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INTRODUCTION

Let k£ be a field of prime characteristic p. For a smooth k-variety X of
dimension n, the r-th relative Frobenius morphism

Fyp: X —» X0
is an fppf-fiber bundle with fibers
R(n,r) := k[z1, ..., z0) /(2" ... 2E")

over k. The aim of this thesis is to study the automorphism group G(n,r)
of this fiber which will be considered as an algebraic group or group scheme
over k. One can associate to each representation of G(n,r) a natural vector
bundle over the r-th Frobenius twist of X by twisting the G(n,r)-torsor
F%. That is, by computing the representation ring of G(n,r) one obtains a
description of these natural bundles. This topic is based on a correspondence
between Markus Rost and Pierre Deligne where Deligne suggested to study
this representation ring for r = n = 1. In particular, he gave a computation
in this case. This thesis generalizes this computation and concentrates on
the computation of this representation ring for arbitrary r and n.

The Lie algebra of G(n, r) computes as Dery(R(n,r)), the endoderivations
of R(n,r). That is, for » = 1, this algebraic group is of Cartan type as its
Lie algebra is isomorphic to the Jacobson-Witt algebra W(n,(1,...,1)).
The aim is to provide a parametrization and computation of all irreducible
G(n,r)-representations. In fact, for » = 1, this can be deduced from the
description of the irreducible p-representations of W(n, (1,...,1)) which is
given in [Nak92]. We will apply this to compute the representation ring of
G(n,r) since the classes of the irreducible representations provide a Z-basis.

The parametrization works as follows: The action of GL, on the gen-
erators z1,...,2, € R(n,r) provides a subgroup G of G(n,r) which is
isomorphic to GL,. Moreover, there are two subgroups G, G such that
the multiplication map

m:GT x G x G = G(n,r)

is an isomorphism of k-schemes. In analogy to the theory for reductive
groups, the subgroup G plays the role of a maximal torus, and G~ x G° as
well Gt x G the roles of Borel subgroups. That is, the irreducible repre-
sentations of G(n,r) are parametrized by the irreducible G%-representation:
On one hand, the G™-invariants of an irreducible G(n, r)-representation are
an irreducible GO-representation. On the other hand each irreducible G°-
representation uniquely arises in this way: There is an exact functor

I:G%rep — G(n,r)—1ep

with the property that for an irreducible G'-representation L the socle of
I(L) is irreducible and its G~ -invariants are isomorphic to L.

The computation works as follows: As G = GL,, its irreducible repre-
sentations are parametrized by the dominant weights. Further we want to
study the dominant weights mod p. That is, we study their mod p-residues.
If this residue is a fundamental weight, the associated irreducible G(n,r)-
representation arises as an image of a differential map in a twist of the
deRham-complex Qf where Q% := Qf,  are the Kéhler-differentials. If

(nr)



THE REPRESENTATION RING OF G(n,r) 3

the residue is 0 and r = 1, the associated irreducible G(n, 1)-representation
arises as a pullback of an irreducible (GO)(l)—representation along the group
homomorphism
Li: G(n,1) — (G"HW

This is induced as follows: Take the twist of the G(n,1)-representation
QR(n,1),k by the p-th power map (—)? : R(n,1) — k which induces L;. If
the residue is 0 and r > 2 the associated irreducible G(n, r)-representation
arises as a pullback of an irreducible G(n,r — 1)(1)—representation along the
group homomorphism

T, : G(n,r) = G(n,r — 1)1

This is induced as follows: We restrict an R(n,r)-automorphism to the
subalgebra generated by z7, ...z}, which is isomorphic to R(n,r — DM, 1f
the residue is neither 0 nor a fundamental weight and p # 2, the socle of I(L)
coincides with I(L). The computations for this generalize the computations
of [Nak92].

Finally, we conclude with the computation of the representation ring for
p # 2: For r = 1, the functor I and the group homomorphism L; induce a
surjective map

Rep(GLy) ® Rep(GLW) 54 Rep(G(n, 1))

We also compute the kernel. For r > 2, the functor I and the group homo-
morphism 7, provide a surjection

I+T
Rep(GLy,) & Rep(G(n, r — 1)) == Rep(G(n, 7))

which establishes a recursive description. We compute the kernel of this

map indirectly. In all cases, the proof of the surjectivity involves Cartier’s

Theorem about the cohomology of the deRham-complex, namely for r = 1

HY(QS) = ALy
where we consider L as a representation. Furthermore, for » > 2

HY(Q) = T (%)W)

T
ORGANIZATION

In Section 1 we will introduce the language for algebraic groups. In partic-
ular, we will describe their representations, Lie algebras, as well as Frobenius
twists and Frobenius morphisms.

In Section 2 we will introduce the algebraic group G(n,r) which we are
going to study in this thesis. In particular, we will compute its Lie algebra
and describe important subgroups.

In Section 3 we will introduce the concept of triangulated groups and
triangulated morphisms. This will be the key theory in order to obtain
the parametrization of the irreducible G(n, r)-representations by those of its
subgroup G which is isomorphic to GL,,.

In Section 4 we will outline the parametrization of irreducible represen-
tations of reductive groups by dominant weights. In particular, we will
compute the representation ring of GL,, and prepare the computation of the
representation ring of G(n,r).
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In Section 5 we will extend the theory for triangulated groups to those
of r-triangulated groups. This will allow us to obtain a mod p"-periodicity
for the computation of the irreducible G(n,r)-representations as well as a
reduction to the r-th Frobenius kernel of G(n,r). For r = 1, this will pro-
vide a computation for the irreducible G(n, 1)-representations by the com-
putation of the irreducible p-representations of the Jacobson-Witt algebra
Wi(n,(1,...,1)).

In Section 6 we will introduce several transfer morphisms between the
G(n,r), GL,, and their Frobenius twists respectively. These will be heavily
used in the computation of the irreducible G(n, r)-representations.

In Section 7 we will introduce Kéahler-differentials as an important exam-
ple of G(n,r)-representations. These fit into the deRham-complex whose
cohomology is computed by Cartier’s Theorem. Furthermore we will need
to generalize to twisted deRham-complexes.

In Section 8 we will compute the irreducible G(n, r)-representations with
respect to their associated dominant weights of GL, by using transfer ho-
momorphisms, twisted deRham-complexes, as well as an extensive compu-
tation.

In Section 9 we will provide a computation of the representation ring
of G(n,r) by using the preparation of section 4, the computation of the
irreducible G(n, r)-representations, and Cartier’s Theorem.
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1. BAasic NOTIONS AND RESULTS FOR ALGEBRAIC GROUPS

The aim of this section is to introduce the language we are using for
algebraic groups as well as some basic results. This is taken from [DGS80]
and [Jan03].

We consider arbitrary fields £ of prime characteristic p. Denote by k—Alg
the category of commutative k-Algebras. Then a k-group functor G is a
functor

G : k—Alg — Groups

For a A € k—Alg the group G(A) are the A-rational points of G. Now an
affine k-group is a k-group functor G which is represented by a k-algebra
k[G].

Remark 1.1. Note that for an affine k-group G the k-algebra k[G] carries
the structure of a commutative Hopf algebra. That is, there is a comultipli-
cation

Ag : k[G] — k[G] @4 k[G]
a coinverse
oG : k[G] — k[G]
and a counit
eq : k|Gl = k

These three maps uniquely determine the group structure of G(A) for all
A € k—Alg by the Yoneda-Lemma. Confer also [Jan03, 1.2.3].

Note that by the Yoneda-Lemma a morphism of affine k-groups
f:G—H
corresponds uniquely to a morphism of Hopf algebras
f* : k[H] = k[G]

Definition 1.2. An algebraic k-group is an affine k-group G such that k|G|
is a finitely presented k-algebra.

We are going to give some of the main examples.

Example 1.3. The additive group G, defined by

Ga(4) = (A, +)
is an algebraic k-group with Hopf algebra
k[Ga] = K[X]

the polynomial ring in one variable. The comultiplication of k[X] is given
by A(X) =X ®1+1® X, the coinverse by ¢(X) = —X and the counit by
e(X)=0.
More generally, let V' be a finite dimensional k-vector space. Then set
Go(V) := Homy, (V) k)

That is,
Ga(V)(A) :== Homy(V ®; A, A) = Homy(V, A)
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The group structure is induced by (A, +). This is an algebraic k-group with
representing Hopf algebra

k[Go(V)] = SV

the symmetric algebra of V.
Note that by a choice of a basis of V' with n = dim(V'), we get

Ga(V) = (Ga)"

and
kG (V)] 2 k[Xy,..., X,]

the polynomial ring in n variables.
Example 1.4. The multiplicative group Gy, defined by

Gm(A) = (A%,)
is an algebraic k-group with Hopf algebra

k[Gy] = k[X, X 7]

the Laurent polynomial ring in one variable. The comultiplication is given by
A(X) = X ® X, the coinverse by ¢(X) = X! and the counit by €(X) = 1.

More generally, the general linear group GL(V') for a finite dimensional k-
vector space V is an algebraic k-group: We start by defining the k-semigroup
functor End, (V') by

End;,(V)(A) = Enda(V ®; A4)

It is represented by the k-algebra
k[End, (V)] = S*(End(V)")
the symmetric algebra of the dual space of End(V'). Now GL(V) C End(V)
is just defined by
GL(V)(A) = GLA(V ® A) C End,(V)(A)

The representing Hopf algebra is

k[GL(V)] = k[End, (V)][det ]

where the element det is understood as follows: The determinant defines a
morphism

End, (V) <% (AL,
of k-semigroup functors which corresponds to a k-algebra morphism

k[X] — k[End,, (V)]

Hence it uniquely defines an element det € k[End, (V)] by the image of X.
Now the comultiplication is induced by the composition

End(V) ® End(V) 2 End(V)
The coinverse is induced by the inverse map

_\—1
End(V)* 2 End(v)*
and the counit is induced by the inclusion

k — End(V)
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which maps 1 to idy .
Note that by a choice of a basis of V' with n = dim(V'), we get

GL(V)(A) = GL,(A)
the invertible n x n-matrices over A. Then the Hopf algebra reads as
KIGL(V)] = k[GLn] = klai]1<ij<n[det ]
where det is given by the Leibniz formula. Note also that
GL; =Gy,
1.1. Representations.

Definition 1.5. A (linear) representation V' of G is a finite dimensional
k-vector space V together with a morphism of algebraic k-groups

G — GL(V)

Note that a G-representation is nothing else than a natural linear action
of G(A) on each V ®;, A.

Remark 1.6. A G-representation V corresponds uniquely to a Hopf algebra
map

S*(End(V)Y) — k[G]
which corresponds uniquely to a k[G]-comodule map
Ay V =V @y k|G]
Confer [Jan03, 1.2.8]. A morphism between G-representations V' and W is
a k-vector space map f : W — V such that the diagram
Aw
W —— W @y k[G]

fJ/ i f®idyq
A

v

V ——V @ k[G]
comiutes.

Definition 1.7. We call a G-representation V irreducible if V' # 0 and for
a subrepresentation U C V we get U =0 or V.

Some authors like Jantzen call these representations simple.

Remark 1.8. Note that for the category of finite dimensional G-representa-
tions the Jordan-Hélder Theorem holds: For all finite dimensional represen-
tations V' there is a finite composition series

0o=WicWecC...CWp1CW,=V

That is, all quotients W;,1/W; are irreducible. Further for two composi-
tion series of V' the multiplicities of an irreducible representation L in the
composition series coincide.

Now we can introduce some important notions. The first are fixed points.
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Definition 1.9. Let V be a G-representation. Then the fized points are
given by
VG = weV|glvel) =v®lVge G(A) VA € k—Alg}
= {veV|Ay(v)=v®1}
Another important notion are weight spaces. For this, we introduce the
character group.

Definition 1.10. The character group of an algebraic group G is defined

by
X(G) = Hom(G, Gy,)

where Hom means morphisms of algebraic groups.

Remark 1.11. Since G,,, C G, = A! as k-varieties, we get an embedding
X(G) C Mor(G, G4) = Homy,— a1 (K[ X], k[G]) = K[G]
where Mor means morphisms of k-varieties. We obtain an isomorphism

X(@) ={f kGl ) =1 Ac(f) =@ f}
Confer [Jan03, 1.2.4]. Since we work over a field k, the elements of X (G)
are linearly independent by [DG80, 11§1,2.9].

Now we come to the promised definition of weight spaces.

Definition 1.12. Let G be an algebraic group and A € X(G) a character.
Then the A-th weight space of a G-representation V is defined by
Vi = {veV|glvel)=v® A(g) Vg € G(A) VA € k—Alg}
= {veV]|Ayw)=v® A}
The elements of V) are also called the wvectors of weight A.

Remark 1.13. By the linear independence of the characters X (G), we get
that the sum of the V) is direct and

b wcv
AEX(G)
In general, this inclusion does not have to be an equality. But it is an
equality for tori T' = (G,,)" where we get
X(T)=7"
Finally, we can describe subrepresentations generated by subspaces: Let
V be a G-representation and W C V a k-subspace. Then denote by

GW cCV

the smallest subrepresentation of V' which contains W, the subrepresentation
generated by W.
Further, let
Ay V =V @y k[G]
be the k[G]-comodule map which corresponds to V. Then a k-subspace

W C V is G-invariant, that is, a subrepresentation, if and only if Ay|y
factors through W @y, k[G].
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Now let us choose a k[G]-basis (a;)ier and write
A= Z Aiai

i€l
Then W C V is G-invariant if and only if
for all ¢ € I. Furthermore the subrepresentation generated by W is just

GW =Y A(W)

el
We will study subrepresentations and subrepresentations generated by sub-
spaces of G with this criteria in mind.

1.2. Lie Algebras. An important tool to study algebraic groups are their
Lie algebras. For this, consider the dual numbers

kle] == k[T]/T?

where € = T. Hence €2 = 0. Denote by p : k[¢] — k the k-algebra projection
which maps € to 0. Note that

kle] ={A1 4 ue | X € k™, p ek}

This follows by (Al + ue)™t = (A7'1 — A~2pue) which shows that A\ € kX
is sufficient for an element A1 + pe to be invertible in k[e]. But it is also
necessary because of the k-algebra homomorphism p.

Definition 1.14. Let G be an algebraic k-group. Then the Lie algebra of
G is the tangent space at the unit element 1 € G. That is,
Lie(G) = p (eq)
where
P« : Homy_a14 (K[G], kle]) — Homy_a1e(K[G], k)
and eg is the counit of k[G]. For the Lie brackets confer [DG80, II.4].

Remark 1.15. A map f € Lie(G) can uniquely be written as

kGl Lokl

x = eq(r)l+d(x)e
which defines a map d : k[G] — k.

The description in the Remark allows us to define a bijective map
Lie(G) — Der(k[G], k)
f = d

where we consider k as a k[G]-algebra via the counit e¢g. This is a well
defined map since f is a k-algebra map if and only if d is a derivation.

These two descriptions of the Lie algebra are helpfull for computations
but it is not that easy to introduce the Lie brackets. Later, we will see how
we can explicitly compute the Lie algebra including its brackets for closed
subgroups of general linear groups.
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Example 1.16. For the additive group G,, we see that
Lie(Ga) = {f:Kk[X] = k]| f(X) = d(X)e}
{f  KIX] = K[ | F(X) = Xe, A€ k)

This translates to
: ~Y _ 8
Lie(Ga) & Derg (k[X], k) = k < — ‘X:O)

which is a 1-dimensional k-vector space.
More general, for a finite dimensional k-vector space V and the group
Go(V), we get
Lie(Go(V)) = {f:V = kle]| f(v) =d(v)e, f k—linear}
= Homy(V, k)
= vV
The identification
Homy,(V, k) = Derg,(S°V, k)
is just the extension as k-derivations.

If we choose a basis of V' and work with the Hopf algebra k[X7, ..., X,],
we can consider the derivations

0
0; :=
YT 0X; Ix=0
These are in fact a k-basis of the Lie algebra. That is,

Lie((Ga)") = Derg(k[X1, ..., Xul, k) = D ké;
=1

Example 1.17. For the multiplicative group G,,, we see that
Lie(Gp) = {f k[X,X Y —kld| f(X)=1+d(X)e}
= {f kX, X Yokl f(X)=1+X, A€k}

This translates to

Lie(Gp) = Derg (k[X, X '], k) = k <£{)X:1>

which is a 1-dimensional k-vector space.
More general, for the general linear group GL(V') we see that

Lie(GL(V))
= {f:End(V)Y — kle] | f(z) = 2(idy) + d(x)e, f k—linear}
>~ {d:End(V)"” — k| d k—linear}
= (End(V)")"
=~ End(V)

with the Hopf algebra k[GL(V)] = S*(End(V)Y)[det™!]. Note that we used
that V is finite dimensional. The Lie algebra structure on Lie(G) corre-
sponds to the usual one on End(V).
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If we choose a basis and work with the Hopf algebra k[a;;][det '], we can
consider the derivations

o s
Kla][det ™Y 2% kfag;|[det™1] 2220, &

for all pairs 1 < r,s < n where d;; is the Kronecker-6. These are in fact a
basis of the Lie algebra. That is,
az‘j=5ij)

0
i - . -1 -
Lie(GLy,) = Derg(k[a;;][det ™), k) = @k < T
Definition 1.18. A representation of the Lie algebra Lie(G) is a k-vector
space V together with a Lie algebra morphism

Lie(G) — End(V)

If we have a morphism f : G — H of algebraic k-groups, there is an
induced map

Lie(f) : Lie(G) — Lie(H)
of Lie algebras. In both the dual numbers and the derivation description, it
is given by precomposition with f# : k[H] — k[G]. Note that for a closed
immersion f, the induced map Lie(f) is injective as f# is surjective.
For a G-representation V' we obtain a Lie algebra representation
Lie(G) — End(V)

This can be computed as follows: Let f € Dery(k[G], k). Then the image in
End(V) is the composition

VAL Ve k[G] L v e kv

Now let G be a closed subgroup of the general linear group GL(V'). Further
assume, that we have an explicit description of Lie(G) as derivations. Then
we can in fact compute the Lie algebra of G by the inclusion

Lie(G) — End(V)

since the image is computed by the method we just described. This provides
a computation of L(G) as a Lie subalgebra of End(V') including the brackets.

Here comes an important class of examples of algebraic k-groups and its
Lie algebras.

Notation 1.19. Let R € k—Alg be finite dimensional. Denote by Aut(R)
the k-group functor

Aut(R)(A) := Aut4(R ®y A)
of algebra automorphisms.

Note that
Aut(R) C GL(R)
is a closed algebraic k-group and hence an algebraic k-group. This provides
Lie(Aut(R)) C End(R)

as a Lie subalgebra. The next Proposition follows from [DG80, 11§4,2.3
Proposition] and computes this subset.
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Proposition 1.20. Let R € k—alg be finite, then
Lie(Aut(R)) = Derg(R) C End(R)

As we are in prime characteristic p, the Lie algebras of algebraic k-groups
carry the additional structure of a p-Lie algebra (also called restricted Lie
algebra). That is, there is a p-th power operation

Lie(G) — Lie(G)
z gl
satisfying certain axioms (cf. [DG80, 11§7,2.1,2.2,3.3]).

Example 1.21. For the general linear group GL(V) the Lie algebra is
End(V) and the operation = — zlP! is given by the usual p-th power of
endomorphisms.

There is also the obvious notion of p-Lie algebra representations of Lie(G):
These are k-vector spaces V together with a p-Lie algebra morphism

Lie(G) — End(V)
Further any morphism of algebraic k-groups f : G — H induces a mor-
phism of p-Lie algebras
Lie(f) : Lie(G) — Lie(H)

That is, any G-representation V induces a p-Lie(G)-representation V. In the
case that G is a closed subgroup of the general linear group GL(V') we get an
inclusion Lie(G) C End(V) of p-Lie algebras. Hence the operation z — z[!
on Lie(G) C End(V) is also just the usual p-th power of endomorphisms.

1.3. Quotients. Confer [Jan03, 1.6, 1.7] for the definition of images of al-
gebraic k-group homomorphisms and of quotients G/H for an algebraic
k-group inclusion H C G. Note that in general,

G/H(A) # G(A)/H(A)
in contrast to kernels of group morphisms f : G — H which satisfy
Ker(f)(A) =ker(f(A)) C G(4)

If N C G is a normal algebraic k-subgroup, then the quotient G/N is an
algebraic k-group according to [Jan03, 1.6.5(1)] as we are working over a field
k. Denote the projection as m: G — G/N. It has the universal property of
a factor group. Further, by [Jan03, 1.6.3] the functor

7 : G/N—rep — G—rep
is fully faithful and its image consists of those G-representations on which
N acts trivially. So, this subcategory is equivalent to G/N—rep under 7*.
Now the kernel of a morphism f : G — H of algebraic k-groups is a

normal closed algebraic k-subgroup of G by [Jan03, 1.2.1]. So, the quotient
G/ Ker(f) is an algebraic k-group. First we have the following Lemma.

Lemma 1.22. Let f : G — H be a morphism of algebraic k-groups. Then
f induces a closed immersion

G/Ker(f) — H
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which is given by the kernel of the corresponding morphism
7 K[H] = K[G]
of k-algebras.

Proof. The quotient G/ Ker(f) is an algebraic k-group as Ker(f) is a normal
subgroup. By [DG80, 11§5,5.1b], the embedding

f:G/Ker(f) > H

is a closed immersion and G/Ker(f) = Im(f). So let J C k[H]| be the
defining ideal. We get a factorization

k[H] — k[H]/J — k[G]

of f#. Now let I = Ker(f#) and C C H the closed subscheme defined by
I. Then J C I and we also get a factorization

k[H|] — k[H|/J — k[H]/I — k|G]
This provides

GLocm(f)cH
Hence C' = Im(f) and I = J as claimed. O

Now for the case that G/ Ker(f) = H, we get the following for represen-
tations.

