A PFISTER FORM INVARIANT FOR ETALE ALGEBRAS

MARKUS ROST

Let k be a field of characteristic different from 2. We denote by GW (k) the
Witt-Grothendieck ring of k.
For a € k* we denote k, = k[t]/(t? — a). Further we denote

([a]] = (1) = (a)
This is a 0-dimensional element of GW (k), with image ((a)) in the Witt ring.
We fix a quadratic extension L = k,.

The multiplicative norm in GW for quadratic extensions. The conjugation
in L is denoted by a +— a. We consider the additive trace map

Tr: GW(L) — GW (k)
and the multiplicative norm map

One has
Npje(z +y) = Npj(@) + Tojp(2y) + Npjk(y)
and
Npj({a) = (Npr())
for o € L*.

Lemma 1. For o € L* one has
Npje(§a)) = (Tr/k(@), —aNg () + [[a]]
Proof.
Npj({a) = Npje((1, —a))
= Npi((1) +Tp/i((—a)) + Npjp({(—a))
= (1) + (=T /k())(1,aNL /() + (N k()
= (1, =T /k(a))(1,aNp i (a)) + (Np /() [a]]

O
Corollary 1. Let n > 0 and let f be a n-fold Pfister form over L. Then
Npji(f) = [la]]™
is a 2n-fold Pfister form over k.
Proof. For a € L* one has {(—aNp,/i,(c)))[[a]] = 0. Hence Lemma 1 gives
Nije(Qan, - an)) = [[€To/m(ew), —aNL (i) + [[a]]”

and the claim is clear. O
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Invariants for etale algebras over a quadratic extension. Let © be a co-
homological (or Witt group) invariant for etale algebras F over L of some fixed
degree n. That is, for each field F' over k and each etale extension E of F'® L of
degree n we are given an element ©(E) € H(F), compatible with the restriction
maps for morphisms F' — F’. We denote by O the induced invariant given by
OL(E)=0O(E)L c HF®L).

Proposition 1. Suppose ©p = 0. Then © is constant.

Proof. A versal parameter space for our objects E is the Weil restriction Z =
Ry r(A™\ A) of the versal parameter space A"\ A (with A the discriminant locus
of normed polynomials of degree n). One has Ry /,(A") = A*". Thus Z is an
open subvariety of A?". Its complement A’ is a divisor birational isomorphic to
A"™ x A x Spec L.

The invariant © defines a versal class Oge, € H(k(Z)) unramified on Z. If
©r =0, then Oy, is unramified in A’ as well, since k(A’) contains L.

Thus Ogen is unramified on all of A%, O

Serre’s splitting principle. A cohomological (or Witt group) invariant for etale
algebras E over k (of some fixed degree) which vanishes on multiquadratic exten-
sions is trivial.

(A multiquadratic extension is a product of extensions of degree 1 or 2.)

The reduced trace form Sg. For an etale extension F of degree n let qg be its
trace form, let

o — (2,2,...,2) (rankm) itn=2m
" (1,2,...,2) (rankm+1) ifn=2m+1
and let
Se=qE —wn

to be considered as an element of GW (k). One has dim Sg = m.
For extensions F, F' of even degree and a € k* one has

Sexk = SE
Sexr =S+ SF
Ska = <2a>

If F is multiquadratic, then Sg is given by an honest quadratic form of di-
mension m. Although this is not true in general, Sg has some properties of a
m-dimensional quadratic form. Here are two of these properties (due to Serre):

N(Sg)=0 ifi>m
w;(Sg) =0 ifi>m

They are immediate from Serre’s splitting principle. Theorem 1 below yields an-
other one.
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The Pfister form P(E). Let
P(B) = P(B[k) = N'(Sp) = >_N(Sk)
i=0 i=0
Note that dim P(E) = 2™. If E is multiquadratic, then it is easy to see that P(E)
is a m-fold Pfister form.

We first note some elementary properties: Let E, F' be of even degree and a € k*.
Then

P(E x k) = P(E)
P(E x F) = P(E)P(F)
P(kq) = (1,2a) = (~2a))

These statements are clear from the definitions and the standard properties of
the A-operations. For the multiplicativity property one may also resort to Serre’s
splitting principle and reduce to the trivial case of multiquadratic extensions.

