ON A CUBIC IDENTITY FOR INVOLUTIVE HOPF ALGEBRAS

MARKUS ROST

Contents

Pre-Preface	2
Preface	2
$1.$ The cubic identity \ldots \ldots \ldots \ldots \ldots \ldots	3
§2. The categories \mathcal{H} and \mathcal{F}	4
	4
2.2. The category \mathcal{F}	4
2.3. The functor K	5
2.4. Interpretation by a relation for Φ_2	5
	5
3.1. Universal property of \mathcal{H}	5
3.2. Universal property of \mathcal{F}^{op}	6
3.3. Universal property of \mathcal{F}	6
3.4. Universal property of K	6
§4. The functor $\mathcal{H} \to \mathcal{F} \times \mathcal{F}^{\mathrm{op}}$	7
4.1. Examples of strongly involutive relations	7
4.2. Abelianization	8
4.3. Universal property of \mathcal{Z}	8
4.4. The homomorphisms \overline{K}_n	8
	9
5.1. The functors T_{μ}, T_{Δ}	9
5.2. Extending Ψ_n	0
§6. The homomorphism $B_4 \to \Theta_2$	1
§7. Presentations	3
7.1. Presentation of Φ_2	3
7.2. A variation	4
7.3. Presentation of some "small" subgroups	4
7.4. Presentation of Ψ_2	5
7.5. Presentation of $\overline{\Psi}_2$	8
References	9

Date: August 2, 2022; minor corrections on Sept. 29, 2022.

MARKUS ROST

Pre-Preface

This is work in progress. The first version of this text (July 24) ended with section 5. Section 6 was added later (July 26); it is complete and essentially self-contained, up to standard notations. In Section 7 we started to give details on some presentations. It may change anytime.

Preface

The main purpose of this text is to present relation (*) in Lemma (1.1) with a detailed proof, in order to ask: Is there a reference for it?

I haven't been dealing with combinatorial group theory for decades and I am not an expert for Hopf algebras at all.

At some point I bumped into Lemma (1.1) which led me to the topic. Meanwhile I have looked into tons of papers, but I certainly may have missed important ones (and sure enough I haven't digested yet much of the developments since the 1980's). Specific questions are

- Anybody seen Lemma (1.1)? Anybody seen Proposition (6.1)? Is there a geometric explanation of the B_4 -operation?
- Any reference for the homomorphisms K_n in (2.1)?
- Any reference for the universal property of the functor K (see section 3.4)?
- Any reference for the functor \overline{K} (4.1)? What about the universal relations which hold in commutative Hopf algebras and in cocommutative Hopf algebras? Any reference for the group homomorphisms \overline{K}_n (see section 4.4)?
- Any comment on the remarks in section 4.3?

§1. The cubic identity

By a Hopf algebra we understand for simplicity a Hopf algebra over a field R. However our arguments are completely formal and work for very general types of Hopf algebras.

Let $H = (H, \mu, u, \Delta, c, S)$ be a Hopf algebra with the basic structure morphisms

```
\begin{split} \mu \colon H^{\otimes 2} &\to H \\ u \colon R \to H \\ \Delta \colon H \to H^{\otimes 2} \\ c \colon H \to R \\ S \colon H \to H \end{split}
```

Let further

$$\tau\colon H^{\otimes 2}\to H^{\otimes 2}$$

be the switch involution.

A Hopf algebra is called involutive if its antipode S is of order 2:

$$S^{2} = 1$$

(for morphisms we usually write 1 for the identity).

We freely use Sweedler's sigma notation. We use it sumless (no sigma here) and without parenthesis.

We consider a bunch of morphisms $H^{\otimes 2} \to H^{\otimes 2}$:

$$\begin{split} \widetilde{\tau} &= (S \otimes 1) \circ \tau = \tau \circ (1 \otimes S) & x \otimes y \mapsto S(y) \otimes x \\ \widetilde{\tau}' &= (1 \otimes S) \circ \tau = \tau \circ (S \otimes 1) & x \otimes y \mapsto y \otimes S(x) \\ \phi &= (1 \otimes \mu) \circ (\Delta \otimes 1) & x \otimes y \mapsto x_1 \otimes x_2y \\ \phi' &= (1 \otimes \mu) \circ (1 \otimes S \otimes 1) \circ (\Delta \otimes 1) & x \otimes y \mapsto x_1 \otimes S(x_2)y \end{split}$$

(1.1) Lemma. Assume $S^2 = 1$. Then

$$(*) \qquad \qquad (\tilde{\tau}\phi)^3 = 1$$

in End($H^{\otimes 2}$).

Proof: We first show $\phi \phi' = 1$:

$$x \otimes y \mapsto x_1 \otimes S(x_2)y \mapsto x_{11} \otimes x_{12}S(x_2)y = x \otimes y$$

Here we used that S is a right inverse and understand $\Delta_2(x) = x_{11} \otimes x_{12} \otimes x_2$ where

$$\Delta_2 = (\Delta \otimes 1) \circ \Delta = (1 \otimes \Delta) \circ \Delta$$

Since $S^2 = 1$ one has $\tilde{\tau}\tilde{\tau}' = 1$. Hence $(\tilde{\tau}\phi)^3 = 1$ reads as

$$\phi \widetilde{\tau} \phi = \widetilde{\tau}' \phi' \widetilde{\tau}'$$

The right side computes as

$$x \otimes y \mapsto y \otimes S(x) \mapsto y_1 \otimes S(y_2)S(x) \mapsto S(y_2)S(x) \otimes S(y_1)$$

and the left side as

$$\begin{aligned} x \otimes y \mapsto x_1 \otimes x_2 y \mapsto S(x_2 y) \otimes x_1 \\ \mapsto S(x_2 y)_1 \otimes S(x_2 y)_2 x_1 \\ &= S((x_2 y)_2) \otimes S((x_2 y)_1) x_1 \\ &= S(x_{22} y_2) \otimes S(x_{21} y_1) x_1 \\ &= S(y_2) S(x_{22}) \otimes S(y_1) S(x_{21}) x_1 \\ &= S(y_2) S(x_{22}) \otimes S(y_1) S^{-1}(x_{21}) x_1 \\ &= S(y_2) S(x_{22}) \otimes S(y_1) S^{-1}(S(x_1) x_{21}) \\ &= S(y_2) S(x_{22}) \otimes S(y_1) S^{-1}(S(x_1) x_{21}) \\ &= S(y_2) S(x) \otimes S(y_1) \end{aligned}$$

Here we used S(uv) = S(v)S(u), again $S^2 = 1$ and $(xy)_i = x_iy_i$ (which is the main bialgebra axiom).

