
THE HOLOMORPHIC EXTENSION OF TRIANGLE FUNCTIONS

MARKUS ROST

Introduction

Examples of triangle functions are given by the orthocenter, the circumcenter,
the incenter, the excenters, the pedal points, the nine-point center, etc. Each of
these functions has a “holomorphic extension” which is a complex function in four
variables.

1. Triangle functions

Let E be the Euclidean plane.
Let further G be the group of Euclidean similarities of E. If we identify E

with the field of complex numbers C, then G consists of the affine transformations
x 7→ ax+ b with a 6= 0.

We let G act on Er diagonally.

Definition. By a triangle function we understand a G-equivariant real analytic
function

f : U → E

defined on an open G-stable subset U ⊂ E3.

Remark. One could require additionally that a triangle function is also equivariant
with respect to reflections at a line. This is indeed the case for most of our examples.

A basic example of such a function is given by the orthocenter1 H(x, y, z) of
a triangle x, y, z. The function H(x, y, z) is defined (at least) on the subset UH

of triples x, y, z ∈ E not lying on a line and with no perpendicular sides. It is
invariant under permutations of the coordinates and one has

H
(
x, y,H(x, y, z)

)
= z

Let

Φ: UH → E4

Φ(x, y, z) =
(
x, y, z,H(x, y, z)

)
Let X be the image of Φ. X is the set of (non-degenerate) orthocentric quadrangles.
It is G-stable and invariant under permutations of the coordinates of E4. It is a
smooth 6-dimensional real analytic subvariety of E4.

Date: August 6, 2004.
1The orthocenter is the intersection of the altitudes; see [3, Section 1] for orthocenters, ortho-

centric quadrangles, pedal triangles, etc.

1



2 MARKUS ROST

Lemma 1. Let

f : U → E

be a triangle function with U ⊂ UH . Then there exists an open G-stable subset
V ⊂ E4 with Φ(U) ⊂ V and a G-equivariant complex analytic function

f̂ : V → E

such that

f = f̂ ◦ Φ

The function f̂ is uniquely determined by f on every component of V containing
points of Φ(U).

The function f̂ is called the holomorphic extension of f . In all our exam-
ples the function f̂(x, y, z, t) is algebraic over C(x, y, z, t) (in fact, algebraic over
Q(x, y, z, t)).

The basic idea is that the subvariety X ⊂ E4 = C4 has 2 complex coordinates,
given by the G-action, and 2 further real coordinates. The complexification of the
real coordinates will lead to 4 complex coordinates in total.

Conversely, let f̂ : V → E be a G-equivariant complex analytic function. Then
f |(X ∩ V ) or rather f = f̂ ◦Φ is a triangle function. When we consider f̂(x, y, z, t)
on points (x, y, z, t) ∈ X, we speak of the “Euclidean case”.

The following proof of the Lemma is also a device to construct f̂ .

Proof. We make an identification E = C. Because of the G-equivariance, it suffices
to consider the restrictions to the slices defined by x = 0, y = 1. Let g(z) = f(0, 1, z)
and φ(z) =

(
z,H(0, 1, z)

)
. It suffices to find a complex analytic function ĝ(z, t) with

g = ĝ ◦ φ.
Let G(z, s) be a complex analytic function with g(z) = G(z, z̄) where z̄ is the

complex conjugate.
The orthocenter H of the triangle 0, 1, z is determined by H ⊥ (1 − z) and

(1−H) ⊥ z. One finds

H(0, 1, z) =
(1− z)(z + z̄)

z̄ − z

The function

t =
(1− z)(z + s)

s− z

is a linear fractional function in s. Its inverse is

s =
zt+ (1− z)z
t+ z − 1

Thus

ĝ(z, t) = G
(
z,
zt+ (1− z)z
t+ z − 1

)
does the job. �
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2. Examples

Example 1. For the orthocenter H(x, y, z) one has obviously

Ĥ(x, y, z, t) = t

Example 2. For the centroid (center of gravity) G(x, y, z) one has

Ĝ(x, y, z, t) =
x+ y + z

3
Example 3. For the circumcenter (center of circumcircle) O(x, y, z) one has

3G = 2O +H

(the line through these three points is the Euler line). Hence

Ô(x, y, z, t) =
x+ y + z − t

2
Example 4. Let x0, x1, x2, x3 be an orthocentric quadruple. The nine-point circle
(also called Euler circle or Feuerbach circle) is the circumcircle of the pedal triangle
(which is formed by the bases of the altitudes). It contains all the midpoints mij

of the sides xixj and mijmk` are diameters of it (ijk` is any permutation of 1234).
The nine-point center F (x, y, z) is the center of the Euler circle. It lies one the

Euler line and one has
2F = O +H

Hence
F̂ (x, y, z, t) =

x+ y + z + t

4
Example 5 (Pedal points). For a triangle x, y, z let P (x, y, z) be the base of the
altitude through z. Note that

P (x, y, z) = P (y, x, z) = P
(
x, y,H(x, y, z)

)
Therefore one has for the holomorphic extension P̂ of f the relations

P̂ (x, y, z, t) = P̂ (y, x, z, t) = P̂ (x, y, t, z) = P̂ (y, x, t, z)

It follows that the triple

R(x0, x1, x2, x3) =
(
P̂ (x0, x1, x2, x3), P̂ (x0, x2, x3, x1), P̂ (x0, x3, x1, x2)

)
is equivariant with respect to the natural operations of S4 and S3 and the corre-
sponding homomorphism S4 → S3.