Lemma 1.23. Let f : G — H be a morphism of algebraic k-groups, such
that it induces an isomorphism

G/ Ker(f) = H
Then the functor
f*: H—rep — G—rep
maps irreducible representations to irreducible representations.
Proof. We can replace f by the projection

m: G — G/ Ker(f)

So let V' be an irreducible G/ Ker(f)-representation and 0 # W C 7*(V)
a G-subrepresentation. Then Ker(f) acts trivially on W as it does on 7*V.
That is, there is an induced G/ Ker(f)-representation on W, which we de-
note by W’. That is, 7*W’ = W. Recall that the functor 7* is an equivalence
of categories between G/N—rep and its image. As W C 7#*V in the image
of *, we obtain that W' is a subrepresentation of V. By the irreducibility
of V, we get W = V as k-vector spaces which shows the irreducibility of
V. O
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1.4. The Frobenius Morphisms. As we are working over a field k£ of
prime characteristic p, there is the important notion of Frobenius mor-
phisms. For this, confer [Jan03, 1.9]. Note that Jantzen works with perfect
fields for convenience. As we work over arbitrary fields, we have to give the
general constructions.

Definition 1.24. Let GG be an algebraic k-group. Set the r-th Frobenius
twist of G as the affine k-scheme G(") which is represented by the algebra
k[G] ®p, - k. Here f": k — k is the p"-th power morphism.

Notation 1.25. For an A € k—Alg and r € N denote by A(~") the k-algebra

E kA
and the natural k-algebra morphism
A oA
a — a”

which is nothing else than the r-th power of the Frobenius morphism. Fur-
ther denote
A(T) =A ®k7fr k

Also for a finite dimensional k-vector space denote
VO =V @ k
We get for all A € k—Alg
G (A) = Homy, (k]G] @p. i k, A) = Homy (k[G], A7) = G(A)

This provides a natural structure of an algebraic k-group for G(") as A —
A7) is functorial.

Definition 1.26. Set the r-th Frobenius morphism F[, : G — G to be
FG(A) == G(y) : G(A) = G(AT)) = ¢1(4)
using the identification we just made.
By definition, F" is a group homomorphism. Further, we get
FloFg=F5

Example 1.27. For a finite dimensional k-vector space V and the additive
group G,(V), we get a canonical isomorphism

Ga(V)") = Gu (V)
This follows by
Ga(V")(A) = Homy (V") A) = Homy, (V, AT") 2 G, (V)"
The r-th Frobenius morphism then translates to
Fg, vy Ga(V) = Ga(V™)

which is induced by 7, : A — A7),
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Example 1.28. For the general linear group GL(V') we get a canonical
isomorphism
GL(V)") = GL(V™)
This follows by
GL(VM)(A) = GLA(V") @ A) = GL 4-n (V @ ATT) 2= GL(V)")(A)

as V" @, A=V @i A7), The r-th Frobenius morphism translates to the
canonical GL(V)-representation V("):

Fip vy : GL(V) = GL(V()

Example 1.29. Let R be a finite dimensional k-algebra. Then we get a
canonical isomorphism

Aut(R)" = Aut(R™)
This follows by
Aut(RM)(A) = Auta(R™ @, A) = Aut - (R @ ATT) 22 Aut(R)™(A)

as R @, A~ R®; A", The r-th Frobenius morphism translates to the
morphism

Fu(r) : Aut(R) — Aut(R")
which is induced by (—) ®4.,, A",
Remark 1.30. The morphism FY, corresponds to the morphism

(F&)*
EG] @k, pr kb ——— k[G]
a® A\ — a’" \

of Hopf-algebras: The universal element of the morphism G(v;) is
(3 : KlG) = KIG)") € Grie) )

Under the isomorphism G(k[G]("")) = G") (k[G]) this is mapped to the map
above as claimed.

The morphism F7, is often called the geometric Frobenius morphism. It is
a morphism over k. Further the r-th power of the absolute one " : G — G
which corresponds to the p"-th power map on k[G] factors through F{;: The
composition

a—a®1 (Fé)#
k[G] —— k[G] @,y E —— k[G]

coincides with f”. The first map corresponds to a morphism G — G
which is called the arithmetic Frobenius morphism as it is the p"-th power
map on k.

Remark 1.31. Let G' be an algebraic k-group which is defined over Fy,.
That is, there is an algebraic Fy-group G, such that G = (G, )r. Then

k[G] = Fp[Gr,] ®F, k

and

KIGY)) = (Fy[Gr,] ®F, k) ®pr k = Fp[Gr,] ©x, k = k[G]
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as k-algebras. This uses the fact that the diagram

F, 2,

L

k—k

commutes. That is, we get a canonical isomorphism G(") 2 G as algebraic
k-groups. Then the r-th Frobenius morphism can be identified with a group
homomorphism

Fo:G—=G
which corresponds to the k-algebra map
(F&)*
Fp[Gr,] ®F, k Fp[Gr,] ®F, k

a®X = a” @\

Example 1.32. The additive group G, is defined over I, and the r-th
Frobenius morphism Fg_ : G, — G, corresponds to the k-algebra map

KX X225 kX

The general linear group GL,, is defined over F), and F¢y : GL, — GL,
corresponds to the k-algebra map

p
aij'—ﬂlij

klaij]i<i j<nldet™] klaij)1<ij<nldet™"]

Notation 1.33. Denote the kernel of the group homomorphism F(/, : G —
G") by G,, the r-th Frobenius kernel of G.

Note that for all r,s > 1, we obtain

(G(s))r o (Gr)(s)
by the very definition of the twists and kernels.
Example 1.34. The r-th Frobenius kernel of the additive group G, is given
by the Hopf algebra

k[X)/X?

Further

Go,r(A) = (Ar, +)

)

where

A, = Ker(A L5 A)
More arbitrary, for a finite dimensional k-vector space V', the r-th Frobenius
kernel of the additive group G, (V) is just

Go(V),(A) = Homg(V, A,)
Further, the Hopf algebra is given by
S*v/(v()

where V(") is identified with the set of all v?" € S*V for v € V.
By choosing a basis of V', we get the Hopf algebra

E[X1, ..., X, /(XP . XP)
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of (Gg) = (Gqap)™. In fact, this will be the k-algebra whose automorphism
group we are going to study in this thesis.

Remark 1.35. The r-th Frobenius kernel is a closed algebraic k-subgroup
defined by the following ideal: Let eg : k[G] — k be the counit which
corresponds to 1 € G and let I; = Ker(eg). Then G, is defined by the
ideal of k[G] generated by all fP" for f € I;. Further we see that G, is
infinitesimal: It is finite and I} = Ker(eg, ) in k[G,] is nilpotent.

Due to the factorization

e

(n o FG = Fg'
we get a chain of closed k-subgroups
GicGaCcGsC---CG

Moreover for F{, restricted to G4, this provides a factorization of F5T+S

F’V‘
: Grys — (G(r))s — (G(r))r-i-s = (GH—S)(T)
Further the inclusion GG, C G induces an isomorphism

Lie(G,) = Lie(G)

Fg

r+s

of p-Lie algebras as
Dery,(k[G,], k) 2 Dery,(k[G], k)
by the Remark above. Moreover F(, : G — G induces
Lie(F%) = 0 : Lie(G) — Lie(G™)
as
Dery,(k[G], k) KCEAON Dery, (K[G™], k)

equals 0. That is, the Lie algebra is not effected by the Frobenius morphisms.
This is the reason why in prime characteristic, the canonical functor

G—rep — Lie(G)—rep
in general is not an equivalence of categories. But the functor
G1—rep — Lie(G)—p—rep

always is according to [Jan03, 1.9.6]. So whenever G equals its first Frobenius
kernel, the first functor is an equivalence of categories between G—rep and
the subcategory of p-Lie algebra representations of Lie(G).

The next Proposition and its proof is essentially [Jan03, 1.9.5]. But as
Jantzen works with perfect fields, we need our own general version.

Proposition 1.36. Let G be a reduced algebraic k-group. Then the r-th
Frobenius morphism F{, : G — G induces an isomorphism

G/G, = G

and for all s > 1
GrJrS/GT = (G(T))s
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Proof. According to Lemma 1.22, the embedding
FL:G/G, — GM
is a closed immersion and it is given by the ideal which is the kernel of

(FE)*
K[G] @k b~ K[G]

This morphism acts as (F5)#(a®\) = a?" \. As k[G] is a reduced k-algebra,
the kernel is 0. That is, we get an isomorphism

FL:G/Gr = G

induced by F" as claimed.
Now we consider the subgroup (G("), ¢ G("). As we know that F(/ is an
epimorphism, we get that Fy, induces an epimorphism

Fi: (FE)H(GM)e) = (G1),
But due to the factorization Fj,,) o Ff, = Fgfs, we get
Gris = (FG)TH(GM)s)
So, we get an epimorphism
Fg: Grys — (GM)y)
and hence an isomorphism
Grys/Gr 2 (G1),
as claimed. O
If G is defined over IF,, and reduced, we obtain an isomorphism
G/G, S G
induced by F7, : G — G and
Gris/Gr = Gy

Notation 1.37. Let G be an algebraic k-group and V a G(")-representation.
Then we denote by

VI = (FE)"(v)
the r-th Frobenius twist of V.

If G is defined over I, the r-th Frobenius twist provides an endofunctor

[r]
G—rep VovT, G—rep

Corollary 1.38. Let G be a reduced algebraic k-group and V' an irreducible
G _representation. Then the r-th Frobenius twist V' is also irreducible.

Proof. By the previous Proposition, the r-th Frobenius morphism F¢, : G —
G induces an isomorphism

G/G, = G
As VI = (F5)*(V), we get the claim by Lemma 1.23. O
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2. BAsics ABOUT THE ALGEBRAIC GROUP G(n,r)

Let k be a field of prime characteristic p. Let us denote
U=k"
Further let again U") = U ®p, rr k where f7 : k — k is the r-th power of the
Frobenius morphism. Then we can consider the k-linear map
un o SPU
u®l — u

where SP"U is the p"-th symmetric power of U. This is an injective map
and we can introduce the k-algebra

R(n,r) := S*U/(U™)

the quotient of the symmetric algebra of U by the ideal generated by the
image of the map above. If we choose a basis of U, say the canonical one,
we obtain

7 T

R(n,r) = klz1,...,zn]/ (2] ... 2b)

a truncated polynomial ring.

Notation 2.1. For A € k—Alg, we set
R(n,r)a :== R(n,r) ® A

Note that under the identification R(n,r) = klz1,...,z,]/(a] ,...,2h)
we obtain )
R(n,m)a = Alx1, ..., 2]/ (x} ... 2L")
We will formulate most of the results coordinate-free. But we will always
explain the concrete meaning under the polynomial ring identification. Also,
for convenience, we will use this identification for some proofs.

Remark 2.2. Note that the k-algebra R(n,r) is Z-graded since the sym-
metric algebra

SU=Esv
i>0
is Z-graded and the ideal (U(")) is homogeneous. Under the identification
R(n,7) = klz1,...,za)/ (2} ... 2b)
we get, ‘
(R(n,7))* ={P(x1,...,2) € R(n,r) | deg(P) =i}

Now we can introduce the algebraic group G(n,r).
Definition 2.3. Define the algebraic group G(n,r) = Aut,(R(n,r)) over k
by

G(n,r)(A) := Auto(R(n,r)4)
the group of A-algebra automorphisms of R(n,r)4 for all A € k—Alg.
Remark 2.4. There is a canonical closed embedding
G(n,r) C GL(R(n,r))

since each A-algebra automorphism is also an A-module automorphism.
This explains why G(n,r) is an algebraic k-group.
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Note that
U AW = U, A)@ar A= Uaeyrk)@rA=U" g A
since the Frobenius on A commutes with the one on k. This implies
R(n,r)a = (Sp(U)/(UM)) @ A= SK(U @ A) /(U @ A7)

In particular, an A-algebra automorphism of (S*U/(U®)) @}, A is uniquely
determined by an A-linear map

Ui A— (SUNUPY) @, A
which in turn is uniquely determined by a k-linear map
U— (SU/(UP)) @, A
That is,
G(n,r) C Hom, (U, R(n,r))
where Hom, (U, R(n,r)) is the set-valued functor
k—Alg — Set
A +— Homy(U ®k A, R(n,r) ® A) = Homy (U, R(n,7)4)

Remark 2.5. If we identify R(n,r) = klz1,...,2,]/(22 ,... 2% ) this just

says that an A-algebra endomorphism of

R(n,r)a = Alz,...z0)/ (a8 ... 2l
is determined by the images of the variables x1, . .., x,, that is, by n elements
(f1,.-, fn) with f; € R(n,r)4. So we will identify
f = (f17"'7fn)

for f € G(n,r) with f; = f(z;).
2.1. Two Conditions. We already noticed that
G(n’ T) = Mk(R(nv T)) - @k(U, R(na T‘))

Our aim is to give two conditions which will determine when an element of
the right hand side is contained in the left hand side.
In order to do this, we introduce the evaluation at 0.

Definition 2.6. Consider the k-algebra morphism
evo: R(n,r) = k
which is induced by 0 : U — k. This induces a natural transformation
Hom, (U, R(n,r)) — Gq(U) = Homy (U, k)
f= evoof = £(0)
called the evaluation at 0.
Remark 2.7. As k — R(n,r), we can also consider

f(O) € Hoimk(Ua R(’I’L, T))



THE REPRESENTATION RING OF G(n,r) 21

Remark 2.8. Under the identification R(n,r) = klx1,...,z,]/(2] ,...,2h)
the morphism
evo: R(n,r) — k
is just evo(P(z1,...,2n)) = P(0,...,0) for a polynomial P € R(n,r). That
is, the natural transformation acts as
(f17’ . 7fn) = (f1(0)7 M 7f'fl(0))
for polynomials f; € R(n,r)a.
Now we can give a criterion when a k-linear map
f:U—= R(n,r)a
induces an endomorphism
f : R(TL, T)A — R(Tl,’l”)A
Namely, this is equivalent to
FUY" (U e )
But as
(f = F(0)(U) € (U &k A)
this is equivalent to
(FO)U))F =0
In other words,
f(0) € Homg (U, A,) = G,(U),(A)

Remark 2.9. Under the identification R(n,r) = k[z1,...,z,) /(2! ... 25 )
this means that n-polynomials (fi,..., fn) with f; € R(n,r)4 define an A-
algebra endomorphism if and only if

£i(0)P" =0
foralli=1,...,n.

It is left to determine when an endomorphism is an automorphism. For
this we consider the graded k-algebra

gri(R(n,r)a) = (R(n,m)a)/ I /PO TP ...

by the ideal I = (U ®; A). The direct sum is finite since I"®"~D+1 = 0,
Furthermore we see that

I'/ T = (R(n,7)4)"
and we get an isomorphism of Z-graded A-algebras

gry(R(n,r)a) = R(n,7)a
For an endomorphism f : R(n,r)4 — R(n,r)4 with f(I) C I, we get an
induced endomorphism
grfrgry R(n,r)a — gry R(n,m)a

which is in fact induced by a linear map

fo:URr A—U®i A

and gives again an endomorphism of R(n, )4 by the isomorphism. Note that
gr f is invertible as a morphism of A-algebras if and only if fy is invertible
as an A-linear map.
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Remark 2.10. Under the identification
R(n,7)a = Alzy, ... 2]/ (@, ... 27)

the ideal I is just (z1,...,zn)R(n,7)a. Then an endomorphism f with
f(I) C Iisgiven by n polynomials (f1,..., f,) with f; € (z1,...,z,)R(n,7)A.
We obtain

Ofi
(r F) () z&{
J

which is just the degree 1 part of fi. That is, the map f — gr f cuts off
the higher degree terms of the defining polynomials. Furthermore the linear
map fo: A" — A™ is given by

Jp = (gf (0)>ij € M,(A)

the Jacobian matriz.

The linear map fy € End4 (U ®; A) in fact determines when f is an auto-
morphism. This is made precise by the algebraic Inverse Function Theorem.
Its proof is mainly inspired by [Eis95, Chapter 7.6].

Proposition 2.11. Let A € k—Alg and
f:R(n,r)a — R(n,r)a
an A-algebra morphism with the property that
fU @A) C (U@, A)
Then f is an isomorphism if and only if
fo: U A—U®R®i A
is an isomorphism of A-modules.

Proof. As we already noticed, fy is invertible if and only if gr f is invertible.
So let f be invertible. We get f(I) = I and hence f~!(I) C I. This gives
us gr(f~1) which is inverse to gr(f) as gr acts functorially.

Now let gr f be bijective. Let us start by showing the surjectivity of f.
Let y € R(n,r)4 and i maximal such that y € I'. As gr f is surjective, there
is an a; € I’ such that

y— f(a;) =0 mod I'™?

That is, y — f(a1) € I'*1. Again by the surjectivity of gr f there is an
as € I't1 such that

y— f(a1) — f(a2) =0 mod Iit2

Now continue this process. As the filtration is finite, this process terminates
and produces elements ay,...,ay € R(n,r)4 with

N N
doaj | =D fla) =y
j=1 j=1

which shows the surjectivity of f.
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For the injectivity of f let 0 # a € R(n,r)4. Further let 0 # in(a) €
(R(n,r)a)! = I'/T'T! be the homogenous part of a of lowest degree, the
initial term. Then

(gr f)(in(a)) # 0

since gr f is injective. But as
a=in(a) mod I'*!
we get

f(a) = (gr f)(in(a)) mod 1!
which is not 0. This shows the injectivity of f and finishes the proof. O

Remark 2.12. Under the identification

R(n,r)a = Alar,...oz0) /() ... ab)
this means that an endomorphism f given by n polynomials (fi,..., fn)
with f; € (x1,...,2,)R(n,7)_4 is invertible if and only if its Jacobian matrix

Jy € My(A) is invertible.

If we have an arbitrary morphism f : R(n,7)4 — R(n,r)4, then f — f(0)
satisfies the condition

(f=ropi) ci
Notation 2.13. Denote for f: R(n,r)4 — R(n,r)a
Jo:=(f = f(0))o
which extends the notation to arbitrary morphisms.
Remark 2.14. Under the identification
R(n,7)a = Alzr,. .. 2]/ (@2, ... 20)

the map fo for arbitrary f is still given by the Jacobian matrix J; as this
does not depend on the part f(0).

As f is invertible if and only if f — f(0) is, we get the following Corollary.
Corollary 2.15. Let
f:R(n,r)a — R(n,7r)a

be an endomorphism of A-algebras. Then f is invertible if and only if the
A-module map

fo:URrA—U®Ri A

is invertible.
So we obtain a diagram of natural transformations

f=er(f—£(0))

Endy,_ . (R(n,7)) End;,_ . (R(n,7))

End,(U)

where the transformations reflect isomorphisms.
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Notation 2.16. Let f: U ®; A — R(n,r)4 be A-linear. Then the compo-
sition

UewALs Rinyr)a = Rin,r)y = U @y A
is induced by a morphism fy € End4(U ®j A). Here 7 is the projection onto
the first part of the Z-grading.

Note that in the case, that f comes from End4(R(n,r)4), this notation
coincides with the old one.
Finally, we reached our aim and we can conclude

Proposition 2.17. The algebraic group G(n,r) identifies with the closed
subfunctor

{f € Hom (U, R(n,7)) | £(0) € Gu(U)r, fo € GL(U)} € Homy (U, R(n, 7))
Remark 2.18. Under the identification
R(n,r)a=Alzr,...,x,) /(20 ... 2
we obtain
G(n,r)(A) = {f = (fr,-, fa) | Vi: fi(0)"" =0, Jy € GLa(A)}

This Proposition shows in particular, that G(n,r) is defined over I, as
all involved functors Hom, (U, R(n,)), Go(U), GL(U) as well as the maps

f= f(0), = fo are.

2.2. Important Subgroups. Our next aim is to introduce three crucial
closed subgroups of G(n,r) where we will make heavy use of Proposition
2.17.

Let us start by the observation, that we have an inclusion of algebraic
k-groups

GL(U) c G(n,r)
which is induced by
End; (U) — mkalg(R(T% 7))
Definition 2.19. Define the subgroup G° = G(n, )" by
G := GL(U) c G(n,r)

Remark 2.20. Under the identification

R(n,7)a = Alzy, ... 2]/ (@, 20)
and GL(U) = GL,, the subgroup

G° = GL, c G(n,r)

is given as follows: For a matrix (a;;);; € GL, we assign the element g =

(91,--+,9n) € G(n,7) by
n
9i = Zajiiﬂj
j=1

That is, the matrix acts on the generators x1,...,x, as it does on the basis
€1,...,en, of K" =U.