A crucial point is that at some spot one gets $S(x_{21})x_1$ and not say $S(x_{22})x_1$. The latter would collapse as well for cocommutative H, but not in general. For example, let G be a finite group and $H = R^G$ (the commutative ring of functions on G). Then the following maps correspond:

$$\begin{array}{ll} H \to H^{\otimes 2} & G^2 \to G \\ x \mapsto x_2 \otimes S(x_3) x_1 & (g,h) \mapsto hgh^{-1} \end{array}$$

§2. The categories \mathcal{H} and \mathcal{F}

We consider two PROPs (symmetric monoidal categories generated by a single object).

2.1. The category \mathcal{H} . Let \mathcal{H} be the "universal Hopf algebra category" which models Hopf algebras with invertible antipode. Its objects are of the form $\mathbf{H}^{\Box n}$ $(n \geq 0)$. The morphisms are generated by the basic morphisms μ, u, Δ, c, S (and S^{-1}) of a Hopf algebra subject to the axioms of Hopf algebras with invertible antipode S. To mention the main bialgebra axiom: The morphisms

$$\mu \colon \mathbf{H} \Box \mathbf{H} \to \mathbf{H}$$
$$\Delta \colon \mathbf{H} \to \mathbf{H} \Box \mathbf{H}$$

are subject to

$$\Delta \circ \mu = (\mu \Box \mu) \circ (1 \Box \tau \Box 1) \circ (\Delta \Box \Delta)$$

where $\tau \colon \mathbf{H}^{\Box 2} \to \mathbf{H}^{\Box 2}$ is the involution.

2.2. The category \mathcal{F} . Let further \mathcal{F} be the category with objects the free groups

$$\mathbf{F}_n = \langle e_1, \dots, e_n | \rangle$$

with $\mathbf{F}_m \Box \mathbf{F}_n = \mathbf{F}_m * \mathbf{F}_n = \mathbf{F}_{m+n}$ (free product of groups, the coproduct in the category \mathcal{G} of groups) and

$$\operatorname{Hom}(\mathbf{F}_m, \mathbf{F}_n) = \operatorname{Hom}_{\mathcal{G}}(\mathbf{F}_m, \mathbf{F}_n)$$

2.3. The functor K. Let K be the (obvious) monoidal functor

$$K\colon \mathcal{H}\to \mathcal{F}$$

with

$$K(\mathbf{H}^{\bigsqcup n}) = \mathbf{F}_n$$

and

It is easily checked (and basic) that the axioms of a Hopf algebra hold correspondingly in \mathcal{F} , so we have indeed a functor.

On morphisms this functor induces maps

$$\operatorname{Hom}_{\mathcal{H}}(\mathbf{H}^{\sqcup n}, \mathbf{H}^{\sqcup m}) \to \operatorname{Hom}(\mathbf{F}_n, \mathbf{F}_m)$$

We write

$$\Theta_n = \operatorname{Aut}_{\mathcal{H}}(\mathbf{H}^{\Box n})$$

for the automorphism groups in \mathcal{H} and

$$\Phi_n = \operatorname{Aut}(\mathbf{F}_n)$$

for the automorphism group of a free group of rank \boldsymbol{n} (with given basis) and denote by

(2.1)
$$K_n : \Theta_n \to \Phi_n$$

the group homomorphisms induced by K. It is easy to lift the standard generators of Φ_n , hence the K_n are surjective.

2.4. Interpretation by a relation for Φ_2 . If one maps relation (*) under

$$K_2: \Theta_2 \to \Phi_2$$

one gets the cubic relation $(UPO)^3 = 1$ in a classical presentation¹ of the automorphism group of a free group of with 2 generators.

§3. Further discussion of $K: \mathcal{H} \to \mathcal{F}$

3.1. Universal property of \mathcal{H} . The essential property of the category \mathcal{H} is that for each actual Hopf algebra H in an appropriate category \mathcal{C} (let us assume \mathcal{C} is the category of vector spaces over a field R with the tensor product as monoidal operation), there is the monoidal functor

$$\underline{\underline{H}}: \mathcal{H} \to \mathcal{C}$$
$$\underline{\underline{H}}(\mathbf{H}) = H$$
$$\underline{\underline{H}}(\Delta) = \Delta_{H} \quad \text{etc.}$$

¹Neumann 1933 [8, §1, p. 367; §4, p. 374] (Neumann uses the transposed product of Nielsen transformations). See also Magnus-Karras-Solitar 1976 [6, Problem 3.5.2, p. 169; pp. 163]).

3.2. Universal property of \mathcal{F}^{op} . A group G is nothing else than a monoidal functor

$$q: \mathcal{F}^{\mathrm{op}} \to \mathcal{S}$$

to the category \mathcal{S} of sets: Given G, one takes for g the Hom-functor

$$g(\mathbf{F}_n) = \operatorname{Hom}_{\mathcal{G}}(\mathbf{F}_n, G) = G^n$$

and given g, the set $G = g(\mathbf{F}_1)$ comes with a group structure where the multiplication $G \times G \to G$ is given by

$$\begin{aligned} \mathbf{F}_1 &\to \mathbf{F}_2 \\ e_1 &\mapsto e_1 e_2 \end{aligned}$$

3.3. Universal property of \mathcal{F} . Let G be a finite set and let \mathbb{R}^G be the commutative ring of functions $G \to \mathbb{R}$. To endow G with a group-structure means the same thing as to extend \mathbb{R}^G to a commutative Hopf algebra over \mathbb{R} .

This remarks extends to affine algebraic groups G: If

$$G = \operatorname{Spec} R_G$$

then a group structure on G corresponds to a commutative Hopf algebra structure on R_G .

It follows that at least for the category ${\mathcal C}$ of (associative and unital) R-algebras, a monoidal functor

 $\mathcal{F} \to \mathcal{C}$

is nothing else than a commutative Hopf algebra over R.

