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Let k be a field of characteristic different from 2. We denote by GW (k) the
Witt-Grothendieck ring of k.

For a ∈ k∗ we denote ka = k[t]/(t2 − a). Further we denote

[[a]] = 〈1〉 − 〈a〉
This is a 0-dimensional element of GW (k), with image 〈〈a〉〉 in the Witt ring.

We fix a quadratic extension L = ka.

The multiplicative norm in GW for quadratic extensions. The conjugation
in L is denoted by α 7→ ᾱ. We consider the additive trace map

TL/k : GW (L)→ GW (k)

and the multiplicative norm map

NL/k : GW (L)→ GW (k)

One has
NL/k(x+ y) = NL/k(x) + TL/k(xȳ) +NL/k(y)

and
NL/k(〈α〉) = 〈NL/k(α)〉

for α ∈ L∗.

Lemma 1. For α ∈ L∗ one has

NL/k(〈〈α〉〉) = 〈〈TL/k(α),−aNL/k(α)〉〉+ [[a]]

Proof.

NL/k(〈〈α〉〉) = NL/k(〈1,−α〉)
= NL/k(〈1〉) + TL/k(〈−ᾱ〉) +NL/k(〈−α〉)
= 〈1〉+ 〈−TL/k(α)〉〈1, aNL/k(α)〉+ 〈NL/k(α)〉
= 〈1,−TL/k(α)〉〈1, aNL/k(α)〉+ 〈NL/k(α)〉[[a]]

�

Corollary 1. Let n > 0 and let f be a n-fold Pfister form over L. Then

NL/k(f)− [[a]]n

is a 2n-fold Pfister form over k.

Proof. For α ∈ L∗ one has 〈〈−aNL/k(α)〉〉[[a]] = 0. Hence Lemma 1 gives

NL/k(〈〈α1, . . . , αn〉〉) =
∏
i

〈〈TL/k(αi),−aNL/k(αi)〉〉+ [[a]]n

and the claim is clear. �
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Invariants for etale algebras over a quadratic extension. Let Θ be a co-
homological (or Witt group) invariant for etale algebras E over L of some fixed
degree n. That is, for each field F over k and each etale extension E of F ⊗ L of
degree n we are given an element Θ(E) ∈ H(F ), compatible with the restriction
maps for morphisms F → F ′. We denote by ΘL the induced invariant given by
ΘL(E) = Θ(E)L ∈ H(F ⊗ L).

Proposition 1. Suppose ΘL = 0. Then Θ is constant.

Proof. A versal parameter space for our objects E is the Weil restriction Z =
RL/k(An \∆) of the versal parameter space An \∆ (with ∆ the discriminant locus
of normed polynomials of degree n). One has RL/k(An) = A2n. Thus Z is an
open subvariety of A2n. Its complement ∆′ is a divisor birational isomorphic to
An ×∆× SpecL.

The invariant Θ defines a versal class Θgen ∈ H
(
k(Z)

)
unramified on Z. If

ΘL = 0, then Θgen is unramified in ∆′ as well, since k(∆′) contains L.
Thus Θgen is unramified on all of A2n. �

Serre’s splitting principle. A cohomological (or Witt group) invariant for etale
algebras E over k (of some fixed degree) which vanishes on multiquadratic exten-
sions is trivial.

(A multiquadratic extension is a product of extensions of degree 1 or 2.)

The reduced trace form SE. For an etale extension E of degree n let qE be its
trace form, let

ωn =

{
〈2, 2, ..., 2〉 (rankm) if n = 2m
〈1, 2, ..., 2〉 (rankm+ 1) if n = 2m+ 1

and let

SE = qE − ωn

to be considered as an element of GW (k). One has dimSE = m.
For extensions E, F of even degree and a ∈ k∗ one has

SE×k = SE

SE×F = SE + SF

Ska = 〈2a〉

If E is multiquadratic, then SE is given by an honest quadratic form of di-
mension m. Although this is not true in general, SE has some properties of a
m-dimensional quadratic form. Here are two of these properties (due to Serre):

λi(SE) = 0 if i > m

wi(SE) = 0 if i > m

They are immediate from Serre’s splitting principle. Theorem 1 below yields an-
other one.
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The Pfister form P (E). Let

P (E) = P (E/k) =
m∑
i=0

λi(SE) =
∞∑
i=0

λi(SE)

Note that dimP (E) = 2m. If E is multiquadratic, then it is easy to see that P (E)
is a m-fold Pfister form.

We first note some elementary properties: Let E, F be of even degree and a ∈ k∗.
Then

P (E × k) = P (E)

P (E × F ) = P (E)P (F )

P (ka) = 〈1, 2a〉 = 〈〈−2a〉〉

These statements are clear from the definitions and the standard properties of
the λ-operations. For the multiplicativity property one may also resort to Serre’s
splitting principle and reduce to the trivial case of multiquadratic extensions.