Now we define the subgroup G—.
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Definition 2.21. Define the subgroup G~ = G(n,r)~ by the image of the
group homomorphism
Go(U)r — G(n,r)
f = f+id

Remark 2.22. The inclusion G~ < G(n, ) is well defined as (f+id)(0) = f
and (f +1id)g = id for f € G4(U),. Further

G~ ={feGn,r)|f=[0)+id}
As G~ 2 G4(U)y, we get
KIGT] 2 K[Ga(U),] = S*U/(U") = R(n, )
This will be of importance for later computations.
Remark 2.23. Under the identification
R(n,r) = klz1, ..., za) /(2 ... ab))
the subgroup
G~ C G(n,r)
is given by the elements g = (g1,...,9n) € G(n,r) with
9i = a; + T

where afT = 0. The isomorphism G~ = G4(U), = (G4,)" can explicitly be
described as

a- = Gar X ... X Ggp
(a1 + 1, .. an+x) —  (a1,...,a,)
Also note that G~ is unipotent.
The next subgroup is in some sense complementary to G° and G~.
Definition 2.24. Define the subgroup Gt = G(n,r)" by
GT = {f € G(TL,T) | f(O) - OafO = 1d}
Remark 2.25. Note that G is the image of
Mk(U, R(”) T)22) — G(nu T‘)
f o= id+f
This shows that G is closed under multiplication. In order to show that
it is closed under taking inverses, consider f € G, that is, f(0) = 0 and
fo =1id. Now let g = f~! € G(n,r) the inverse. Write g = g(0) + ¢’. That
is, ¢'(0) = 0. Then by
fo(g9(0)+4)=9(0)+ fog =id
with (f o ¢’)(0) = 0 we get g(0) = 0. Now we have
id = (feog)o=foog0=g0
as f(0) = 0 = g(0) which finally shows that g € G*.
Further, we get

k[GT] = S* Homy, (U, R(n,r)=%)Y
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which shows that G is an affine space AV with
N = dimy(U) - dimg(R(n,7)2%) = n(np” —n — 1) = n(n(p" — 1) — 1)
Remark 2.26. Under the identification
R(n,r) = k[z1,...,xn)/(a} ... a2
the subgroup
GT Cc G(n,r)
is given by the elements g = (g1,...,9n) € G(n,r) with
gi=xi+ Y au!
I,deg(I)>2
where I € {0,...,p" — 1} is a multi index and the degree map is just
summing up
deg:{0,...,p" —1}" ;N
Affine directions can be seen as follows: Take i € {1,...,n} and a multi
index I with deg(I) > 2. Then we can define g = (g1 ...,9n) € G(n,r)(k[a])

by
it ax! j =i
97 e jAi
This follows from the identification
k[G+] = k[a(z‘,l)]z'e{1,...,n},Ie{o,...,pul}n,deg(f)zz

where the index ¢ corresponds the the basis element e; € U and the multi
index I to the basis element z! € R(n,r)>2.
Also note that G is unipotent.

Now we will proof the crucial Lemma which shows that the three sub-
groups G, GY and G are complementary by the multiplication map. Later,
we will call such a structure a (pre)triangulation of G(n,r).

Lemma 2.27. The multiplication map
m:GT xG'x G~ = G(n,r)
is an isomorphisms of k-functors.
Proof. Let us define a map
Gn,r) L Gt xG'x G
Fom ((F=FO) o fg ' fo £(0) +id)
which is inverse to m: First, we have
(f = FO) o fot o foo (f(0)+id) = (f = F(0)) o (£(0) +id) = f

which shows that mog = id. Further forid +h € G*, g € G°, and i+id € G~
we obtain

f=(id+h)ogo(i+id) =i+ g+hg
That is, f(0) =i, fo = g, and (f — £(0)) o f;'' = id +h which shows that
gom = id. (]
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Notation 2.28. For f € G(n,r) denote the unique preimage of m as
(f+,fo, f-) € GT x G x G~
That is, f = fyfof-.
Remark 2.29. Note that
J- = J(0) +1id

Definition 2.30. Let us denote by G and G the closed subgroups of G
given by

G ={feGnr)| f0)+ fo=f}
and

G = {f €Gnr)| 1(0) =0}
Remark 2.31. Note that
G =G %G and G =G"xG°
where G acts by conjugation on G~, G respectively.

Further we get that G~ equals its r-th Frobenius kernel as it can be
identified with (G, )". Thus by use of the multiplication isomorphism

m:GT x G x G™ — G(n,r)
we can ask if the subfunctors
Ui = Ui(n,r) :=m(G*T x G* x G;) C G(n,r)

for 1 <4 < r are subgroups. In fact, they are which is proven by the next
Lemma. But note first that by using Proposition 2.17, we obtain

Ui={f € Gn,r) | f(0) € Ga(U)i}

as G; = Gy(U);.
Remark 2.32. Under the identification

R(n,r) = k[z1,...,xn) /(] ... a2
and g = (g1,...,9n) With g; € R(n,r), we get G, = (G,,;)" and hence

Ui={ge€Gn,r)| g0 =0Vj=1,...,n}
Lemma 2.33. The subfunctors
Ui C G(n,r)

are algebraic k-subgroups.

Proof. We have to show that U; is closed under multiplication and taking
inverses.
For this, we will use the following rule:

Claim. Let h_ € G; and g € U;, then (h_g)_ € G .
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For convenience, we will show this using the identification made above:
As G7 = (Ggp)"™ by g — (91(0),...,9,(0)), this is equivalent to

(h—g); (0" =0

forallj=1...,n. Solet ho = (a1 +x1,...,an +x,) and g = (g1, .., 9n)-
Then

(h—9)j(0) = gj(ar + z1,...,an + 2,)(0) = gj(a1,...,an)

whose p-th power vanishes as a?i =0 and gj(O)pi =0 as g € U;. This shows
the claim.
So let h = hyhoh_,9 = g+gog— € U;. Thatis, h_,g_ € G; . Then

(hg)- = (h—g+90)-9- € G;
by the claim above. This shows that U; is closed under multiplication.
Now let g = gygog— € U;. That is, g— € G, and also gt e G, , as
G; C G(n,r) is a subgroup. Then

((9+909-)"")— = (9-"95 95— € Gy

by the claim above. This shows that U; is closed under taking inverses. U

2.3. Weight Spaces. If we turn to representations G(n,r) — GL(V) of
the group G(n,r), we obtain a simple weight space filtration as follows: The
multiplicative group G,, is contained in GL(U) = G by scalar operations.
Thus we can associate to each G -representation V a G,,-representation V'
by restriction. Then we take the comodule map

¢:V = VerkX, X1

$=> X"

nez

with ¢, € End(V). Note that X (G,,) = Z where we associate to each n € Z
the group homomorphism (—)" : G,, — G,,. This corresponds to the Hopf
algebra map X +— X". That is, by setting V;, := ¢,(V), we get the usual
weight-space filtration

V-,

nez
The equality holds since ¢2 = ¢,, and ¢; o ¢; =0 for i # j.

and write

Remark 2.34. Note that for a GO-representation V the weight space filtra-

tion
V= @ V.,

nez
is GY-invariant. That is, for all n € Z, we get that V;, C V is a G°-
subrepresentation. This follows by the description
Vo={veV]a(w)=a"vVaecG,}

and the fact that all elements of G° = GL(U) commute with the ones of
G,, C GO.
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Example 2.35. For the canonical representation G(n,r) C GL(R(n,r)),
we obtain

R(n,r) = @R(n,r}i

i>0
where
R(n,7); = R(n,r)"
That is, the weight filtration coincides with the Z-grading.

2.4. The Lie Algebra. As we already know, G(n,r) is a closed subgroup
of GL(R(n,r)). According to Proposition 1.20, we get

Lie(G(n,r)) = Derg(R(n,r)) C Endg(R(n,r))
Example 2.36. For r = 1, we get as p-Lie algebras
Lie(G(n,1)) = Derg(R(n,1)) = W(n,(1,...,1))

the Jacobson-Witt algebra, a Lie algebra of Cartan type. Confer [SF8S8,
3.5.9,4.2.1]. But note that for » > 1, we have

Lie(G(n,r)) = Derg(R(n,r)) # W(n, (r,...,r))

even as Lie algebras. This follows as Lie(G(n,r)) carries the structure of
a p-Lie algebra (or is restrictable) but W(n, (r,...,r)) does not by [SF8S,
4.2.4(2)).

Now note that for any k-vector space V a k-derivation S*V/(V (")) —
A is uniquely determined by a k-linear map V. — A as we are in prime
characteristic p. Denote this correspondence by

o

Homy(V,A) — Der(S*V/(V(™), A)
fo—= f

As f/+\g = f—k g, this correspondence is an isomorphism of k-vector spaces.
This provides

Homy (U, R(n,r)) = Derg(R(n,r)) = Lie(G(n,r)) C Endg(R(n,))
as k-vector spaces. In particular, we get the following Lemma.
Lemma 2.37. Under the identification

R(n,r) = klz1,...,zn]/ (2] ... 28)

the operators

8, = ' =— € Endy(R(n,7))

al'i
with i € {1,...,n} and 1 € {0,...,p" — 1}" provide a k-basis of
Lie(G(n,r)) C Endg(R(n,r))

Proof. We use the isomorphism

L(G(n,r)) = Homy (U, R(n,r))
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from above. If we choose the k-basis ey ..., e, of k™ = U, we get as a k-basis
of R(n,r) the monomials z/. Then a k-basis of Lie(G(n,)) is given by the

maps
=i
5(i’1)(€j):{0 j#i

By the isomorphism, we get that the image of this operator in Endg(R(n,r))
is obtained by extending it as a k-derivation of R(n,r). But this provides
precisely

0
¢, = ! oz, € Endg(R(n,7))
which shows the claim. O

Our next aim is to study how the inclusions G, G°, GT C G(n,r) behave
under this identification. As these three subgroups are closed, we obtain
inclusions of Lie algebras Lie(G*) C Lie(G(n,r)) for « € {—,0,+}. In fact,
we obtain the following Lemma.

Lemma 2.38. Under the isomorphism Lie(G(n,r)) = Homg (U, R(n,r)),
the k-vector space morphism

Ly : Lie(G™) @ Lie(G?) @ Lie(GT) — Lie(G(n, 7))

induced by the inclusions iy : G* — G(n,r) for a € {—,0,+} translates to
the canonical isomorphism of k-vector spaces

UY @ Endy,(U) ® Homy, (U, R(n,7)=%) — Homy (U, R(n,r))

which is induced by k C R(n,r), U C R(n,r), and R(n,7)=%2 C R(n,r).
Hence v, is also an isomorphism of k-vector spaces.

Remark 2.39. Under the identification
R(n,r) = klz1,...,2,)/ (22, ... a)

we computed a k-basis of Lie(G(n,r)) in Lemma 2.37. In view of its proof,
in order to get the Lemma, it suffices to prove that the inclusions ¢, induce

Lie(G @ka ) C End(R(n,7))

as well as
Lie(G?) = @ké C End(R(n,r))

where i € {0,...,p" — 1}"™ is the multi-index with (1), = 0. Note that
8(j7 corresponds to the (i,7)-th elementary matrix E;; € M, (k) = Lie(GY).
Finally we need
Lie(GY) = @  kéur) C End(R(n,r))
(i,1), deg(I)>2
Proof of 2.38. We start with G~ and use the identification G~ = (G,,)".
Let G, C G~ be the i-th component. Further we know that

Lie(Gq,) = Dery(k[ai]/a? , k) = ké;
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where

e}
T ﬁ'aizo

51' = k[az]/af
Then the induced operators d1,...,0, € Lie(G™) are a k-basis. The image
of ¢; in Lie(G(n,r) is computed by the k[G, ,]-comodule map
R(n,r) — R(n,r)® kla;]/a"
P(xy,...,xn) = P(x1,...,0; + x4 ..., %)
composed with a%i|ai:0. This provides

0
0 = P d(i,(0,...,0)) € End(R(n,7))

This proves the assertion for G™.
Now we proceed with G~ = GL,. Consider the (r,s)-th component of
GL,. The corresponding Lie(GL,)-element is the derivation

el
Bars —17 @ij 0
Dy« kfagj][det ™1 2= kfag;][det™1] <272 &

Its image in End(R(n,r)) is computed by the k[a;;][det *]-comodule map
R(n,r) — R(n,r)® kla;;][det ™
P(xi,...,xn) +— P(Axy,...,Axy,)

where A = (aj;);; is the universal matrix, composed with D,. This provides

D,, = xrai = 0(s,7) € End(R(n,7))

as claimed.

Finally we take the affine space GT = AN. Let i € {1,...,n} and I €
{0,...,p" — 1}" be a multi-index with deg(/) > 2. Consider the (i,I)-th
component of Gt which is isomorphic to the affine line Al. Let L)
A' < G be the inclusion. Then the corresponding Lie(G™T)-element is the

derivation
#

Diry + KIGH] 005 kia] 22922,
Its image in End(R(n,r)) is computed by the map
R(n,r) — R(n,r)® kla]
P(xy,...,xn) +— P(z1,...,7; +aﬂsl,...,xn)

composed with %|a:0. This provides

0
D(i,I) = flflaixi = (5(1-71) S End(R(n,r))

as claimed. O

Corollary 2.40. Let 1 < i < r. Then the inclusion U;j(n,r) C G(n,r)
mduces an isomorphism

Lie(U;(n,r)) = Lie(G(n,r))
of Lie algebras.
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Proof. By definition
Ui =Gt x G x Gy

and the inclusion ;7 C G~ induces an isomorphism of Lie algebras
Lie(G;") = Lie(G™)

So the claim follows from the previous Lemma. O

Notation 2.41. For (; ;) € Lie(G™), that is, I = (0,...,0), we shortly
denote

5i = 5(i,(0,...,0)) € Lle(G_)

If v : H— GL(V) is a representation where H is either G(n,r) or one of
its subgroups mentioned above, we shortly denote the images of the Lie(H)-
generators d(; ) under the induced representation

Lie(y) : Lie(H) — End(V)

also by 6(; 1y € End(V) if no confusion is possible.

Remark 2.42. Note that for the Lie(G™)-basis J;, we obtain that
[0;,0;] = 0 € End(R(n,T))

for all 1 < i,57 < n since §; = 6%1 € End(R(n,r)). That is, for each G™-

representation V', we also obtain
[(5@, (5]] =0¢ End(V)
by the induced Lie(G~)-representation. That is, these operators commute

in End(V).

Now we proceed with the weight space filtration of the adjoint represen-
tation.

Lemma 2.43. For the adjoint representation
Ad : G(n,r) — GL(Lie(G(n,r)))
we obtain the following weight space filtration
Lie(G(n,r)) = @ Lie(G(n,r));
i>—1
with
Lie(G(n,7)); = Homy (U, R(n,r)"t)
That is,
o Lie(G™) = Lie(G(n,r))-1

e Lie(G%) = Lie(G(n, 7))o
e Lie(GT) = Lie(G(n,r))>1

In other words
Ad(a)(f) =a""'f
for all a € Gy, and (f : U — R(n,r)") € Lie(G(n,r)).
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Proof. Recall that

Lie(G(n,r)) = Homg (U, R(n,r)) < Endg(R(n,r))
by extension as k-derivations. Let a € G,, and f : U — R(n,r)" €
Lie(G(n,r)). First note that

Ad(a)(f) =ao foa™t € End(R(n,r))
where a acts as @’ on R(n,7)?. As f: U — R(n,r)?, we obtain
aof=adf e Hom(U, R(n,r))
and finally
aofoa ' =a"tf € Homy(U, R(n,r)) = Lie(G(n,r))
which shows the claim. (]
Remark 2.44. In other words, G realizes the positive weight part of
Lie(G(n,r)), G° the zero weight part, and G~ the negative weight part.
This justifies and explains our notion of G~, G and G*.
Proposition 2.45. Let v : G(n,r) — GL(V) be a G(n,r)-representation
with induced representation Lie(y) : Lie(G(n,r)) — End(V). Then an ele-
ment f: U — R(n,r)" in Lie(G(n,r)) acts on the weight spaces of V as
f(Vi) C Vitia
In other words
foor=dryi-10of

Proof. In order to show f(V%) C Viyi—1 we have to check the equation

v(a)(Lie(7)(f)(v)) = a* ! Lie(y)(f(v))

for all v € V,, and all a € G,,. For this, use the well known equation

7(a) o Lie(y)(f) o v(a) ™" = Lie(y)(Ad(a)(f))
for all a € G,,. Together with Ad(a)(f) = a’~!f by the previous Lemma we
get '
v(a) o Lie(7)(f) = a'' Lie(y)(f) o ~(a)
Now we get the claim by applying this equation to v € V}, since vy(a)(v) = a*v
for all a € Gy,. O

In particular, let V' be a G(n, r)-representation whose G,,,-weight filtration
looks like
V=V....8 VN
with N > k. That is, V = V5, and V5, C V or in other words V}, is the

lowest non-zero weight space. Then we always know that
n
Vi C () Ker(5)

i=1
by the previous Proposition since §;(Vy) C Vx_1 = 0.
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3. TRIANGULATED GROUPS

3.1. Pretriangulations and Triangulated Morphisms. We will work
with algebraic k-groups H which satisfy the following definition.

Definition 3.1. An algebraic group H is called pretriangulated if there are
three algebraic k-subgroups (H~, H?, H*) of H such that the multiplication
map
m:H" xHx H™ — H

is an isomorphism of k-schemes.

The three subgroups (HT, H°, H™) are called a pretriangulation of H.
Further we call H, H™ the positive (negative) wing of H. The subgroup
HO is called the heart of H.

Note that the definition depends on a choice of the three subgroups.
Whenever we work with a pretriangulated group H we assume a fixed choice
of such three subgroups. Furthermore the three subgroups have to be closed.

Example 3.2. First of all, our group of interest
G = G(n,r) = Aut(R(n,r))

is pretriangulated by the three subgroups (G*, G°, G~) according to Lemma
2.27. Confer section 2.2 for the definition of these three subgroups. Fur-
ther the subgroups U; C G(n,r) for 1 < i < r are pretriangulated by
(G, GY, G; ).

Moreover, the r-th Frobenius kernel G, of a split reductive group G is
pretriangulated by the three subgroups (U, T}, U, ) according to [Jan03,
11.3.2].

Remark 3.3. Note that the notion of pretriangulations is symmetric. That
is, if H is pretriangulated by (H*, H®, H™), it is also pretriangulated by
(H—,H°, H"). This follows by the commutative diagram

Ht* x HOx H- 2= H

H™ x HYx Ht —=H
where ¢ is the inverting map and 7 is the twist of factors which are both
isomorphisms of k-schemes.

Definition 3.4. Let G and H be pretriangulated. A group homomorphism
f G — H is said to be triangulated if it respects the pretriangulations.
That is, for all « € {—,0,+}, the restriction of f to G* factors through H®.
In other words, there are three group homomorphisms f¢ : G* — H® such
that
F=F xfOxft

Example 3.5. Let H be pretriangulated by (H*, H°, H~). Then the r-th
Frobenius twist H(") is pretriangulated by ((H)"), (H%)™ (H~)) and
the r-th Frobenius morphism

Fj,:H— H®™

is a triangulated morphism with Fy; = Fp o X Fpo X F_.
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Notation 3.6. For a pretriangulated group H, denote the unique preimage
of h € H under m as

(hg,ho,h—) € HT x H* x H™
That is, h = hyhoh_.
Lemma 3.7. Let G and H be pretriangulated and f : G — H a triangulated
morphism with f = f~ x fO x fT. Then
Ker(f) = Ker(f1) x Ker(f") x Ker(f")
and the canonical morphism
G — GV /Ker(f1) x G°/Ker(fY) x G~/ Ker(f™)
mduces an isomorphism
G/Ker(f) = G/ Ker(f) x G°/Ker(f°) x G~/ Ker(f™)

Proof. The decomposition of Ker(f) just follows from the decomposition of
f. Now consider the morphism

¢ G — GT/Ker(f1) x G/ Ker(f°) x G~/ Ker(f™)
which is the composition of
G G xGOx G T G Ker(f1)x G0 Ker(f0) x G/ Ker(f ™)

where 7, : G* — G/ Ker(f®) is the projection. By the decomposition of
Ker(f), we get: h = hihoh_ € Ker(f) if and only if h, € Ker(f®) for all
a € {—,0,+}. This shows that Ker(¢') = Ker(f). According to Lemma
1.22, this induces a closed immersion

¢ : G/Ker(f) — GT/Ker(f) x G°/Ker(f°) x G~/ Ker(f™)
Now denote A% = k[H?], B* = k[G®] and I® = Ker(f*)#. Then the closed
immersion ¢ is given by the kernel of

KIG / Ker(f)] @ K[G°/ Kex(f°)] & kG~ / Ker(£7)] 25 k[G]

In order to get our claim, we need to prove the injectivity of this map.
According to Lemma 1.22 again, we get

k[G*/ Ker(f*)] = A*/I¢
for all « € {—,0,+}. So we can consider
(f)*
(v*)# : k[G*/ Ker(f*)] = A%/I* —— B“

and it suffices to show that

AT @ A0 A= 1 1
is injective. For that, we have to show that
AT A’ @ A7 /Ker((f ) @ (O @ (fH)F) 2 AT/ IT @ A%/ 10 A= /T
This follows by the observation that the ideal
[=IMeA@A )+ (ATRI"0 A7)+ (ATRA'®IM) c AT A0 A
is contained in Ker((f~)* ® (f°)* @ (f*)*) and induces an isomorphism

AT @AY Q AT T2 AT/TT @ A%/ I°® A= /1~

IHOHFUO*(fFH)*

Bt B® B~
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This finishes the proof. U

Remark 3.8. For a triangulated morphism f : G — H, we obtain a closed
immersion

G/Ker(f) — H

by Lemma 1.22. By the previous Lemma and its proof, we obtain a pretri-
angulation of Ker(f) and G/ Ker(f). Then the closed immersion translates
to

GV /Ker(f1) x G°/Ker(f°) x G~/ Ker(f~) — H" x H* x H-
which is induced by f+ x f0 x f~.

Example 3.9. Let H be pretriangulated by (H+, H, H~). As we already
saw, the r-th Frobenius morphism FY; is triangulated with Fy; = Fj, X
Fyo x Fy—. Thus the Lemma provides a pretriangulation

H,~H'x Hx H-
of the r-th Frobenius kernel of H.

