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I. Introduction

1) We denote by KnF the n-th Milnor K-group of field (for convenience).

For X/F projective there is a complex⊕
v∈X(1)

Kn+1K(v)
d−→

⊕
v∈X(0)

KnK(v)
N−→KnF

where d is given by the tame symbol and N is given by the norm map in Milnor K-Theory.

We denote coker d by A0(X,Kn) and by NX : A0(X,Kn)→KnF the induced norm map.

2) In this note all fields have characteristic different from 2.

Let ϕ : V →F be a quadratic module. We denote by Xϕ ⊂ IPV the associated projective

quadric hypersurface and we put Nϕ = NXϕ . Note that Xcϕ = Xϕ.

Let C(ϕ), C0(ϕ) be the (even) Clifford algebra of ϕ and consider V as a subspace of C(ϕ)

in the usual way.

The special Clifford group of ϕ is defined as

SΓ(ϕ) = {α ∈ C0(ϕ) | αV α−1 = V in C(ϕ)}.

One has a commutative diagram������
sn

�
sn

�
2

�	
1F ∗/(F ∗)2F ∗F ∗

1SO(ϕ)SΓ(ϕ)F ∗SΓ

where F ∗ ⊂ SΓ(ϕ) is central and SΓ(ϕ) acts on (V, ϕ) by α(v) = αvα−1; the spinor norm

sn is given by sn(α) = αtα.

If dimϕ = 2, the SΓ(ϕ) = C0(ϕ)∗, C0(ϕ) is the quadratic extension of F defined by the

discriminant of ϕ and sn is given by the norm for C0(ϕ)/F .

If dimϕ = 3, then SΓ(ϕ) = C0(ϕ)∗, C0(ϕ) is a quaternion algebra and sn is induced by

the reduced norm for the algebra C0(ϕ) | F .

If ϕ0 is a subform of ϕ (i.e. ϕ0 = ϕ | V0 for some subspace V0 of V ), then SΓ(ϕ0) ⊂ SΓ(ϕ).

3) In this note we construct a natural homomorphism

ω̃ϕ : SΓ(ϕ)−→A0(Xϕ, K1)
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such that Nϕ ◦ ω̃ϕ = sn.

ω̃ϕ is surjective (at least if F has no odd extensions). Therefore, if one investigates the

injectivity of Nϕ, one is let to consider the kernel of the spinor norm.

4) An element α ∈ SΓ(ϕ) is called plane, if α ∈ SΓ(ϕ0) for a 2-dimensional subform ϕ0

of ϕ. It is known that SΓ(ϕ) is generated by plane elements (Dieudonné). We denote

by SΓ(ϕ) the quotient of SΓ(ϕ) by its commutator subgroup and elements of the form

αβ−1, where α, β ∈ SΓ(ϕ) are plane such that sn(α) = sn(β). Let sn : SΓ(ϕ)→F ∗

be the homomorphism induced by sn. An element of SΓ(ϕ) is called plane, if it equals

ᾱ for some plane α ∈ SΓ(ϕ). It turns out that ω̃ϕ factors through a homomorphism

ωϕ : SΓ(ϕ)→A0(Xϕ, K1).

5) Since N ◦ ωϕ = sn and ωϕ is surjective, we have

Theorem 1.
If every element of SΓ(ϕ) can be written as a product of two plane elements, then Nϕ is

injective in degree 1.

All forms ϕ, for which I can prove the injectivity of Nϕ satisfy the the hypothesis of

Theorem 1. We have

Proposition 2.
ϕ satisfies the hypothesis of Theorem 1 in the following cases

i) dimϕ ≤ 5

ii) ϕ = ρ⊗ (ψ ⊕ 〈c〉), where ρ is a Pfister form, ψ is a Pfister neighbor and c ∈ F ∗

iii) ϕ = ψ ⊕ c〈1, 1〉, where ψ is a Pfister neighbor and c ∈ F ∗.

Recall that a Pfister neighbor is a form of type ψ0⊕ bψ1 where ψ0 is a Pfister form and ψ1

is a subform of ψ0. Note that every Pfister neighbor (hence every Pfister form) is included

in case ii).

