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1. INTRODUCTION

Let f, g, h be 3 homogeneous quadratic forms in 3 variables. The resultant
Res(f, g, h) is the first non-trivial case of a resultant beyond the well known theory
of resultants of 2 homogeneous forms in 2 variables (basic references for resultants
are [2], [5]). First descriptions were given by Cayley [1, p. 119] and Sylvester [8], [5,
p. 118]. Eisenbud, Schreyer and Weyman presented in [3, Introduction] a Bezout
formula which describes Res(f, g, h) as the Pfaffian of a certain alternating 8 x 8-
matrix whose entries are linear in the Pliicker coordinates of f A g A h (the matrix
is reproduced in Section 7).

In this text we describe a comparatively simple presentation of Res(f, g, h). After
an appropriate choice of basis, the resulting expression coincides with that of [3,
Introduction].

Let V' be a locally free module of rank 3 over a ring R. Let further
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Here we consider A3V as subspace of V ® A%V via the natural embeddings A*V C
V®k_ Another way to present U is as the Lie algebra of PGL(V) tensored with the
line bundle A3V:

_ End(V)
"~ R-idy

U ®@ A3V

One has rank U = 8. Let
Pf: AU — AU = (A3V)®8
denote the Pfaffian characterized by
Pf(ui Aug 4+ ug Aug +us Aug +uy Aug) =ug A+ Aus

For w € A2U the square of Pf(w) is the determinant of an alternating matrix
representing w. Moreover 4! Pf(w) = w?.

Here are the main results.

Proposition 1. There exists a unique morphism of gl(V')-modules
®: A3S?V — AU
such that
Dy NyzAhze)=[zQ@yAz]A[y®@x Az

forx,y, z€V.

Let

F(f,g,h) =PE(D(fAgAR)  (f.g,heS*V)
Then
F(f,g,h)=0

whenever f, g, h have a common zero. Moreover
F(z?y% 2% = (x Ay A 2)®®
Corollary. For f, g, h € S?V one has
Res(f,9,h) = F(f,9,h)
Moreover one has:

Proposition 2. With respect to a basis of V and an appropriate basis of U,
the alternating 8 x 8-matriz corresponding to ® (with entries from the dual space
of A3S%V ) is exactly the one presented in [3, Introduction].

I don’t have a heuristic argument why the morphism ® does the job. Maybe one
should try to follow the methods in [3].

The starting point was a rather naive ad hoc search. Looking for a Bezout
formula (an expression of the resultant in terms of Pliicker coordinates) means to
find an invariant quartic form on

APS?V
which yields the resultant. Over Q the space of invariant quartic forms on A3S2V
is 6-dimensional and in principle one should be able to write down the forms in a
coordinate free way over Z. The search was greatly encouraged and helped by the
presentation of the 8 x 8-matrix in [3, Introduction]. Eventually the morphism ®
showed up.

The text contains a lot of explicit computations. Most of them are not really
necessary to recognize F' as the resultant. However they are used to get the 8 x 8-
matrix. Anyway, we find them illustrative and useful.
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Naturally, an understanding of the GL(V)-module A®S?V and its variant
A2,V = (A3S%(VH))*

is in order (W# denotes the dual of W). Section 5 contains some related remarks.
There are the two morphisms

J,n: A3SoV — A3S?V
J:[zla Alyla Af2]e — 22 Ay? A 22
n: )2 Afyla Azl = zy Ayz A zx
The morphism J is induced from the standard morphism
SV — SPV

(passage from symmetric bilinear forms to quadratic forms) and is not an iso-
morphism in characteristic 2. The morphism 7 however is an isomorphism for
rank V' = 3. Once the bijectivity of 7 is established, the construction of ® becomes
simple (see Section 5.1).

The first construction of ® in Section 3 however bypasses 1 and the material of
Section 5 is not used elsewhere.

2. PRELIMINARIES

2.1. Basic notations. Let V be a locally free R-module of finite rank. The dual
module is denoted by

V* = Hompg(V, R)

and the symmetric resp. exterior powers are denoted as usual by S¥V, A*¥V. More-
over let

SpV = (VER)ZR c YOk
be the module of symmetric k-tensors. One has
(S*V)* =S (V?)
(ARV)* = AF(V7)

The module S,V is the divided power algebra of V, see e.g. [9]. For elements in
S1V we use the notations

[y =2® @z €SV C Ve
with z € V and the product is denoted by

SV @ SRV — SkanV
a® b = axf

For instance

el e = (71 ") iehan

Try=rQy+yQr=I[r+yls— [r]s — [y
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2.2. Conventions for a basis. We assume rank V' = 3.
Given a basis e; (i =0, 1, 2), we denote the dual basis by f;. Thus
V = Rey @ Re; & Res
V#=Rfo® Rf1 ® Rf2
with fi(ej) = (Slj
The elements
0ij =€ ® f;
form a basis of gl(V) = End(V) =V @ V#.