3.2. Triangulations and Irreducible Representations. Now we extend
our definition of a pretriangulated group. We will need this to develop the
machinery which is necessary to understand irreducible representations of
triangulated groups.

Definition 3.10. An algebraic group H is called triangulated if there is a
pretriangulation (H~, H°, H) of H satisfying the following statements:

(1) There are two semidirect products by conjugation which are also
subgroups of H:

H =H xHand H' := H" x H°

(2) H- and H* are unipotent.
(3) H™ is finite.

The aim of this section is the following: For a triangulated group H
we want to establish a one-to-one correspondence between the isomorphism
classes of irreducible representations of H and those of its heart Hy. This
reads similar to the standard machinery for parametrizing irreducible rep-
resentations of reductive groups and their Frobenius kernels as it occurs for
example in [Jan03, 11.2,11.3].

Example 3.11. Let H be triangulated by (H*, H°, H~). Then the pretri-
angulation (H,", H, H,") of the r-th Frobenius kernel H, is also a triangu-
lation.

The pretriangulation (G*, G, G™) of our group of interest

G =G(n,r) = Aut(R(n,r))
is a triangulation (confer section 2.2). Furthermore the pretriangulation
(GT,GY,G;) of U; C G(n,r) is a triangulation.
Moreover, the pretriangulation (U;",T,,U,”) of an r-th Frobenius kernel
G, of a split reductive group G is a triangulation.
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Remark 3.12. Note that the notion of triangulated groups is not symmet-
ric. For example, the subgroup G+ C G(n,r) is an affine space, so it is not
finite and the pretriangulation (G=, G, G*) of G(n, r) is not a triangulation.

In fact, our machinery for parametrizing irreducible representations of
triangulated groups generalizes the one which applies to Frobenius kernels
of reductive groups.

Remark 3.13. Note that the multiplication isomorphism
m:H xH —H
of a triangulated group H is compatible with the following actions:

e the action of H~ by right multiplication on H~ and H

e the action of H by left multiplication on H" and H
e the action of H? on H~ by conjugation

e the action of HY by right multiplication on H' and H

Hence this also holds for the corresponding isomorphism
kH) ™ k[ @, k[H )
and the induced actions of H ™, FJF, and HO.
Definition 3.14. For a triangulated group H, define the functor
I:H—rep — H—rep
as
I(V) := indg+(V{;r)

Here V;, is the trivial extension of V with respect to the H'-part of "'
and indg+ is the induction functor (cf. [Jan03, 1.3]) which is right adjoint

to the restriction functor resg+.

Remark 3.15. Note that the small letter notion of “rep” refers to finite
dimensional representations. It is not clear that I maps finite dimensional
representations to finite dimensional representations. But this follows from
the following Lemma since H ™~ is finite.

Here is a computation of the functor I which also shows the exactness.

Lemma 3.16. Let H be triangulated. For any H°-representation V we get
rest (V) = indje V = k[H ] @ V

as H -representations. Here HY acts on k[H™] as it does on H™ by conju-
gation and as given on' V. The group H™~ acts on k[H ] via the right reqular
representation and trivially on V. In general the action of an element h € H
on I(V) is given as follows
Wz @) = Va(6n(@) 2 v)

Here ¢y, : k[H™] — k[H™] corresponds to the map a — (ah)_ with a € H™
and

), € HO(k[H™]) = Homy (k[H°), k[H )
corresponds to the map a — (ah)y with a € H~ and thus acts on k[H™| @V
as V is an H°-representation.
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Proof. We use the description of [Jan03, 1.3.3], but we interchange the roles
of the left and right multiplication. This can be done by precomposing all
morphisms involved in the description of the induction with the inverse map
t: H— H. Then we get

(V) = {f e Mor(H,V,) | f(hg) = hf(g) Vg € H, Vh € F*}

where V, is the k-functor defined by V,(A) = A ®; V for all k-algebras A.

Recall that H only acts on V by its H’-component. The H-action of I(V)
is given by right translation. By the definition of a pretriangulation, the
multiplication map

m:H xH —H
is an isomorphism. That is, a morphism f : H — V, with the compatibility
condition above is uniquely determined by its restriction to H~. Thus we
get,
I(V)C Mor(H™,V,) 2 k[H | @,V

which is an equality. Now the H-action computes as:

(9./)(a) = flag) = (ag)of((ag)-)
forall f: H- — V,,a € H™ and g € H. This shows the claim about the
general H-action. As for h = hg € H°, we have (ahg) = ho(hg "ahg) for
a € H™, we get (ahg)— = hglaho and (ahg)g = hg. Thus the action of H~
and H? translates as claimed in the statement of the Lemma, hence
res%_ (V) = indgg Vv
by [Jan03, 1.3.8(2)] as H = H~ x H". O
Example 3.17. For our group of interest G(n,r) = Aut(R(n,r)), we obtain
(V)2 kG| @V ERMn,r) e,V
as k[G~] = R(n,r). Using the identification
R(n,7) 2 k[G™] = kla1,...,an)/(a® ... a2")
the action of g = (¢;); € G(n,r) translates to

A1y ..

g(P(al'-'van)®v) - (agﬂ( Oa;

>) (9(P) @ v)

This can be seen as follows: For a = (a; + x;);, we obtain

ag = (gi(al +x1,...,0n +$n))7,

Hence
(ag)- = ((ag)i(0) + zi)i = (gi(a1,...,an) +xi); € G~
and
_ (Dol t .. an + 20) _ (99ilar,-- -, an) 0
o= < Oz ) 0o day ij ¢

Finally we have g(P) = P(gi(ai,...,ay)) in a;-variables which shows the
claim.
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Note that for an H-representation W, the invariants WH ™ are H'-inva-
riant as H = H~ x HOC is a semi-direct product. Thus we can view WH"
as an H O-representation.

Lemma 3.18. Let H be triangulated and V be a HC-representation. Then
(V1 =v
as Ho—representations.
Proof. We use the computation
resi_1(V) = k[H ] @y, V
of the previous Lemma. Then we get
(k[H )@ VT =k[H " @, V2ke, VeV
by [Jan03, I 2.10(5)] which shows the claim. O
We obtain irreducible representations from I by taking socles:

Proposition 3.19. Let H be triangulated. Then for an irreducible H°-
representation V' the socle of 1(V') is an irreducible H -representation. Fur-
thermore,

(socI(V)H™ =V
and

socl(V)=HV Cc I(V)

Proof. Let us assume that there are two distinct irreducible subrepresenta-
tions U, W of I(V') for V irreducible. The sum of these two is direct hence

UsW cI(V)

Now take H -invariants. Since H~ is unipotent we have that both UH~
and WH™ are nonzero by [Jan03, 1.2.14(8)]. Further we have the inclusion
of H 0—representatioms

U™ oWt c vyl =zv

by Lemma 3.18. This contradicts the irreducibility of V as H-representa-
tion.
Now let

U := (socI(V))T" c (V)7 =zv
which is an inclusion of H -representations. Again U # 0 as H~ is unipo-

tent. That is, U = V by the irreducibility of V. The last statement follows
from the irreducibility of the socle. O

In fact, we obtain all irreducible representations as I-socles:

Proposition 3.20. Let H be triangulated. Then for each irreducible H -
representation W there is an irreducible HO-representation V' such that

W = socI(V)

Furthermore V' is unique up to isomorphism.



40 MARKUS SEVERITT

Proof. Let W be an irreducible H-representation. According to [Jan03,
1.2.14(1)] W is finite dimensional. Further the dual WV is nonzero. As
H* is unipotent, we get (WY)#" # 0. By [Jan03, 1.2.14(2)] there is an
irreducible H-representation V' such that
Vic (W) cwV

Thus we obtain a nonzero map

Vi wY
which is H%-equivariant and HT-equivariant. Hence it is ﬁJr—equivariant.
That is, by setting V' := (V')V as the dual and applying dualization, we
obtain a nonzero map

W=V
which is F+—equivariant. Note that V is also an irreducible H°-representa-
tion. By the adjoint property of the induction, there is a unique H-equiva-
riant map

W —=1(V)
such that e o f/ = f where
e:1(V)=>V
is the map = ® v — v, that is, the projection onto V. Hence f’ # 0. By the
irreducibility of W, the map f’ is injective and its image is an irreducible
H-representation. Thus
Im(f') C socI(V)

This is an equality since socI(V) is irreducible by the previous Proposition.
Hence W = socI(V).

For the uniqueness consider irreducible H-representations V', V'’ with
socI(V) = socI(V'). By the previous Proposition, the H -invariants of
these socles are V., V' respectively. But this means that V and V' have to
be isomorphic. O

Now we reached the aim of the section: The map
{irred. H'~rep}/~ — {irred. H—rep}/~
V = socl(V)
is a bijection: The injectivity follows from the formula
(socI(V)™ =V

for an irreducible Hy-representation V. The surjectivity follows immediately
from the previous Proposition.
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4. REPRESENTATIONS OF REDUCTIVE GROUPS

In the last section, we studied the irreducible representations of triangu-
lated groups H which are in one to one correspondence to those of their
hearts H?. In particular, we obtained this for our group of interest G(n, r).
Further the heart of G(n,r) is isomorphic to the split reductive group GL,,.
That is, before we proceed with the computation of the irreducible repre-
sentations of G(n,r) and its representation ring, we need to understand the
irreducible representations and representation ring of split reductive groups.

We will work with split reductive groups G in the sense of [Jan03, IL.1].

Notation 4.1. An algebraic k-group G is called split reductive if there is a
split and connected reductive Z-group Gz such that G = (Gz)y.

A mazimal torus T C G is always assumed to arise from a split maximal
torus Ty C Gy. That is, T = T}.

Example 4.2. The general linear group GL,, is split reductive in this sense
as its Hopf algebra is defined over Z. A canonical maximal torus is given
by the diagonal matrices T' = D,,. Whenever we deal with GL,,, we will
consider this maximal torus.

Remark 4.3. Note that as we work over a field & of characteristic p > 0,
every split reductive group G is defined over F) by (Gz)F,.

4.1. Irreducible Representations. Irreducible representations of split re-
ductive groups are parametrized by the dominant weights as it occurs for
example in [Jan03, II1.2]. In particular the things presented here are partly
taken from [Jan03, I1.1,I1.2].

This parametrization works as follows: Let G be a split reductive group
and let us choose a maximal torus 7" in G. Further let X (T") be the character
group. As T = G], for an r, we get that X (T) is a free abelian group.

Example 4.4. As we consider T' = D,, for GL,,, the character group X (7')
is a free abelian group generated by the projections
¢ : T — Gy,

which maps a diagonal matrix to its i-th entry.

Recall that the elements of X (7T') induce for each G-representation V' a
weight space filtration
V=P w
)

AEX(T
with
W={veV]|tv=AthVteT}
Remark 4.5. For GL,,, we canonically get G,, C GL,, by scaler operations
and also G,, C D, = T. Thus, it makes also sense to consider G,,-weights.

There is a connection between the G,,-weight spaces and the T-weight spaces
which requires the following degree map:

deg: X(T) = Z

induced by
deg(e;) =1
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Now the G,,-weight spaces of a GL,-representation V can be described as
Vi= @ Vi
Aedeg™1(4)
Furthermore, denote by
Y(T) = Hom(G,,,T)
the cocharacter group. This is again a free abelian group.

Example 4.6. For GL,,, the cocharacter group Y (T') is generated by
€ : Gy —T
which acts as
6;(@) =akb;; + Z Ejj
J#i
the diagonal matrix with i-th entry a and all others 1.

There is a bilinear pairing
(=, =) X(T)xY(T)—>Z

given as follows: For f € X(T') and ¢ € Y(T'), the composition f o ¢ is an
endomorphism of G,, and thus it corresponds to a unique integer (f, ¢) by
taking its power morphism.

Example 4.7. For GL,, we obtain that the ¢;’s and e}’s are dual to each
other:
(e, €;> = dij
Now we consider the root system R C X(T) which are the non-zero
weights of the adjoint representation on Lie(G). Further we denote by R
the positive roots and by S the simple roots (cf. [Bou68, VI| and [Jan03,

I1.1]). As R is a root system, for each « € R, there is a coroot o € RV C
Y(T).
Example 4.8. For GL,,, we get
and
Ry={e—¢|1<i<j<n}

as well as

S:{Ei—€i+1|1§i<n}
For each o = ¢; — €; € R the coroot is given by

oV =e ¢

Now we can introduce a partial order on X (T').

Definition 4.9. Let A\, € X(T'). Then A < p if and only if

p-Ae> Na= Y Ng

a€esS BERL

Example 4.10. For GL,, and j > i, we get ¢; < ¢; as ¢, —€; € RT.
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Further we can introduce the weights which parametrize the irreducible
representations of a split reductive group G.

Definition 4.11. The dominant weights are
X(T)y :={ e X(T)|{\aY)>0Vae S}

The name dominant is explained by the following parametrization Theo-
rem of irreducible G-representations which follows from the results of [Jan03,
11.2].

Theorem 4.12. Let G be a split reductive group and T a mazximal torus.
Then for each dominant weight X € X(T')y there is a unique irreducible
G-representation L(\) characterized by:

(1) All nonzero weights p of L(\) satisfy p < A.

(2) The dimension of the highest weight space L(\)y is 1.
Furthermore the L(X\) for A\ € X(T)+ form a complete list of pairwise non-
isomorphic G-representations.

Of course, the uniqueness is meant up to isomorphism.

Our next aim is to understand the irreducible GL,-representations more
concretely and to obtain some computational rules. In order to do this, we
consider the fundamental weights

€1+ ...+ ¢

for all 4 = 1,...,n. Note that the fundamental weights are a Z-basis of
X(T). In fact, they are dominant and they uniquely generate all dominant
weights which is made precise in the following Lemma.

Lemma 4.13. The dominant weights of GL, are freely generated by the
fundamental weights in the following way:

X(T)+ =Net®...®&N(e1+...+ep-1) DZ(e1 + ...+ €,)
Proof. First observe that for a = ¢; — €11 € S, we get
i

(et e a) = ((er €)= (en,€j11)) =y
k=1

which shows that
€1+ ...+¢ EX(T)Jr
for all i = 1,...,n. Now express an arbitrary A € X (7' uniquely as

/\:Zni(el—i—...—i—ei)
=1

with n; € Z. Then A € X(T)4 if and only if
(A a’)y >0
for all & € S. But for a = ¢; — ¢;41 with 1 < ¢ < n this condition means
NaYy=n; >0

by the computation above. That is A € X(7T')4 if and only if n; > 0 for all
1 <4 < n which shows the claim. O
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Let us denote again U = k™. Then GL, = GL(U) acts canonically on
U. This action extends to the exterior powers A‘U by operating on the
factors simultaneously. The role of these representations is explained in the
following Lemma which is taken from [Jan03, I1.2.15].

But first, we have to introduce the Weyl group of GL,,, namely W = 5,,,
the n-th symmetric group. It acts on X(7T) by permuting the ¢;’s and on
each GL,-representation V as permutation matrices. In fact, the W-action
behaves with respect to the weight spaces as

U)(V,\) = Vw by
for all w € W and A € X(T') (cf. [Jan03, 11.1.19)).

Lemma 4.14. For alli=1,...,n, we have
AZU%L(el—i——i—ez)
Proof. The weight space filtration is given by
AIU: @ k(ejl/\.../\eji)
J1<..<Ji
and the weight of ej, A ... Aej is > €. By € > €11, we get that the
highest weight space is
k‘(q—i—...—i-q)

By the parametrization Theorem 4.12, it is left to show that AU is irre-
ducible. We already know that all weight spaces are 1-dimensional. Fur-
thermore, all occurring nonzero weights are conjugate under the Weyl group
W. Let 0 £V C AU be a subrepresentation. Then

Vy\ C (AZU) A
for all weights A € X (7). In particular V) # 0 for one of the A'U-weights
A. But by dimension reasons, we get

Vi = (A'D),
Now all nonzero weights p of A'U occur as wA = u for a w € W. That is,
we obtain

Vi = Var = wVa = w(N'U)x = (A(U))uwr = (A (U)),

Hence V = A*U which shows the irreducibility of AU. U

Unfortunately, in our prime characteristic p, the irreducible representions
of arbitrary dominant weights are not that easy to compute. At least there
is a presentation of all L(\) as quotients of explicit representations.

Notation 4.15. Denote for all A =Y | ni(e1 +...+¢) € X(T)4, that is,
n; > 0fori=1,...,n— 1, the generated subrepresentation
W(A) := GL,(v()\)) € Sym™ (U) ® Sym™ (A%U) @ ... ® Sym™ (A"U)
where
vA)=e€e"@(e1Nea)?®@...Q (e1 A... Nep)™
Note that for n,, < 0, we take
Sym™ (A"U) = (A"U)®™ .= ((A"U)¥)®"n

as A"U is 1-dimensional.
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Note that for a fundamental weight A = €1 + ... + ¢;, we get
Wieg+...4¢)=ANU=Lleg +...+¢)
This rule generalizes as follows.

Lemma 4.16. For all dominant weights A € X (1) there is a subrepresen-
tation V.C W(X) such that

W(N)/V = L(X\)
Further, the residue class of v(\) is a highest weight vector of L(\).
Proof. The highest weight space of
Sym™ (U) @ Sym™(A%U) @ ... ® Sym™ (A"U)

is kv(\). That is, it is 1-dimensional and of weight A\. Thus the highest
weight space of W(A) = GLy(v())) is also kv(A). Hence W () contains
L()\) as a simple composition factor and v(\) € L(X) is a highest weight
vector. Thus in a composition series

0=WoCW1C...C Wy CWg=W(N)

there is a unique 1 <7 < s such that
Wi /Wi—1 & L(\)
That is, v(A\) € W; but v(\) ¢ W;—1. As W(\) = GL,(v()\)), we obtain

s =14 and

W)/ Wyt 2 L())

as claimed. O

There are some more rules applying to general split reductive groups G:
Recall that G is defined over [F,. Hence the r-th Frobenius twist G is
canonically isomorphic to G as algebraic k-group. In particular, G is also
split reductive. Furthermore, a chosen maximal torus 7" of G induces a
maximal torus T = T of G("). We can thus write X (T') and X (T)y for
both G and G("). Note that the restriction of F{, to the torus T is the p"-th
power morphism

(—)P"

Fr.T —— 1)

Thus the induced map

X(F7)

X(T) = x(T™) X(T)

is multiplication by p". This implies, that for a G(")-representation V', the
weights of the r-th Frobenius twist V"l are the ones of V' multiplied by p".

Our first Proposition computes r-th Frobenius twist of irreducible G-
representations.

Proposition 4.17. Let G be split reductive. Then for all dominant weights
A€ X(T)4, we get

LV = L(p7A)
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Proof. According to Corollary 1.38, the G-representation
L( )\)[T]
is irreducible. By Theorem 4.12, it is left to determine its highest weight.
The weights of L(A\)[) are the ones of L()\) multiplied by p". As
A ps=pA>pu
the highest weight of L(A)I" is p"A. This shows the claim. O
This rule generalizes as Steinberg’s Tensor Product Theorem which can

be found as [Jan03, I1.3.16,11.3.17]. We will state it in the next Proposition.
First we have to introduce a new notation.

Notation 4.18. For all » > 1 set
X (T)={AeX(T)|VaeS: 0<(\aY)y<p'}
Example 4.19. For GL,, we get

XT(T):{/\:Zni(q—i-...—l—ei)eX(T)|V1§i§n—1:0§ni<pr}
i=1

Note that
Xi(T)cXeo(T)yCc---Cc X (T) C--- C X(T)+

Proposition 4.20. Let G be split reductive, A € X, (T), and p € X(T)4.
Then

LA +p"p) = L(A) @ L(p)""

Jantzen works with perfect fields but according to his introduction to
[Jan03, I1.3], the results of this section we are referring to hold for arbitrary
fields.

4.2. Irreducible Representations of Frobenius Kernels. Our next aim
is to give a parametrization of the irreducible representations of Frobenius
kernels G, of split reductive groups G. Furthermore, we want to relate them
to the irreducible representations of G.

For each A € X(T), in [Jan03, I1.3], a G,-representation L,()) is intro-
duced. The following Theorem follows immediately from [Jan03, 11.3.10].

Theorem 4.21. Let G be split reductive. Then the following statements
hold:

(1) For all A € X(T), the G,-representation L,(X) is irreducible.

(2) If A is a set of representatives of X(T)/p"X(T), then the L,()\)
with A € A form a complete list of pairwise nonisomorphic G-
representations

In order to understand these representations more concretely, there is the
following Proposition which is [Jan03, I1.3.15].

Proposition 4.22. For all A € X,.(T), we get
resgr LA\ = L,.(\)
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So, for all A € X(T),, the L,()) arises from an irreducible G-representa-
tions by restriction. If there is a set of representatives A for X (T")/p" X (T)
with A C X,.(T), all irreducible G,-representations arise in this way. So the
question is: When does this happen? By [Jan03, I1.3.15 Remark 2], such a
A exists for groups G which are semi-simple and simply connected: In this
case X, (T) itself is a set of representatives. It also holds for GL, which
requires the following notation.

Notation 4.23. For GL,,, denote
n
X;(T) = {)\:Zni(el—i—...—i—ei)eX(T) v1§i§n:0§ni<p”}
i=1

Now X/ (T) is indeed a set of representatives for X (7)/p" X (T') and
X(T) € X (T)
So all irreducible (GL,,),-representations arise as restrictions of L(A) for

A e X/(T).