3.4. Universal property of K. In fact, this remark extends to arbitrary Hopf algebras: A Hopf algebra H is commutative if and only if its functor

$$\underline{H}\colon \mathcal{H} \to \mathcal{C}$$

admits a factorization

$$\underline{H}\colon \mathcal{H} \xrightarrow{K} \mathcal{F} \to \mathcal{C}$$

This means that \mathcal{F} is the quotient category of \mathcal{H} by the commutativity relation

$$\mu \circ \tau = \mu$$

Likewise $\mathcal{F}^{\mathrm{op}}$ is the quotient category of \mathcal{H} by the cocommutativity relation

$$\tau \circ \Delta = \Delta$$

Details can be worked out using Proposition 1 and Exercise 3 in Mac Lane 1998 (1971) [5, III.6. Groups in Categories, p. 75–76]).

Surprisingly, so far I found only one related reference: Conant and Kassabov (2016) [1, 4. Hopf algebras and groups].

The category \mathcal{H} has the "duality" functor

$$D: \mathcal{H} \to \mathcal{H}^{\mathrm{op}}$$
$$D \circ D = \mathrm{id}$$
$$D(\mu) = \Delta$$
$$D(u) = c$$
$$D(S) = S$$

In diagrammatic pictures like in Kuperberg 1991 [4], the functor D is given by the flip of diagrams.

Consider the functor

(4.1)
$$\overline{K} = (K, K \circ D) \colon \mathcal{H} \to \mathcal{F} \times \mathcal{F}^{\mathrm{op}}$$

Since \mathcal{F} controls commutative Hopf algebras and \mathcal{F}^{op} controls cocommutative Hopf algebras, the "kernel" of \overline{K} on morphisms consists of the universal relations which hold in commutative Hopf algebras and in cocommutative Hopf algebras.

The relation $S^2 = 1$ is the basic example of such a relation (every commutative or cocommutative Hopf algebra is involutive). Therefore we call such relations "strongly involutive" relations. (And a Hopf algebra which obeys them might be called a "strongly involutive Hopf algebra".)

4.1. Examples of strongly involutive relations. Let $H = (H, \mu, u, \Delta, c, S)$ be a Hopf algebra. We assume that the antipode S is invertible.

Consider the relations (in Sweedler notation)

(4.2)
$$x_1 y S(x_2) = x_2 y S(x_1)$$

$$(4.3) x_2 \otimes x_1 S(x_3) y = x_2 \otimes y x_1 S(x_3)$$

These relations are understood in Hom $(H^{\otimes 2}, H)$ resp. End $(H^{\otimes 2})$. Formally, relation (4.2) means

$$\mu_2 \circ (1 \otimes 1 \otimes S) \circ (1 \otimes \tau) \circ (\Delta \otimes 1) = \\ \mu_2 \circ (1 \otimes 1 \otimes S) \circ (1 \otimes \tau) \circ (\tau \otimes 1) \circ (\Delta \otimes 1)$$

with $\mu_2 = \mu \circ (1 \otimes \mu) = \mu \circ (\mu \otimes 1)$ and $\tau \in \text{End}(H^{\otimes 2})$ the involution.

If *H* is cocommutative, relation (4.2) holds since $x_1 \otimes x_2 = x_2 \otimes x_1$. If *H* is commutative, the relation follows from the antipode properties $x_1S(x_2) = 1$ and $S(x_1)x_2 = 1$. Relation (4.3) is obvious in the commutative case. In the cocommutative case one has $x_1S(x_3) = 1$.

Another consequence of (4.2) is

$$S^2 = 1$$

 $(y = 1 \text{ yields } x_2 S(x_1) = 1)$. Thus, if *H* obeys (4.2), then *H* is involutive. There are also the dual relations.

It should be possible to find a generating set for all strongly involutive relations.

4.2. Abelianization. Let \mathcal{Z} be the PROP like \mathcal{F} but with objects the free abelian groups \mathbf{Z}^n (with basis). There is the duality functor

$$D\colon \mathcal{Z} \to \mathcal{Z}^{\mathrm{op}}$$
$$D(X) = \mathrm{Hom}_{\mathbf{Z}}(X, \mathbf{Z})$$

The induced map on morphisms

$$\operatorname{Hom}_{\mathcal{Z}}(\mathbf{Z}^n, \mathbf{Z}^m) = \operatorname{Mat}(\mathbf{Z}, m \times n)$$

is the transpose of integral matrices: $D(M) = M^t$. Let

$$A: \mathcal{F} \to \mathcal{Z}$$
$$A(\mathbf{F}_n) = \mathbf{Z}^n$$

denote the natural functor given by abelianization. Then the composition

$$\mathcal{H} \xrightarrow{K} \mathcal{F} \xrightarrow{A} \mathcal{Z}$$

commutes with D on $\mathcal{H},\,\mathcal{Z}$ (there is no duality on $\mathcal{F})$ and we have a commutative diagram

$$\begin{array}{cccc} \mathcal{H} & \xrightarrow{K} & \mathcal{F} \\ \textbf{(4.4)} & & & & \downarrow_{A} \\ & & & & \mathcal{F}^{\mathrm{op}} & \xrightarrow{D \circ A} & \mathcal{Z} \end{array}$$

4.3. Universal property of \mathcal{Z} . By the way, the category \mathcal{Z} models bicommutative (commutative and cocommutative) Hopf algebras: A monoidal functor

 $\mathcal{Z} \to \mathcal{C}$

is the same thing as a bicommutative Hopf algebra in \mathcal{C} .

I noticed that some years ago, but still haven't seen a reference. This is strange, since the symmetric and exterior algebras of a vector space are so prominent examples of bicommutative Hopf algebras. Not to speak of affine commutative group schemes.

4.4. The homomorphisms \overline{K}_n . On automorphisms the functor \overline{K} yields group homomorphisms

$$\overline{K}_n \colon \Theta_n \to \Phi_n \times \Phi_n^{\mathrm{op}}$$

It is not difficult² to compute the image of \overline{K}_n as

$$\operatorname{im} \overline{K}_n = \Psi_n := \{ (f,g) \in \Phi_n \times \Phi_n^{\operatorname{op}} \mid \overline{f} = \overline{g}^t \}$$

where

$$\bar{f} = A(f) \in \operatorname{GL}_n(\mathbf{Z})$$

denotes the abelianization of $f \in \Phi_n$ and M^t is the transpose of a matrix M.

An element in the kernel of \overline{K}_n is a strongly involutive relation. So an obvious question is:

What is the kernel of the group homomorphism \overline{K}_n ?

²One uses (4.4) and the description of the kernel of $\Phi_n \to \operatorname{GL}_n(\mathbf{Z})$ in Magnus-Karras-Solitar 1976 [6, Theorem N4, p. 168].

