ON QUADRATIC FORMS ISOTROPIC OVER THE FUNCTION
FIELD OF A CONIC

MARKUS ROST

Counsider a quadratic extension L = F'(y/a) of a field F' (Char F' # 2). The be-
haviour of quadratic forms over F' under base extension ¢ — ¢y, is well understood,
since any anisotropic form ¢ is isomorphic to ¥ L (1, —a)e with forms 1, o over F'
such that 4, is anisotropic [S, 2. Sect. 5]. This implies that the anisotropic part
(¢r)an of pp is isomorphic to ¢, and therefore already defined over F' and that if
 is anisotropic and ¢y, is hyperbolic then ¢ is a multiple of (1, —a).

Now let K be the function field of a conic, i.e. K is for some a, b € F* isomorphic
to the fraction field of R = F[s,t]/(s? — at®> —b). Then K is the universal splitting
field of the form (1, —a,—b) and in view of the decomposition mentioned above
it is natural to ask whether a form ¢ which becomes isotropic over K contains a
subform similar to (1, —a, —b). This however is not true in general; see [L, Sect. 6]
for further information. The purpose of this note is to prove

Proposition. Let ¢ be a form over F. Then there exist a number p, forms @;, 1;
(i=0,...,p) and elements ¢; € F* (i =0, ..., p—1) such that ¢ = pg and
i) @i ~ci{l,—a) Ly, i=0,...,p—1;
11) @Hl:czb(l,—a}sz, ’LZO, ,p—l,‘
iii) ((‘Pp)K)an = ((‘Pp)an)K-

This proposition shows that the extension K|F' has similar splitting properties
as the quadratic extension L|F":

Corollary. Let ¢ be a form over F. Then there exists a form 1 over F such that
(@K )an 1s isomorphic to VY. If ¢ is anisotropic and i is hyperbolic then ¢ is a
multiple of (1, —a, —b, ab).

The first statement of the corollary has been proved by Arason in [ELW, Ap-
pendix II]; it follows from the proposition by taking ) = (¢, )an, since all ¢; are
isomorphic over K. The second statement is well known, see e.g. [A, Sect. 2]
or [S, 4. Sect. 5]; it is a consequence of the proposition and Witt cancellation. The
method of proof presented here is direct and constructive and might indicate a way

to handle the extension K |F also for other questions.
Note that R = F[t] ® sF[t] as F-vector space. Define d: R — NU {—o0} by

d(P + sQ) = max{deg P,1 + deg@Q} for P, Q € F1t]
(here deg0 = —o0). Moreover let R, = {r € R | d(r) < n}. R, is a F-vector
subspace of R and one has Ry = F and R,, - R, C Ry

Lemma. Let ¢: V — F be an anisotropic form and suppose that for somen > 1
there exist

ve(VerR)\(VeorR,-1)
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such that o(v) =0 € R.
Then there exists a subspace L C V' of dimension 2 such that
1) ¢|L ~¢(1,—a) for some c € F*,
2) there exists a nonzero v € VQp R, _1 such that $(0) = 0, where ¢ = b(p|L) L
(o|W) and W = L+.

Proof of the proposition. We use induction on dim @,,. It is clear that we may
assume that ¢ is anisotropic and @ is isotropic.

Since K is the fraction field of R there exist n > 0 and a nonzero v € V Qr R,
such that ¢(v) = 0. We proceed by induction on n. If n = 0, then v € V and
¢ would be isotropic over F’; hence n > 1. We may assume v € V ®p R,_1 and
we take 7 = ¢ where ¢ is the form in the lemma. If ¢ is anisotropic we apply
the induction hypothesis for n — 1 and if ¢ is isotropic we apply the induction

hypothesis for dim @,, < dim¢. In any case we find forms ¢ = @g, ¢1, ..., @p
as in the proposition and ¢ = g, p; = ¢;—1 (i =1, ..., p+ 1) is a sequence as
required. [

In order to prove the lemma we write
v =g+ Zvistifl + witi; v, w; € V.
i=1
Claim. (v,,wy,), =0 and p(wy,) = —ap(vy).
Proof of the claim:
0 = ¢(v) mod Ray,—1
= Lp(vn)sth(”_l) + 2(vp, wn><pst2"_1 + gp(wn)t% mod Ra,_1
= (¢(vp)a + c,o(wn))t271 + 2(vp, wn>¥,st2"*1 mod Ray_1.

The claim follows since t>" and st>"~! define F-independent vectors of R/Rg,_1.

Note that v, # 0 and w,, # 0 since v € V ®p R,_1 and ¢ is anisotropic. Let
L= F[z]/(z2 —a)

and let « € L* be the class of z. We identify L with (v,,w,)r C V by 1 — v,
and @ — wy,. Then the claim shows that ¢|L = cNpp with ¢ = ¢(v,) and
Nyp: L—F,etaf — e? — af? the norm form.

Now write v = 2 +y with 2 € L®r Randy € W ®p R, W = L*. Then
r€(s+ta)t" '+ L@pr R,y andy € W ®@p R,_1.

Put & = b~ !(s — ta)r +y. Then o is a zero of the form ¢ = b(¢|L) L (p|W),
since

bp(b™ (s — ta)z) = beNp p(b™ ' (s — ta)z) = beb™*(s* — at®) Ny p(z)
= cNpjr(z) = ¢(z).

It remains to show that ¥ € V ® g R,,_1. In order to do this we have to show that
(s—ta)r € LRF Ry—1.
Case I: n > 2. Then there exist u, A € L and £ € L ® p R,,_o such that

r=(s+ta)t"  +(s+ta)t" P+ t" N+ 7
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We have with w = t"~! +#"~21 and X the conjugate of A\ under a — —a:
0 = ¢(v) mod Rgy,—2 = ¢(z) mod Ray—o
cNpp((s + ta)w + t"7'A) mod Ra,—o
c[Nrjp((s +ta)w) +trp p((s + ta)wt"'X) + Np e (" 'A)] mod Roy,—o
clb- Npjp(w) + trr e ((s + ta)t>7>X) + 0] mod Ra,—2
=c[0+ st? 2 trp p A+ 7" ey p(a))] mod Rap—o

Hence the traces of A and a\ are zero and therefore A = 0. Finally:
(s —ta)r =bw+ (s —ta)Z € LQp Ry_1.

Case II: n = 1. Then z = s+ ta + X for some A € L and it suffices to show
A = 0. However

0=p)=b+stryp A+t tro|F a + Npir(A) +o(y)
and therefore again A = 0 since ¢(y) € F. O
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