
mot(X,Z) = HomDMeff

− (k)(M(X),Z(1)[2])

for perfect fields k.

Proposition 9.2.3. The genus of a curve is homotopy invariant, i.e. for
X,Y curves

h(X) ∼= h(Y ) in H(k) =⇒ g(X) = g(Y )

Proof. Let L/k be a finite separable field extension. According to Proposi-
tion 6.2.15 there is a commutative diagram

Sm/k

hk

��

f∗
// Sm/L

hL

��

H(k)
f∗
// H(L)

up to functor-isomorphism and therefore hL(XL) ∼= hL(YL) in H(L). Hence
we have Pic(XL) ∼= Pic(YL) as groups by the previous proposition. Therefore
the claim follows with use of Proposition 1.2.7. �

9.3. Curves of Genus 0 and Arbitrary Brauer-Severi Varieties. The
following criterion for motivic equivalence of Brauer-Severi varieties in Chow
motives was given by Nikita A. Karpenko in [Kar00].

Theorem 9.3.1 (Karpenko). Let X and Y be two Brauer-Severi varieties
over an arbitrary field k with associated Azumaya algebras AX and AY .
Then

X ∼= Y in CH(k)⇐⇒ AX
∼= AY or AX

∼= (AY )op
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Remark 9.3.2. Note that Karpenko’s description of the associated Azu-
maya algebra looks different but it yields the same Azumaya algebra up to
isomorphism as our approach (cf. [Ker90, Ch.30]).

The next theorem which establishes a connection between motivic homo-
topy theory and Chow motives, needs a hypothesis on k:

Hypothesis 9.3.3. There is a fully faithful embedding

CH(k) ↪→ DMeff
− (k)

which acts on objects by X 7→M(X) where M(X) was the motive of X.

Remark 9.3.4. The hypothesis holds for all fields of characteristic 0 by
Proposition 8.4.11. Note that it should be true for all perfect fields (cf.
Remark 8.4.12).

Theorem 9.3.5. Let k be a field fulfilling Hypothesis 9.3.3 and X,Y in
SmProj/k. Then

h(X) ∼= h(Y ) in H(k) =⇒ X ∼= Y in CH(k)

Proof. Recall from section 8.5 that we have a commutative diagram

Sm/k

M %%J
JJJJJJJJ

h // H(k)

H
��

DMeff
− (k)

up to functor isomorphism. Hence, if we take two disjoint unions of smooth
projective varietiesX,Y with h(X) ∼= h(Y ), we get that their motivesM(X)
and M(Y ) are isomorphic. But by Hypothesis 9.3.3 CH(k) embeds fully
faithfully in DMeff

− (k) via X 7→ M(X) and therefore we get X ∼= Y in
CH(k). �

Together with Karpenko’s Theorem this connection yields a necessary
condition for motivic homotopy equivalent Brauer-Severi varieties.

Corollary 9.3.6. Let k be a field fulfilling Hypothesis 9.3.3 and X and Y
two Brauer-Severi varieties with associated Azumaya algebras AX and AY .
Then

h(X) ∼= h(Y ) in H(k) =⇒ AX
∼= AY or AX

∼= (AY )op

Remark 9.3.7. Of course, this immediately implies that the dimension
of Brauer-Severi varieties is homotopy invariant for a field k fulfilling the
Hypothesis 9.3.3 since dimk(Aop) = dimk(A) for an algebra A over k.

This necessary condition provides the answer to our question for the
curves of genus 0.

Corollary 9.3.8. Let k be a field fulfilling Hypothesis 9.3.3 and C1, C2 two
curves of genus 0. Then

h(C1) ∼= h(C2) in H(k)⇐⇒ C1
∼= C2 in Sm/k

Proof. Let Q1 and Q2 be the associated quaternion algebras. Then Q1
∼= Q2

or Q1
∼= Qop

2 if h(C1) ∼= h(C2) by the previous corollary. Using Proposition
1.5.10 we get the claim. �



MOTIVIC HOMOTOPY TYPES OF PROJECTIVE CURVES SE 97

9.4. Summary. Summarizing all results of the previous subsections about
the homotopy types of smooth projective curves we get the following the-
orem which gives the answer to the question and proves the conjecture of
the introduction for all algebraically closed fields and all fields fulfilling Hy-
pothesis 9.3.3.

Theorem 9.4.1. Let k be an algebraically closed field or a field fulfilling
Hypothesis 9.3.3 and let C1, C2 be two smooth projective curves over k. Then

h(C1) ∼= h(C2) in H(k)⇐⇒ C1
∼= C2 in Sm/k

Proof. Since the genus of a curve is homotopy invariant by Proposition 9.2.3,
we can assume that g(C1) = g(C2). Then we have two cases: g = 0 and
g > 0. The claim follows for the curves of genus > 0 by Theorem 9.1.2. If k
is algebraically closed, there is only one curve of genus 0 up to isomorphism,
namely P1 (cf. Proposition 1.5.1), and the claim follows. If k is a field
fulfilling the hypothesis, then the claim for the curves of genus 0 follows by
Corollary 9.3.8. �

Remark 9.4.2. Since Hypothesis 9.3.3 is valid for all fields of characteristic
0, the previous theorem implies Theorem B of the introduction. Furthermore
the only point where the hypothesis is needed is the case of genus 0. The
rest is valid for arbitray fields. That is, we have also proved Theorem A of
the introduction. Since the hypothesis should be true for all perfect fields,
the previous theorem and hence the conjecture of the introduction should
hold for all perfect fields.
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