As for an explicit computation: One first notes that

P (0, 1, z) =
z + z̄

2
Then one can use the proof of the Lemma to compute P̂ . One finds

P̂ (x, y, z, t) =
xy − zt

x+ y − z − t

Remark 1. The map R is a triple of rational functions in 4 variables defined over
any field F , equivariant with respect to S4 → S3 and with respect to the action
of the affine group Aff(1, F ). It is my favorite candidate for the construction of a
cubic resolvent of a quartic equation. After the previous remarks, it is justified to
say that R is the holomorphic extension of the construction of the pedal triangle of
an orthocentric quadrangle.
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Example 6. Let S(x, y, z) denote the reflection of z along the side xy. Obviously

S(x, y, z) = z + 2
(
P (x, y, z)− z

)
One finds

Ŝ(x, y, z, t) = z +
(z − x)(z − y)
Ô(x, y, z, t)− z

Remark 2. Let us consider the denominators of the pedal points. Let ijk` be a
permutation of 1234 and let

ρij(x0, x1, x2, x3) = xi + xj − xk − x`

In the Euclidean case (that is, x0, x1, x2, x3 is an orthocentric quadrangle) one has

(xi − xj) ⊥ (xk − x`)

It follows that in this case

r = |ρij(x0, x1, x2, x3)|

is independent of ij (| · | is the Euclidean absolute value). In fact,

r = 2rO = 4rF

where rO the radius of the circumcircle of any subtriangle and rF is the radius of
the Euler circle. It follows also that the quotient

ρij(x0, x1, x2, x3)
ρik(x0, x1, x2, x3)

is a complex number of norm 1. Its angle is twice the angle of the triangle xj , xk, x`

at x`.

Example 7. [Incenters and Excenters] For a triangle x, y, z let I(x, y, z) be its
incenter (intersection of the angle bisectors). The holomorphic extension Î has
globally 4-branches with covering group Z/2 × Z/2. There is of course the distin-
guished branch which extends I in an open neighborhood of Φ(U). The other three
branches, obtained by analytic continuation, give by restriction via Φ the excenters
of a triangle. Explicit formulas can be found in [6, End of Section 4].

Remark 3. Let I be the incenter, let J1, J2, J3 be the excenters, and let O be the
circumcenter of a triangle. One has

I + J1 + J2 + J3 = 4O

I don’t know an explicit reference for this basic fact, however see [3, Section 1.7,
Exercise 5].

Example 8. Let M(x, y, z) be the intersection of the angle trisectors at x, y
adjacent to the side xy. In this case one finds that M̂ has globally 9-branches
with covering group Z/3× Z/3. Explicit formulas can be found in [6].

Remark 4. Connes’ article [2] was the starting point for the considerations of this
text. We get the following interpretation: Morley’s theorem states that M(x, y, z)
and its permuted versions form an equilateral triangle, that is

M(x, y, z) + ζM(y, z, x) + ζ2M(z, x, y) = 0
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where ζ is an appropriate cube root of unity. Now Connes’ Lemma means essentially
the corresponding identity

M̂(x, y, z, t) + ζM̂(y, z, x, t) + ζ2M̂(z, x, y, t) = 0

for the holomorphic extensions. Connes’ Lemma provides a geometric interpretation
of M̂(x, y, z, t) in terms of fixed points of certain affine transformations. Namely,
M̂(x1, x2, x3, t) is the fixed point of g1g2 where

g1(u) = 3

√
x1 + x2 − x3 − t

x3 + x1 − x2 − t
(u− x1) + x1

g2(u) = 3

√
x2 + x3 − x1 − t

x1 + x2 − x3 − t
(u− x2) + x2

Perhaps it is worthwhile to consider the holomorphic extensions of other so-called
triangle centers and to find geometric interpretations.

Example 9. Consider the rational function

A(x, y, z, t) =
(x− y)(y − z)(z − x)

x+ y − z − t

In the Euclidean case one has

|A(x, y, z, t)| = 2∆(x, y, z)

where ∆ denotes the area of a triangle. This is easy to deduce from

A(0, 1, z) =
z̄ − z

2
Remark 5. Here is another point of view. For non-degenerate triangles x0, x1, x2

in some Euclidean plane E one can use the Euler line together with its points O and
H as a coordinate system. So let us identify E with C by the conditions O = 0 and
H = 1. This way the x0, x1, x2 become complex numbers subject to the relation
x0 + x1 + x2 = 1 and with circumcenter the origin. (One is tempted to call them
the “Euler coordinates” of the triangle.)

For the holomorphic extensions f̂(x0, x1, x2, t) this simply means to restrict to
t = 1 and x0+x1+x2 = 1. The function f̂ is uniquely determined by this restriction,
because of the G-equivariance. In other words:

Triangle functions are nothing else than complex analytic functions on the 2-
simplex

∆2 = { (x0, x1, x2) ∈ A3 | x0 + x1 + x2 = 1 }
One may also just restrict to t = x0 + x1 + x2. This way we see: Triangle

functions are essentially complex analytic functions on A3 which are homogeneous
of degree 1; in other words: complex analytic sections in the bundle O(1) on P2.

Remark 6. Continuing this discussion, we may also take the permutation action
of S3 into account. Given a triangle function f , we consider also its conjugates
f ◦ σ, σ ∈ S3.

In the following let us assume that f̂ |{t = x0 + x1 + x2} is rational and can be
defined over some field F .

We start with the following setting: a triangle over F is an element x in a cubic
extension K of F . K need not be a field, but let’s say it is an etale ring extension
of F of rank 3 (having in mind arbitrary flat ring extensions of F of rank 3). Let D
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be the discriminant algebra of K and H = K ⊗D. Then, given a rational function
f̂(x0, x1, x2, t), the 6-tuple

(f̂ ◦ σ)σ∈S3

yields a rational function
f̃ : K → H

such that

f̃(x0, x1, x2) =
(
f̂(xσ(0), xσ(1), xσ(2), x0 + x1 + x2)

)
σ∈S3

in the case K = F × F × F .

