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1 Introduction

The theory of uniform approximation subject to constraints has received
considerable study in the last ten years. In 1973 two surveys appeared concerning
this topic [94] and [157]. In this paper the survey [157] will be updated and
expanded.

The usual setting of this theory is as follows. Denote by C(X) the class of
all continuous real valued functions defined on X, a compact subset of [a, b],
normed with the uniform (Chebyshev) norm, Il f I = max {If(t)|: t € X}. Let
W C C(X) be a class of approximants and let K C W be a nonempty subset of W
that is determined by certain constraints. In most cases W is either a Haar subspace
of C[a, b] or a class of rational functions. Then, given f € C(X),onesaysp €K isa
best approximation (satisfying the constraints) to f if and only if

If—pl=inf{lf—-ql:q€K}.

In what follows we shall discuss results from this theory concerning existence,
characterization, uniqueness, computation, continuity and rates of approximations.

1) Research sponsored by the National Science Foundation, under Grant No. MCS76 —
08518.

2) Research sponsored by the Air Force Office of Scientific Research, Air Force Systems
Command, USAF, under Grant No. 76—2878.
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The organizational structure of this paper is to divide the constraints into three
general classifications. Precisely, we shall classify the constraints according to the
categories of equality constraints, inequality constraints and general constraints.
As will be noted these classes are not necessarily clearly delineated.

2 Equality Constraints

2.1 Approximation with interpolatory constraints

The special case of Lagrange interpolatory constraints on a Haar subspace
was the first problem in this classification studied and is the most complete to date.
Accordingto Lewis, Bernstein [12] treated a simple case of this problem
in 1926. The first in depth study of Lagrange constraints was undertaken by
Paszkowski [127],[128],[129]in 1955. This study was extended by
Deutsch[31]in 1968 where a complete treatment of the best approximation
problem is given. In 1969, this theory was extended by Loeb, Moursund,
Schumaker and Taylor [100] to allow Hermite interpolatory constraints.

We begin with a rather complete discussion of this Hermite theory since the
results obtained here are representative of those sought in the other studies. Thus,
as in [100], let W be an extended n-dimensional Haar subspace of order v defined
onfa,b]l. Let T={tj}%, ast, <- - <ty S b, bek fixed points, {m;}¥_, bea
given set of nonnegative integers with T | (m; + 1) =m = n, max, <j<m; <v.
and {a;;} 1 £j £ k,0< iS m; be agiven array of real numbers. Finally, fix
X C [a, b] a compact subset and define

K={peW:pi(t)=a; 1SjSk 05is m}.

K is a subset of W satisfying the Hermite-Birkhoff constraints, p‘¥(t;) = a;. If

m; = 0 forj=1,.. .,k then this theory becomes approximation with Lagrange
constraints. Except for questions concerning rates of approximation all known
results of the Lagrange theory extend directly to the Hermite case. As in the case
of approximating from closed subsets of a finite dimensional subspace, existence
follows from a straightforward compactness argument. (Here, as elsewhere in all
existence statements, we make the tacit assumption that K # @.) Thus,

Theorem 2.1.1 ([93]) Let f € C(X). Then there exists p € K such that
If—pll=inf{llf—ql:q€K}.

Thus, the side conditions do not affect the standard existence result in this
case. However, turning to theorems of characterization, we find that the side condi-
tions have a very definite effect. In order to introduce these results we must first
define the extremal set corresponding to a given f € C(X) and p € K. The extremal
set, X, , for f with respect to p is defined to be X, = xeX: If(x) —px)I=
I £ — p I}. Now, in order to prove the standard characterization results, one must
put restrictions on X and f. Thlls, we shall assume that X ~ T consists of at least
n — m + | points and that f € C(X) = {f € C(X); f(t;) = aj, 1 £ j £ k}. Although
this restriction on f is more than is needed, it is, nevertheless, natural in some sense.
Probably the restriction that would give the largest class of functions for which the
following characterizations hold (and therefore uniqueness, also) is that f satisfy
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inf{lf —qll: €K} >max{If(tj) —ajpl:j=1,...,k}. With these restrictions it
is possible to prove

Theorem 2.1.2 ([100]) Letf € 6(X) ~Kand p €K. Then the following
four statements are equivalent:

(i) pis a best approximation to f from K.