We write W)
End(V
i = |0 (V) = -
& = (0] € pel(V) = =1
for the image of 0;; = e; ® f; in pgl(V).

Then

€0+er+ea=0
and the elements
€1, €2, 0y (i#7)
form a basis of pgl(V).
Here are basis elements of some line bundles:

eg NerNer EABV
2 2 2 6 g2
eg Nei ANey Aeper Aeres Aegeg € A°S°V
[60]2 A\ [61]2 A [62]2 N egxe| N\ erxeg N\ egxeqg € AGSQV

We use them to identify the line bundles with R or with each other.

3. DEFINITION OF &
3.1. The morphism ¥. We start with the morphism
Uy A%SV @ S5V — A3(V @ A?V)
[z2 Alyl2®@[z]2 = (z@YA2)A(y@TAZ)

Remark. The term on the right is a homogeneous polynomial of degree 2 in each
of x, y, z. By definition such a polynomial is a linear morphism

SV ® S5V ® SV — A2(V ® AQV)

In fact it defines a morphism of strict polynomial functors (see [4, §2], [7, §2,
pp. 702]) over R = Z. By the skew symmetry in z, y, it factors through A2S,V ®
SoV.

Consider the natural inclusion
AV - V@AV

o ANx1 N T2 — in ® Tiv1 NTi—1
i
with the indices taken mod 3. Put
VoAV

v A3V
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After passing to U, ¥y becomes entirely alternating (if ug + u3 + u2 = 0, then
up A ug = u1 A uz) and yields the morphism

U: A%S,V — AU
[l Afyla A2l = [z@yAZIA[y@a Az
Remark. One may write ¥ in a different way using the exact complex
05 AV VRNV 5 S2VeV 5 53V =0
where
KrzR@yAz)=2y®z—22Qy

and p is the multiplication. The morphism & identifies U with a subbundle of
S?V @ V and so no essential information gets lost when composing with k. One
has

AkoW: A3SV — A%(S*V @ V)

[o]2 A [z1]2 A [22]2 + Z(ziziJrl @ Ti—1) N (ZiTi—1 @ Tiq1)

K2

I haven’t looked at the corresponding presentation A%k o ® of ® in detail.

3.2. Duality for rank 3. From now on we assume rank V' = 3.
One has

AV = V# @ A3V
V@ A%V =End(V) ® APV

Moreover
End(V)
R-idy

U=pgl(V)® AV,  pgl(V) =

and ¥ becomes a morphism
U: A5,V — A2 pgl(V) ® (A3V)®?

In coordinates one has

U(leol2 Aler]2 A fez]2) = —eg Aer = ea A er

The non-degenerate pairing
APSPV @ A°SPV — A°SPV = (APV)®!
induces an isomorphism
H: A3S?V — (A3S?V)" @ ASS?V = A3S,(V#) @ (APV)®4

In coordinates one finds (with appropriate sign in the identification A°S?V = R)

H(eoer Nereg Aezeq) = [fola A[fi]2 A [f2]2
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3.3. The morphism ®. We denote by TV” the morphism ¥ with V replaced
by V# and define
>=0""oH

as the composite of

A2V I A3, (V) @ (APV)®4 LY pel(V) ® (A3V)%2
In coordinates, ® is the morphism
A3S?V — A2 gl(V)
with
epe1 N\ ejea N\ egeg — €a N €1
Remark. The element e A€ is a generator of A2C, where C C pgl(V) is the Cartan

subalgebra corresponding to the basis. It follows that the image of @ is in the kernel
of the (lifted) Lie bracket

[, ]: A% pgl(V) — sl(V)
More precisely, there is the short exact sequence

0= APS2V @ (A3V#)®2 2 A2 po1(v) b (v S 0

Indeed, the formulas in Section 6 (or an inspection of the 8 x 8-matrix in Section 7)
show that the image of ® is a subbundle (the dual of ® is an epimorphism) and the
claim follows from rank reasons.

4. IDENTIFYING THE RESULTANT

We assume rank V' = 3. Let us recall a characterization of the resultant, for the
special case of three forms g; € S?V (i =0, 1, 2).

As definition of the resultant we take [2, Définition 3, pp. 348]. The following
claim follows then from [2, Corollaire, pp. 346] and degree reasons.

Lemma. Assume R="7Z. Let F(go,91,92) be a homogeneous polynomial in the g;
of degree 12. If F(go,g1,92) = 0 whenever the g; have a common non-trivial zero
(over say algebraically closed fields), then F(go, g1, 92) is a scalar multiple of the
resultant Res(go, 91, g2)- O
Remark. To give a point (=section) in the projective space
P(V) =ProjS*Vv
means to give a codimension 1 subbundle W of V. Then L = V/W is a line bundle.
This way a point in P(V) is given by a short exact sequence
0=W—=V23L-0

with rank L = 1.