This is perhaps too much to ask for, since it seems difficult to list generators for Θ_n efficiently. To get them one has to cover in principle all sequences of compositions of elementary morphisms in various $\operatorname{Hom}(\mathbf{H}^{\Box h}, \mathbf{H}^{\Box k})$ resulting in elements of Θ_n (just look at the case n = 0).

Even having a complete set of strongly involutive relations doesn't mean to get a hand on generators for Θ_n .

A more tractable question is

Which elements $R_i \in \Theta_n$ are needed to have a section

$$\Psi_n \to \Theta_n / \langle R_i \rangle$$

to \overline{K}_n ?

This can probably worked through using known presentations of Φ_n to get a presentation of Ψ_n , then take natural lifts of the generators and see what the relations give for Θ_n . (I have essentially done this for n = 2.)

This way relation (4.2) showed up.

The very first experiment was to look at a lift of the relation $(UPO)^3 = 1$ for Φ_2 . The idea was to find an interesting expression in Θ_2 . Surprisingly this utterly failed: For relation (*) one just needs $S^2 = 1$. This was the starting point of this text.

Later relation (4.3) appeared in a first systematic attempt to compute all strongly involutive relations (not completed).

§5. Extending \overline{K}_n

It seems to be helpful to extend both sides of \overline{K}_n by certain natural operations. This results essentially in extensions by $\mathbf{Z}/2\mathbf{Z} \times \mathbf{Z}/2\mathbf{Z}$.

We first discuss the \mathcal{H} -side.

5.1. The functors T_{μ}, T_{Δ} . The category \mathcal{H} comes with a bunch of (anti-)automorphisms of order 2.

One is the duality functor D which yields automorphisms

$$\sigma \colon \Theta_n \to \Theta_n$$
$$\sigma(f) = D(f^{-1})$$

of the automorphism groups.

The formation of the opposite Hopf algebra H^{op} (cf. Montgomery 1993 [7, 1.5.11 Lemma, p. 9]) is modeled by the functor

$$T_{\mu} \colon \mathcal{H} \to \mathcal{H}$$
$$T_{\mu}(\mu) = \mu \circ \tau$$
$$T_{\mu}(S) = S^{-1}$$

and leaving u, Δ, c fixed.

Similarly there is the functor

$$T_{\Delta} \colon \mathcal{H} \to \mathcal{H}$$
$$T_{\Delta}(\Delta) = \tau \circ \Delta$$
$$T_{\Delta}(S) = S^{-1}$$

and with $D \circ T_{\Delta} = T_{\mu} \circ D$.

Consider the quotient categories

$$\mathcal{H}_{\mu} = \mathcal{H}/(T_{\mu} - 1), \qquad \mathcal{H}_{\Delta} = \mathcal{H}/(T_{\Delta} - 1)$$

The projection $\mathcal{H} \to \mathcal{H}_{\mu}$ is the identity on objects and is universal for the relation $T_{\mu}(f) = f$ for morphisms in \mathcal{H} . Likewise for \mathcal{H}_{Δ} . Hence these categories model commutative resp. cocommutative Hopf algebras and one has

$$\mathcal{H}_{\mu} = \mathcal{F}, \qquad \mathcal{H}_{\Delta} = \mathcal{F}^{\mathrm{op}}$$

Note that $T_{\mu} \circ T_{\Delta} = T_{\Delta} \circ T_{\mu}$ is conjugation with S_n , where

$$S_n = S^{\square n} \in \Theta_n$$

Moreover, $S_n^2 \in \Theta_n$ is central.

Let us pass to the quotient category

$$\mathcal{H}' = \mathcal{H}/(S^2 - 1)$$

which models involutive Hopf algebras and put

$$\Theta'_n = \operatorname{Aut}_{\mathcal{H}'}(\mathbf{H}^{\Box n})$$

The group Θ'_n is the quotient of Θ_n by the subgroup generated by the elements

$$1 \Box \cdots \Box 1 \Box S^2 \Box 1 \Box \cdots \Box 1$$

Clearly the functor \overline{K} factors through \mathcal{H}' and the homomorphism \overline{K}_n factors through Θ'_n . (We could have passed to \mathcal{H}' earlier.)

The group Θ'_n has a canonical extension by $\mathbf{Z}/2\mathbf{Z}$ given by additional elements

 X_{μ}, X_{Δ}

subject to the relations

$$X_{\mu}fX_{\mu}^{-1} = T_{\mu}(f) \qquad (f \in \Theta_n)$$

$$X_{\Delta}fX_{\Delta}^{-1} = T_{\Delta}(f) \qquad (f \in \Theta_n)$$

$$X_{\mu}^2 = X_{\Delta}^2 = 1$$

$$X_{\mu}X_{\Delta} = S_n$$

(This extension can be formed also for Θ_n , but not in a straightforward way. For instance, one has a choice for $X_\mu X_\Delta = S_n^{\pm 1}$.)

5.2. Extending Ψ_n . On the $(\mathcal{F} \times \mathcal{F}^{\mathrm{op}})$ -side one extends by the automorphism

$$\sigma \colon \Phi_n \times \Phi_n^{\rm op} \to \Phi_n \times \Phi_n^{\rm op}$$
$$\sigma(f,g) = (g^{-1}, f^{-1})$$

which leaves Ψ_n invariant and adds to Ψ_n the element

$$(\varepsilon, 1) \in \Phi_n \times \Phi_n^{\mathrm{op}}$$

 $\varepsilon(e_i) = e_i^{-1}$

 $((\varepsilon, \varepsilon))$ is the image of S_n and $(\varepsilon, 1)$ corresponds to X_{Δ} .

This results in the group

$$\overline{\Psi}_n = \{ \left((f,g), \sigma^k \right) \in (\Phi_n \times \Phi_n^{\rm op}) \rtimes \mathbf{Z}/2\mathbf{Z} \mid \bar{f} = \pm \bar{g}^t \}$$

The first incentive to consider this extension was to simplify presentations in terms of generators and relations, but clearly the corresponding extension on the \mathcal{H}' -side is noteworthy as well.

The case n = 2 is helped by fact that the automorphism

$$\operatorname{GL}_2(\mathbf{Z}) \to \operatorname{GL}_2(\mathbf{Z})$$

 $A \mapsto \det(A)A^{-t}$

is inner (conjugation with $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$). It follows that

$$\overline{\Psi}_2 \simeq \{ \left((f,g), \sigma^k \right) \in (\Phi_2 \times \Phi_2) \rtimes \mathbf{Z}/2\mathbf{Z} \mid \overline{f} = \pm \overline{g} \}$$

with $\sigma(f,g) = (g,f)$.