Theorem 1. P (E) is a m-fold Pfister form.

Proof. One may assume that k has no proper field extensions of odd degree. Then,
by the multiplicativity property of P , we may further assume that E is a field
extension of a quadratic extension L = ka.

Let r be the degree of E/L. The case r = 1 is clear. Otherwise r = 2s.
Let

Θ(E) = P (E/k)−NL/k
(
P (E/L)

)
+ [[a]]s

By induction on the degree and by Corollary 1 it suffices to show Θ(E) = 0.
The class Θ(E) defines an invariant as considered in Proposition 1. One has

Θ(E)L = P (E × Ē)− P (E)P (Ē) = 0

(with ¯ denoting the conjugation of L/k). Thus Θ is constant.
It remains to check that Θ(E) = 0 for some specific E. Thus we may assume

that E = (F × · · · × F ) ⊗ L for any given quadratic extension F of k. Using the
multiplicativity properties of P and NL/k and Lemma 1 one reduces to the case
E = F ⊗ L.

Take F = k × k. Then SE/k = 〈2a, 2a〉 and therefore P (E/k) = 〈〈−2a,−2a〉〉 =
〈〈−1,−a〉〉. Furthermore, SE/L = 〈2〉, PE/L = 〈〈−2〉〉. Therefore NL/k

(
P (E/L)

)
=

〈〈−4,−4a〉〉+ [[a]] by Lemma 1. The claim follows.
One may also take F = k−1. In this case the trace forms of E/L and E/k are

hyperbolic. Thus SE/k = 〈−2,−2〉 and P (E/k) = 〈〈2, 2〉〉 is hyperbolic. Moreover
SE/L = 〈−2〉, PE/L = 〈〈2〉〉 and NL/k

(
P (E/L)

)
= 〈〈4,−4a〉〉 + [[a]] by Lemma 1.

Again the claim follows. �

Proposition 2. For the invariant em of P (E) in Hm(k,Z/2) one has

em
(
P (E)

)
=

m∑
i=0

(−1)m−iwi(SE)

Proof. By Serre’s splitting principle one may assume that E is multiquadratic. Both
sides are multiplicative, and so one may assume E = ka. In this case qE = 〈2, 2a〉,
P (E) = 〈〈−2a〉〉 and w1(SE) = (2a). �
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Remark. I don’t know any “explanation” of Theorem 1. What is the nature
of P (E)? One can play around and base everything on S′E = 〈−1〉SE instead
of SE . Then

em
(
P (E)

)
= wm(S′E)

Let us normalize P (E) to have dimension 0 and write

P ′(E) = P (E)− 〈〈1〉〉m

Then

P ′(E) =
m∑
i=0

(−1)iλi(S′E)

This way the Pfister form invariant appears as a sort of Euler characteristic.

Remark. One has w(qE) = w(SE)
(
1 + (2)

)m = w(SE)
(
1 +m(2)

)
. It follows that

em
(
P (E)

)
=

m∑
i=0

(−1)m−iwi(qE) +m(2)wm−1(qE)

Furthermore:

em
(
P (E)

)
=

m∑
i=0

(−2)m−iwgal
i (qE)

I have not made up my mind about the preferred way to look at P (E).

Remark. If one develops the material in terms of S′E and P ′(E), then it seems
natural to consider the normalized Pfister forms

[[a1, . . . , an]] = [[a1]] · · · [[an]] = 〈〈a1, . . . , an〉〉 − 〈〈1〉〉n

of dimension 0. One gets the following variant of Lemma 1:

Lemma 2. For α ∈ L∗ one has

NL/k([[α]]) = [[TL/k(α),−aNL/k(α)]] + [[2, a]]

�

Note that [[2, a]]2 = 0 and [[TL/k(α),−aNL/k(α)]][[2, a]] = 0.

Corollary 2. Let n ≥ 2 and let f be a normalized n-fold Pfister form over L. Then
NL/k(f) is a normalized 2n-fold Pfister form over k.

Example. Let E be of degree 4. Then

qE = 〈1〉+ 〈c〉〈−a,−b, ab〉

for some a, b, c ∈ k∗. One has P (E) = 〈〈a, b〉〉.

Remark. Suppose k is ordered. Then the Pfister form P (E) is positive definite if
and only if E is totally real.

Remark. One has
∧qE = P (E)〈〈−2〉〉m

for even n = 2m and
∧qE = P (E)〈〈−1〉〉m+1

for odd n = 2m+ 1. This follows easily from Serre’s splitting principle.
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Remark (Serre). The Pfister form P (E) represents 2md. Here m = [n/2] and d is
the discriminant of E (and n = dimE).

Beweis: this amounts to the equation 〈2md〉P (E) = P (E) in W (k), which is true
when E is multiquadratic, hence is true in general.
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