4.3. The Representation Ring of GL,. Our next aim is to give a com-
putation of the representation ring of GL,, that is, the Grothendieck-ring of
the category of finite dimensional representations. Note that there is an gen-
eral Theorem computing it for split reductive groups which works as follows:
Consider the group ring of the weight group Z[X (T')] and the character map

Rep(GL,) %5 Z[X(T))

V] = > dim(Va)e())

AEX(T)
where V) is the A-th weight space and e()\) the basis element of Z[X (T)]
corresponding to A € X(T'). We already noticed that for all w € W, we
have

wVy = Vipa
Thus we get
ch(V) € Z[(x ()"
Now there is the computation
Rep(GL,) = @5 Z[L()]
AEX(T)4

as an abelian group by the parametrization Theorem 4.12 and Jordan-Hoélder
(cf. Remark 1.8). That is, the classes of the L(\) for A € X (7). are a Z-basis
of Rep(GL,,). Again by the parametrization Theorem, we obtain

ch([LN)]) = e(A) + D dim(L(A))e(n)

p<A

for all A € X(T')4+. That is, ch maps a Z-basis of Rep(GL,,) to a Z-linearly
independent set in Z[X (T")] which shows that ch is injective. By [Jan03,
11.5.8] the ch([L(\)]) also generate Z[X (T)]" and hence

ch : Rep(GLy) — Z[X (T)]V

is an isomorphism of rings.
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We want to understand this isomorphism more explicitly. For this note
that we can compute Z[X (T)]": As X(T) = Z", we get

ZIX(T)) =2t . ) =2ty ot (b1 ) 7Y

the Laurent polynomial ring in n variables by the identification e(e;) = t;.
Using W = 5,,, we get

ZIX(W =Zs1,. .., 50,5, ]

with s; the i-th elementary symmetric polynomial in the variables ¢1, ..., tp.
Then we have as preimage of s; the representation A'U:

Ch(AiU>= Z €(€j1+"'+6ji): Z tjlu-tji:Si
J1<.<Ji J1<<Ji
Note that this provides another explicit proof of the surjectivity of ch for
the reductive group GL,. What we got in the end is that
Rep(GL,,) = Z [[A'U],...,[A"U], [(A"U)] 7]

a free polynomial ring with the last variable inverted.
Now we are ready to prove a result which will be important for the compu-
tation of the representation ring of G(n,r). Again we use the identification

R(n,7) = klz1, ..., 2z,)/ (22, ... aP)

which is a GL,, = GL(U)-representation. As we are only working with
GL(U), we denote

1
F = FGL(U) and Fr = FéL(U)
We want to consider the map

R(n.r)]-(-)
y) B OFE,

Rep(GL(U)) @ Rep(GL{UW 7, Rep(GL(U))

which will be crucial for the computation of the representation ring of
G(n,r). Our aim now is to compute the kernel by using the structure of
Rep(CGL(UM))-modules: Rep(CL(U)) is such a module by F* and [R(n,)]-
(=) as well as F™* are maps of Rep(GL(U(1)))-modules hence the sum as well.
We introduce the Rep(GL(U")))-element

n

5 = 3 (-1 (AT

i=1
Furthermore we consider the Rep(GL(U))-element

n

§=0d0=>Y (-1)[A'T]

i=1
Our aim is to prove the following.
Proposition 4.24. The kernel of

Rep(GL(U)) & Rep(GL(UM)) LD g o arwy))

is generated by (6, —(F"~1)*(8,)) as an Rep(GL(UM))-module.
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In order to prove this, we use the computation of Rep(GL,,) by the char-
acter map as given above.

As the character map ch factors through Rep(T"), we can compute the
character of [R(n,r)] by the observation that

R(n,r) = (Kla1)/2} ) ® ... © (Klza] /a}))
as a T-representation. Since

7"71 '
N |
ch([ 23] /2 D:Z e(jei) :thz ;—1 GZ[tlﬂ...,t#]
:1 (2

we obtain

n

Pl t; —1

Then the character of §, computes as

n n n
h(5;) = (1) (ATO]) = S (-1)si = [t~ 1) € Zlsr -, 5,577
i=1 i=1 i=1
by a well known characterization of the elementary symmetric polynomials
Si.

Now, we translate the map (F")*: We already noticed that the application
of the functor (F")* acts on the weight filtration by multiplication by p"
of the occurring weights. That is, we obtain the following commutative
diagram

Rep(GL(UM)) == z[tEL . 4]
<FT>*i lw
Rep(GL(U)) —> Z[t! ... 2]

where 97 is the p-th Adams operation which is defined by ?(¢;) = t!. Thus
(F")* is injective. This also shows that

(F")* = (4*)" : Rep(GLy) — Rep(GLy,,)

is the r-th power of the p-th Adams operation on Rep(GL,) under the
isomorphism GL(U")) 2 GL,,.

As
PP((¥P) " (chd)) = (H (ti —1) ) H( — 1) = ch([R(n,7)]) ch(d)
we get

(6, —(F"1)*(8,)) € Ker([R(n,7)] - (=) + F™)

We also saw, that the map F™* is injective. Further the multiplication with
[R(n, )] is also injective. That is, the claim of the Proposition

Ker([R(n, r)] - (=) + F*) = (&, —=(F"~")*(8:))Rep(GL(UM))
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is equivalent to the equality
F*(Rep(GL(U™)) N [R(n, r)|Rep(GL(V))
— [R(n,r))5F* (Rep(GL(UM)))
C Rep(GL(U))

By (6, —(F™1H*(6,)) € Ker([R(n,r)] - (=) + F*), we know that the right
hand side is contained in the left hand side. The equality for » = 1 is proved
in the next Lemma.

Lemma 4.25. The equality
F*(Rep(GL(U™)) N [R(n, 1)]Rep(GL(V))
= [R(n, 1)]6F* (Rep(GL(UM)))
holds.

Proof. As
ch : Rep(GL(U)) — Z[t*. .. t2]
is an injective ring homomorphism, it suffices to prove
ZIEP P N UZ[E, . 5 = (U)Z[EP . ]
with

n n

t—1
Ul:Ht landdzn(ti—l)

i=1 "t i=1

since N
YP(ZIEEL ) = 2t ]
and chof™ = P o ch.

Now let »
t,—1
P= {2 c Z[tE, ...t
t;—1
be generated ideals. These are prime ideals of height 1 since the elements

p

7—1 are irreducible and Z[ .., 1] is factorial according to the following

Lemma. Further we consider the ideals
Qi = (t? —1) C Z[FP, ... 7]
which are also prime ideals of height 1. Our claim is that
P NZIEL, .. 657 = Qi

+1
tl 9.

as prime ideals of Z[tiﬁp x4 |. Note that we have
Qi C BNZIET, ... 7]
That is, the claim follows, if the height of the prime ideal P; ﬂZ[tfp R

is also 1. But this follows from the fact that P; is of height 1 and the

“going-up” Theorem [Mat86, Theorem 9.4] since Z[t{d,. ., t1] is integral
over Z[tiP, ... t27).
Now observe that
()=P,-...-P,=P N...NP, CZItT, ... tF}
and

U) =Q1-...-Qn=0Q1N...NQn CZ[tF", ... 117
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Together with our claim, this provides
(U) NZEP, .. 657 = (Uh6) C Z[EP, ... 2P
which finishes the proof. U
Now we are ready to prove Proposition 4.24.

Proof of 4.24. By the previous Lemma, we know the claim for r = 1. So let
r > 2 and denote

U, = ch[R(n, 5)] = f[ -1
paiey t;i—1
We get
U1¢p(Ur—1) = Uy
and
(¥P)7H(0) = U
Hence we get a factorization of Rep(GL(U™))-module maps

[R(n,r)]-(—)+F"

Rep(GL(U)) ® Rep(GL(UW)) Rep(GL(U))

[F*(R(n,r—1)1)].(—)pid

Rep(GL(U)) & Rep(GL(UM))

By the case r = 1 the kernel of the map [R(n,1)] - (—) & F* consists of the
elements of type

(0y*(a), —da)
for a € Rep(GL(U)™M. Furthermore the map F*(R(n,r — 1)) - (=) @id is
injective. Also, no prime factor t; — 1 of § divides ¢?(U,_1) in the factorial
ring Z[tfp ..., tii?]. Hence, the images of the elements of the kernel of the
map [R(n,r)]- (=) + F* are the elements of the form

(69P (Ur—1)¥?(a), —0U;—1a) = (¥ (Ur—1) - (=) ®id) (59" (a), —(¥*) " (8)a)

for all a € Rep(GL(U)M)). Whence the claim. O
Lemma 4.26. The ring
AR
is factorial (UFD).
Proof. 1t is well known that
Zlt1, ..., tn)

is factorial. By Hilbert’s Basis Theorem [Mat86, Theorem 3.3|, it is also
noetherian. Hence also the localization

+1 +1

Lty ...ty
is noetherian. Now according to [Mat86, Theorem 20.1] an integral noethe-
rian ring is factorial if and only if each prime ideal of height 1 is principal.

So let P be a prime ideal of the localization of height 1. But prime ideals
of a localization with respect to S correspond to prime ideals of the original
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ring which have empty intersection with S. That is, P corresponds to a
prime ideal @ of Z[t1,...,t,] which is again of height 1. By the Theorem
mentioned above, ) = (q) is principal with ¢ ¢ S irreducible and hence
prime. But since we localize with respect to prime elements tq,...,t,, the
element ¢ is also prime in the localization. Hence (¢) C P is an equality
since the height of P is 1. This shows that P is principal and finishes the
proof. O
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5. r-TRIANGULATED GROUPS WITH REDUCTIVE HEARTS

5.1. r-Triangulations. First of all, we extend our definition of a triangu-
lated group.

Definition 5.1. An algebraic group H is called an r-triangulated group
if there is a triangulation (H*, HY, H~) such that the negative wing H~
coincides with its r-th Frobenius kernel H, . A triangulation (H ™, H°, H™)
of H satisfying this additional condition H~ = H, is called an r-triangula-
tion of H.

Remark 5.2. If H is r-triangulated, then it is also r + 1-triangulated as
H - CH_CH".

Further let H be r-triangulated by (H*, H?, H~). Then the r-th Frobe-
nius kernel H, is r-triangulated by (H}, HY, H™).

Example 5.3. The group G = G(n,r) = Aut(R(n,r)) is r-triangulated by
the triangulation (G, G°, G7) since G~ = G,(U),. Moreover, for 1 <i < r,
the subgroup U; C G(n,r) is i-triangulated by (GT,G° G.).

Further, each r-th Frobenius kernel G, of a reductive group G is r-
triangulated by the three subgroups (U, T}, U,").

The final aim of this section is to study r-triangulated groups H whose
heart HY is a split reductive group and whose positive wing HT is reduced.
Our main example is again G(n,r) = Aut(R(n,r)) since Gop = GL,, and
G, = AV is an affine space. Then we will relate the irreducible representa-
tions of such an r-triangulated group H with the ones of its r-th Frobenius
kernel H,. This will work in a similar fashion as it does for split reductive
groups which we discussed in the previous section and we will make heavy
use of this machinery.

Now we will introduce one main advantage of an r-triangulation. Namely,
we can define a group homomorphism L, between H and the r-th Frobenius
twist of its heart (H?)(").

Notation 5.4. Let H be r-triangulated. Define the morphism
Ly H — (H)"
as the composition
B o I, (H))
where 7 is the projection. That is,
Lr(h) = ﬁo(ho)

Lemma 5.5. Let H be an r-triangulated group. Then the following state-
ments hold.
(1) The morphism L, : H — (H®)") is a group homomorphism.
(2) The composition HO % H KN (HO") coincides with the r-th Frobe-
nius Ffo on H° where 1g is the inclusion.
(3) If HY is reduced, L, induces an isomorphism H/Ker(L,) = (H%)"),
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Proof. As the r-th Frobenius on H is triangulated, we get a commutative
diagram

o

H H°

Fgl lFIZO

That is, L, = mp o F;. Further F}; is trivial on H~ = H_. Now let
h = hyhoh_,g = g+gog— be arbitrary elements of H. Then we get
Ly(hg) = mo(F"(hy)E"(ho)F" (h-)F"(9+)F" (90)F" (9-))
= mo(F"(hq ) F" (ho) F" (94)F" (90))
o(F" (h4 ) F" (hog+)F" (90))
o(F"(hy)F" (hogyhy ') F" (ho) F"(90))
= F"(ho)F"(g0)
= Ly(h)L:(9)
since hogyhy' € HT which follows as H? and H* are semidirect.

The second statement follows from the very definition of L, and the fact
the composition

3

3

H° % g =% Y
is the identity.

For the third statement we like to consider (H®)(") as a pretriangulated
group with zero wings. Then the group homomorphism L, is triangulated
as its restriction to Ht and H~ is trivial and the restriction to H° coincides
with Fy, by the second statement. That is, by Remark 3.8, the closed
immersion

H/Ker(L,) < (H°))
translates as
H°/H? = H* /Ker(L}) x H°/Ker(L%) x H™ /Ker(L7) < (H°)")
which is induced by Fj;,. By Proposition 1.36 this is an isomorphism for
H? reduced which shows the claim. (]

Remark 5.6. Let H be r-triangulated such that the positive wing also
coincides with its r-th Frobenius kernel, that is HT = H,'. Then the com-
position

H Ly (7)™ Ly g
coincides with the r-th Frobenius F; on H: For h = hyhoh_ € H we get
F7(h) = " (hs)F" (ho) " (h_) = F"(ho) = L, (h)
Now we can consider the pullback functor
L (H)" —rep —s H—rep

for r-triangulated groups H. This is well-defined as L, is a group homomor-
phism by the previous Lemma. The functor I from section 3 and the functor
L7 are related as follows.
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Lemma 5.7. Let H be r-triangulated, V an H°-representation and W an
(HYY") -representation. Then

I(V @ W) 2 1(V) @ LE(W)
as H-representations.
Proof. Recall that I is the composition

0 (e =+ ind%*
H"—rep —— H —rep —— H—rep

Also the restriction res = resgo can be written as the composition

res -+
H—rep —= H ' —rep —2% HY—rep

Further (F};)* = resoL; by Lemma 5.5. That is our claim reads as
ind 2. (Vir @y, ves (W )u) & ind 22 (Vir) @ Ly (W)
By the Tensor Identity [Jan03, 1.3.6], we obtain
ind2. (Vir) ® L (W) = ind 2, (Viy ® resy. Li(W))
That is, the claim follows if
res Ly (W) = reso(resy Ly (W) = resy Ly (W)

But this holds as L, |g+ is trivial and we are done. O

5.2. Reductive Hearts. Now let H be r-triangulated such that H? is split
reductive. Let T C H? be a maximal torus and X (7). the set of dominant
weights as introduced in section 4.1.

Notation 5.8. For A € X (7T, denote
L(X\ H) :=socI(L(\))

where L()) is the irreducible H°-representation corresponding to A (cf. The-
orem 4.12).

According to the results of section 3 and Theorem 4.12, we obtain the
following parametrization.

Theorem 5.9. Let H be triangulated such that H° is split reductive. Then
the representations L(\, H) with A € X(T')+ form a complete list of pairwise
non-isomorphic irreducible H -representations.

Our first aim is to establish a mod p"-periodicity with respect to the
dominant weights. As a first result, we get that the functor L) provides all
irreducible representations whose weight is divisible by p".

Proposition 5.10. Let H be r-triangulated, H° split reductive, and \ €
X(T)+. Then

L(p'A H) = Li(L(A))
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Proof. By Lemma 5.5 (3) and Lemma 1.23, we get that L}(L(\)) is an irre-
ducible H-representation. Further its restriction to H? is the r-th Frobenius
twist L(\)I"). Now by Proposition 4.17, we obtain

L(p"™) = L)V

Further, the associated H-representation of the irreducible H-representation
L} (L(X)) is obtained by taking G~ -invariants. Thus we get an inclusion

(LY (L) € LX)

of irreducible H-representations which has to be an equality. This shows
the claim. O

Now we are ready to prove the mod p"-periodicity which reads as Stein-
berg’s Tensor Product Theorem 4.20. Recall that

X,(T)={AeX(T)|VaeS: 0<(\a)<p'}
Proposition 5.11. Let H be r-triangulated, H° split reductive, A € X,.(T)
and p € X(T')y. Then
Proof. By Steinberg’s Tensor Product Theorem 4.20, we obtain

LA +p'p) = L) @ L)
for HO-representations. Together with Lemma 5.7, we get
I(LA+p"p) =H(LA)) @k Ly (L(w))
Further
LA+p"p, H) = HL(A +p"p) C (LA +p"p))
by Proposition 3.19. Thus
L+ 9", H) 22 (HL() @ LE(L(1)) = L\, H) @ LE(L(12)
The second equality follows from the previous Proposition. (|

Now we will relate the irreducible representations of H for the weights in
X, (T) with those of the r-th Frobenius kernel H,.
Let (HT, H°, H™) be a triangulation of H which lead to a functor
I:H—rep — H—rep

As the r-th Frobenius kernel of H is triangulated by (H,", H?, H), we also
get a functor
L. : H'—rep — H,—rep

For r-triangulated groups, these two functors are related as follows.

Lemma 5.12. Let H be r-triangulated. Then for each H°-representation
V', we obtain

resﬁT (V) =1, resgg (V)

Proof. This follows immediately from Lemma 3.16 as the negative wings of
H and H, coincide. O

Now let H be triangulated such that H° is again split reductive and T a
maximal torus of HY.
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Notation 5.13. For A\ € X (7)), denote
L(X\ Hy) :=socl,(Ly(N))
(cf. section 4.2).

According to the results of section 3 and Theorem 4.21, we get all irre-
ducible H,-representations in this way.

Theorem 5.14. Let H be triangulated such that H° is split reductive. Fur-
ther let A C X(T)+ be a set of representatives for X(T')/p" X (T'). Then
the representations L(\, H,) with X € A form a complete list of pairwise
non-isomorphic irreducible H,.-representations.

The next Proposition shows that for r-triangulated groups and A € X,.(7')
the corresponding irreducible H-representation restricts to the correspond-
ing irreducible H,-representation if we additionally assume that H™T is re-
duced.

Proposition 5.15. Let H be r-triangulated such that HO is split reductive
and H™ is reduced. Then for all A € X,.(T) we get

L(\, H,) =resf; L(\ H)
Proof. We have to show that
socI.(L,(\)) = resfy socI(L()\))
According to Proposition 4.22, we have
resfly L(\) = Lr())
for A € X, (T'). Together with the previous Lemma we get
soc T (Ly(A) = soc, I(L())
Further by Proposition 3.19 applied to both H and H,, we get
socl.(Ly(N)) = H,L(A) C I(L(N))
and
socI(L(N)) = HL(\)
Hence
soc I (Ly (X)) = socy, I(L(N)) C socI(L(N)) = L(\, H)
as H,-representations. Thus it suffices to check that this subspace is H-
stable as L(A, H) is an irreducible H-representation. As H = "' x H- by

multiplication, it suffices to show this for A and H- separately. As H is
r-triangulated, we have H~ = H_ C H, and get it for H~. Now we can
assume that k is algebraically closed as the whole situation base changes.
According to [Jan03, 1.2.8 Remark], it suffices to check that this subspace
is H (k) = H*(k) x HO(k)-stable as H* and H° are reduced. But [Jan03,
1.6.15(1)] tells us that socy, I(L(\)) is H(k)-stable. Finally

H(k)=H" (k)
as H~ = H_ by assumption which finishes the proof. U
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Now we summarize the practical use of this theory: Let H be r-triangula-
ted with HY split reductive and H* reduced. Furthermore suppose that
there is a set of representatives A for X (T")/p" X (T') such that

A C X, (T)

This holds for example for H? semi-simple and simply connected and for
H® = GL,, (cf. section 4.2). Note that for all A\ € X (T, there is \ € A
and p € X (T)4 such that

A=N+p'u
According to the mod p"-periodicity Proposition 5.11 and the previous
Proposition, the computation of the irreducible H-representations can be
reduced to the computation of the irreducible H,-representations.

In the case of r = 1 we are reduced to the first Frobenius kernel. But
the representation theory of Hj is the same as the one of the p-Lie algebra
Lie(H). Thus in the case of a 1-triangulated group we are reduced to the
computation of the irreducible Lie( H )-representations.

Example 5.16. As the group G(n,1) is 1-triangulated, we are reduced to
the computation of the irreducible p-Lie(G(n, 1))-representations (or simple
restricted Lie(G(n,1))-modules). But

Lie(G(n,1)) = W(n, (1,...,1))

the Jacobson-Witt algebra. That is, we will provide a parametrization of
the irreducible p-W(n, (1,...,1))-representations. We will see later that this
coincides with the one described in [Hol01, 2.2 Proposition] and [Nak92, II]
which goes back to [She88].

Moreover, for arbitrary r > 1, the subgroup U; C G(n,r) is 1-triangulated
and its Lie algebra coincides with

Lie(G(n,r)) = Dery(R(n,r))
Thus, the description of the irreducible U;-representations is reduced to the
one of Lie(G(n,r)). Unfortunately, this will not directly provide the one for
irreducible G(n, r)-representations. But in the next section, we will provide
a transfer morphism
tr1: Ur(n,r) = G(n,1)
with the following property: The p-Lie algebra morphism
Lie(t,1) : Lie(G(n,r)) — Lie(G(n, 1))

induces a bijection on isomorphism classes of irreducible p-Lie algebra rep-
resentations by pullback (confer Remark 6.9). That is, we will obtain the
description for Lie(G(n,r)) by the one of Lie(G(n, 1)).
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6. TRANSFER HOMOMORPHISMS

In order to prepare the description of the irreducible G(n,r)-representa-
tions, we will introduce several transfer homomorphisms. They will be be-
tween the G(n,7r), U;j(n,7), and G(n,r)? = GL,, and their Frobenius twists
respectively.