Note added August 2: Section 7 contains a presentation for $\overline{\Psi}_2$. Lifting the relations to the extended Θ'_2 seems to need just (4.2) (for now the reader is invited to try himself).

§6. The homomorphism $B_4 \rightarrow \Theta_2$

We generalize Lemma (1.1). We assume that the antipode S is invertible and do not assume $S^2 = 1$.

We consider a bunch of morphisms $H^{\otimes 2} \to H^{\otimes 2} \colon$ First let

$$\begin{split} \rho &= (1 \otimes S) \circ \tau = \tau \circ (S \otimes 1) & x \otimes y \mapsto y \otimes S(x) \\ \alpha &= (1 \otimes \mu) \circ (\Delta \otimes 1) & x \otimes y \mapsto x_1 \otimes x_2 y \end{split}$$

The morphism ρ is obviously invertible, an inverse of α is given below. We put

$$\beta = \rho^{-1} \alpha \rho, \qquad \gamma = \rho^{-2} \alpha \rho^2$$

(6.1) Proposition. One has

$$(6.2) \qquad \qquad \alpha\beta\alpha = \beta\alpha\beta$$

(6.4) $\alpha \gamma = \gamma \alpha$

Hence for any Hopf algebra H we get an operation of the braid group B_4 on $H^{\otimes 2}$. (For commutative H this operation is given by the isomorphism³ B_4 /center \rightarrow S Φ_2 .)

The proof of Proposition (6.1) takes up the rest of this section.

First some basic remarks on the antipode (cf. Montgomery 1993 [7, §1.5, p. 7, p. 9]). The antipode S is an anti-automorphism (with respect to the product and coproduct) and S^2 is an automorphism of the Hopf algebra H. It is characterized by

$$S(x_1)x_2 = 1 = x_1 S(x_2)$$

or

$$S^{-1}(x_2)x_1 = 1 = x_2 S^{-1}(x_1)$$

³Dyer-Formanek-Grossman 1982 [2, p. 406], Karrass-Pietrowski-Solitar 1984 [3]

The indices in Sweedler's notation 4 can be from any ordered set per variable. For instance

$$(6.5) x_1 \otimes x_{21} \otimes x_{22} = x_1 \otimes x_2 \otimes x_3 = x_{11} \otimes x_{12} \otimes x_2$$

reflects

$$(1 \otimes \Delta) \circ \Delta = (\Delta \otimes 1) \circ \Delta$$

Here is an extended and more detailed list of the morphisms:

$$\begin{split} \rho &= (1 \otimes S) \circ \tau = \tau \circ (S \otimes 1) & x \otimes y \mapsto y \otimes S(x) \\ \rho^{-1} &= (S^{-1} \otimes 1) \circ \tau = \tau \circ (1 \otimes S^{-1}) & x \otimes y \mapsto S^{-1}(y) \otimes x \\ \rho^2 &= S \otimes S & x \otimes y \mapsto S(x) \otimes S(y) \\ \rho^4 &= S^2 \otimes S^2 & x \otimes y \mapsto S^2(x) \otimes S^2(y) \end{split}$$

and

$$\begin{split} \alpha &= (1 \otimes \mu) \circ (\Delta \otimes 1) & x \otimes y \mapsto x_1 \otimes x_2 y \\ \alpha' &= (1 \otimes \mu) \circ (1 \otimes S \otimes 1) \circ (\Delta \otimes 1) & x \otimes y \mapsto x_1 \otimes S(x_2) y \\ \beta &= \rho^{-1} \alpha \rho & x \otimes y \mapsto x S^{-1}(y_2) \otimes y_1 \\ \gamma &= \rho^{-2} \alpha \rho^2 & x \otimes y \mapsto x_2 \otimes y x_1 \end{split}$$

One has $\alpha' = \alpha^{-1}$ (and so α , β , γ are invertible):

$$\alpha'\alpha \colon x \otimes y \mapsto x_1 \otimes x_2 y \mapsto x_{11} \otimes x_{12} S(x_2) y = x \otimes y$$

Let us also verify the given computations of β and γ :

$$\beta \colon x \otimes y \mapsto y \otimes S(x) \mapsto y_1 \otimes y_2 S(x)$$

$$\mapsto S^{-1}(y_2 S(x)) \otimes y_1 = x S^{-1}(y_2) \otimes y_1$$

$$\gamma \colon x \otimes y \mapsto S(x) \otimes S(y) \mapsto S(x)_1 \otimes S(x)_2 S(y)$$

$$= S(x_2) \otimes S(x_1) S(y)$$

$$\mapsto S^{-1}(S(x_2)) \otimes S^{-1}(S(x_1)S(y)) = x_2 \otimes y x_1$$

Further computations are

(6.6)
$$\alpha\beta \colon x \otimes y \mapsto xS^{-1}(y_2) \otimes y_1 \mapsto x_1S^{-1}(y_2)_1 \otimes x_2S^{-1}(y_2)_2y_1$$

 $= x_1S^{-1}(y_{22}) \otimes x_2S^{-1}(y_{21})y_1$
 $= x_1S^{-1}(y) \otimes x_2$
(6.7) $\alpha\gamma \colon x \otimes y \mapsto x_2 \otimes yx_1 \mapsto x_{21} \otimes x_{22}yx_1$

$$(6.8) \qquad \gamma \alpha \colon x \otimes y \mapsto x_1 \otimes x_2 y \mapsto x_{12} \otimes x_2 y x_{11}$$

Claim (6.4) is clear from (6.7) and (6.8) (cf. (6.5)).

Moreover (6.2) implies (6.3) by a conjugation with ρ .

⁴Sweedler's notation is usually explained as an abbreviation for sums in (real) tensor products. I think one should rather set it up as a formal calculus for morphisms in \mathcal{H} . This wouldn't change anything in practice, but would be more satisfactory.

It remains to verify (6.2). Using (6.6) one finds

$$(\alpha\beta)\alpha \colon x \otimes y \mapsto x_1 \otimes x_2 y \mapsto x_{11}S^{-1}(x_2y) \otimes x_{12}$$

= $x_{11}S^{-1}(y)S^{-1}(x_2) \otimes x_{12}$
 $\beta(\alpha\beta) \colon x \otimes y \mapsto x_1S^{-1}(y) \otimes x_2 \mapsto x_1S^{-1}(y)S^{-1}(x_{22}) \otimes x_{21}$

and (6.2) follows (cf. (6.5)). This completes the proof of Proposition (6.1).