6) The perhaps simplest type of quadratic forms not covered by i), ii) or iii) are 6-

dimensional forms ϕ such that C0(ϕ) has (maximal) index 4 over its center. We have

Proposition 3. There exists a field F and

6-dimensional quadratic form ϕ over F , such that Nϕ is not injective. ϕ can be chosen to

have discriminant 1.

This result is based on a relation between KerNϕ and SK1(C0(ϕ)) which is obtained by

Swan’s computation of K1(Xϕ).

To give an explicit example, let A = D(a, b)⊗D(ā, b̄) a tensor-product of two quaternion

algebras such that |SK1A| > 2. Let

ϕ = 〈−a,−b, ab〉 ⊕ −〈−ā,−b̄, āb̄〉
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be the associated form (Xϕ is the Grassmanian for submodules of A of rank 8).

By Swan we have K1(X) = (K1F )4 ⊕K1A⊕K1A. Consider

j : A0(Xϕ, K1) = H4(X;K5)−→K1(X)−→K1A

where the last map is given by projection to one of the factors. One may check that

Nrd ◦ j = 2Nϕ. Hence j(kerNϕ) ⊂ SK1A. One can show that SK1(A)/j(KerNϕ) is of

order at most 2; it is generated by j(u) for any u such that Nϕ(u) = −1.

II. The special Clifford group

Remark added in July 1996 : In the following I seem to care only on anisotropic

forms. The much simpler case of isotropic forms should considered in the very beginning.

Let ϕ : V →F be a quadratic module. For α ∈ SΓ(ϕ) let

suppα = {v ∈ V ; α(v) = v}⊥.

Note that α ∈ SΓ(ϕ | supp (α)). Clearly

supp α = 0⇐⇒ α ∈ F ∗

dim supp α ≤ 2⇐⇒ α is plane .

Since the product of any two reflections in O(ϕ) is a plane rotation, we have the following

consequence of the theorem of Cartan-Dieudonné.

Proposition 4.
Any element of SΓ(ϕ) can be written as product of

[
dimϕ

2

]
plane elements. �

Consequently dim(suppα) 6= 1, 3 for α ∈ SΓ(ϕ). Two plane elements α, β are called

to be linked if dim(suppα + suppβ) ≤ 3. In this case αβ is again plane, because

suppαβ ⊂ suppα + suppβ and dim(suppαβ) = 3 is impossible.

Note that α and β commute, if suppα ⊥ suppβ.

Theorem 5.
Let G be the free group on the set of all plane elements of SΓ(ϕ). Denote by gα the

generator corresponding to α. Then

G−→SΓ(ϕ), gα−→α

is surjective and its kernel is the normal subgroup generated by elements of the form

R1) gαgβg
−1
αβ if α and β are linked.

R2) [gα, gβ] if supp (α) ⊥ supp (β).
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For v1, v2 ∈ V such that ϕ(v1) = ϕ(v2) we denote by ε(v2, v1) ∈ SΓ(ϕ) the trivial element

if v1 = v2, otherwise any plane element such that ε(v2, v1)(v1) = v2. Note that a plane

α ∈ SΓ(ϕ) is linked with ε(α(v), v) for any v ∈ V .

Remark added in Jan 1998 : The plane element ε(v2, v1) is assumed to have sup-

port in the subspace generated by v1, v2.

Let Ĝ be the quotient of G by the relations R1, R2 and denote by ĝ the image of gα
in Ĝ. Theorem 5 states that Ĝ→SΓ(ϕ), ĝ→α is bijective. Surjectivity follows from

Proposition 4. In the following we proof the injectivity (I don’t know, whether and in

how far this question has been considered in the literature).

Lemma 6.
ĝαĝβ ĝ

−1
α = ĝαβα−1 for plane α, β ∈ SΓ(ϕ).

Proof. Let W = (suppα)⊥ ∩ suppβ.

If dimW = 2, then suppβ ⊂ (suppα)⊥. Therefore αβα−1 = β and the lemma follows

from R2.