6.1. First Type. The first type of transfer homomorphisms are
Gln,r) =5 (G0
fo= Feo(fo)

for r > 1. Note that we already discussed these morphisms in the general
setting of r-triangulated groups in the previous section. In particular the
L, are group homomorphisms according to Lemma 5.5. This Lemma also
provides that they induce isomorphisms

G(n,r)/ Ker(L,) = (G*)™

Furthermore, we already saw in Proposition 5.10, that for the induced func-
tor

L (GH") — G(n,r)—rep
we obtain
LIL(\) = L(p"\,G(n,r))
for all A € X(T')+.

Remark 6.1. As G = GL(U), we obtain (G°)") = GL(U)) and we can

view L, as a G(n,r)-representation
L, : G(n,r) = GL(U™)
Remark 6.2. Under the identification
R(n,r) = k[z1,...,2n) /(2] ... a2

and (G9)(") = G = GL, we obtain: For f = (f1,..., fa) € G(n,7)

Lo(f) = Féu, (Jy) = ((gﬁg(o))p )

6.2. Second Type. The next type of transfer homomorphisms are

T, :G(n,r) = G(n,r — 1)

ij

for r > 2 which can be defined by the following observation: Let S(n,r) be
the subalgebra of

R(n,r) = S°U/(UM)
generated by U(!). That is, by the image of
v scu/ )
uRA —  uP

Then
R(n,r — 1) = S(n, 1)
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as k-algebras as
Ren,r =)0 = (s20/00-)" 2 5200 (@) ) = (0, 7)

Further each R(n,r)-automorphism stabilizes S(n,r) and

Aut(R(n,r — 1)) = Gn,r — 1)V
This induces T, by restricting an R(n,r)-automorphism to S(n, ).
Remark 6.3. Under the identification

R(n,7) = klz1, ... 2]/ (22, ... aP)
the subalgebra S(n,r) is generated by =¥, ...,2h. So, for f = (f1,..., fa) €
G(n,r) we get

T(f) = (1" 1) € Glnyr = 1) = Glnyr = 1)

Here for a polynomial P = Y Aja!, we denote the polynomial Pl .=

r—1
> A?;UI . Note that by taking the residue classes mod z? , the coefficients
As vanish for the I = (i1, ...,i,) with at least one i; > p"~1.

Note that 7T, is triangulated: The restriction to the negative wings is just
the first Frobenius morphism

Fé, @y, Ga(U)r = (Ga(U)r—1))

where we identify G(n,j)” = G4(U);. The restriction to the hearts is also
the first Frobenius morphism

G0 1 GO — (GY &

Hence, it also respects the positive wings as f(0) = 0 implies 0 = F1(f(0)) =
(T-(£))(0) and fy = id implies id = F'(fo) = (T,(/))o.
Lemma 6.4. For all r > 2, The morphism T, : G(n,r) — G(n,r — 1))
induces an isomorphism

G(n,r)/ Ker(T,) = G(n,r — 1)V
Proof. As T, is triangulated, the closed immersion

G(n,r)/Ker(T,) = G(n,r — 1)1
translates to

G(n,r)T/Ker(T;F) x G°/Ker(T?) x G~/ Ker(T,")
= (Gn,r =))W x (G)V x ((G7)V),

according to Remark 3.8. We want to show that this is an isomorphism.
As T, is the first Frobenius morphism and G~ = G,(U),, T, induces an
isomorphism on the negative wings by Proposition 1.36. Furthermore T =
Fcl;o' So by the same Proposition again, 7T, induces an isomorphism on the
hearts. So it is left to show that the closed immersion

T : G, )t/ Ker(T}) < (Gln,r — 1))
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is an isomorphism. According to Lemma 1.22; this is given by the kernel of
the morphism

(TH)# 2 (k[G(n,r = 1)) D] = k[G(n,r)*]
So we have to show that this kernel is 0. This morphism is just
S® (Homy, (U, R(n,r — 1)22)V)1) — §* Homy (U, R(n,r)>2)Y

which is induced by

2OV
(Homy,(U, R(n,r — 1)22)")® I (gom, @, R(n, r)22)¥) D
JEXZTPA S* Homy, (U, R(n,r)=2)"

where 7 : R(n,7)=? — R(n,r — 1)=2 is the projection. As both maps are

injective, we get that (7.7)# is injective. Whence the claim. O

Now we can consider the induced functor

TF : G(n,r —1)M—rep — G(n,r)—rep

T

This has the following very useful property.

Corollary 6.5. Let r > 2 and A € X(T)4. Then we get
7L\, G(n,r — )W) = L(pA, G(n, 7))

Proof. Recall that by Theorem 5.9 the L(\, G(n, 7 — 1)) and L(\, G(n,r))

for A € X(T)4, are a complete list of pairwise non-isomorphic irreducible

G(n,r — 1)M-representations and G(n, r)-representations respectively.
Now by the previous Lemma and Lemma 1.23, we get

TILA Gln,r = 1)D) = L, G(n, 7))

for a u € X(T)4. By using Proposition 3.19 and the fact that T, is trian-
gulated with T? = Fcl;g and T, = F(l;,, we obtain
L(p) = Llu,G(n,r)""
(TrL(A, G(n,r — 1)) ¢tn)”
S (Fao)* (LA Gln,r — 1)) Eo—D")
(Féo)"L(N)
= LM
as GY-representations. Finally we get

L(p) > L)Y = L(pA)

by Proposition 4.17. This is an inclusion of irreducible GO-representations,
hence an equality. Whence p = p as claimed. O
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6.3. Third Type. The last type of transfer homomorphisms are

tri: Ui(n,r) = G(n,i)
for all 1 <4 <r. Recall that

Ui =A{f € Gn,r) | f0) € Ga(U):}

We use the description of Proposition 2.17. So let f € Hom, (U, R(n,r))
such that f(0) € Go(U); and fy € GL(U). Then we can compose f with the
projection map

7 : R(n,r) = R(n,i)
As (mo f)(0) = f(0) € Go(U); and (7o f)g = fo, we obtain an element in
G(n,1i). So set

tri(f) =mo f

Remark 6.6. Under the identification R(n,r) = k[z1,...,z,) /(2! ..., 25 )
this just reads as follows: For f = (fi,...,fn) € U; with f; € R(n,r) we
just consider the residue classes of the polynomials f; in R(n,1) so

tri(frso s fu) = (f1s- s fn) € G(n,d)
This is well defined as fj(O)pi =0foralj=1,...,n

Note that ¢, ; is also triangulated: The restriction to G; and GO is just
the identity, so it also respects the positive wings.

Lemma 6.7. For all 1 < i < r, the morphism t,; : Uj(n,r) — G(n,i)
mduces an isomorphism

Ui(n,r)/ Ker(t,;) = G(n, )
Proof. As t,; is triangulated, the closed immersion
Ui(n,r)/ Ker(t,;) — G(n,1)
translates as
G(n,r)Jr/Ker(t;ti) X GO/Ker(t(T]J) x G; [ Ker(t, ;) = G(n, )T x GV x Gy

according to Remark 3.8. We want to show that this is an isomorphism. As
t%i and ¢, are the identity, it suffices to show that the closed immersion

G(n,r)t/ Ker(tjﬂ») — G(n,i)*
is an isomorphism. According to Lemma 1.22, the defining ideal is the kernel
of
()7« K[G(n, )] = K[G(n, )]
But this morphism is
S*® Homy, (U, R(n,i)=%)" S, ge Homy, (U, R(n,r)=%)Y

which is injective as the projection 7 : R(n,r)=2 — R(n,i)=? is surjective.
So the defining ideal is 0. Whence the claim. O

Now we can consider the induced functor
t;ﬁﬂ- : G(n,i)—rep — U;(n,r)—rep
It has the following very useful property.



THE REPRESENTATION RING OF G(n,r) 63

Corollary 6.8. Let 1 >i>r, and A € X(T),. Then we get
tri LA G(n,1)) = L(X, Ui(n, 1))

In particular, t7

representations.

Proof. Again by Theorem 5.9, the L(\, G(n,)) and L(\, U;(n,r)) with A €
X(T)4+ are a complete list of pairwise non-isomorphic irreducible G(n,)-
representations and U;(n, r)-representations respectively.

Now by the previous lemma and Lemma 1.23, we get

t:,iL()‘a G(TL, z)) = L(:U’a Ui(na T‘))

induces a bijection on isomorphism classes of irreducible

for a p € X(T)4. Recall that G(n,i)” = U; and that ¢,; is triangulated
with t?}i = id. Then by using Proposition 3.19, we obtain

L(p) = L(p, Ui(n, 7)Y = L(X\, G(n,i))¢™)" = L())
as Go—representations. This shows the claim. 0

Remark 6.9. For ¢ = 1 the morphism
tr1:Ur(n,r) = G(n,1)

is a triangulated morphism between 1-triangulated groups. Consider the
induced morphism

tr1:Ui(n,m)1 = G(n, 1),

on first Frobenius kernels. Then Proposition 5.15 implies that for all A €
X1(T)
tr1 LA, G(n,1)1) = L(A, Uir(n, 7)1)

That is, we get all irreducible Uj (n, r);-representations in this way by Theo-
rem 5.14 as X{(T') C X1(T) (cf. section 4.2). Furthermore the representation
theory of Uy(n,r); is equivalent to the one of Lie(Uj(n,r)) = Lie(G(n,r))
as well as for G(n,1); and Lie(G(n,1)) = W(n,(1,...,1)). That is, the
induced functor

Lie(t,1)* : Lie(G(n, 1))—p—rep — Lie(G(n,r))—p—rep

yields a bijection on isomorphism classes of irreducible representations.
Finally, we want to understand how the map

Lie(t;1) : Derg(R(n,r)) — Derg(R(n, 1))
explicitly looks like. For this recall that
Homy (U, R(n, j)) = Dery(R(n, 7))
by extension as derivations. Then the following diagram is commutative

Lie(t,
Dery(R(n, r)) —r) (n,

T (ff 1))
Homy, (U, R(n, 7)) ——= Homy, (U, R(n, 1))

Dery.



64 MARKUS SEVERITT

where m : R(n,r) — R(n,1) is the projection map. That is, under the

identification R(n,j) = k[z1,. .. ,xn]/(x’f], .. ,:UZ?), a basis element

5(2‘,1) =zl 8(1- € Deri(R(n,))

is mapped to the element

I
X
8:@
p

by taking the residue class of the monomial 2/ modulo (7,..., ).

€ Dery(R(n,1))

6.4. Relations. Finally, we discuss how the maps L;, T, t,; are related.
The first two relations are rather obvious.

Lemma 6.10. For all r > 2, the diagram

G(n,r) L G(n,r —1)M

commutes.

Proof. We consider again (G°)(") pretriangulated with zero wings. Then
L,=0x Fgo X 0 where we understand 0 : H — 0 as the trivial morphism

for any algebraic group H. Then we get
Le_10T, = (0x F(’"G_Ol)(l) X 0) o (TiF x Fho x FAL) =0x Fl x 0= L,

which shows the claim. O

Lemma 6.11. For all 1 <1 <r, the diagram

Ui(n,r) = G(n, i)
IS
L;
(@)
commutes.

Proof. Again, we consider (GO)(i) pretriangulated with zero wings and L; =
0 X Ffo x 0. This provides

Lioty;=(0x Fao x 0)o (F; xidgo xidg-) = 0 x Féo x 0= L

as claimed. O
We again denote G~ = G(n,r)” and U; = U;(n,r) C G(n,r). Recall that
U, = G, . Our next aim is to study the induction functor indgi(n’r) and its

relation to the induced functors of the three morphism types.
Lemma 6.12. For all 1 < i <r, we get for the induction functor

— ind%_ oresV

G(n,r) o indg’.(n,r) G v

I'GSG,

Furthermore indg_(n’”

K3

1S exact.
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Proof. We use the morphism description of the induction indgi("’r). Then
we obtain for all U;-representations V' that

indgi(n’r) V = {f eMor(G(n,r),V,) | flug) =uf(g) Yu € U;}
= {f €Mor(G™,Va) | fleg) = cf(g) Ve € G}

by using the decomposition G(n,r) = G(n, r)+ xG~ and U; = G(n, r)+ xG .
The restriction of this to G~ coincides with

: G~ U;

ind - Tes e \%4
as the G~ -action is given by right translation. This shows the first claim.
Now indg; is exact by [Jan03, 1.5.13] as

Fi, -G~ = (G)Y. c(@)®

rT—1

induces an isomorphism

G~/G; = (G,

rT—1

), O

by Proposition 1.36. This implies the exactness of indg

We start with the relation of indg,(n’r) to the I-functors from section 3.

Recall that G(n,r) is r-triangulatedl and U; is i-triangulated. So let us
denote the I-functor for a j-triangulated group as I;.

Lemma 6.13. For all 1 < i <r, both triangles of the diagram

commute.

Proof. The commutativity of the upper triangle follows immediately from
the definition of ¢,; and Lemma 3.16 as the negative wings of G(n,i) and
U; coincide.

For the commutativity of the lower triangle observe that G(n, 7‘)+ =T
Then it follows from the commutativity of the diagram

Ir G(n,r)—rep
ind
(7)“ . n,r
G%—rep — G(n, r)+—rep indg; ")
ind
I Ui(n,r)—Tep

which involves the transitivity of induction [Jan03, 1.3.5]. U
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Finally there is a more complicated relation of the induction indg(n’r) to

the functors L7, T, and I:

Lemma 6.14. For all1 < i <7, the triangle and the square of the following
diagram commute up to functor isomorphism

G(n,i)—rep
. L
(G%))—rep Ui(n,r)—rep
Ir—il lindg,(n’r)
G(n,r — 1) —rep = G(n, r)—rep

Here T : G(n,r) — G(n,r — i) is the composition

=T oo,

Proof. The commutativity of the triangle follows from L;ot,; = L;. For the
commutativity of the square, note that the morphism

i _ p(i=1)
T = Trf(ifl) o---0T,
(4)

is triangulated as all TT; ; are triangulated. More precisely

(T~ =F, G — (G)Y

and
(TH° = Fly : G° — (GV)D
We use the morphism description of the functor I (cf. Lemma 3.16 and
its proof). Let V be a (G°)(-representation. On one hand

(T)* 1,_;(V) = Mor((G)?_ V)

as (G(n,r — i)~ = (G_)gflz The G(n,r)-action is given as follows: For
g € G(n,r) and f: (G‘)Efll — Vg, we get

(9.)(0) = (6T (9))o f((bT"(g))-)
On the other hand, G operates trivially on L}V which implies

ind " LIV = {f € Mor(G™, LiVa) | f(eg) = ef(g) Ve € G; )
= Mox(G~ /Gy, LiV,)
(cf. the proof of Lemma 6.12). The G(n,r)-action is given as follows: For
g€ G(n,r), f:GT —= L7V, with f(cg) =cf(g) forall ce G;, and a € G~
we get ‘
(9./)(a) = f(ag) = Fgo((ag)o)f((ag)-)

as L; = Fly omo. As the i-th Frobenius F/,_ : G~ — (G_)gZ induces an
isomorphism G~ /G; = (G_)Eﬁi, it induces a natural linear isomorphism

iy —\(@) (Fe-)" - V) = indCmn)
(T*)" L—i(V) = Mor((G™), 2, Va) —— Mor—(G~, LjV) = indy; " L7V

r—1i’
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For the G(n, r)-equivariance let g € G(n,r), f: (G_)ffll — Vi, and a € G™.
Then we can do the following computation by using the fact that 7% is
triangulated with (7%)~ = F,_ and (T")" = F},.
(9N (FG-(a) = (Fe-(@)T(9)of((Fg-(a)T"(g))-)

= (Tz(ag))of((Tl(a )-)

= Feo((ag)o)f(Fg-((ag)-))

= (9 ( o Fg-))(a)
This shows the equivariance of (F,_)*:

(FiY'(9) = 9(Fi Y ()

Whence the commutativity of the square. O
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7. DIFFERENTIALS AND CARTIER’S THEOREM

The aim of this section is to introduce some concrete G(n, r)-representa-
tions which will play a crucial role in the computation of the irreducible
G(n,r)-representations and the representation ring of G(n,r).

Again, identify

R(n,r) = klz1,...,z5]/ (2 ..,xﬁT)

Recall that we have a canonical representation G(n,r) C GL(R(n,r)).

Notation 7.1. For convenience, we will describe the concrete representa-
tions G(n,r) — GL(V) only for k-rational points, that is, we will construct
G(n,r)(k) — GLg(V) rather than G(n,r)(A) — GLA(V ®; A) for all com-
mutative k-algebras A. It will be pointed out why this suffices.

Definition 7.2. Let

Q= Qe = D R(n, r)da;
i—1

be the module of Kahler-differentials. Then we obtain a representation
G(n,r) — GL(9Q,)
as follows: Let g € G(n,r)(k) = Aut(R(n,r)), that is, g : R(n,r) = R(n,r)

is a k-algebra automorphism. Then consider the diagram

R(n,r) LA R(n,r)

Jo

Qo > Q;

where ] is the R(n,r)-module €, twisted by ¢g. Then do g is a differential
and by the universal property of €, we get dg which just reads as
— Jgi

0g(P(x1,...,xn)dx;) = P(g1,...,9n)dgi = P(g1,...,0n) Z B
j=1 """

dl‘j

with g = (g;); for g; € R(n,r). This gives a representation €, since for all

commutative k-algebras A, we have Qg )k @k A = Q) ,/A-
Let
R(n,r) iR R(n,r)

P(z1,...,x,) +— Plxy,...,z,)"

be the r-th power of the Frobenius-morphism. It factors through
R(n,r) Ik

P(z1,...,zn) +— P(0,...,0)?

r

Now take
Qr ®R(n,r),fT k
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which is an n-dimensional k-vector space with basis dz; ® 1 fori = 1,...,n.
The G(n,r)-action on Q, induces a G(n,r)-action on Q. g, 5 k by

sz =dgo1=3 (520) (e

j=1
for all g = (gi)i € G(n,r).
Remark 7.3. Note that with U = k™ again, we get

Q ®R(n,r),fr k= (R(n7 T) Qk U) ®R(n,r),fr k=U Ok, fr k= U(r)
as GY-representations. The corresponding group homomorphism
G(n,r) — GL{UM)
coincides with the group homomorphism L, we already discussed in the
previous section (cf. Remark 6.1).
Notation 7.4. For all i = 1,...,n denote by Q. the i-th higher differentials.
That is,
Q= Agp Sl = @ R(n,r)dz;, A...Adxj
J1<...<Js
where the i-th exterior power is taken over the ring R(n,r). The G(n,r)-
action of €2, extends canonically to the higher differentials by acting on all
factors simultaneously.
Remark 7.5. Note that
QL= R(n,r) @, AU 2 1,,(A'U)

as G(n,r)-representations by Example 3.17. Again, we denote by I; the I-

functor for j-triangulated groups. Furthermore, for any (G°)(")-representa-
tion V', we obtain

L(A'U @ V) 2 1 (ANU) @ LYV = Q8 @, LV

by Lemma 5.7. Moreover, for all 1 < 5 <r, the functor

indgjn,r) of* . - G(njj)_rep — G(n; r)—rep

Thj

maps i-th differentials to i-th differentials:
. 1G(n,r) /% i ~ . 1Gn,7) /% i
indg ™ (15(20) = indg " (k5 (G (AD)))
L.(A'U)
o,

I

12

by Lemma 6.13.
The higher differentials 2. are connected by the deRham-complex
O—>R(n,r)d—1>Q,1,d%2---d%"Q,’?%O
The differentials are defined by
di(f(dzj, N ... Ndzj, ) =df Ndzj Ao Ndxy,,

for all j; <...<ji—1 and f € R(n,r). In fact, this is a complex of G(n,)-
representations by the following Lemma.
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Lemma 7.6. For allr > 1 and i =1,...,n, the differential map
di - Q7L 5 Qf
is a morphism of G(n,r)-representations.

Proof. Let us proof this by induction on 4. For ¢ = 1, the map
dy : R(n,r) — £,
is G(n,r)-equivariant by the very definition of the representation €2,. So let
i > 1 and consider d;+1. Let g = (g;); € G(n,r). Then
dit1(9(f)dgj, A ... Adgj,)
= di(g(f)dgj; N ... Ndgj,_,) Ndgj; + g(f)dgj, A ... Ndgj,_, N da(dgj,)

as d : R(n,r) — §, is a derivation. The second summand vanishes since
ds o dy = 0. Hence we get by induction hypothesis

dit1(9(f)dgj, N ... Ndgs,) = di(g(f)dgj A--.Ndgj,_,) Adgj,
= g(di(fdzjy N...Ndzj,_,)) Adgj,
= g(dipq(fdxj, N... ANdxj,))
This shows the G(n,r)-equivariance of d;;1 and hence the claim. (]

Remark 7.7. For all 1 < 5 < r, one can check that the functor

indﬁ?"’” ot, ; : G(n,j)—rep — G(n,r)—rep

J

maps differential maps to differential maps:
G e . . . ,
indg ™7 (855 (di - Q5 = QF)) = (di - Q7 - 0))

As indg(n’r) is exact by Lemma 6.12, we also get

J
« 1G(n,r) (% irOye i
indgy ™ (75 (H'(©5))) = H'(2)
That is, the cohomology of {2} can be computed by the one of QF for all
1<j<r

We will start by computing the cohomology of €. By the previous Re-
mark, this will also provide a computation of the cohomology of €2? for any
r > 1. The following Lemma provides a computation of the complex (1] in
terms of 1-deRham-complexes.

Lemma 7.8. Let K*(n) := Qrny i the n-th deRham-complex for r = 1.
Then

K*(n) = K*(1)%"
as complexes of k-vector spaces.