Example 10. Suppose charF 6= 2. For the pedal point P one finds

P̃ (x) =
1
2

(
TK/F (x)−

NK/F (x)
x2

)
where TK/F , NK/F : K → F is the trace resp. norm.

Example 11. For the point S (the reflection of x at the opposite side of the
triangle, see Example 6) one finds

S̃(x) = x+ 2
(
P̃ (x)− x

)
= x− 1

x

d

dt
Φx(t)|t=x

where Φx(t) is the characteristic polynomial of x.

3. Points on a circle

Here is a variant of “holomorphic extension”, which is actually much simpler.
Let Cn = Gn

m where Gm is the multiplicative group. Let further

Dn = { (z1, . . . , zn) ∈ Cn(C) | |z1| = · · · = |zn| }
be the real subvariety of n-tuples of complex numbers lying on some circle around
the origin. Let G = Gm act on Cn diagonally. Then Dn is G-stable.

It is easy to see that G-equivariant real analytic functions f : Dn → C extend
uniquely to G-equivariant complex analytic functions f̂ : Cn → C.

Example 12. Let n = 4 and for (z1, z2, z3, z4) ∈ D4 let f(z1, z2, z3, z4) be the
intersection of the lines z1z2 and z3z4. Then (cf. [4])

f̂(z1, z2, z3, z4) =
z−1
1 + z−1

2 − z−1
3 − z−1

4

z−1
1 z−1

2 − z−1
3 z−1

4

The remaining sections have been appended later and could perhaps
be better merged with the previous text.

4. An Involution

4.1. The map τ . The group Ga acts on A4 via

(x, a) 7→ x+ a = (x0 + a, x1 + a, x2 + a, x3 + a)

with x = (x0, x1, x2, x3) ∈ A4 and a ∈ Ga.
The group S4 acts on A4 by permutation of the coordinates.
In the following ijk` is any permutation of 1234.
Let

ρij(x) = xi + xj − xk − x`
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The 6 polynomials ρij(x) are Ga-invariant. One has ρij = −ρk`. If 2 is invertible,
the functions ρ01, ρ02, ρ03 form a coordinate system for A4/Ga.

Let further
R(x) = ρij(x)ρik(x)ρi`(x)

The polynomial R is independent of the choice of ijk`, it is S4-invariant and Ga-
invariant.

Let further

Di(x) = x2
j + x2

k + x2
` − xjxk − xkx` − x`xj

= (xj + ζxk + ζ−1x`)(xj + ζ−1xk + ζx`)

with 1 + ζ + ζ−1 = 0. The polynomial Di is Ga-invariant and invariant under
permutations of jk`.

Finally consider the rational map

τ : A4/Ga → A4

τ(x) = − 1
R(x)

(
D0(x), D1(x), D2(x), D3(x)

)
It is of degree −1.

One finds
ρij

(
τ(x)

)
=

1
ρij(x)

Thinking of the ρij(x)/ρik(x) as angles, maybe τ(x) can be thought of as the
“algebraic inversion” of the quadrangle x.

The previous relation shows

(π ◦ τ)2 = idA4/Ga

where π : A4 → A4/Ga is the projection. In particular, π ◦ τ is a birational iso-
morphism of A4/Ga.

4.2. Coordinate free setups. One can set up τ a little bit more coordinate free
as a map

τ : E4/V → (V ∗)4

where E = e+ V is a 1-dimensional affine space with underlying vector space V .
Or, let H be a quartic extension of the ground ring F . Define

D̃ : H/F → H

D̃(x) = −2x2 + xTH/F (x) + TH/F (x2)−QH/F (x)

where Q denotes the second coefficient of the characteristic polynomial. If H = F 4,
then

D̃(x) =
(
D0(x), D1(x), D2(x), D3(x)

)
One has

D̃2(x) = R(x)x mod F
for a certain polynomial R in the coefficients of the characteristic polynomial. Hence
one can generalize τ as

τ : H/F → H

τ(x) = −D(x)
R(x)
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as long as R is not identically 0.

4.3. Sections to An → An/Ga. It follows also that

τ ◦ π ◦ τ : A4/Ga → A4

is a (rational) section to π which is S4-equivariant.
Note that if 2 is not invertible, then π does not have a S4-equivariant linear

section.
What about Sn-equivariant rational sections to the projection An → An/Ga

(with Ga acting diagonally)?
For n = 2 it is easy to see that such a section does not exist if 2 = 0.
For n > 2 such a section does exist over any field, basically because Sn acts

generically free on An/Ga.
For n = 3 such a section is given by

A3/Ga → A3

[x0, x1, x2] 7→(
(2x0 − x1 − x2)(x1 − x2)2, (2x1 − x2 − x0)(x2 − x0)2, (2x2 − x0 − x1)(x0 − x1)2

)
x2

0 + x2
1 + x2

2 − x0x1 − x1x2 − x2x0

This map is closely related to the “basic line” in [5].
For n = 4 we have the section τ ◦ π ◦ τ , which is remarkably more or less the

square of the less complicated function τ .
The cases n = 3, 4 can be brought in a common form as follows. Let L/F be a

separable extension of degree n. For x ∈ L let

Px(t) = NL/F (t− x) = tn − TL/F (x) + · · ·+ (−1)nNL/F (x)

be the characteristic polynomial of x. Consider the function

g(x) =
NL/F

(
TL/F (x)− nx

)
TL/F

(
dPx

dt

∣∣∣
t=x

)
One has

g(ax+ b) = ag(x)
for a, b ∈ F .

One finds for n = 3, 4 that

g(x) = TL/F (x) mod n

(This does not hold for n = 5.) Let further

f(x) =
TL/F (x)− g(x)

n

This has sense: We may divide by n for the universal extension L = Z[x1, . . . , xn]
over F = LSn = Z[σ1, . . . , σn] and then specialize.