If dimW < 2, then there exists a nonzero v ∈ W⊥ ∩ suppβ. Then α, β are linked with

γ = ε(α(v), v), hence by R2:

ĝαĝβ ĝ
−1
α ĝαβα−1 = ĝα′ ĝβ′ ĝ

−1
α′ ĝα′β′α′−1

with α′ = αγ−1 , β′ = γβγ−1.

Note that γ fixes W , because v ∈ W⊥ and α fixes W . This shows W ⊂ W ′ = (suppα′)⊥

∩ suppβ′. Moreover α(v) = γ(v) ∈ W ′\W , hence dimW ′ > W and we are left with the

case dimW = 2 after eventually repeating this argument. �

End of the proof of Theorem 5: Let α1, . . . , αN ∈ SΓ(ϕ) be plane such that α1 . . . αN
= 1. We show ĝα1 . . . ĝαN = 1 by induction on dimϕ.

Let v ∈ V be any anisotropic vector, let vi = αi . . . αn(v), vN+1 = v = v1, let γi =

ε(vi, vi+1) and βi = αiγ
−1
i . αi and γi are linked, because αi(vi+1) = v, thus ĝαi = ĝβi ĝγi .

Put δi = γ1 . . . γi, (δ0 = 1); δi is plane and is one choice of ε(v, vi+1). Hence γi and δi−1

are linked and therefore ĝδi = ĝγ1 . . . ĝγi .

Let ρi = δi−1βiδ
−1
i−1. Then gδi−1

gβig
−1
δi−1

= gρi by the lemma. Taking things together we

find

gα1 . . . gαN = gβ1gγ1gβ2 . . . gβNgγN = gρ1 . . . gρNgρN .

Now, we are done, because ρ1 . . . ρN and δN fix v. �

We have the following consequence of Theorem 5.
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Corollary 7. Let Ḡ be the free abelian group generated by all plane elements of SΓ(ϕ).

Denote by ḡα the generator corresponding to α. Then

Ḡ−→SΓ(ϕ), ḡα−→ ᾱ

is surjective and its kernel is generated by elements of the form

R̄0) ḡαḡ
−1
β if sn(α) = sn(β)

R̄1) ḡαḡβ ḡ
−1
αβ if α and β are linked. �

The corollary is the basis of our construction of an epimorphism ωϕ : SΓ(ϕ)→A0(X,K1)

described in the next section.

The rest of this section is devoted to the proof of Proposition 2. Clearly Proposition 2 i)

follows from Proposition 4.

Let

D(ϕ) = {ϕ(v); v ∈ V anisotropic} ⊂ F ∗

and

N(ϕ) = {sn(α); α ∈ SΓ(ϕ) plane } ⊂ F ∗.

N(ϕ) consists just of all norms from quadratic extensions K/F such that ϕK is isotropic.

Define ∑
ϕ : N(ϕ)−→SΓ(ϕ),

∑
ϕ(sn(α)) = ᾱ∑

ϕ is welldefined by the very definition of SΓ(ϕ).
∑
ϕ is injective, since sn is a left inverse.∑

ϕ(N(ϕ)) generates SΓ(ϕ) by Proposition 4.

For a subform ϕ0 of ϕ, we denote by i∗ : SΓ(ϕ0)→SΓ(ϕ) the homomorphism induced by

the inclusion SΓ(ϕ0) ⊂ SΓ(ϕ).

Lemma 8.
Let ϕ be a quadratic form. Then

i) D(ϕ) ·D(ϕ) = N(ϕ).

ii) If ϕ represents 1, then D(ϕ) ⊂ N(ϕ).

iii) Let v ∈ V and α ∈ SΓ(ϕ) plane, such that ϕ(v) = 1 and v ∈ suppα. Then

sn(α) ∈ D(ϕ).

iv) Let v ∈ V and α ∈ SΓ(ϕ). Then α = α1 . . . αn with αi plane and v ∈ suppαi.

v) If ϕ represents 1, then∑
ϕ(ϕ(v1)ϕ(v2)) =

∑
ϕ(ϕ(v1))

∑
ϕ(ϕ(v2))

for any anisotropic v1, v2 ∈ V . (The left hand side is defined by i)).
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vi) Suppose ψ represents 1 and let ϕ = ψ ⊕ 〈b〉. Then

SΓ(ϕ) = i∗(SΓ(ψ)) ·∑ϕ(D(ϕ)).