§7. Presentations

The material of $\S7$ could be arranged better, but I think the current version readable.

7.1. **Presentation of** Φ_2 . According to Neumann 1933 [8, §1, p. 367; §4, p. 374] or Magnus-Karras-Solitar 1976 [6, Problem 3.5.2, p. 169; pp. 163], the group Φ_2 has the following presentation. This goes back to Nielsen 1924 [9].

(7.1) Theorem. The automorphism group Φ_2 of the free group

$$\mathbf{F}_2 = \langle e_1, e_2 | \rangle$$

is generated by the elements O, P, U given by

$$O: \begin{array}{ccc} e_1 \mapsto e_1^{-1} \\ e_2 \mapsto e_2 \end{array} \qquad P: \quad e_1 \leftrightarrow e_2 \qquad U: \begin{array}{ccc} e_1 \mapsto e_1 e_2 \\ e_2 \mapsto e_2 \end{array}$$

A complete set of relations is

$$O^{2} = P^{2} = (OP)^{4} = 1$$

 $(UO)^{2} = (OU)^{2}$
 $(UPOP)^{2} = 1$
 $(UOP)^{3} = 1$

(7.2) Remark. The referenced articles [8, 6] use transposed product of Nielsen transformations, while we use the composition of homomorphisms. This matters only for the last relation.

(7.3) **Remark.** The subgroup generated by O, P maps isomorphically to the subgroup

$$\left\{ \begin{pmatrix} \pm 1 & 0 \\ 0 & \pm 1 \end{pmatrix}, \begin{pmatrix} 0 & \pm 1 \\ \pm 1 & 0 \end{pmatrix} \right\} \subset \operatorname{GL}_2(\mathbf{Z})$$

One has

$$OP: \begin{array}{c} e_1 \mapsto e_2 \\ e_2 \mapsto e_1^{-1} \end{array} \qquad (OP)^2: \quad e_i \mapsto e_i^{-1} \quad (i=1,2)$$

The element OP is of order 4 and $(OP)^2$ commutes with O, P.

(7.4) **Remark.** The group $\langle a, b, c | abc = 1 \rangle$ has the automorphism $a \mapsto b \mapsto c \mapsto a$ of order 3. The automorphism UOP is of this form:

$$UOP: e_1 \mapsto e_2 \mapsto (e_1 e_2)^{-1} \mapsto e_1$$

(7.5) Remark. We will frequently use the equivalence of relations

$$(XY)^2 = (YX)^2 \iff [X, YXY] = 1 \iff (\text{if } Y^2 = 1) [X, YXY^{-1}] = 1$$

where $[a, b] = aba^{-1}b^{-1}$ is the commutator and of

$$(XY)^2 = 1 \iff XYX^{-1} = Y^{-1} \text{ (if } X^2 = 1)$$

7.2. A variation. Let

$$V = (OP)^{-1}U^{-1}(OP): \quad \begin{array}{c} e_1 \mapsto e_1 \\ e_2 \mapsto e_1 e_2 \end{array}$$

If one replaces U by V as generator (this is suggested by the homomorphism $K \circ D)$ one gets the presentation

(7.6) Corollary. The group Φ_2 is generated by O, P, V. A complete set of relations is

$$O^{2} = P^{2} = (OP)^{4} = 1$$

 $(VO)^{2} = 1$
 $(VPOP)^{2} = (POPV)^{2}$
 $(VPO)^{3} = 1$

Proof: This follows easily from Theorem (7.1) by noting that

$$(OP)^{-1}O(OP) = POP$$

and $O^2 = P^2 = 1$.

7.3. Presentation of some "small" subgroups. For the presentation of Ψ_2 we need some preparations.

For elements A, B in a group subject to

$$A^2 = B^2 = (AB)^4 = 1$$

we use the notations

$$\overline{A} = BAB$$
$$E = A\overline{A} = \overline{A}A = (AB)^2 = (BA)^2$$
$$\widehat{B} = ABA$$

Let

$$G_0 = \langle A, B \mid A^2 = B^2 = (AB)^4 = 1 \rangle$$

The group G_0 is isomorphic to the semi-direct product $\mathbf{Z}_4 \rtimes \mathbf{Z}_2$ with \mathbf{Z}_2 acting on \mathbf{Z}_4 non-trivially. The element E generates the center of G_0 . The elements of order 4 are $(AB)^{\pm 1}$. The conjugacy classes of the elements of order 2 are $\{E\}$, $\{A, \overline{A}\}$ and $\{B, \widehat{B}\}$. The subgroup

$$G_{00} = \langle A, \overline{A} \mid A^2 = \overline{A}^2 = (A\overline{A})^2 = 1 \rangle \subset G_0$$

is isomorphic to $\mathbf{Z}_2 \times \mathbf{Z}_2$.

Let G_{10} be the group generated by A, \overline{A}, C subject to the relations

(7.7)
$$A^2 = \overline{A}^2 = (A\overline{A})^2 = 1$$

(7.8)
$$(CA)^2 = (AC)^2$$

(7.9)
$$(C\overline{A})^2 = (\overline{A}C)^2$$

$$(7.10) \qquad (CAC\overline{A})^2 = 1$$

We use the notation $X_Y = Y^{-1}XY$.

(7.11) Lemma. The group G_{10} is generated by G_{00} and C with relations

(7.12)
$$[C, C_A] = 1$$

- (7.13) $[C, C_{\overline{A}}] = 1$
- (7.14) $[C, C_E] = 1$

where $E = A\overline{A}$. In other words,

$$G_{10} = \frac{\mathbf{Z}[G_{00}]}{\mathbf{Z}} \rtimes G_{00} \simeq \mathbf{Z}^3 \rtimes (\mathbf{Z}_2 \times \mathbf{Z}_2)$$

Here $\mathbf{Z}[G_{00}]$ is the group ring of G_{00} and

$$\mathbf{Z} = (1 + A + \overline{A} + E)\mathbf{Z} \subset \mathbf{Z}[G_{00}]$$

is the invariant subspace.

Proof: Relations (7.12), (7.13) reformulations of (7.8), (7.9), respectively (under presence of (7.7)). Relation (7.10) is the same as

$$CC_A C_E C_{\overline{A}} = 1$$

which after conjugation yields

$$C_A C C_{\overline{A}} C_E = 1$$

Together with (7.12) (7.13) these yield

$$[C_A, C_{\overline{A}}] = 1$$

which is (7.14) after a conjugation. Now (7.15) is immediate.