(i) minyex, (f(x) — p(x))(q(x) — p(x)) £ 0 for all q EK.

(iii) The zero element (0, . . ., 0) is in the convex hull of the set of (n — m)-
tuples {a(y)9:y € Xy} where o(y) = sgn(f(y) — p(y)) and § = (¢, (y), . . .,
Sa_m (Y)) With ¢y, . . ., ¢n_m a basis for K — p.

(iv) There exist n — m + l.consecutive points {x;}P5™*1 C Xp such that
sgn[(f(x;) — p(x) M (xp] = (=)' ' sgn[(f(x;) — p(x;)) [1(x,)] where TI(t) =
(ty — )™ (e — )™k * Lk # 0 and n)=1ifk=0.

Remarks. Condition (ii) is frequently referred to as the Kolmogorov criterion and
can usually be shown to hold in the most general situations. Condition (iii) is usually referred to
as “zero in the convex hull” and is not quite as widely applicable as (ii). The last condition (iv) is
usually referred to as the alternation condition. In order to get this last characterization some sort
of zero counting property must exist among the approximants and this particular characterization
is used in proving the convergence of Remez-type algorithms for computation with simplified
exchange procedures.

Proof. The proof follows analogously as in the classical case (no restrictions).

(i) = (ii). The proof is by contradiction. Suppose for some q€K, (f(x) - p(x)) -
(a(x) — p(x)) >0 on X,,. Thus, for positive e sufficiently small, it is immediate that p(x) —
€(q(x) — p(x)) is a better approximation to f from K at least on the critical set X, and in fact
on all of [a, b] by the usual continuity and compactness argument.

(i) = (iii). Let U= {o(y)y : y € Xp}. It is easily seen that U is a compact subset of R*™ ™,
Now the system of inequalities

nimzio(x)ﬁbi (x)>0, XE€X,
i=1

forz=(z,,...,2,_m) € R ™ must be inconsistent by (ii). Thus, by the theorem on linear
inequalities [22, pp. 19] we have that the origin of E?~™ belongs to the convex hull of
{o(y)¥ : y € Xp} as desired.

r
(iii) = (iv). Consider Ao(x)¢j(x))=0forj=1,...,n —m, where A >0and
i=1

rSn—m+1by Carathéodory’s theorem. The Haar condition implies moreover thatr=n —m + 1.
Suppose for some j, 0(%;)0(Xj+ 1 )TI(Xj)TI(Xj+ ;) > 0. Then let q €K — p be such that q # 0 and
q(x;))=0fori€ {1,2,...,n—m+ 1}~ {j,j+ 1}. Then q has no other zeros in [x;, x;+ ;] except
those at the {ti}:;l. Soif t; € (xj, Xj+ 1), then q(t;) = q'(t;) =. .. = qMi(t;) =0 implies q changes
sign m; times at t;. Hence q changes sign ZtiE(x,-,xj+ pm; times in (X;, Xj+ 1 ). Thus sgn q(xj) -

sgn q(xj+ 1) = sgn I1(x;) - sgn T(xj: 1) = sgn o(x;)sgn 0(xjs ;). Then Ao (x5)q(x;) +

Aj+10(Xj+ 1) q(Xj4+ 1) # 0, a contradiction. Hence o (x) T1(x;) 0 (xj, DI(xj,)<0.

(iv) = (i). This we show by contradiction. Suppose there is a q € K such that Il f — gl <
I f —p Il Writing (p(x) — q(x))T1(x) = P — fE)(x) + (f(x) — q(x))[1(x), we have from
(iv) that the function (p(x) — q(x))I1(x) alternates in sign at the n —m + 1 points x;. Fix an i,

121 S n — m. Then there are two cases to consider. If the sum of the (m; + 1)’s, such that
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tj € (Xi, Xi 1), is even, then TT(x;)[1(x;+ 1) > 0 so that [p(x;) — q(x)][P(Xi+ 1) — a(Xi+ 1)] <O.
Thus, p — q either has a zero in (x;, x;+ ) ~ T since K C C¥[a, b] or p — q has a zero of order
m; + 2 at some t; € (X;, X;s+ ). Similarly, we obtain the same conclusion if the sum of the

(m; + 1)’s, such that t; € (x;, X4+ 1), is odd. Thus, counting zeros to order v, we see that p — q
has n zeros, implying that p = q, a contradiction. Thus, (iv) implies (i) and the theorem is
established.