Proof.
It is easy to check i) - iii) for dim ϕ = 2 and iv) - vi) for dim ϕ = 3. One may however

reduce to these cases by restriction to appropriate subforms. This is obvious except for

iv) and vi). For iv) one has to consider only plane elements α by Proposition 4; hence

one may replace ϕ by ϕ | (suppα + vf), which is of dimension ≤ 3.

For vi) the reduction can be done as follows. Write (V, ϕ) = (W,ψ) ⊕ (F, 〈b〉) and let

v0 = (0, 1) ∈ W×F = V . For a given α ∈ SΓ(ϕ) put β = ε(α(v0), v0). Then β−1 ·α fixes v0

and is therefore contained in SΓ(ψ). Hence it remains to show β̄ ∈ i∗(SΓ(ψ)) ·∑ϕ(D(ϕ))

for which one may restrict to ϕ | V ′ with V ′ = suppβ + Fv1, where v1 ∈ V is such that

ϕ(v1) = 1. �

Lemma 9.
Let ψ = 〈1〉 ⊕ ψ′ be a Pfister form, let ψ̄′ be a subform of ψ′ and let ψ̄ = 〈1〉 ⊕ ψ̄′.

Moreover let ζ be an arbitrary form representing 1 and let b ∈ F ∗. Put ϕ = (ψ ⊗ ζ)⊕ 〈b〉
and ϕ̂ = ϕ⊕ bψ̄′ = (ψ ⊗ ζ)⊕ bψ̄. Then

i∗ : SΓ(ϕ)−→SΓ(ϕ̂)

is surjective.

Proof.
Since ϕ̂ represents 1 we know that

∑
ϕ̂(D(ϕ̂)) generates SΓ(ϕ̂) by Lemma 8 i). Note that

D(ϕ̂) ⊂ D(ϕ) ·D(ψ̄) ⊂ D(ϕ) ·D(ϕ) = N(ϕ)

since ψ is multiplicative and ζ represents 1. Hence∑
ϕ̂(D(ϕ̂)) ⊂ ∑ϕ̂(N(ϕ)) ⊂ i∗(SΓ(ϕ))

by Lemma 8 v). �

Lemma 10.
Let ϕ be a Pfister neighbor, i.e. ϕ = ψ ⊕ bψ̄ where ψ is a Pfister form, ψ̄ is a subform of

ψ and b ∈ F ∗. Then sn : SΓ(ϕ)→F ∗ is injective and has image N(ϕ) = D(ψ ⊗�−b�).
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Proof.
Let ρ = ψ ⊗ �−b�. Then D(ρ) is a group as for every Pfister form and therefore

D(ρ) = N(ρ) by Lemma 8 i). Since ϕK is isotropic if and only if ρK is isotropic, we have

N(ϕ) = D(ρ). Therefore N(ϕ) is a group, hence Im sn = N(ϕ) = D(ρ).

Injectivity of sn: If ϕ is a Pfister form (i.e. ψ̄ = ψ), then
∑
ϕ is a homomorphism in view

of Lemma 8 v) and is a left inverse to sn.

In the general case one may apply Lemma 9 with ζ = 〈1〉 to reduce to case ψ̄ = 〈1〉. In

this case we find by Lemma 8 vi) and the above remarks for Pfister forms:

SΓ(ϕ) = i∗(SΓ(ψ)) ·∑ϕ(D(ϕ)) =
∑
ϕ(N(ψ)) ·∑ϕ(D(ϕ)).

Hence every element in SΓ(ϕ) can be written as product of two plane elements and we

are done. �

Proof of Proposition 2 ii).
By Lemma 9 we may replace ϕ = ρ⊗ (ψ⊕ 〈c〉) by ϕ̃ = (ρ⊗ψ)⊕ 〈c〉. Since ρ⊗ψ is itself

a Pfister neighbor, we may assume ϕ = ψ⊕〈c〉. By Lemma 8 vi) and Lemma 10 we have

SΓ(ϕ) =
∑
ϕ(N(ψ)) ·∑ϕ(D(ϕ)). �

Proof of Proposition 2 iii).
Write (V, ϕ) = (W,ψ)+(F×F, 〈c, c〉) and let v0 = (0, 0, 1), v1 = (0, 1, 0) ∈ V = W×F×F .