Proof. Let us proof the claim by induction on n. The case n =1 is clear, so
let n > 2. Then by induction hypothesis we obtain

K* (1) = K*(n — 1) @) K*(1)
By the definition of tensor products of complexes, we obtain

(K* (=) = P K'(n—1) @ K*(1)
l+s5=1i
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with differentials
d(a; @ bs) = d(a;) @ bs + (—1)'a; @ d(bs)

for ¢ € K'(n — 1) and b, € K*(1). Let us denote C = k[x,]/2}h and
K*(1) = Q¢ .. Then using

C s=0
K*(1) = Cdz, s=1
0 §>2

we see that
(K*(1)%") = Ki(n —1) @4 C & K" (n — 1) ®; Cday,
Now note that
R(n,1) — R(n—-1,1)®;C

51 S1 Sn—1 S
Ty =X x, ) oyt

Sn
n

is an isomorphism. So we obtain
Kin—1)®,C = @ R(n,1)dxj, A...Ndxj,
J1<<gi<n—1
and
K™Y n —1) @ Cdx, = @ R(n,1)dxj A...Ndxj,_, Adxy,
J1<.<ji—1<n—1
That is,
(K*(1)®)" = K (n)
as k-vector spaces. Recall that we can write the differential on K*(n) as

n

d(f(z1,...,zp)daj A ANdxj,) = Z%fdxk/\d:njl Ao Ndxy,
k=1

On K~Y(n — 1) ®; Cdz,, the differential translates to

d(a @ f(zn)dr,) = d(a) @ f(zn)dzy
since d(Cdx,) = 0 which corresponds to the one on K*(n). Finally for
K'(n —1) ®; C, we obtain

d(a® f(z)) = d(a) ® f(za) + (~1)a® a;f(xn)dxn

which also corresponds to the usual differential on K%(n) since
den Ndxj, A ... Ndxj, = (=1)'dxj, A... Adzj, Adry,
for j1 < ... < j; < n. This finishes the proof. O

The following Theorem is due to Cartier and computes the cohomology
of the deRham-complex in the case r = 1. Its proof is directly taken from
the one given in [Kat70, Theorem 7.2] where it is stated in its algebraic
geometric version. Our version is the representation theoretic analogue.
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Theorem 7.9 (Cartier). There is a unique collection of isomorphisms of
G(n, 1)-representations

c7l NUW - HY(QY)
which satisfies
(1) ¢l =1
2) CHwAaT)=CHw)AC ()
(3) C-Ydf 1) = [f7-1df) € H'(O3)
Proof. Recall that
LTU(l) =M ®Rrm1),1 k
and observe
LINUW = AL (UW)
So let us start by defining

Rin,1)xk > HY(Q

(f;5) = [sfPtdf]
Note that sfP~1df is an element of Ker(ds) since df A df = 0. So & is well-
defined as a map of sets. In order to get that ¢ induces our desired map C !

we have to check that ¢ is k-bilinear and a derivation. For the biadditivity,
it suffices to check

0(f +9,8) = 0(f,s) +4(g,5)

So let us consider the difference:

6(f + g, 5) - 5(fa 5) - 5(97 5)
s((f + g)P M (df + dg) — fPdf — P dg)

PN SIS ErAY

Note that the last expression makes sense since every (’Z) withl1 <:<p-1
appearing in the binomial expansion is divisible by p. So the difference lies
in Im(d;) and hence vanishes in H'(Q®) = Ker(ds)/Im(d;).

To complete the bilinearity, observe that for all f € R(n,1) and s,s’ € k
we have

8(fs,8") = ' (fs) " dfs = s'sP(fP~1df) = 6(f,s"s)
In order to get the property of a derivation, we have to check

5(fg7 3) = gp(s(fv 3) + fpé(g’ 3)

This follows from

3(fg,s) = (fo)!"'d(fg) = f(f)P~'dg + g(fg)’~df = g*8(f,s) + fPo(g,s)

That is, we get our k-linear map C'~! for i = 1. By the demanded property
(2), it uniquely extends to larger i.

The next step is to check, that C~! is in fact a map of G(n, 1)-represen-
tations. Again by property (2), it suffices to check this for ¢ = 1 which is
obvious since for all g € G(n,1) we have

C(g(dfe1)) = C~(dg(f)®1) = g(f)P"dg(f) = g(f*~"df) = gC~ ' (df®1)
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The last step is to show that for all  the morphism C~! is an isomorphism.
Define complexes

K*(n) == Q%4 1)k
for all n € N. Then
K*(n) = K*(1)%"
as complexes of k-vector spaces by the previous Lemma. Then we get by
the Kiinneth formula [Wei94, Theorem 3.6.3]
H'(K*n)= @ (H'(E(1)&k... 0 H"(K*(1)))
Jit..Fjn=t

Furthermore, we have

i
HI(K*(1)) = S k[2} ldzy] j=1
j>2

x>

)

since we have
p—2
Im(d : R(1,1) = Qpa1)) = @D 2ida
i=0

This provides
o H(K*(n)) =k
o H'(K*(n)) = @i, klz] " dui]
o H'(K*(n)) = AN'H'(K*(n))

which shows that C~! is an isomorphism for all i = 1,...,n. O

In fact, the Theorem provides an explicit k-basis for the cohomology
spaces of the deRham-complex:

Corollary 7.10. A k-basis of H'(Q}) is given by the classes of
xﬁ:l - -mfh__ldxm A Ndy,

forall ny < ... <mn,;.

Proof. We use the isomorphism
C™h 4 @peny sk — H'(QF)

of Cartier’s Theorem. By the second and the third property of C~!, it acts
as

(dzp, @) A ... A (day, @ 1) — [xfgl e J:fli_ld:nm Ao Ndxy,]
on the canonical k-basis of {01 ®pg(y 1),y k which shows the claim. O

In fact, a general result computing the deRham-cohomology for all r > 1
can be deduced from Cartier’s Theorem by the use of the transfer morphisms
and their properties of the previous section. Recall the transfer homomor-
phism of second type

T, : G(n,r) = G(n,r — 1M
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Corollary 7.11. For all r > 2 we get an isomorphism
HY(Q)) = T ()W)

T

of G(n,r)-representations for all 1 < i < n.

Proof. According to Remark 7.7, Cartier’s Theorem, and Lemma 6.14, we
obtain

irye ~ . 1G(n,r) /% ireye
HI(Q) = indf"™"(t: (H(QY))

. 1G(n,r) /% * A
ind " (#4 (LE AT M)
T (L_ (AN UW)

Tr((Qh_ )W)
Whence the claim. O

12

I

12

Our next aim is to define more general deRham-complexes and compute
their cohomology in the same fashion as for 25: By Remark 7.5 and Remark
7.7, for each (GO)(l)—representation V', we obtain a complex

QY @ LIV 21 (AU @ V1)

of G(n, 1)-representations. By Cartier’s Theorem, its cohomology computes
as

HT AU V) = H(@Q}) @ LTV
LINUD @, LIV
Ly (NUW @ V)

12

12

Consider again the functor
indgl(n’T) ot,1:G(n,1)~rep — G(n,r)—Tep
By Lemma 6.13, we get a complex

ind{" (#5, (1L (AU @ VINY)) = T(A*U @ V1Y)
of G(n,r)-representations. Furthermore indgl("’r)
According to Lemma 6.14, for r > 2 we obtain
HU(IL(AT @ V)= indg ™" (0, (H (L (AU @ V)
. 1G(n,r) /% XA
indg"" (¢4 (LT (AUD @, V)
> T (MUY @, V)
Finally note that under the isomorphism of G°-representations
L(A'U @ V) = Qf @, VI
the differentials of the complex I.(A*U ® V) read as

is exact by Lemma 6.12.

12

fol @ V1 di®idy Qjﬂ @ VI
For the cohomology one obtains

H (@ o, V) = T ()Y @1, V)

r
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8. IRREDUCIBLE G(n,r)-REPRESENTATIONS

The aim of this section is to give a computation of
L\, G(n,r)) =socl(L(N)) = G(n,r)L(\) C I(L(X)

for all A € X(T)4+ (cf. section 5). These are a complete list of pairwise
non-isomorphic G(n,r)-representations by Theorem 5.9. According to the
results of section 5, there is a mod p"-periodicity for the dominant weights
and one can restrict to the L(\,G(n,r),) with A € X/(T). Actually, this
will be our way to cover the case r = 1 where we have a mod p-periodicity.
But for the case r > 2, we will also establish a mod p-periodicity by using a
recursive description with respect to the group G(n,r — 1)(1).
The mod p-periodicity requires the following notation. First recall that

X/(T) = {)\:Zni(el—F...—i—ei)eX(T)Vlgign:ogni<pT}
i=1

Notation 8.1. As X{(T) is a set of representatives for X(T')/pX(T), we
get a decomposition

A=1(A) +ps(A)
€

r
for all A € X(T)4 with r(\) € X{(T). We call r(X\) the mod p-reduction of

A

Remark 8.2. Note that for A € X(T')4, also s(A\) € X(T')+. Furthermore,
for

)\:Zni(€1+...—|—ei) e X(T)+
i=1

the (\) and s(\) read as
’l“()\) = ri(€1+---+€i) EX(T)+
i=1

and

3

s(A\) = 281(61 +...4+¢&)e X(T)+
=1

~

where
n; = S;p+r;
with 0 <r; <p—1.

Let us start with the dominant weights A\ with r»(\) = 0. That is, they
are divisible by p.

Proposition 8.3. Let A € X(T')+ with r(\) = 0. Then for r = 1 we obtain
L(\,G(n,1)) 2 LTL(s(\))
and for r > 2 we get
L\, G(n, 7)) 2 TFL(s(\), G(n,r — 1))

Proof. As A = ps()), the claim for » = 1 is just Proposition 5.10 and the
claim for r > 2 is Corollary 6.5. O
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8.1. Lie Algebra Action on I(V). Before we proceed with the case r(\) #
0, we need to understand the Lie algebra action of Lie(G(n, r)) on I(V'), since
we will use these operators to compute the generated subrepresentations

G(n,r)V C (V)

for V.= L(X\) with A € X(T')+. According to Lemma 2.38, we can compute
this action by restricting to the three subgroups G—, G°, and G*. Since
(V) = R(n,r) ®; V as GO%-representations, we know that for f € End(U) =
Lie(GY), we get

f(P®v)=f(P)®@v+P® f(v)
for all P € R(n,r) and v € V. The next Lemma treats the subgroup G~.

Lemma 8.4. The Lie(G™)-basis element 6; acts on I(V) = R(n,r) @,V as

0
D ®idy : R(n,r) @ V — R(n,r) @ V

Proof. For the computation of the action of §; for ¢ = 1,...,n we take the
i-th component of G~ 2 (G.)" and restrict the k[G(n,r)]-comodule map of
I(V) to this. This provides the k[G!] = k[a]/aP-comodule map

R(n,r) @V — R(n,r) ® V ® kla]/a?
P(z1,...,2p) ®@v = P(x1,...,Ti-1,06+ Tj, Tig1,...,Tn) @V

by Example 3.17. We obtain the d;-action by composing this map with
% 4—o Which provides the claimed one by using the chain rule for the a-
derivation. (]

Now it is left to compute the action of Lie(G"). Recall that we computed
in Corollary 2.37 as a canonical basis of Lie(G(n,r)) the operators

S,y = ! € End(R(n,r))

c%i

Lemma 8.5. Let 6; 1y € Lie(G(n, 1)) be a canonical basis element and V' a
GV-representation. Then the induced action on 1(V) reads as

0 - 0
. pu— 17 I vy
8(i.1)(P ®v) <:c P; P) ®v+ ;21 P 5" @ Eji(v)

for all P € R(n,r) andv € V.
Proof. By the previous Lemma, the formula holds for z/ = 0 as in this case
d,n) = 0; € Lie(G™)
Also, it holds for z! = x; since in this case
8.1y = Eji € My (k) = Lie(G)

That is, it is left to prove it for d(; ;) € Lie(G"). Recall that this basis
element corresponds to the affine direction g = (g1, ..., g,) of Gt with

z+ax! j=i
g5 = .
! xj jFEi
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Thus, according to Example 3.17, the action computes as the composition
of

R(n,r)

A
R(n,r) @p V —" R(n,r) @1 V @ kla] 2 R(n,r) @k V @5 kla]

with (8%) {a:() where

B= (89’“>5k € M,(R(n,r) @ kla])

0z
Hence,
d
dan(P@v) = =-(Blg(P)@v)|
= T (gP)B @) .
= (88a(g(P))B(1 ® v)> o7 <g(P)§a (B(1® U))) 00

= Sun(P)@u+t P (ai, (B(1®v))

)

since g(P)|a=0 = P and B|,=0 = E the unitary matrix. Now by Corollary
2.37, we obtain

0
8.131'

That is, in order to get our desired formula, it is left to show that

n 8 I
- — E
a=0 Z@xjx ® J(U)
Jj=1

5(1‘,1) (P) = :L’I P

0
% (B(1®w))

We compute the left hand side as follows: The matrix B corresponds to a
unique k-algebra homomorphism

Klasklok & R(n,r) ® kla]

Then the action of this matrix on 1 ® v is computed by the image of v under
the map

V 2% v @y klagle 2L v @, R(n, ) @4 k[a]

The right hand side is computed by the image of v under the map

By
y Zul, PV =5V ek Rn,r)
Lj

Here the map gyp is defined as follows: The matrix 0B € My, (R(n,r)) is
derived from B by applying %‘azo to each entry of B. Then this matrix
induces the map gop by

1)1 (01 (OB 1)1
@V (v13)15= (015 & OB)is )i @V @k R(n,r) ; V @ R(n,r)
l,j Lj
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We already know that the action of Ej; on V is computed by

A
V —"=V @y klask)sk
EZjJ/ /
V aalj agp=0gg

where 0 is the Kronecker-d. That is, in order to get our claimed equality
above, we have to show that the diagram

Klase]sr —— R(n,r) @y kla]

9 9
g lagp=04p da

@z,]’ k 98 R(n,7)

commutes. For this, note that the composition

a=0

1%}

klasklsr 2 R(n,r) @5 kla] 22=% R(n,7)

is a k-derivation. Here the k[as|sp-module structure on R(n,r) is induced
by the composition

klask]sk EN R(n,r) ® kla] =0, R(n,r)

which corresponds to the matrix B|,—o = F. That is, this module structure
is the same as the one given by

klask]sw —2 k < R(n,r)

As a k-derivation, we get a unique factorization

k[ask]sk R(nv T) Ok k[a]
] il
@, klasklswdar; ——= R(n,r)

by a klag]sk-module map g since Qa1 5 = EBM klask)skday;. Now it is
left to show that for all pairs [, j the diagram

k[ask]skdalj & R(TL, ’I“)

eGLni
-(0B)y;
k

commutes. This follows from the fact that
0
g(day;) = %(f(alj))’azo = (0B);
and that the k[asg]si-module structure on R(n,r) can be described by
klask)sh —=2 k < R(n,r)

This finishes the proof. O
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Remark 8.6. Recall that Lie(G(n,1)) = W(n, (1,...,1)) is the Jacobson-
Witt algebra. Then we get as a corollary that

I(V)‘Lie(G(nyl)) = AV‘Lie(GO)

as Lie(G(n, 1)-representations where the right hand side is defined in [Nak92,
I1.2]. That is, [Nak92, Proposition 2.2.4] implies that

Lie(G1) (/) o)

I(V)|Lie(G(n,1)) = lndLie(m+)

since Lie(G(n, 1)+) = BT in Nakano’s notation. Be aware of the fact that
the “induction” ind in the theory of Lie-algebra representations is left ad-
joint to the restriction functor. That is, it corresponds to coinduction of
representations of finite algebraic groups as it occurs in [Jan03, 1.8.14].

8.2. Fundamental Weights. So let us proceed with the A € X(7T'); with
r(A) = €1+...+¢; is a fundamental weight. By Lemma 4.14 and Proposition
4.20, we know that

LN 2 L(ey+ ...+ ¢) @ Ls(W)M 2 AU @ L(s(A\)M
with U = k™. By Remark 7.5, we know that
L(L(N) = Q) @k LIL(s(\))

which is the i-th space of the deRham-complex of G(n,1)-representations.
At the end of section 7, we also introduced a complex

L. (AU ® L(s(\)M)
of G(n,r)-representations. That is,
L(L(N) = Q) @ L(s(A\)!

is the i-th space of that complex. Recall that the differentials read as

Q@ Lis()W E29 0f @, L(s(\)W
This complex allows us to compute the socles of the I.(A'U @ L(s()\))M)
which are in fact the images of the differentials:
Proposition 8.7. Let A € X(T)4 with r(\) = €1+ ...+ ¢€;, then

L\, G(n, 1)) = soc(Q @ L(s(A\)M) = Im(d; @ id)

where d; : Q.71 — Q! is the deRham-differential.
Proof. We will use Lie(G(n,r))-operators to prove the claim. Note that
under the isomorphism

(AU @ L(s()M) = Q) @ L(s(A\)!
of G%-representation and in view of Lemma 8.5, an element f € Lie(G(n,))
acts as fjo: ® id since Lie(G?) acts trivially on L(s(\))[M.

According to Proposition 3.19, the socle is generated by the G~ -invariants
as a G(n,r)-representation. A generating system of these invariants is given
by

(dxj, N... Ndxj) @wv
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for all j; < ... < j; and v € L(s(\))[". Now the inclusion
soc(Q @ L(s(A\)Y) ¢ Im(d; ® id)
follows from the fact that the generators lie in the image of d; ® id:
(dzj, A ... Ndzxj,) @ v = (d; ®id)((xj, (dzj, A ... ANdzj,)) @v) € Im(d;)

For the inclusion Im(d; ® id) C soc(Q ® L(s(\))!!) note that Im(d; ® id) is
as a k-vector space generated by

(dx! Adxjy A ... Ndxj_ ) @

for each monomial z! = z7'--- 2" € R(n,r) and j; < ... < ji_1. As
i —1 < n, there is an index | ¢ {j1,...,ji—1}. Then we get that the Lie
algebra operator d(; ry € Lie(G(n,7)) acts as

Sapny((doy ANdzjy Ao  Ndj, ) @) = (dzx' Adzjy A ... ANdzj ) @
according to Lemma 8.5. This provides all image elements from the gener-

ators. O

8.3. The Final Case. In the remaining case where the mod p-reduction
r(A) of a dominant weight A is neither 0 nor a fundamental weight, we will
in fact get that the socle of I(L(A)) is everything if we assume char(k) # 2.
In order to prove this, we need the following Lemma.

Lemma 8.8. Let L be an irreducible G'-representation. If for any v € L
with v # 0 we have

R(n,r) ® kv C G(n,r)L =socl,(L)
then we obtain
socI, (L) =1,(L)

Proof. First of all, we know that G% = L by the irreducibility of L and
v # 0. As we have

I(L) = R(n,r) ®, L = R(n,r) ® (G')
as G-representations, the claim follows from
R(n,r) @k (G") = G*(R(n,r) @ kv) O

Now we are ready to compute the last case which requires lots of com-
putations. In fact, this is the only case where we have to assume that
char(k) # 2. Note that for the case r = 1 similar computations are given
in [Nak92, I1.§3]. In fact, the claim for » = 1 follows from [Nak92, I1.§3] as
indicated at the end of section 5. But we also need to treat the case r > 2
which is not covered by the computations given there.

Proposition 8.9. Assume that char(k) # 2. Let A € X(T)+ a dominant
weight with r(A) # 0 and r(A\) #e1+ ...+ ¢ foralli=1,...,n. Then

L(/\> G(n’ T)) = IT(L(/\))
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Proof. Again we will use Lie(G(n,r))-operators to prove the claim. Write
A=7r(A) +ps(A). Then

L(\) = L(r(\) @k L(s(A))!M
by Proposition 4.20. Note that under the isomorphism
L(L(N) = I(L(r(\))) @k L(s(A)M
of G%-representations and in view of Lemma 8.5, an element f € Lie(G(n,))

acts as fir,(L(r(v)) @ id since Lie(G°) acts trivially on L(s(A\)M. Further-
more, according to the previous Lemma, it suffices to show

R(n,r) ® kw C G(n,r)L(X\) C I(L(N))

for a w € L(\) with w # 0. As we use Lie(G(n,r))-operators to show this,
it thus suffices to show

R(n,r) ® kw C G(n,r)L(r(\)) C L.(L(r(\)))
for a w € L(r(\)) with w # 0. That is, we can assume
A=r(N)
By Lemma 4.16, we know that we have a presentation
LN =WV
hence
L.(L(A)) = L(W(A)/1.(V)
as I, is exact.

Recall that

W(A) = G%v(N\) € Sym™ (U) ® Sym™ (A*U) @, ... ® Sym™ (A"U)
with

v=ovA\)=€e"®@(e1Ne2)?@...Q(e1 A...ANey)™
Let us choose
w:=70#0¢€ L(\)
Then
G(n,7)(L(A)) = G(n,7)(w) = (G(n,7)(v))/1(V)
That is, it suffices to show
R(n,r) @ kv C G(n,r)(v) C L (W(X))
because this implies
R(n,r) @ kw = (R(n,r) @k kv)/ 1.(V) C G(n,r)(v)/ 1. (V) = G(n,r)(L(\))
According to Lemma 3.16, we obtain
L.(Sym™ (U) @, Sym™ (A%U) @y ... @ Sym™ (A"U))

= R(n,r) ® Sym™ (U) @ Sym™ (A*U) ®j, ... @ Sym™ (A"U)

= Sympl, o () @renr) SYmp, () Orma) - - Or(nr) SYM, 1 ()
as G(n,r)-representations. The element v corresponds to

v=(dr))" @ (dr1 Ndx2)"? @...® (dxy A ... Ndxy)™
Let us shortly denote
dzj, ... j, ==dx; N...Ndxj



82 MARKUS SEVERITT

Then we get
G(n,r)(v) = G(n,r)((de)" ® (dz12)" @ ... (dr1,. . n)"")
We denote the Lie algebra operators é(; 1y € Lie(G(n, 7)) by
6(i,m1) = (5(7;7])
in our computations.