Let g; € S?V (i = 0, 1, 2) and assume that there is a common zero in P(V).
This means that there is a line bundle L and an epimorphism

ANV =L

such that
S%\(gi) =0 (i=0,1,2)
(S?X(g) € L®? is the evaluation of g at the point \.)
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Let
W = ker A

The morphism A induces a morphism A on pgl(V), namely

~ ‘/®‘/# ‘/#
P— — =LW?*
A R'idv L®L# ®

[v®al = Av)® (o)
A is an epimorphism and ker A has rank 6.
Lemma.
®(A®(ker S?))) C A?(ker A @ (A3V)®2

Proof. 1 checked by inspection of the formulas in Section 6: One takes a basis with
fo = A. Using that 61;, 02; leave fj invariant, one finds that it suffices to check that

®(A) = s N ey € A (ker fo)

which is obvious.
Certainly there is an intrinsic proof without explicit computations. (]

Since A®(ker 5\) = 0, the Pfaffian vanishes on gg A g1 A g2 if g; € ker S?\ for i = 0,
1,2
Hence for arbitrary g; one has

Pf(®(go A g1 A g2)) = aRes(go, 91, 92)

for some a € Z (assuming R = Z). The computation at the very end of Section 6
shows

Pf(®(ef Nel Ae3)) = +1

and therefore ¢ = +1. (The sign is not important. It depends on some choices
anyway.)

5. ALTERNATIVE DEFINITION OF ®

The material of this section is not really needed elsewhere, but hopefully illus-
trative.

5.1. The isomorphism A3S,V — A35?V (rankV = 3). Let

n: A3S,V — A3S?V
]2 Afyl2 Alz]2 — 2y Ayz A zx

Remark. For rankV = 3, an explicit computation of 7 is provided below. For
instance one has

n(egxer A epxes A egkeg) = 6(2) A e% A e% — 2egeq A ejes A eseq
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Lemma. If rankV = 3, then n is an isomorphism.

Proof. This is evident from the explicit computations below. However there is a
more conceptual proof. Namely, the inverse of 7 is the dual of 1 in the appropriate
sense. More precisely, one has

(H on)([eo]2 A [e1]2 A fea]2) = [fol2 A [fil2 A [f2]2

with H as in Section 3.2. It follows that H o7 is an epimorphism (for any V the
elements [z]2 A [y]2 A[2]2 generate A3S5V). But then H o must be an isomorphism
since both modules are locally free of the same rank. O

One may now define ® as
O =Ton': A3S2V = AU

Remark. The morphism 7 is defined for any V of arbitrary rank r. It is another
example of a morphism of strict polynomial functors. If r < 2, it is easy to see that
7 is an isomorphism. In general, cokern is annihilated by 8 (hint: the elements
22 A y?2 A 2% are in the image of 7). In characteristic 2 there is an epimorphism
cokern — AV @ S?V.

5.2. Some explicit computations. The following tables describe some actions
of elements of s1(V') and yield generators of the sl(V)-modules A3S5V resp. A3S2V .
The dim-slot shows the rank of the subspace generated by all permutations of
indices.

Table 1.
A = [egl2 A [e1]2 A lez)2 (dim1)
B = 012(A) = [eg]2 A [e1]2 A erxes (dim 6)
Bo2(B) = [eo]2 A [e1]2 A erxeq (dim 3)
010(B) = egxe1 A [e1]a A epxen (dim 3)
C = 090(B) = eaxeg A [e1]a A epxen (dim 6)
D = 001(C) = eaxeg A egxeq A epken (dim 1)
Table 2.
A =eger Aeres A eaeg (dim 1)
B =012(A) = eper A e% A eseq (dim 6)
0o2(B) = ege1 A el Aep (dim 3)
010(B) = ege1 A e% Aejes (dim 3)
C = 020(B) = ege1 A3 A3+ erea Aed Aegeg

= epe1 A et Aei+ Blegises (dim 6)
D =00 (C)= eg A €2 A el + 2erex Aeger A esen
=edNedNed — 24 (dim 1)
Corollary. A3S,V resp. A3S%V are as sI(V)-modules generated by
[eo]2 A [e1]2 A [ea]e, eper N erea A egeq

Remark. Clearly the tables describe the isomorphism 7 in terms of basis elements.
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5.3. Decomposition of A>S?V. We conclude with some exercises (rank V = 3).
Lemma. There is a short exact sequence of PGL(V)-modules
0— SsV @ APV* = APS*V @ (AV#)® 5 $3(V#) @ APV — 0

This is a “must know” on A>S?V (rank V = 3), albeit not needed in this text.
It is the integral version of the classical decomposition A3S?V = S3V @ S3(V#)
of SL(3)-modules over Q and related with classical constructions for plane cubics,
like the Hessian curve and the invariants ¢4, cg of elliptic curves [6, pp. 188].