To prove uniqueness one can either give a somewhat refined argument in the
(iv) implies (i) case above or give a direct proof as described below.

Theorem 2.1.3([100]) Let f € E(X); then f has a unique best approxima-
tion from K.

Proof. Iff€K, note that the result is immediate. Thus, assume f € K and suppose p
and q are two best approximations to f from K. Let X, and ¢ be defined as in Theorem 2.1.2
corresponding to p. Then for all x € X, o(x)[f(x) — p(x)] 2 g(x)[f(x) — q(x)]. This implies
o(x)[q(x) —p(x)] Z Oforall x€ Xp-Now letyy, ...,y be the zeros of q(x) — p(x) which are
in Xp. If q ¥ p then we must have that t <n —m. Consequently there exists a q; € K — p such
that o(y;)qu(yi)=1,i=1, ..., t. Then, it is a straightforward argument to conclude there exists
a X > 0 such that 0(x)[q(x) — p(x) + Aq,; (x)] > 0 for all x € Xp,. Since q(x) + Aq;(x) €K this
contradicts the Kolmogorov criterion (ii), showing that q = p.

In addition, in this theory, both a strong uniqueness and a Lipschitz conti-
nuity theorem for the best approximation operator are known.

Theorem 2.1.4 ([100]) Let f€ E(X) and suppose p € K is the best approxi-
mation to . Then there exist a constant v = y(f) > 0 such that forall €K

If—qlz If—pl+ylp—ql.

Theorem 2.1.5 ([100]) Foreachf € 6(X) let 7f denote the unique best
approximation to f from K. Then 7 is locally Lipschitz at each f € C(X). That is, if
f € C(X) is fixed and g € C (X) arbitrary then

2
()

The proofs of both of these theorems are as in the standard linear theory without con-
straints [22], pp. 80—82. Results concerning the continuous dependence of this problem on the
underlying domain of the functions have not been obtained to our knowledge. Although it appears
that for this problem the results of Cheney [22], pp. 84—88, should apply, specific estimates
as given in [22], pp. 89—94, need to be derived for the case that W consists of algebraic poly-
nomials.

N7f —7gl s hf—gl.

Turning to the question of computation, the convergence of the analog of
the Remez single point exchange has been proved in [100]. Clearly, the multiple
point exchange can also be modified to treat this problem. In the development of
this Remez-like routine the following de La Vallée Poussin type of theorem was
also developed.

Theorem 2.1.6 ([100]) Let f€ C (X) and let p € K be the best approxima-
tionto ffromK. If €K, {z},i=1,...,n—m+ l,isasetof n —m+ 1 con-
secutive pointsin X~ Tand {N\;},i=1,...,n—m+ 1,isaset of n — m+ 1 posi-
tive numbers such that
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(@) [f(z)) —az)l=A
(b) sgn{[f(z;) — q(z)]T(z)} = (1) 'sgn{[f(z,) — q(z)]1(zy)},
then min;\; £ | f — p Il, where I1(z) is defined in Theorem 2.1.2.

As mentioned earlier, Pasz k o ws ki studied Lagrange interpolatory
constraints in 1955. He developed existence, alternation, and uniqueness results,
as well as results concerning the error of approximation. Deutsch extended
this theory to give all the corresponding results stated above for the more general
Hermite case. Before discussing results about the rate of approximation with inter-
polatory constraints, we want to mention a further generalization of this theory in
the linear case. Specifically, this theory has been extended to include Hermite-
Birkhoff interpolatory constraints. This was done independently by Platte
[134]and Kimchi and Richter-Dyn [88]. Although it is claimed in [88]
that this theory can be generalized to include extended Tchebycheff systems with
differentiation replaced by the suitable differentiable operator on [a, b], in both of
these studies the space W is taken to be I1,, _ , . In the first study the domain of ap-
plication is a compact subset X of an interval whereas in the second it is a closed
interval [a, b]. The method of description of this problem is conveniently done
through the device of an incidence matrix EX(m) = (ej), 1515 k,05jSn-1
with each e;; being 0 or 1 and Z; je;; = m £ n. For notational convenience, set
I={(i, j): e; = 1}. Given k real points, ¢, <§, <---<§,, the matrix E§(m) and
the set of constants {b;;: (i, j) €1}, the class of approximants satisfying Hermite-
Birkhoff constraints, K, is defined by