As A =r(\), we have 0 < n; <p—1for all i =0,...,n. First note the
following.

Claim 1. Let 1 <s; <r. If

le)31_1 2Py e Gn, ) (v)

then
zlv € G(n,r)(v)
for all J = (j1,...,jn) with p¥~1 < j. < p for all 1 < k < n.

This claim follows by the gradual application of the operators

— ai» ®id : R(n,r) @ W(A) = R(n,r) @ W(\)

Hence, it suffices to proof

Z T2l € Gn, 1) (v)

0

for all choices 1 < s; <.
By assumption we have A # 0. That is there is a highest index k& such
that ng # 0. First note the following computational rule.

Claim 2. Let J = (j1,...,jn) such that j = p°. Then for all j # k
(5(k’zj)(l"]v) = nkxj(d:ﬂl)nl ®...® (d$17..,7k_1)nk*1 ® dxl,...,k—l,j (dx17_._7k)nk_1
This claim just follows by the computation

Ok, (z70)

.%'JU

e’ (de)™ @ ... @ (dy
= npz!(dz)™ ®@...® (dr

as %x‘]:()by Jk =p°.

-----

77777

Case 1 (ng > 2). Let us assume that ny > 2. We will make an inductive
argument after s downwards. Then take I = (p** — 1,...,p** — 1) and we
get
5(k7x1)(n,;1v)
= (5(k’x1)(n;1(d$1)nl ®X...® (dﬂ:’17.._7k)nk)
0
= > %"L‘I(dfﬁl)”l ® ... @ (de1, 1) @ da, g (e, )"
i>k

G(n,r)(v)

m
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since dxy, x—1,; = 0 for 0 < j <k —1. Now we apply the operator 6(’%1%)
to this sum. For the summand with 7 = k, we obtain

9 n
6(k7xi) <axklj(dl'1) ! R...Q (dmlr__,k)”k)
= afg —p ! (dr)" ® ... ® (dr, )"

0
+2nkxk—x1(d:c1)"1 ®...Q (dry, . k)"
x

= (p* —1)(p°* — 24 2ny)zlv
= 2(ny — Dzlv
If s, = r, we have xisk = 0 and we obtain
o 0
LA I
Tk (%ij K Dy oxy 8%3;
for 7 > k. In the case that s < r, we know that
0 o 0
:Uka—xjwlv € G(n,r)(v) and xka o 8%33 v e G(n,r)(v)

by induction hypothesis and Claim 1. Hence we get for the summands with
>k
0 I ni nE—1
Okap) | 5y % (d2)™ @ ... ® dwr. e-15(dws,.. k)
J
22 o 0

= a. o dxq)™ .. d L (d ng—1
a:(}k axjx ( .7,'1) ® ® L1...k 1,]( xl,...,k)

+(ng — 1)2xk({fcjxl(dm1)m ®...Q dmlm,k_lyj(da;l,_,,ﬁk)”kfl
= (k) < 1xk8(:9ck aij:v v) + (k) (n;l(nk — 1)2:ck8ijxlv)
€ G(n,r)(v)
by Claim 2. That is, we get
2(ny — Dalv € G(n,r)(v)
which is nonzero as 2 < ny < p — 1 and char(k) = p # 2. Hence

po1—1 Pk —1

xy cexl Ty = 2ty € G(n, ) (v)

for all choices 1 < s; < r which finishes the proof for the case n; > 2.

Case 2 (ng = 1). In the second case, we assume that ny = 1. As r(\) = A
is not a fundamental weight by assumption, there is a highest index ¢ < k
with n; # 0. We will make an inductive argument after the sum s; + sg
downwards.

We need two additional claims.

Claim 3. Let J = (j1,...,jn) such that j; = p®. Then

5(2-’3%)(33‘]’0) = nix‘](d$1)n1 ®...0dxy, Z‘_17k(d$17m7i)ni_1 X d3317_“7k
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This claim follows by a similar computation as for Claim 2 and the fact
that da:l_,,’k’._,,k =0.

Claim 4. Let J = (j1,-..,jn) such that j; = p® and 7 > k. Then

0
= ni’ (dz)™ c®@dry, o1 k(dry, )" @drr g1y

X ..
+xl(de)™ @ ... @ (da1,. )™ @d2y g k1
where the k in dxq, .. k-1, appears at the i-th position.

This claim follows by a similar computation as for Claim 2 by using

(5(k’zj)(x‘]v) - a:ja—xk:c‘]v
= 2/(de))" ®@...® (dv1, )" @dr1,. g1,

Now take again I = (p** —1,...,p° — 1). Then we get

0 .
NOEDY achﬂ(dﬂﬂl)m ®...® (dr1,.4)" @dry,. k-15 € G(n,7)(v)
ik

Now we apply the operator d; ;,) to this sum. For the summand j = k, we
obtain

0 .
O(i,zr) <8xk9«“1(d961)"1 ®...Q0 (dr1, ;)" ® dxl,...,k)
0

Tk A
81‘@ &uk

e (de)™ @ ... @ (do1, ;)" @ dry, g

0 _
+ni%l‘l(d$1)nl R...&® dxl,...,i—l,k(dxl,...,i)m 1 (29 dxlv_"’k
k

0 .
— (ps’c — 1) x1<dx1)n1 R...Q (d.’El 77777 i)nz &® dx17,_,’k

8.%,‘

0 ._
+ni873k901(d961)"1 ®...@dry, ;1 k(dry,. )" @dry g

Sk .
as dry,. ..k = 0. If s =7, we have xi = 0, and we obtain

for j > k. If s < r, we know that

9 1
Ty a%%jx v e G(n,r)(v)
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by induction hypothesis and Claim 1. Hence we get for the summands j > k
0 .
Oi,zx) (E)mi’l(dﬂﬁl)"1 ® ... @ (dry, )™ @ dxl,...,kl,j)
J

o 0 |
Tk o aixjx (dl‘l)nl ®...Q (dIELm’i)nl ® dxl,...,k—l,j

0 _
—l—ni%gvl(dxl)”l ®...Q d$17._,’i,171€(d:(}l’_“,i)nl 1 X dxl,...,kfl,j
J

0 .
t—al(dz)™ ®@...@ (dx1, )" @dry, k. k14
(%sj

where the k in dx; . . k-1, appears at the i-th position and we know

0 .
Txl(dxl)”l ®...®(dry,. )" @dry k1

_ 9 9
= (kg <azk amia—xjx v> € G(n,r)(v)

by Claim 2.
Now we apply the operator 5(2‘,9;2) to this. As i < k, for s; = r, we obtain

poi

T

= 0 and hence
0 I 2 0 0 I

for all 7 > k. In the case that s; < r, we know that

0 0
9 a—%x v e G(n,r)(v)

for all j > k by induction hypothesis and Claim 1. By the same argument,
we get,

xiaijxlv € G(n,r)(v) and x?

and

for j > k. That is, the images of the 7 > k summands lie in G(n,r)(v) since

0 _
5(1’,1?) <8mm1ni(dml)m ®...® d$17,,_,i—17k(dxl’,._,i)m 1 ® dfl,...,k—l,j)
J

0 .
+0(i 22) (wjxf(dﬂfl)m ®...® (dry, )" ® dﬂﬂl,...,k,...,k—u)

) 0 )
_ s 2 T WA O G
= i) <5<’Wﬂ'> <f” O, 0w; " ”) I 9, <‘”” O, 0x; " >”)

0 0 0
+5(i:$k) (5(k7$].) <nl2$1a%:€ U) — l’jaixk <n12$la$]x >v)

€ G(n,r)(v)
by Claim 4.
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Similarly, for the summand j = k, its second summand computes as

0 .
0(i,02) (nz’wl(dwl)"l ®...0dry, _i—1k(drr,. )" @ dﬂﬁl,...,k)

8$k
= nixziixl(d@"l)"l ®@...0dr. i1 pldey )"t @dey g
1 axi axk ARG b ARG gerey

0 _
+ n%?ﬂiiﬁﬂil(dxl)nl ®...Q dl‘l,...,z‘—l,k(dfl,...,i)nz 1 X de.__J€
k

o 0 0
2 I T
= {0 . — . 20—
(i ap) (1‘2 oz, 33%:6 v) + (3,23 <n x &Ekm v)

€ G(n,r)(v)
by Claim 3. Its first summand computes as

0 .

O(i22) <(P5’“ - 1)(9;1;2-%[(61371)"1 ®... @ (dv1,.. )" ® dﬂ?lv"”“)

, 0 0

= (p°* -1z :cl(dxl)m ®@...® (dxy,. ;)" @dry,. 1

8 .
+(p°* — 1)2mmi%xl(dm1)nl ® ... (dr1,.)" @dxy, K

+(pF — 1)2xi€zix1(dcc1)"1 ®...® (dzy,. ;)" @dry, k
= (p* —1)(p% — 1)(p% — 24 2n; + 2)zlv
= Qnixlv
That is, we get
2n;x’v € G(n,7)(v)
which is nonzero as char(k) =p # 2 and 1 <n; <p— 1. Hence

A =2l € Gl )

1 n

which finishes the proof for n; = 1.

Finally, we proved the Proposition.
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9. THE REPRESENTATION RING OF G(n,r)

We are now going to give a computation of the representation ring of
G(n,r). That is, the Grothendieck ring of finite dimensional representations.
We want to identify the subgroup G° with GL(U) where U = k™. We already
introduced the functor

I, : GL(U)—rep — G(n,r)—rep

which lead to a parametrization and computation of all irreducible G(n,r)-
representations. Recall the restriction functor

res : G(n,r)—rep — GL(U)—rep
and
L} : GL(U™)—rep — G(n,r)—rep

induced by the representation

L, : G(n,r) = GL(U™)
Recall that

resoL; = (F")*

where F" = F&y ) CL(U) — GL(U™) is the r-th Frobenius and that

resol, = R(n,r) ® (—)

All three functors I,,res, L} are exact. That is, we can consider the in-
duced abelian group homomorphisms on the representation rings which pro-
vides the commutative diagram

Rep(GL(U)) [R(n,1)]-(=)
\

Rep(G(n,1)) —=> Rep(GL(U))

jf/
Rep(GL(U (1))) (F1)*
for r = 1.

For r > 2, we can also consider the functor

T : G(n,r —1)M —rep — G(n,r)—rep

"
induced by the triangulated group homomorphism
T, : G(n,r) = G(n,r — )M
Recall that
TroLy =1L
and

G(n,r)
GL(U)

G(n,r—1)M

ol = (FY)*o TeS 1)

res
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As T7¥ is also exact, we can consider the commutative diagram

Rep(GL(U)) [B(n,r)]-(-)
\\\
T /
Rep(G(n, r—l)( )) === Rep(GL(U Fl

for r > 2. First note, that res is injective:
Lemma 9.1. The map
res : Rep(G(n,r)) — Rep(GL(U))

18 injective.
Proof. Due to Theorem 5.9 and Jordan-Holder (cf. Remark 1.8) we know
that Rep(G(n,r)) is a free abelian group with Z-basis [L(\, G(n,r))] for
A € X(T)4. Furthermore, we know by Proposition 3.19 that L(\) gener-
ates L(\,G(n,r)). Moreover, it is the lowest G,,-weight space of weight
s = deg(A). As the G,,-weight space filtration of L(\,G(n,r)) is GL(U)-
invariant, we obtain

[res(L(A, G(n, )] = [L] + D mu[L(p)] € Rep(GL(U))

peX(T)+
deg(p)>s

with m,, € Z the multiplicity of L(u) in res L(A, G(n,7)). Since [L(A)] with
A€ X(T)4 form a Z-basis of Rep(GL(U)), we see that res maps a basis of
Rep(G(n,r)) to a linearly independent set. This shows the injectivity. O

Now recall that we can consider the maps [R(n,7)]-(—) and (F")* as maps
of Rep(GL(U))-modules where the structure on Rep(GL(U)) is given by
(FT)*. Furthermore we have two Rep(GL(U("))-algebras:

L? : Rep(GL(U™)) = Rep(G(n,r))
and
L* ; : Rep(GL(U™)) = Rep(G(n,r — 1))

All morphisms considered above are maps of Rep(GL(U))-modules.
The diagram above provides a factorization

[R(n,1)]-(—)+(F')*

Rep(GL(U)) ® Rep(GL(UM)) Rep(GL(U))

Rep(G(n, 1))
for r = 1. In fact, we can give a computation of the kernel of I; +L7: By
the injectivity of res, we get
Ker(I; +L7) = Ker(reso(Iy +L7))
= Ker([R(n,1)] - (=) + (F')")
= (6,~61)Rep(GL(U))
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according to Proposition 4.24. This gives an injective map
I +L; : Rep(GL(U)) & Rep(GL(U™M))/(5,~61) — Rep(G(n, 1))

For char(k) # 2, this map is in fact also surjective which is stated by the
next Theorem which finishes the computation of Rep(G(n,1)).
For » > 2, we obtain a commutative diagram

Rep(GL(U)) @ Rep(GL(UWM))
idEBresT N\
R

[R(n,r) ores

Rep(GL(U)) & Rep(G(n,r — 1) Rep(GL(U))
M
Rep(G(n

Note that
((FYY* ores)(Ly_1(8,)) = (F")*(8:) = [R(n,7)] - 6
by Proposition 4.24. That is, the map I, +7;" factors through
Rep(GL(U)) @ Rep(G(n,r — 1)) /(6,~Li_1(5,) " Rep(G(n,r))
This is also a surjective map which is stated by the next Theorem.

Theorem 9.2. Assume that char(k) # 2. Then the map

Rep(GL(U)) ® Rep(GLUM))/(5, —5y) “-HH,

is an isomorphism of Rep(GL(UM))-modules.
Forr > 2, the map

—2 Rep(G(n, 1))

Rep(GL(U)) & Rep(G(n, r — 1)V)/(8,~Li_,(5,)) 5 Rep(G(n, 1))

is a surjection of Rep(GL(U"))-modules.

Proof. As we already saw the injectivity for » = 1, it is left to show the
surjectivity. Recall that Rep(G(n,r)) is a free abelian group with Z-basis
[L(X,G(n,r))] with A € X(T')+ according to Theorem 5.9 and Jordan-Hélder
(cf. Remark 1.8). That is, it suffices to show that these elements lie in the
image of I; +L7, I, +1}" respectively.

Let us start with the case that the mod p-reduction r(\) of A\ vanishes.
Then we get by Proposition 8.3

L(X,G(n,1)) = L1L(s(}))
and for r > 2
L\, G(n, 7)) = T*L(s(\), G(n,r — 1))

Hence the class of L(A,G(n,1)) lies in the image of Iy +L7 and for r > 2,
the class of L(\, G(n,r)) lies in the image of I, +7," respectively.
Now we proceed with the case that

rA)=e+...+6 € X(T)t
is a fundamental weight. We know by Proposition 8.7 that
L\, G(n,7)) = Im(d; ®id : Q7 @, L(s(A\)M = Q8 @y, L(s(A)H)
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the images of the deRham-differentials. As computed at the end of section
7, we know that

Ker(dipy ®id)/Im(d; ®id) = H'L (AU @ L(s(A\))M)
= L3(ANUWY @y L(s(\))
forr =1 and
Ker(diy1 ®id)/Im(d; @ id) = H'L.(A*U @ L(s(A\))M)
~ T (MUY @ L(s(N))
for r > 2. That is,
[Ker(dip1 ®id)] — [Im(d; ® id)] = [LE(A'UM @ L(s(\))] € Rep(G(n, 1))

for r =1 and

[Ker(di+1®id)] — [Im(d; ®id)] = [T (L1 (MUY @, L(s(\)))] € Rep(G(n,r))
for r > 2. Recall that Q% @ L(s(A\)M = I.(A°U @ L(s(\))M). Then for

i = n, this means
[Im(d,, ®id)]
= L[(A"U @ L(s(\)M)] + LA"UWY @ L(s(A\))] € Im(L, +L%)
for r =1 and
[Im(d,, ®id)]
= LA ® L(s())W)] + Ty (MU @y L(s(V)))] € (T, +T7)
for r > 2. Note that we also have
L (A°U @ L(s(A\)M)] = [Ker(diy1 ®id)] = [Im(d;41 ®id)] € Rep(G(n,r))
By combining the two formulas, we obtain
LI(AU ® L(s(\)1)]
= [Im(d; ®id)] + [Im(diz1 @ id)] + L{ATD @ L(s(\))]
in Rep(G(n,1)) for r =1 and
LI(A'U @ L(s(\)M)]
= [Im(d; ®id)] + [Im(dj11 @ id)] + T [L—1 (AT @k L(s(N)))]

in Rep(G(n,r)) for r > 2. That is, if [Im(d;41 ® id)] € Im(I; +L7), then
also [Im(d; ®id)] € Im(I; +L7) for » = 1 and for r > 2, if [Im(d;1; ® id)] €
Im(I, +7;) then also [Im(d; ® id)] € Im(I, +7}°) respectively. But we know
this already for i = n, so we get it for alli =1,... n.

Finally for the case that the mod p-reduction r(\) of A is neither 0 nor a
fundamental weight, we get

L(/\> G(”? T)) = IT(L(/\))

by Proposition 8.9 as char(k) # 2. Hence the class of L(\, G(n,1)) lies in
the image of I} +L7 and for » > 2, the class of L(\, G(n,)) lies in the image
of I, +77F respectively. This finishes the proof. O

Notation 9.3. For 1 <i <r — 1 denote the composition

T = T,«(Z__(;lzl) o---0l;: G(”ﬂ”) — G(Tl,T — Z)(Z)
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Remark 9.4. Consider the morphisms

Rep(GL(U)) 2% Rep(G(n, 1))
and
Rep(GL(U®)) 225 Rep(Gn, r — i)@) L, Rep(G(n, )
for1<i<r—1and
Rep(GL(U™M)) 22 Rep(G(n, )

Then the Theorem implies that the sum of these induces a surjection
T
P Rep(GL(UY)) — Rep(G(n, 7))
i=0

That is, one needs 7 + 1 copies of Rep(GL(U)) = Rep(GL(U®)). Further,
the theorem implies that the element

(5’()’ s 7Oa _57‘)

lies in the kernel.
If we compose these maps with the restriction

res : Rep(G(n,r)) — Rep(GL(U))
we obtain
Rep(GL(U)) 2 Rep(G(n,r)) * Rep(GL(U))
which acts as © — [R(n,r)]z, for 1 <i <r —1 we get

Rep(GLUD)) 2= Rep(G(n, r—i) D) LU Rep(G(n, 1)) 2 Rep(GL(D))

which acts as x +— (¥P) ([R(n,r — i)D](y?)!(x), and
Rep(GL(U™)) Lr, Rep(G(n,r)) == Rep(GL(U))
which acts as  — (¢P)"(x). Thus the image of
res : Rep(G(n,r)) — Rep(GL(U))

consists precisely of the elements of the form
r—1

[R(n,r)zo + (W) ([R(n,r — D)D) (4P) (i) + (47)" (r)

i=1
with z; € Rep(GL(U®) and we have the relation
[R(n,)]6 = (47)"(0)
For r» > 2, the kernel of the surjective map
Rep(GL(U)) & Rep(G(n,r — 1)) LAl Rep(G(n,r))
can be described by its image under the injective map
Rep(GL(U)) @ Rep(G(n, r — 1)V) 925 Ren(GL(U)) @ Rep(GL(UWM))

as follows.
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Corollary 9.5. Forr > 2, the image
(id @ res) (Ker (I, +T7)) C Rep(GL(U)) ® Rep(GL(UWM))
coincides with the kernel of

Rep(GL(U)) @ Rep(GL(UMY) LD g o arw))

which is generated by (5, —(F"~1)*(8,)) as an Rep(GL(UW))-module.
Proof. According to Proposition 4.24, the kernel of [R(n,7)] - (=) + F* is

generated by (5, —(F"~1)*(d,)) as an Rep(GL(U™M)-module. That is, the
elements of the kernel are those of the form

(597 (a), ~(6?) 1 (5)a)
for all a € Rep(GL(U)M). Furthermore, we know that
(W)~} (8)a = [R(n, 7 — 1)D)da
which lies in the image of
res : Rep(G(n,r — 1)M) < Rep(GL(UWM))
according to the last Remark. That is,
Ker([R(n,r)]- (=) + F*) C Im(id @ res)
But also
(id @ res)(Ker(I, +7;°)) = Ker([R(n,7)] - (=) + F*) N Im(id @ res)
which shows the claim. O

Remark 9.6. In the Theorem, for r > 2, we only consider the Rep(GL(U))-
module generated by (8§, —(F"~1)*(§,)). Under the injective map id & res
these elements are those of the form

(697 (a), (¥P)"~1(8)(a))
for all @ = (¢?)"~'(b) with b € Rep(GL(U("))). That is, the occurring
Rep(GL(UM))-coefficients are those of the image of
(F™™1)* : Rep(GL(U)™) — Rep(GL(UWM))
Hence, for » > 2 the induced map of the Theorem is not injective as ¢ - Y

is injective and (F"~1)* is not surjective.

Unfortunately, it does not seem to be possible to introduce the structure
of an Rep(GL(UM))-module on Rep(G(n,r — 1)), so in order to compute
the kernel of I, +77F one needs to apply id @ res as in the Corollary.
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