Theorem 1. P(FE) is a m-fold Pfister form.

Proof. One may assume that k& has no proper field extensions of odd degree. Then,
by the multiplicativity property of P, we may further assume that E is a field
extension of a quadratic extension L = k,.

Let r be the degree of E/L. The case r = 1 is clear. Otherwise r = 2s.

Let

O(E) = P(E/k) = Np/x(P(E/L)) + [[a]]®

By induction on the degree and by Corollary 1 it suffices to show O(FE) = 0.

The class O(F) defines an invariant as considered in Proposition 1. One has

O(E), = P(E x B) — P(BE)P(E) = 0

(with ~ denoting the conjugation of L/k). Thus © is constant.

It remains to check that ©(E) = 0 for some specific E. Thus we may assume
that E = (F x --- x F) ® L for any given quadratic extension F of k. Using the
multiplicativity properties of P and Np/, and Lemma 1 one reduces to the case
E=F®L.

Take F' = k x k. Then Sg/, = (2a,2a) and therefore P(E/k) = ((—2a, —2a)) =
(=1, —a)). Furthermore, Sg,/, = (2), Pg/r = (—2)). Therefore Ny, (P(E/L)) =
{(—4, —4a)) + [[a]] by Lemma 1. The claim follows.

One may also take F' = k_;. In this case the trace forms of E/L and E/k are
hyperbolic. Thus Sg/;, = (—2,—2) and P(E/k) = ((2,2)) is hyperbolic. Moreover
Se/r = (=2), Pgjr = (2)) and Ny (P(E/L)) = ((4,—4a)) + [[a]] by Lemma 1.
Again the claim follows. O

Proposition 2. For the invariant e,, of P(E) in H™(k,Z/2) one has

em(P(E)) = > (=)™ "wi(SE)
i=0
Proof. By Serre’s splitting principle one may assume that F is multiquadratic. Both
sides are multiplicative, and so one may assume E = k,. In this case ¢g = (2, 2a),
P(E) = {(—2a)) and w1(Sg) = (2a). O
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Remark. I don’t know any “explanation” of Theorem 1. What is the nature
of P(E)? One can play around and base everything on Sy, = (—1)Sg instead
of Sg. Then

€m (P(E)) = wm(SjE)
Let us normalize P(F) to have dimension 0 and write

P'(E) = P(E) - (1)
Then

P'(E) =Y (—1)'\'(Sk)
i=0
This way the Pfister form invariant appears as a sort of Euler characteristic.
Remark. One has w(gp) = w(Sg)(1+ (2))m =w(Sg)(1+m(2)). It follows that

m

em(P(E)) =) (=1)""wi(qr) + m(2)wm-1(¢s)
=0

Furthermore:
m

em(P(E)) =Y (=2)" "wf" (an)
=0
I have not made up my mind about the preferred way to look at P(FE).

Remark. If one develops the material in terms of S% and P/(E), then it seems
natural to consider the normalized Pfister forms

llar, ..., an]l = [[a1]] - - [[an]] = (a1, ..., an)) — (D"
of dimension 0. One gets the following variant of Lemma 1:

Lemma 2. For o € L* one has

Npyp([[]) = [[Toyk(@); —aNg k()] + [[2, al]

Note that [[2,a]]?> = 0 and [Ty, (a), —aNp/k(@)]][[2, a]] = 0.

Corollary 2. Letn > 2 and let f be a normalized n-fold Pfister form over L. Then
Nipi(f) is a normalized 2n-fold Pfister form over k.

Example. Let E be of degree 4. Then
gp = (1) + (c){—a, —b, ab)
for some a, b, ¢ € k*. One has P(E) = {(a,b)).

Remark. Suppose k is ordered. Then the Pfister form P(E) is positive definite if
and only if F is totally real.

Remark. One has
Ng = P(E){-2)™
for even n = 2m and
Agp = P(B){(-1)m*
for odd n = 2m + 1. This follows easily from Serre’s splitting principle.
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Remark (Serre). The Pfister form P(E) represents 2d. Here m = [n/2] and d is
the discriminant of F (and n = dim E).

Beweis: this amounts to the equation (2d) P(E) = P(FE) in W (k), which is true
when F is multiquadratic, hence is true in general.
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