K={p€I,_,: pW() = b forall (i, j) €I}.

In the case that m = n one says that EX(m) is poised provided the interpolation
problem

penn— l9p(l)(£l)=blj (l>J)€I

has a unique solution for each set {b;;}. Since in this formulation we usually have
m < n, the assumption is made that K is of dimension n — m. (A complete charac-
terization of poised matrices is an outstanding open problem — the so-called
Hermite-Birkhoff problem.)

For a survey of Hermite-Birkhoff theory see [80], [104], [42] and [152]. As
in the Hermite theory, one then sets

C(X) = {(fEC(X): f(£) = by, forall (i, 0) € I}.

In this general setting both a Kolmogorov characterization [88] and a zero in the
convex hull characterization [134] are proved for f € C (X). The question of alterna-
tion is somewhat more difficult and additional assumptions are needed on K to
ensure some sort of alternation. Thus, the following definitions are given.

Definition 2.1.1 ([88]) An L-condition is a condition corresponding to an
additional unit in the first column of EX(m), (possibly in a new row). An H-condi-
tion is a condition corresponding to an additional unit at the end of an Hermitian
block of EX(m), where an Hermitian block of length u in EX(m) is a sequence of
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consecutive 1’s in one of its rows, beginning in the first column: e;;=1,j=0, 1,
e, M= l,ei“=0.

Definition 2.1.2 ([88]) Define u; =min{j: ¢;;=0,05jS n—1},i=1,...,k
K
and T1(x) = TI (x — §;)*i.
i=1

Then under the assumption that EX (m) is poised after any addition of n — m
L-conditions and/or H-conditions (property P in [134]) the following alternation
result follows. (To say EX(m) (augmented) is poised means that the interpolation
problem determined by this new incidence matrix has a unique solution for any
data vector.)

Theorem 2.1.7 ([88], [134]) Let the set K have property P and 1l be defined
as above. Further assume that f € C (X) ~ K and p €EK. Then p is a best approxima-
tion to f from K if and only if there exist n —m+ L points y, <y, < <VYp_m+1,
withy, EX~ {§:1;=0,j=1,...,k} foralli,such that 1{(y;) — p(y)I=If—pl
and sgn [(f(y;) — p(y) TI(yD] = (—=D* ! sgn[(f(y,) — p(y DIy D), i=1, ...,
n—m+l.

In addition, under the assumption of property P, Platte proves uniqueness,
strong uniqueness and Lipschitz continuity of the best approximation operator. In
[88], a study of the set of best approximations to a given f € C(X) under conditions
less restrictive than property P is given. A weak type alternation is developed as well
as sufficient conditions for uniqueness to hold. One such sufficient condition for
uniqueness is

Theorem 2.1.8 ([88]) If EX(m) is poised after the addition of n — m
L{%ditions then there exists a unique best approximation from K for each
f e C(X).

For details concerning the convergence of a Remez algorithm in this case, see section 4.1.
In the terminology of section 4.1, K is Haar. Thus Theorem 4.1.4 assures the convergence of a
Remez algorithm, while Theorem 4.1.6 provides the alternation pattern, which is the same as
described above.

Finally, we turn to questions concerning the degree of approximation with
interpolatory constraints. For very recent results in this direction we refer the
reader to the recent work of Beatson [8],[9], [10]. Here the first results are
duetoPaszkowski [128],[129] for the case of Lagrange interpolatory con-
straints. Specifically, let f € C[0, 1], fix m > 0 and points 0 = £, <t <0<
m S 1.