7.4. **Presentation of** Ψ_2 . Let G_1 be the group with generators

A, B, C

and relations

(7.16)
$$A^2 = B^2 = (AB)^4 = 1$$

(7.17)
$$(CA)^2 = (AC)^2$$

$$(7.18) (C\overline{A})^2 = (\overline{A}C)^2$$

(7.19) $(CAC\overline{A})^2 = 1$

(7.20)
$$(ABC)^3 = 1$$

There is the obvious homomorphism $G_{10} \to G_1$ (it is injective, as can be seen later from the injectivity of $\lambda: G_1 \to \Phi_2 \times \Phi_2^{\text{op}}$). Thus the relations of Lemma (7.11) hold in G_1 . (7.21) Lemma. Let

$$x_2 = (CA)^2$$
$$x_1 = Bx_2B$$

Then

$$Ax_2A = x_2$$
 $Ax_1A = x_1^{-1}$
 $Bx_2B = x_1$
 $Bx_1B = x_2$
 $Cx_2C^{-1} = x_2$
 $C^rx_1C^{-r} = x_1x_2^r$ $(r \in \mathbf{Z})$

In particular, the subgroup $\langle x_1, x_2 \rangle \subset G_1$ generated by x_1, x_2 is a normal subgroup.

Proof: We freely use (7.16) and its consequences without extra reference. By (7.17), the elements A, C commute with x_2 . The conjugations with B are obvious. $(Ax_1)^2 = 1$ is the same as (7.15).

Put C' = CA. Then (7.20) reads as $(BC')^3 = 1$ and one gets

$$(x_1C')^2 = (BC'C'BC')^2$$

= (BC')C'(BC')^2C'(BC')
= (BC')C'(BC')^{-1}C'(BC')
= (BC')BC'(BC') = 1

Hence

$$x_2^{-1} = (x_1 C A)^2 x_2^{-1} = x_1 C A x_1 (C A)^{-1} = x_1 C x_1^{-1} C^{-1}$$

Since C commutes with x_2 this yields the computation of $C^r x_1 C^{-r}$.

[Can this be simplified, perhaps using B_4 ?]

(7.22) Lemma. One has $G_1 = \Psi_2$. More precisely, the homomorphism

$$\lambda = (\lambda_1, \lambda_2) \colon G_1 \to \Phi_2 \times \Phi_2^{\text{op}}$$
$$\lambda(A) = (O, O)$$
$$\lambda(B) = (P, P)$$
$$\lambda(C) = (U, V)$$

exists and induces an isomorphism

$$G_1 \to \Psi_2 = \{ (f,g) \in \Phi_2 \times \Phi_2^{\text{op}} \mid f^{\text{ab}} = (g^{\text{ab}})^t \}$$

Proof: The λ_i are defined on the generators of G_1 . We first show that the relations of G_1 are respected.

Let $\overline{N} \triangleleft G_1$ be the normal subgroup generated by $(C\overline{A})^2$. For the quotient G_1/\overline{N} relation (7.19) can be dropped since

$$C\overline{A}CA = (C\overline{A})^2 E$$

and $E^2 = 1$. Theorem (7.1) yields $G_1/N = \Phi_2$ with respect to the assignments for λ_1 on generators.

For λ_2 one considers similarly the normal subgroup $N \triangleleft G_1$ generated by $x_1 = (CA)^2$ and the quotient G_1/N . Again relation (7.19) can be dropped since

$$CAC\overline{A} = (CA)^2 E$$

Corollary (7.6) yields $G_1/N = \Phi_2^{\text{op}}$ because of

$$\lambda_2(ABC) = \lambda_2(C)\lambda_2(B)\lambda_2(A) = VPO$$

Having now defined λ , we recall a basic fact about the abelianization of Φ_2 . The following sequence is exact (Magnus-Karras-Solitar 1976 [6, Corollary N4, p. 169])

(7.23)
$$1 \to \mathbf{F}_2 \xrightarrow{\Gamma} \Phi_2 \xrightarrow{\mathrm{ab}} \mathrm{GL}_2(\mathbf{Z}) \to 1$$

where

$$\Gamma \colon \mathbf{F}_2 \to \Phi_2$$
$$x \mapsto \Gamma_x$$
$$\Gamma_x(y) = xyx^{-1}$$

identifies \mathbf{F}_2 with its group of inner automorphisms. One has

$$O^{\mathrm{ab}} = \begin{pmatrix} -1 & 0\\ 0 & 1 \end{pmatrix}, \quad P^{\mathrm{ab}} = \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}, \quad U^{\mathrm{ab}} = \begin{pmatrix} 1 & 0\\ 1 & 1 \end{pmatrix}, \quad V^{\mathrm{ab}} = \begin{pmatrix} 1\\ 0 \end{pmatrix}$$

Since O^{ab} and P^{ab} are symmetric and $V^{ab} = (U^{ab})^t$ it follows that $\lambda(G_1) \subset \Psi_2$. The homomorphism λ_2 is surjective with kernel N. It remains to show that $\lambda_1 | N$ induces an isomorphism onto $\Gamma(F_2)$.

Now N is generated as a group by x_1, x_2 (see Lemma (7.21)) and one finds

$$\lambda_1(x_2) = (UO)^2: \quad \begin{array}{c} e_1 \mapsto e_2^{-1} e_1 e_2 \\ e_2 \mapsto e_2 \end{array}$$

Thus

$$\lambda_1(x_2) = \Gamma_{e_2}^{-1}$$

and

$$\lambda_1(x_1) = P\lambda_1(x_2)P = \Gamma_{P(e_2)}^{-1} = \Gamma_{e_1}^{-1}$$

 $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$

(7.24) Corollary (of the last proof).

- (1) N is freely generated by x_1, x_2 .
- (2) $[N,\overline{N}] = 1$
- (3) The homomorphism λ_1 is given by the action of G_1/\overline{N} on N with free generators x_1^{-1} , x_2^{-1} .

Proof: This is clear, except perhaps for (2). As we have seen

$$\lambda(N) = (\Gamma(F_2), 1)$$
$$\lambda(\overline{N}) = (1, \Gamma(F_2))$$

Since λ is injective, the claim is follows.