It is clear that
f(ax+ b) = af(x) + b

for a, b ∈ F . It follows that

σ : L/F → L

σ(x+ F ) = x− f(x)



THE HOLOMORPHIC EXTENSION OF TRIANGLE FUNCTIONS 9

is a section to the projection L → L/F . In the split case L = Fn we get exactly
the sections An/Ga → An considered before.

I did not look at n > 4, but I think that there is a substantial difference to the
cases n ≤ 4.

4.4. Relation with triangle functions. The automorphism π ◦ τ has the fol-
lowing interpretation as a sort of algebraic version of the complex conjugation for
triangle functions.

Over the field C of complex numbers let fi : C4 → C, i = 0, 1, 2 be rational
functions which are Aff(1,C) equivariant.

Denote by f̄ the complex conjugate of f , that is f̄(x) = f(x̄).
Let X ⊂ C4 be the (real) subvariety of orthocentric quadrangles.

Lemma 2. The following statements are equivalent:

(1) For all x ∈ X the points f0(x), f1(x), f2(x) lie on a real line.
(2) For all x ∈ C4 one has

f1 − f0
f2 − f0

(x) =
f̄1 − f̄0
f̄2 − f̄0

(
τ(x)

)
�

Suppose the triangle functions fi have real coefficients. Then the last condition
amounts to the π ◦ τ -invariance of the cross ratio of the fi.

4.5. More remarks on the pedal point. For an orthocentric quadrangle x =
(x0, x1, x2, x3) the intersection of the lines x0x1, x2x3 is the pedal point

P (x0, x1, x2, x3) =
x0x1 − x2x3

x0 + x1 − x2 − x3

see Example 5.
For a quadrangle x = (x0, x1, x2, x3) on a circle around 0, the intersection of the

lines x0x1, x2x3 is given by

f(x0, x1, x2, x3) =
x1x2x3 + x0x2x3 − x0x1x2 − x0x1x3

x0x1 − x2x3

see Example 12.
In other words,

f(x0, x1, x2, x3) = P (x−1
0 , x−1

1 , x−1
2 , x−1

3 )−1

Maybe the map τ is closely related with this coincidence (or maybe not).
The formula

P (x0, x1, x2, x3) =
x0x1 − x2x3

x0 + x1 − x2 − x3

appears also in [1].
Here are further interpretations. Let a, b, c, d be four (general) points in an

affine line.
Let f be the affine transformation with f(a) = c and f(d) = b. Let g be

the affine transformation with g(a) = d and g(c) = b. Consider the commutator
h = f−1g−1fg. As any commutator in the group of affine transformations, h is
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a translation. Moreover h(a) = a, and therefore h is the identity. Thus f and g
commute. Their common fixed point is

P (a, b, c, d) =
ab− cd

a+ b− c− d

This way P (a, b, c, d) appears as the fixed point of an action of Z × Z on A1 by
affine transformations.

Lemma 3. Let h be a transformation of a projective line. Suppose there are distinct
points a, b with h(a) = b, h(b) = a. Then h2 is the identity.

Proof. h2 has at least 3 distinct fixed points, namely a, b and a fixed point of h. �

Now let h be the projective transformation with h(a) = b, h(b) = a, h(c) = d.
By the Lemma one has h(d) = c. Then one has h2 = id and one finds

h(∞) = P (a, b, c, d) =
ab− cd

a+ b− c− d

One can see directly that the fixed point of f above coincides with h(∞), without
an explicit calculation. Namely consider k = hf . Then k(a) = d, k(d) = a. By the
Lemma, k2 = id. Thus

hfh−1 = f−1

Therefore h permutes the fixed points of f , which are ∞ and P (a, b, c, d).
Further, let f , g be the projective transformations which fix c, d and which send

∞ to a resp. b. Then fg = gf and one finds fg(∞) = P (a, b, c, d).

5. Exterior Algebra of a cubic extension

Let K be a cubic extension of a field F .
For x ∈ K one denotes by

NK/F (t− x) = t3 − TK/F (x)t2 +QK/F (x)t−NK/F (x)

its characteristic polynomial and by

x# = x2 − TK/F (x)x+QK/F (x) =
NK/F (x)

x

its adjoint.
The highest exterior power Λ3K is a 1-dimensional F -vector space. Thus for ω,

ω′ ∈ Λ3K we have ω/ω′ ∈ F , provided ω′ 6= 0.
In the following we assume (sometimes) that K/F is separable and use the

canonical identifications

Λ2K = Hom(K,Λ3K) = K ⊗ Λ3K

(Λ3K)⊗2 = F

via the trace form. Thus for ω, ω′ ∈ Λ2K we have ω/ω′ ∈ K, provided ω′ is
nondegenerate.

Here is a basic formula which connects the ∧-product with the multiplication
in K:

ux ∧ y ∧ z + x ∧ uy ∧ z + x ∧ y ∧ uz = TK/F (u)x ∧ y ∧ z
with u, x, y, z ∈ K.
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Here are a few more formulas:

x(y ∧ z) + y(z ∧ x) + z(x ∧ y) = x ∧ y ∧ z
(1 ∧ x ∧ y)(1 ∧ z) + (1 ∧ y ∧ z)(1 ∧ x) + (1 ∧ z ∧ x)(1 ∧ y) = 0

x(1 ∧ y) + y(1 ∧ x) = 1 ∧ [xT (y) + yT (x)− 2xy](
x(1 ∧ x ∧ y)− (1 ∧ x ∧ xy)

)(
y(1 ∧ y ∧ x)− (1 ∧ y ∧ xy)

)
= (1 ∧ x ∧ x2)(1 ∧ y ∧ y2)

Consider the binary cubic form

ψK/F : K/F → Λ3K

ψK/F (x+ F ) = 1 ∧ x ∧ x2

This form is fundamental in understanding cubic extensions, since one can recover
from it the algebra K. This will be considered elsewhere.