The joy of proof is left to the reader. The same goes for

Lemma. Let
J: A3SoV — A3S?V
[z]2 Ayl A (2] = 2 Ay? A 22
and put
T =Jon ' €Endgrv)(S*V)
Then
(T-4)(T+2)=0

6. COMPUTATION OF ®

The purpose of the following explicit computations is to verify:
Lemma. With respect to the basis
020, —b21, 010, b2, —bo1, Oo2, —e€1, €2

of pgl(V), the morphism @ is given by the matriz in Section 7 (which equals that
of [3, Introduction]).

To compute @ on all basis elements, we apply appropriate elements of the Lie
algebra sl(V'). Actually we consider the actions of the universal enveloping algebra.
For instance we understand

021001 (Y) = 021 (601 (Y))
The action of sl(V') on S2V is given by
0i;j(ener) = djneier + 0jxene;

and the action of sl(V) on pgl(V) is given by commutators.
The brackets [ijk] stand for the Pliicker basis with respect to the ordered basis

0 1 2 3 4 )

63 €p€1 €2€) 6% €1€2 6%
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Here are the computations:

1 element with weights 2, 2,2 of type xy A xz A yz

7[124] =A= €p€l A €1€2 A €2€0
l—)XZEQ/\€1:€1/\EO

6 elements with weights 3,2, 1 of type z? A zy A yz

—[024] = 001 (A) = /\ e1ea A eseq
— 001 (X) = —901 A€
[234] = 010(A) = €3 Aerea A eaeg
— 010(X) =010 N €2
—[123] = 012(A) = eger A el A ezeg
— 012(X) = =012 N e
—[125] = 021 (A) = eper A e2 A ezeg
— 021 (X) = 021 Neo
[145] = 020(A) = ege1 A erea A 62
= O30(X) = =30 A eg
[014] = p2(A) = eger Aerea Aep
— Op2(X) = Op2 A g

3 elements with weights 3, 3,0 of type x2 A zy A y?

—[025] = 021001 (A
— 921901 (X
[013] = 902912(A

) =e3 AesAeseg
) =
) =

= Oo2012(X) = 012 A Op2
) =
)=

Oo1 N 021

epél /\61 /\eo

[345] = 910920(/1
— 910920 (X

/\ eres N\ 62

020 N b1

3 elements with weights 4, 1,1 of type 2 A zy A 22

e Nejeg N\ eaeq

[012] = 902901(14
( o2 A o1

)
— 002001 (X) =

[134] = 010012(A) = eger A €2 A egeq
= 010012(X) = 610 A 012

[245] = 021020(A) =
— 021020(X) =

epe2 N ejeg N\ 62
f21 A 02
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6 elements with weights 3,2, 1 of type x2 A zy A 22

[045] = 920901( = 60 Nejex N\ 62

[034] = 910902 (A
— 910902 (X

= /\6162/\60

)=
> 020001 (X) = *920 A BOo1r — b1 N €2
[235] = 6021010(A) = /\ 62 A eseq
— 021010(X) = 021 A\ 010 + 020 A €2
—[023]) = 0p1012(A) = /\ e1 A eseq
— 001012(X) = —901 A B12 —bo2 A €
[015] = 62621 (A) = eger A 62 A 60
= 002021 (X ) = Oo2 A 021 + b1 A €9
[135] = 612020(A) = eger A ‘51 A 62
> 012020(X) = —012 A O20 — 10 A €
)
) =

010 A o2 + 012 N ex
1 element with weights 2,2, 2 of type 22 A y? A 22

[035] = 012020001 (A) = €2 A el A el
> 012020001 (X) = 001 A O10 + 20 A b2 + 012 A O21
+ €2 A\ €1

7. THE ALTERNATING 8 X 8-MATRIX

020 —0: 010 012 —001 Oos —€

020 0 [245] [345] [135] [045] [035] [145]
—0y  —[245] 0 —[235] [035] 025] [015] [125]

10 —[345] [235] 0 [134] 035] [034] [135]

0o —[135]  —[035]  —[134] 0 023] [013] [123]—[034]
—6p1  —[045]  —[025]  —[035]  —[023] 0 012] —[015]

o2  —[035]  —[015]  —[034]  —[013] —[012] 0 023]—[014]

—er  —[145]  —[125]  —[135] —[123]+[034] [015]  —[023]+[014] 0

€2 —[235] [125]—[045] —[234] [123] [024]—[015] 023] [124]—[035]

€2

[235]

—[125]+[045]

[234]

—[123]

—[024]+[015]

—[023]

—[124]4[035]

0
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