7.5. Presentation of $\overline{\Psi}_2$. Define automorphisms

$$\mu, \sigma \colon G_1 \to G_1$$
$$\mu(A) = \sigma(A) = A$$
$$\mu(B) = \sigma(B) = B$$
$$\mu(C) = AC^{-1}A$$
$$\sigma(C) = \widehat{B}C^{-1}\widehat{B}$$

Let us verify that these definitions respect the relations of G_1 . As for the relations (7.17), (7.18): These are preserved by μ (since $A\overline{A} = \overline{A}A$) and flipped by σ (since $\widehat{B}A\widehat{B} = \overline{A}$). Similarly, (7.19) is preserved by μ , σ . Finally,

$$\mu(ABC) = ABAC^{-1}A = AC(ABC)^{-1}(AC)^{-1}$$
$$\sigma(ABC) = AB\widehat{B}C^{-1}\widehat{B} = \widehat{B}C(ABC)^{-1}(\widehat{B}C)^{-1}$$

shows that (7.20) is preserved by μ , σ as well.

Note that (for $u \in G_1$)

$$\mu^{2}(u) = \sigma^{2}(u) = u$$

$$(\sigma\mu)(u) = (AB)u(AB)^{-1}$$

$$(\mu\sigma)(u) = (AB)^{-1}u(AB)$$

$$(\sigma\mu)^{2}(u) = EuE$$

We extend the group G_1 to $G_2, G'_2 = G_1 \rtimes \mathbf{Z}_2$ by adding the automorphisms μ, σ

$$G_{2} = \langle G_{1}, X \mid X^{2} = (XA)^{2} = (XB)^{2} = (XCA)^{2} = 1 \rangle$$

$$G_{2}' = \langle G_{1}, T \mid T^{2} = (TA)^{2} = (TB)^{2} = (TC\widehat{B})^{2} = 1 \rangle$$

Note that one of the relations (7.17), (7.18) can be dropped from G'_2 since they are flipped by conjugation with T.

The combined extension

$$G_3 = \langle G_2, T \mid T^2 = (TA)^2 = (TB)^2 = (TC\widehat{B})^2 = 1, \ (TX)^2 = E \rangle$$

is an extension of G_1 by $\mathbf{Z}_2 \times \mathbf{Z}_2$.

Denote by $\varepsilon \in \Phi_2$ the automorphism

$$\varepsilon = (OP)^2$$
: $e_i \mapsto e_i^{-1}$ $(i = 1, 2)$

and let

$$\begin{split} \mu', \sigma' &: \Phi_2 \times \Phi_2^{\text{op}} \to \Phi_2 \times \Phi_2^{\text{op}} \\ \mu'(f,g) &= (\varepsilon f \varepsilon^{-1}, g) \\ \sigma'(f,g) &= (g^{-1}, f^{-1}) \end{split}$$

(7.25) Lemma. There are the equalities of homomorphisms $G_1 \to \Phi_2 \times \Phi_2^{\text{op}}$:

$$\lambda \circ \mu = \mu' \circ \lambda$$
$$\lambda \circ \sigma = \sigma' \circ \lambda$$

Proof: It suffices to check equality on the generators A, B, C of G_1 . For A, B the claims are obvious. For C one finds

$$\mu(C) = AC^{-1}A = \begin{cases} ECE \mod \overline{N} \\ C \mod N \end{cases}$$

and

$$\begin{aligned} (\lambda \circ \sigma)(C) &= \left((OPO)U^{-1}(OPO), (OPO)V^{-1}(OPO) \right) \\ &= \left(OVO, (OPO)POUOP(OPO) \right) \\ &= \left(OVO, \overline{O}U\overline{O} \right) \\ &= \left(V^{-1}, U^{-1} \right) \end{aligned}$$

(7.26) Corollary. One has $G_3 = \overline{\Psi}_2$. More precisely, the homomorphism

$$\begin{split} \overline{\lambda} \colon G_3 &\to (\Phi_2 \times \Phi_2^{\text{op}}) \rtimes \{1, \sigma' \\ \overline{\lambda} | G_1 &= (\lambda, 1) \\ \overline{\lambda}(X) &= ((\varepsilon, 1), 1) \\ \overline{\lambda}(T) &= ((1, 1), \sigma) \\ \lambda &= : G_1 \to \Phi_2 \times \Phi_2^{\text{op}} \end{split}$$

induces an isomorphism $G_3 \to \overline{\Psi}_2$.

References

- J. Conant and M. Kassabov, Hopf algebras and invariants of the Johnson cokernel, Algebr. Geom. Topol. 16 (2016), no. 4, 2325–2363. MR 3546467 6
- [2] J. L. Dyer, E. Formanek, and E. K. Grossman, On the linearity of automorphism groups of free groups, Arch. Math. (Basel) 38 (1982), no. 5, 404–409. MR 666911 11
- [3] A. Karrass, A. Pietrowski, and D. Solitar, Some remarks on braid groups, Contributions to group theory, Contemp. Math., vol. 33, Amer. Math. Soc., Providence, RI, 1984, pp. 341–352. MR 767120 11
- [4] G. Kuperberg, Involutory Hopf algebras and 3-manifold invariants, Internat. J. Math. 2 (1991), no. 1, 41–66, [arXiv:math/9201301v1]. MR 1082836 7
- [5] S. Mac Lane, Categories for the working mathematician, second ed., Graduate Texts in Mathematics, vol. 5, Springer-Verlag, New York, 1998. MR 1712872
- [6] W. Magnus, A. Karrass, and D. Solitar, *Combinatorial group theory*, revised ed., Dover Publications, Inc., New York, 1976, Presentations of groups in terms of generators and relations. MR 0422434 5, 8, 13, 17
- [7] S. Montgomery, Hopf algebras and their actions on rings, CBMS Regional Conference Series in Mathematics, vol. 82, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1993. MR 1243637 9, 11
- [8] B. Neumann, Die Automorphismengruppe der freien Gruppen, Math. Ann. 107 (1933), no. 1, 367–386. MR 1512806 5, 13
- J. Nielsen, Die Isomorphismengruppe der freien Gruppen, Math. Ann. 91 (1924), no. 3-4, 169–209. MR 1512188 13

FAKULTÄT FÜR MATHEMATIK, UNIVERSITÄT BIELEFELD, POSTFACH 100131, D-33501 BIELE-FELD, GERMANY

Email address: rost at math.uni-bielefeld.de

 $\mathit{URL}:$ www.math.uni-bielefeld.de/~rost