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Generally speaking, the Euler-Poncelet point EP of a quadrangle is the common
point of the Feuerbach circles of the four subtriangles. (The Feuerbach or 9-point
circle of a triangle is the circumcircle of the median triangle formed by the midpoints
of the sides.)

If the quadrangle is an orthocentric system (a triangle completed by the inter-
section of its altitudes), then all Feuerbach circles coincide and EP is not defined.

If 2 points of the quadrangle coincide, then 2 Feuerbach circles are not defined
and 2 Feuerbach circles coincide.

If the 4 points lie on a straight line, then the Feuerbach circles coincide with
that line (or are not defined, if you wish).

Otherwise EP is defined.
If 3 of the 4 points lie on a straight line, then EP is the orthogonal projection

of the 4th point to that line.

Let
z = (z0, z1, z2, z3) ∈ C4

As usual, complex conjugates are denoted by

z = (z0, z1, z2, z3)

Consider the expression

(1) EP(z) =
1

2
·

3∑

i=0

z2i∏
j 6=i(zi − zj)

3∑

i=0

zi∏
j 6=i(zi − zj)

Proposition. EP(z) is the Euler-Poncelet point of the quadrangle z.

In this text we will not prove this claim. However we will show that EP(z) is
a “quadrangle center”. This means that EP(z) is invariant under permutations of
the zi (which is obvious) and that EP(z) is equivariant with respect to similarities
of the Euclidean plane (including reflections):

Lemma. Let a, b ∈ C, a 6= 0. Then

EP (az0 + b, az1 + b, az2 + b, az3 + b) = aEP(z0, z1, z2, z3) + b

Moreover

EP(z0, z1, z2, z3) = EP(z0, z1, z2, z3)

Proof. The first statement for b = 0 and the second statement are obvious.
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Let e = (1, 1, 1, 1). It remains to show

(2) EP(z + e) = EP(z) + 1

We consider first the denominator

A(z) =

3∑

i=0

zi∏
j 6=i(zi − zj)

and show that it is invariant under translations:

A(z + e) = A(z)

This amounts to

(3)

3∑

i=0

1∏
j 6=i(zi − zj)

= 0

The latter is a general identity in variables xi = zi. It may be verified may an
explicit computation. It follows also from the residue theorem applied to the dif-
ferential form

ω =
dt

(t− x0)(t− x1)(t− x2)(t− x3)

Indeed, the residues of ω at t = xi are the terms appearing in (3). There are no
further poles including t = ∞.

For the numerator

B(z) =

3∑

i=0

z2i∏
j 6=i(zi − zj)

one finds

B(z + e) = B(z) + 2A(z) + 0

using again (3).
Now (2) is immediate. �

One may rewrite formula (1) as follows. For variables x = (x0, x1, x2, x3) let

D0(x) = (x1 − x2)(x2 − x3)(x3 − x1)

and for i = 1, 2, 3 let Di(x) be obtained from (−1)iD0(x) by replacing xi with x0.
In other words,

Di(x)
∏

j 6=i

(xj − xi) = δ(x), δ(x) =
∏

k<ℓ

(xk − xℓ)

Clearing denominators in (1) by multiplying with δ(z) yields

EP(z) =
1

2
·

3∑

i=0

z2iDi(z)

3∑

i=0

ziDi(z)
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Appendix

We conclude with a general discussion of “points” and “centers”.

The expression in (1) is evidently invariant under transformations

(4) zi → zi, zi → azi + b

of the zi alone.
This is a general feature.
Let E be the Euclidean plane and let us define an “n-gon point” as a function

f : En → E

(P1, . . . , Pn) 7→ f(P1, . . . , Pn)

which is equivariant under the group G of proper similitudes of E:

f
(
g(P1), . . . , g(Pn)

)
= g

(
f(P1, . . . , Pn)

)
(g ∈ G)

If f is invariant under all permutations of the Pi, it is called an “n-gon center”.
For instance, the feet of the altitudes in a triangle are triangle points (but not

triangle centers).
We assume that f is a rational map (defined on an appropriate open subset

U ⊂ En). If we identify E = R2 and write

Pr = (xr, yr)

this means that f is a pair f = (f1, f2) of rational functions

f1, f2 ∈ R(x1, y1, . . . , xn, yn)

If we identify E = C and write

f = f1 + if2, zr = xr + iyr, zr = xr − iyr

we get an element

f ∈ C(z1, z1, . . . , zn, zn)

in the function field of 2n independent variables zr, zr over C.
The rationality condition is a bit too strong and is made here for simplicity. For

example, the incenter of a triangle yields an element f in a biquadratic extension
of the field C(z1, z1, z2, z2, z3, z3) and is not rational (but real-analytic).

Consider then the complex valued function

F (P1, . . . , Pn) =
f(P1, . . . , Pn)− P1

P2 − P1

Since f is equivariant under G it follows that F is invariant under G. Since G acts
generically free on E2 with dense orbit, it follows that F is of the form

F = F̃ (η3, . . . , ηn), ηr =
Pr − P1

P2 − P1

Thus f is of the form

f(P1, . . . , Pn) = P1 + (P2 − P1)F̃ (η3, . . . , ηn)

Considered as element in C(z1, z1, . . . , zn, zn) this means that

f ∈ C(z1, . . . , zn, λ3, . . . , λn), λr =
zr − z1

z2 − z1

It follows that indeed f is invariant under the transformations (4).



4 MARKUS ROST

In the example EP(z) it easy to get the corresponding element

EP(z) ∈ C(z1, z2, z3, z4, λ3, λ4)

One just writes
zi − zj = (zi − z1)− (zj − z1)

and divides by (z2 − z1).

In the case n = 3 the situation is particularly nice. The orthocenter H of the
triangle z1, z2, z3 is

H =
λ(z2 − z1)(z2 − z3 + z1) + (z3 − z1)(z2 − z3 − z1)

λ(z2 − z1)− (z3 − z1)

with

λ =
z3 − z1

z2 − z1
Since H is a linear fractional in λ (over C(z1, z2, z3)), one can express λ in terms
of H . It follows that every rational triangle center is actually an element of

C(z1, z2, z3, H)

For more details and examples see my text “The holomorphic extension of triangle
functions”.
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