6. Expressions for the circumcenter, the orthocenter and the Euler
center

Now let F = C, K = C3 and let x = (x1, x2, x3) ∈ K be a triangle.
As usual, x̄ denotes complex conjugation.
For a triangle we call from now on the nine-point center of a triangle x the

Euler center and denote it by E(x1, x2, x3) (the letter F will be reserved for the
Fermat points). Recall also other basic triangle points: the center of gravity G (or
barycenter, center of mass, centroid), the circumcenter O, and the orthocenter H.
(I am tempted to rename O to C and H to O, but that might be too confusing for
now.)

For a triangle x consider the triangle Φ(x) geometrically obtained from x by
drawing through each vertex the line parallel to the opposite side. The construction
leads to the expressions

Φ(x) = TK/F (x)− 2x, Φ−1(x) =
TK/F (x)− x

2
One has

G(x) = G
(
Φ(x)

)
H(x) = O

(
Φ(x)

)
O(x) = E

(
Φ(x)

)
The observation H(x) = O

(
Φ(x)

)
can be used to show that the altitudes are con-

current.
If we use the normalization G(x) = 0, then x 7→ Φ(x) is just multiplication

by −2. This implies immediately the first two of the following relations:

3G = 2O +H

3G = O + 2E
2E = O +H

4E = 3G+H

Clearly one has

3G(x) = TK/F (x)
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Lemma 4. One has

E(x) =
1
2
· 1 ∧ x2 ∧ x̄

1 ∧ x ∧ x̄

O(x) =
1 ∧ x ∧ xx̄
1 ∧ x ∧ x̄

O(x) = −1 ∧ x# ∧ x̄
1 ∧ x ∧ x̄

H(x) =
1 ∧ (x2 + x#) ∧ x̄

1 ∧ x ∧ x̄
Proof. Left to the reader. �

Note further that the denominator 1∧x∧ x̄ vanishes exactly when the triangle x
lies on a real line.

Here is another way to look at the orthocenter. Let H be a quartic extension of
the ground ring F and let

θ : H → H

θ(x) = 2x2 − xTH/F (x)

Note that θ factors to a map H/F → H/F . One has:

Lemma 5. Let F = C, H = F 4 and let x ∈ H be a generic element.
(1) The quadrangles x and θ2(x) are similar.
(2) The quadrangle x is orthocentric if and only if x is similar to θ(x).

Proof. Left to the reader. But see subsection 4.2. The map θ is very close to D̃. �

7. The Fermat point

See [3, Section 1.8].
Given a triangle x = (x1, x2, x3) ∈ K = C3, draw at each side the outside

equilateral triangle. Let y1, y2, y3 be the corresponding new vertices, numbered so
that xi, xj , yk are the equilateral triangles. Then the lines xiyi meet in one point,
the first Fermat point F1. The second Fermat point F2 is obtained analogously by
using equilateral triangles pointing inwards.

In the following we describe the holomorphic extensions of F1 and F2. It turns
out that it is better to use the variables (x1, x2, x3, O) instead of (x1, x2, x3,H).

Let K be a cubic extension of a field F (of characteristic different form 3) and
let u ∈ K be a Kummer element, that is, its characteristic polynomial is of the
form t3 − a with a ∈ F \ {0}. For x ∈ K and t ∈ F we define the rational function

Fu(x, t) =
(1 ∧ x ∧ ux)t− (1 ∧ x ∧ ux2)
(1 ∧ x ∧ u)t− (1 ∧ x ∧ ux)

This function has some remarkable properties.
First note that Fu depends on u only up to scalar multiplication. Now there

are only two Kummer elements up to scalar multiplication, given in the split case
K = F 3 by

u = (1, ζ, ζ−1)

with ζ ∈ µ3 \ {1}.
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Lemma 6. For a triangle x = (x1, x2, x3) ∈ K = C3 the two Fermat points are
given by

Fu

(
x1, x2, x3, O(x1, x2, x3)

)
, Fu−1(x1, x2, x3, O(x1, x2, x3)

)
Proof. Left to the reader. �

Consider the two functions

fu(x) = Fu(x,∞) =
1 ∧ x ∧ ux
1 ∧ x ∧ u

In the Euclidean case the interpretation is clear: The fu(x) are the Fermat points
for three points on a real line (since O = ∞ if and only if the triangle x lies on a
line).

There is also an algebraic interpretation: For x = (x1, x2, x3) ∈ K = F 3 the
fu(x) are the fixed points of the projective transformation Φ ∈ PGL(2, F ) with

Φ
[
xi

1

]
=

[
xi+1

1

]
(i mod 3)

For the mid point of the fu(x) one has

2k(x) = fu(x) + fu−1(x)

=
x2

1x2 + x2
1x3 + x2

2x1 + x2
2x3 + x2

3x1 + x2
3x2 − 6x1x2x3

x2
1 + x2

2 + x2
3 − x1x2 − x2x3 − x3x1

One finds
TK/F (x) = 2k(x) + f(x) = fu(x) + fu−1(x) + f(x)

where f is the function from Section 4.3 (for n = 3) which is also the base point of
the “basic line” in [5].

It is perhaps worthwhile to consider the denominator of Fu more closely. One
has for

K = e1F + e2F + e3F

x = (x1, x2, x3) ∈ K, x4 ∈ F
u = (u1, u2, u3) ∈ K

the computation

(1 ∧ x ∧ ux)− x4(1 ∧ x ∧ u)
e1 ∧ e2 ∧ e3

=

u1(x1 − x4)(x2 − x3) + u2(x2 − x4)(x3 − x1) + u3(x3 − x4)(x1 − x2)

This function is invariant under S4 acting on (x1, x2, x3, x4) in the standard way
and on (u1, u2, u3) via S4 → S3. I have no interpretation for this.