For given α ∈ SΓ(ϕ) let β = ε(α(v0), v0) and γ = ε(β−1α(v1), v1). Then δ = γ−1β−1α

fixes v0 and v1, hence δ ∈ SΓ(ψ) and δ̄ ∈
∑
ϕ(N(ψ)) by Lemma 10. By Lemma 8 iii) we

have sn(β), sn(γ) ∈ D(cϕ) and therefore β̄ · γ̄ ∈ ∑ϕ(D(cϕ)) · ∑ϕ(D(cϕ)) =
∑
ϕ(N(ϕ)).

Hence ᾱ = β̄ · γ̄ · δ̄ is in
∑
ϕ(N(ψ)) ·∑ϕ(N(ϕ)). �
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III. The map SΓ(ϕ)−→A0(Xϕ,K1)

We will use the following

Theorem 11.

i) A0(Xϕ, K0) ↪→ K0F for arbitrary ϕ

ii) A0(Xϕ, Kn) ↪→ KnF for isotropic ϕ

iii) A0(Xϕ, K1) ↪→ K1F for dimϕ = 3.

i) is proved in [Merkuriev, Suslin; On the norm homomorphism in degree 3].

ii) follows from i) by the norm principle.

iii) is one of the main points in the proof of Hilbert Satz 90 for K2 for quadratic extensions.

It stands at the heart of our construction. It shows that for a 3-dimensional form ϕ the

groups SΓ(ϕ) = SΓ(ϕ)/[SΓ(ϕ), SΓ(ϕ)] and A0(Xϕ, K1) are naturally isomorphic, because

sn and Nϕ are injective and have the same image in F ∗ = K1F .

Theorem 12.
For quadratic forms ϕ over F there exists unique homomorphisms

ωϕ : SΓ(ϕ)−→A0(Xϕ, K1)

such that

i) If dim ϕ = 3, then ωϕ = N−1
ϕ ◦ sn.

ii) If ϕ0 is a subform of ϕ, then 
 ωϕ0�
i∗

�
ωϕ



i∗

A0(Xϕ, K1)SΓ(ϕ)

A0(Xϕ0 , K1)SΓ(ϕ0)

is commutative.

Proof.
Let Ḡ be as in Corollary 7 and define

ω̂ϕ : Ḡ−→A0(Xϕ, K1)

as follows. For α ∈ SΓ(ϕ) plane choose a subform ϕ0 of ϕ of dimension 2 such that

α ∈ SΓ(ϕ0). (ϕ0 is unique if α 6∈ F ∗). Then α ∈ SΓ(ϕ0) = K1F (Xϕ0) = A0(Xϕ0 , K1) and

we define ω̂ϕ(ḡα) to be the image of α under A(Xϕ0 , K1)→A(Xϕ, K1). This definition does

not depend on the choice of ϕ0 because of Theorem 11 i). In order to prove Theorem 12,

it suffices to show that ω̂ϕ vanishes on the relations R̄0), R̄1) in Corollary 7. This is clear

for R̄1) because of Theorem 11 iii) and follows for R̄0) from
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Proposition 12.
Let v1, v2 ∈ X(0) be two points of degree 2, let Fi = K(vi) and let αi ∈ F

∗
i such that

NF1|F (α1) = NF2|F (α2). Then [{α1}, v1]− [{α2}, v2] is in the image of⊕
v∈X(1)

K2K(v)
d−→

⊕
v∈X(0)

K1K(v).

Proof.
Let F0 = F1 ⊗F F2. We have

αi = {β}+ {NF0|Fi(γ)}
for some β ∈ F ∗ and γ ∈ F ∗0 (take β = (trα1 + trα2)−1, γ = α1 + α2 in the generic case).