Further, let us consider Fu(x, t) as a linear fractional function in t. One has

Fu(x)(t) =
[
β(x) −α(x)
γ(x) −β(x)

] [
t
1

]
where

α(x) = 1 ∧ x ∧ ux2

β(x) = 1 ∧ x ∧ ux
γ(x) = 1 ∧ x ∧ u
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Since the matrix has trace 0, it follows that t 7→ Fu(x, t) is of order 2 (I have no
interpretation of this).

Note further that

α(x+ a) = α(x) + 2aβ(x) + a2γ(x)

with a ∈ F . Therefore Fu is basically determined by α, and so every mystery about
the Fermat points should be encoded in α(x) = αu(x).

Consider further the cubic map

A : K → Hom(K,Λ3K) = Λ2K

x 7→ (y 7→ 1 ∧ x ∧ yx2)

If u ∈ K is a Kummer element, then K = F +uF +u−1F and the functions αu(x),
αu−1(x) and ψ(x) = 1 ∧ x ∧ x2 are just the corresponding components of A.

8. On the cubic form in 6 variables

First, more exterior algebra of a cubic extension. Let K be a separable cubic
extension of a field F . The norm for K defines a cubic form

NK/F : Λ2K → Λ3K

Let

f : K ×K → Λ3(K/F )

f(x, y) = 1 ∧ (x+ y) ∧ (xy)

see [7].
For x, y ∈ K with y generic we define

Zy(x) =
y ∧ x
y ∧ 1

One finds

Zcy(ax+ b) = aZy(x) + b (a, b, c ∈ F , c 6= 0)(1)

f
(
x, Zy(x)

)
= 0(2)

Zy(x) =
y#(1 ∧ y ∧ x) + (y2 ∧ y ∧ x)

NK/F (y ∧ 1)
(3)

Equation (2) provides us with the solution z = Zy(x) of the equation f(x, z) = 0
in z.

We now restrict to the case K = F × F × F . Write

z = Zy(x) ∈ F × F × F

One finds that

(4)
xj − zi

xk − zi
=
yj

yk

is an alternative defining equation for Zy(x).
We now restrict to the Euclidean case F = C.
Equation (3) means that the triangle Zy(x) is similar to the triangle y−1.
Let us consider equation (4). It means that the sum of the angles of the triangles

∆k = (xi, xj , zk) at zk is 2π. Let us further assume that |y1| = |y2| = |y3|, where
| · | is the Euclidean norm. Then equation (4) shows the |xj − zi| = |xk− zi| and we
can consider the circles Ck around zk through xi, xk. It is an exercise to observe
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that these circles meet in a common point. In the case when y = (1, ζ, ζ−1), this
point is the Fermat point, see [3, Section 1.8, Exercise 3].

We recall Napoleon’s theorem: The barycenters of the (outside) equilateral tri-
angles used to define the Fermat point form itself an equilateral triangle. See [3,
Section 1.8, Exercise 3].

Now these barycenters are exactly the points zk in the case when when y =
(1, ζ, ζ−1) is a Kummer element with ζ a suitable primitive cube root of unity.
Napoleon’s theorem follows now from equation (3) which shows that the triangle z
is similar to y−1. It follows also directly from the computation

Z(1,ζ,ζ−1)(x1, x2, x3) =
(x2 − ζx3, x3 − ζx1, x1 − ζx2)

1− ζ

9. More on the cubic form in 6 variables

What about a geometric interpretation of the equation f(x, y) = 0?
Let K = F ×F ×F . Then canonically Λ3K = F up to a sign due to a choice of

the order of the idempotents of K.
One has

f(x1, x2, x3, y1, y2, y3) =

(x1 − y2)(x2 − y3)(x3 − y1)− (x1 − y3)(x2 − y1)(x3 − y2)

Let u = (u1, u3, u5, u2, u4, u6). Then f(u) = 0 means essentially that
6∏

i=1

(ui+1 − ui)(−1)i

= 1

In other words, the condition f(u) = 0 means that for the hexagon u1, u2, u3, u4,
u5, u6 the alternating product of the sides is = 1. This interpretation however does
not reflect the symmetry of f under Z/2× S4 = Z/2 o S3.

Lemma 7. Suppose all x1, x2, x3, y1, y2, y3 are pairwise distinct. Then f(x, y) = 0
if and only if there exists ϕ ∈ PGL(2, F ) = Aut(P1) such that

ϕ(xi) = yi, ϕ(yi) = xi (i = 1, 2, 3)

In this case, ϕ is uniquely determined and one has ϕ2 = 1. �

Clearly, ϕ is uniquely determined by ϕ(xi) = yi, i = 1, 2 and one has ϕ2 = 1 by
Lemma 3. As for an explicit description, one finds with v = (x1, y1, x2, y2)

ϕ =
[
β(v) −α(v)
γ(v) −β(v)

]
where

α(v) = x1y1(x2 + y2)− x2y2(x1 + y1)

β(v) = x1y1 − x2y2

γ(v) = x1 + y1 − x2 − y2

Note further that

α(v + a) = α(v) + 2aβ(v) + a2γ(v)

α(v−1) =
−1

x1y1x2y2
γ(v)
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with a ∈ F . Therefore ϕ can be pulled out of the noses of γ and PGL(2).
A special case is the pedal point

ϕ(∞) = P (x1, y1, x2, y2)

This and the interpretation of P (x1, y1, x2, y2) in [1] shows:

Lemma 8. Let
u = (u01, u02, u03, u23, u31, u12) ∈ (CP1)6

be a generic 6-tuple of points in the Riemann sphere. Then the following statements
are equivalent:

(1) f(u) = 0.
(2) The 4 circumcircles u01u02u03, u01u12u31, u02u12u23, u03u23u31 meet in a

common point.
(3) The 4 circumcircles u23u31u12, u23u03u02, u31u03u01, u12u01u02 meet in a

common point.