Hence

[{α1}, v1]− [{α2}, v2] = {β} · (v1 − v2) + corF1|F (u1 − u2)

where u1, u2 ∈
⊕

v∈(XF1
)(0)

K1K(v) are given by

u1 = [NF0|F1{γ}, ṽ1],

with ṽ1 a rational point of XF1 and

u2 = [γ, Ṽ2]

with ṽ2 the point over v2.

Now {β} · (v1 − v2) ∈ Im d, because A0(Xϕ, K0) ↪→ K1F .

Furthermore, over F1 we have Nϕ(u1 − u2) = 0, hence u1 − u2 ∈ Im d, because XF1 has a

rational point. �

Proposition 13.
If F has no extension of odd degree, then ωϕ : SΓ(ϕ)→A0(Xϕ, K2) is surjective.

It follows from Knebusch’s norm principle that Im (Nϕ ◦ ωϕ) = ImNϕ. One may use the

proof of Knebusch’s norm principle to show that ωϕ is surjective in general. Since this is

a bit tedious I omit a proof here.

Proof of Theorem 1.
Since A0(Xϕ, K1) ↪→ K1F for isotropic ϕ, we have 2KerNϕ = 0 by a transfer argument.

Hence we may assume that F has no odd extension, again using transfers. But then by

Proposition 13 and the very definition of SΓ(ϕ):

KerNϕ = ωϕ(Ker sn) = 0. �

For a quadratic form put D1(ϕ) = Im sn = ImNϕ. For the proof of Proposition 13 we

need the following lemma which can be deduced also from the arguments in [Merkuriev,

Suslin; On the norm homomorphism in degree 3].
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Lemma 14.
Let dim ϕ = 4 and let H/F be a quadratic extension. Then for every u ∈ D1(ϕH) there

exists (over F ) two 3-dimensional subforms ϕ′, ϕ′′ of ϕ such that u ∈ D1(ϕ′H) ·D1(ϕ′′H).

Proof. (sketch)

Write ϕ = 〈−a,−b, ab, c〉. It is easy to check that

D1(ϕ) = Nrd (D(a, b)⊗ F (
√
c)) ∩ F ∗ ⊂ F (

√
c)∗.

Using this for ϕH one finds

u = Nrd (d) · (1 + cNrd (d′))

for some d, d′ ∈ D(a, b) ⊗F H with d′ + d′ = 0. Now put ϕ′ = 〈−a,−b, ab〉, then

Nrd (d) ∈ D1(ϕ′H). It is not hard to find ā, b̄ ∈ F ∗ such that D(a, b) ' D(ā, b̄) and

1 + cNrd (d′) ∈ Nrd (D(āc, b̄c) ⊗F H). Since ϕ̄ = 〈−āc,−b̄c, ab̄, c〉 has the same even

Clifford algebra as ϕ, we know that ϕ̄ is similar to ϕ by quadratic form theory. Hence

〈−āc,−b̄c, āb̄〉 is similar to a subform ϕ′′ of ϕ. Now we are done because 1 + cNrd (d′)

∈ D1(ϕ′′H).

Consequence.
Let H/F be a quadratic extension. Then

corH/F (ImωϕH ) ⊂ Imωϕ.

Proof. We may assume dim ϕ = 4.

For α ∈ SΓ(ϕH) plane there exists by Lemma 14 subforms ϕ′, ϕ′′ of ϕ of dimension 3 and

α′ ∈ SΓ(ϕ′H), α′′ ∈ SΓ(ϕ′′H) such that sn(α) = sn(α′) sn(α′′). We know that sn is injective,

hence

corH/F (ωϕH (α)) = corH/F (ωϕH (α′) + ωϕH (α′′)).

Now corH/F (ωϕH (α′)) is in the image of A0(Xϕ′ , K1)→A0(Xϕ, K1). But we know that ωϕ′

is surjective, hence corH/F (ωϕH (α′)) ∈ Imωϕ. Similarly corH/F (ωϕH (α′′)) ∈ Imωϕ. �

Proof of Proposition 13.
By the consequence we have the norm principle for Im (ωϕ) if F has no odd extensions.

Since A0(Xϕ, K1) is generated by corestrictions from splitting fields K of ϕ and since

A0(XϕK , K1) = ImωϕK we conclude A0(Xϕ, Kn) = Imωϕ. �
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