What about describing these points of intersection?
Here is another way to phrase this. Consider 4 generic circles Ci through a

point P . Then the 6 points uij of intersection with Ci ∩ Cj = {P, uij} satisfy the
relation f(u01, u02, u03, u23, u31, u12) = 0 and any (generic) 6-tuple u with f(u) = 0
is obtained this way.

Finally we mention a modular property of f . Let

g =
[
a b
c d

]
∈ PGL(2, F )

act on u = (u1, u2, u3, u4, u5, u6) diagonally by

ui 7→
aui + b

cui + d

Then

(f ◦ g)(u) =
(ad− bc)3∏6
i=1(cui + d)

f(u)

10. The Kiepert hyperbola

Lemma 9. Fix t ∈ R and let

b =
1 + it

2
, c =

1− it

2
where i2 = −1. For a triangle x = (x0, x1, x2) ∈ C3 define the points

yi = bxi+1 + cxi+2 (i mod 3)

Then the lines `i through xi and yi meet in a point, denoted by Pt(x).

One may rephrase this as follows:

Corollary 1. Fix an angle α. For a triangle erect on each side the isosceles triangle
with base angles α. Then the lines through the vertices of the triangle and the new
vertex of the opposite isosceles triangle are concurrent (=meet in a point).

For a triangle x let H(x) be the real curve determined by t 7→ Pt(x). It turns
out that H(x) is in general a hyperbola. It is called the Kiepert Hyperbola.

Here are special points on H(x):
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• If t = 0 (or α = 0) the points yi are the midpoints of the sides of the
triangle. Therefore P0(x) is the center of gravity.

• If t = ∞ (or α = ±π/2) the points yi lie at infinity in direction orthogonal
to the corresponding side. Therefore P∞(x) is the orthocenter.

• If t = ±
√

3 (or α = ±π/3) the points yi are vertices of equilateral triangles
erected at each side. Therefore P±√3(x) are the (first and second) Fermat
points.

• If the angle α is the angle at xi (with appropriate sign) then yj lies on
the line xixk. In this case the point of concurrence is just xi. Thus, for a
general triangle x, there are values t = ti such that Pti

(x) = xi.

Proof of Lemma 9. The lines `i have the parameterizations

`i : xi + ri(yi − xi), yi = bxi+1 + bxi+2 (ri ∈ R)

The lines have a common point if D = 0 where

D = det


x1 − x0 y0 − x0 y1 − x1 0
x2 − x0 y0 − x0 0 y2 − x2

x1 − x0 y0 − x0 y1 − x1 0
x2 − x0 y0 − x0 0 y2 − x2


Now D is a priori a cubic polynomial in t. But there are at least 4 zeros: t = 0

and the ti, corresponding to the center of gravity and the points of the triangle.
Thus D = 0. �

I haven’t computed Pt(x) explicitly in general, only for three points on a real
line. For t 6= 0 and z ∈ R one finds

Pt(0, 1, z) =
z(bz + b)
z2 − z + 1

Note that for t = ±
√

3 this simplifies to

P±
√

3(0, 1, z) =
z

bz + b

Here is the equation for the Kiepert hyperbola. One considers the functions
(with, say, x ∈ K = C3)

β(x) = T (x)T (xx#)

Φ(x) = β(x)− β(x)

Then one has
H(x) = { z ∈ C | Φ(x− z) = 0 }

The Kiepert hyperbola is the hyperbola determined by the points of the triangle x,
its barycenter T (x)/3 and its orthocenter H(x). It is relatively easy to see that
Φ(x− xi) = 0 and Φ(x− T (x)/3) = 0. To see that Φ(x−H(x)) = 0, one considers
the function

α(x) = x(1 ∧ x) ∈ Λ2K = Λ3K ⊗K

Then one observes the following identity:

(5) T
(
α(x)2 − α(x)

2)
= −2Φ(x)

and uses the fact that H(x) = 0 if and only if α(x) + α(x) = 0.
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Remark 7. Along the way we have used a bunch of identities like (5). Maybe one
can set up the whole topic in terms of an appropriate tensor category.

11. On the radius of the incircle

Let x = (x1, x2, x3) ∈ C3 be a (generic) Euclidean triangle with the origin as
circum center and with circum radius R, i. e., |x1| = |x2| = |x3| = R. Let further
r, r1, r2, r3 be the radii of the incircle resp. excircles. The functions x 7→ r/R, x 7→
ri/R are real analytic functions on (C×/R×)3, invariant also under the diagonal
action of C×/R×. When considering their holomorphic extensions (see Section 3),
it turns out that they generate a biquadratic extension of C(x1, x2, x3). This will
be described in the following.

Let F be field. For x = (x1, x2, x3) ∈ F 3 we consider the functions

N(x) = x1x2x3

M(x) = (x1 − x2)2x3 + (x2 − x3)2x1 + (x3 − x1)2x2

∆(x) = (x1 − x2)2(x2 − x3)2(x3 − x1)2

We consider the polynomial

Px(t) = t4 − 8t3 − 2
M(x)
N(x)

t2 +
∆(x)
N(x)2

Note that the functions M/N(x), ∆/N2(x) are invariant under x 7→ ax (a ∈ F×)
and x 7→ x−1.

The zeros of Px can be described as follows: Let zi with z2
i = xi. Then

ρ =
(z1 + z2)(z2 + z3)(z3 + z1)

z1z2z3

and its 3 conjugates under zi 7→ ±zi are the zeros of Px. Therefore it is clear
that the zeros lie in the biquadratic extension generated by zi/zj . (This is the
biquadratic extension mentioned in Example 7.)

Lemma 10. Let x = (x1, x2, x3) ∈ C3 be a generic Euclidean triangle with |x1| =
|x2| = |x3| = R and let r, r1, r2, r3 be the radii of its incircle resp. excircles. Then

−2r
R
, +

2r1
R
, +

2r2
R
, +

2r3
R

are the zeros of Px. �

Lemma 10 includes some standard relations for the radii R, r, ri (with ai the
side lengths of the triangle):

Corollary 2. Then

4R = r1 + r2 + r3 − r

a2
1 + a2

2 + a2
3

2
= r1r2 + r2r3 + r3r1 − r(r1 + r2 + r3)

0 =
1
r1

+
1
r2

+
1
r3
− 1
r

(a1a2a3)2

R2
= rr1r2r3
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Note also that
4|A|R =

√
|∆(x)|

where |A| denote the area of the triangle x (see Example 9). Recall also that
|A| = rs = risi where s = (a1 + a2 + a3)/2 is the semi-perimeter and where
si = s− ai

Remark 8. Describe the Soddy centers. It seems to me that their holomorphic
extensions lie in K = F [zi/zj ]⊗F [α]/(α2+∆(x)) and are conjugate under α 7→ −α.

We remark that the tri-quadratic extension K contains also the incenters of the
other subtriangles of the orthocentric quadrangle of the given triangle.

It seems that the Soddy centers, the Gergonne point and the incenter lie on a
line.

Remark 9. The following observation might be helpful: Let K/F be a biquadratic
extension with intermediate quadratic subextensions Ki. Let x be an element of K.
If TK/F (x) = 0, then

TK/K1(x)TK/K2(x)TK/K3(x) = TK/F (x#)

Proof.

(x+ x1)(x+ x2)(x+ x3) = x2(x+ x1 + x2 + x3) + x(x1x2 + x2x3 + x3x1) + x1x2x3

�

12. The conjugate (or dual?) quadrangle

In this section E is a 2-dimensional affine space over some field F and

V = E − e0

denotes its underlying vector space. Let x = (x1, x2, x3, x4) ∈ E4 with xi 6= xj for
i 6= j. Let further `ij be the line through xi and xj and let

Lij = Lji = [xi − xj ] ∈ P(V )

be the corresponding points in the projective space of V . We suppose that the
points Lij are distinct, i. e., no three of the xi lie on a line.

Lemma 11. The 6 points Lij “stand in involution”. More precisely, there exist
τ ∈ PGL(V ) = Aut

(
P(V )

)
with τ2 = 1 and such that

τ(Lij) = Lk`

for any permutation ijk` of 1234.

Proof. We give an explicit formula for τ . Let vi = xi − x4, i = 1, 2, 3 and define

Φ = Φx1,x2,x3,x4 : V → V ⊗ (Λ2V )⊗2

Φ(w) =
3∑

i=1

vi(vi+1 ∧ vi+2)(vi+1 ∧ w)

with the indices reduced mod 3.
Note that dim Λ2V = 1. One finds

Φ(vi) = (vi+1 − vi+2)(vi ∧ vi+1)(vi+2 ∧ vi)

Φ
(
vi+1 − vi+2

)
= −vi(vi+1 ∧ vi+2)

(
(vi+1 − vi) ∧ (vi+2 − vi)

)
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and therefore

Φ2 = −(vi ∧ vi+1)(vi+1 ∧ vi+2)(vi+2 ∧ vi)
(
(vi+1 − vi) ∧ (vi+2 − vi)

)
idV

Now let τ = P(Φ) be the induced map between the projective spaces. �

Remark 10. For a permutation σ ∈ S4 one finds

Φxσ(1),xσ(2),xσ(3),xσ(4) = (sgnσ)Φx1,x2,x3,x4

Remark 11. I don’t know a geometric explanation for the existence of τ . It
appeared to me first as a consequence of Lemma 7 above and of Lemma 3 in [7].

Remark 12. The converse of Lemma 11 is also true (see also Lemma 4 in [7]):
Given 6 points Lij ∈ P(V ), 1 ≤ i < j ≤ 4, there exist 4 points xi ∈ E with
Lij = [xi − xj ]. This way the involution τ gives rise to a self map on nonde-
generate quadrangles in 2-dimensional affine space up to translations and scalar
multiplication:

Given x = (x1, x2, x3, x4) ∈ E4 one may construct a new quadrupel x′ =
(x′1, x

′
2, x

′
3, x

′
4) ∈ E4, well defined up to translations and scalar multiplication, such

that x′i lies on lines parallel to `jk, `k`, ``j .
An explicit formula for x′ is given by x′i = Φx1,x2,x3,0(xi), i = 1, 2, 3 and x′4 = 0.
Or, for

x = (0, x1, x2, x3) ∈ V 4

one may take

x′ =
(

0,
x2 − x3

x2 ∧ x3
,
x3 − x1

x3 ∧ x1
,
x1 − x2

x1 ∧ x2

)
∈ (V ∗)4

If F = R and E = C one may take for x = (0, 1, u, z) the quadrangle

x′ =
(
0, u− z, (u− z)h(u, z), (u− z)h(z, u)

)
with

h(u, z) =
(ūz − uz̄)(1− z)
(z − z̄)(u− z)

One observes that

lim
t→±∞

h(it, z) =
(1− z)(z + z̄)

z̄ − z
= H(0, 1, z)

is the orthocenter of (0, 1, z).
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