Then for n 2 m define
E () =inf{lf —pl: pEI,}
and E,,(f,’g)=inf{||f—p||:pEHn and p(§)=1(),i=1,...,m}.

Theorem 2.1.9 ([128], [129]) There exists a constant C independent of n
such that
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En(f. £) S CEq(f),
and for all n sufficiently large C may be taken to be 2.

Also, in [128] a Weierstrass type of theorem is given for the case that the
number of points of Lagrange interpolation tends to infinity (in a controlled
manner) as n —> oo,

For the case of Hermite and Hermite-Birkhoff constraints, Platte [134]
proves that the corresponding analogue of Theorem 2.1.9 cannot hold. In fact, he
constructs a function, f € C[—1, 1], which is actually analytic in some disc con-
taining [—1, 1] for which

E (f, &, m)
E (D
where E (f, §, m) =inf{If —pl: pE€1l,, pI(E) =W (&), (4, ) €L, Z(; jerei; = m}

and for some iy, &;, = 0 with (io, 0) and (ig, jo) €I (some j, > 0). In a positive
direction the following two results are proven.

Theorem 2.1.10 ([134]) (a) Given f € C*[—1, 1] where v is fixed and j Sv
for all j such that (i, j) €1, then there is a constant C independent of n such that
forn2 m,

En(f, £, m) S CEq_,(f®),

lim, .

(b) Let f be analytic in some region containing [—1, 1] and let f be real on
[—1, 1]. Then, given € > O there exists a constant A, independent of n such that

E,(f, &, m) S AJE(D)] ¢

fornZ m.

For the special case of Hermite-Birkhoff interpolation at the origin and inter-
polation at no other points, von Golitschek [6]1]has proved the following

Theorem 2.1.11 ([61]) Let f€C[0,1),Q={q;,...,qm} C {1,...,N}.
Then, forn > q,

n
E,(f,Q) = minai(maXXE[O, 1] [f(x) - ¥ ax'h) S Aw (f; %) s
i=0
i€Q

where w(f; *) is the modulus of continuity of f and A is a constant independent of
fand n.

Additional Jackson-type theorems are given including the case that
Q= {q;};Z, subject to certain side conditions.

Recently, Hill, Passow and Raymon [65] proved the following
Jackson-type result for a special case of Hermite constraints.

Theorem 2.1.12 ([65]) Let fEC*[-1,1], k=0, 1,...and let x,, X,, . . .,
Xm be any prescribed points of [—1, 1]. Then there is a constant d > 0 (d depends
ON Xy, . .., Xy and K, but not on f) and a sequence {p,(x)} where p,(x) € I,
such that for all sufficiently large n
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pgll)(x.l) = f(l)(x.l)’.] = ly 2’ vty m’lz 0’ l’ et k
and 1D - p® < ;de w(f(k); %)

Remark. Theorem 2 given in [65] has w(f®; 1/n) rather than w(f®; 1/n). However,
this has been pointed out to be incorrect by Beatson [8] who independently proved the
version of Theorem 2.1.12 given above (with d independent of x,, ..., X,).

The problem of approximating with rational functions satisfying interpola-
tory constraints has also been studied. In two papers, Gilormini announced
results (no proofs given) corresponding to the case of Lagrange constraints [52],
[53]. His announced results were that existence, Kolmogorov and alternation
characterizations, uniqueness, a de La Vallée Poussin estimate, strong uniqueness
and pointwise Lipschitz continuity for the best approximation operator hold in
this setting, where for the last two results it is assumed that f, the function being
approximated, is normal (that is, the best approximation for f is of full allowable
degree in either its numerator or denominator). However, the claim of existence
is false as shown by Loeb [101] with the following simple counter-example.

Let W=R}[0, 1] and K = {r € R}[0, 1]: r(0) = 1}. Define

1+6x, 0sxs L,

3

2

f(x) = 3—6(x—§), §§x§ 3
2 2<¢ <

+ -=), ==x=1
1 6(x 3), 3 X

Note that r*(x) = 2 is the unique best approximation to f from R1[0, 1] with error 1, by the
standard alternation theory. Also, the sequence {ry(x)}x=; C K where ri(x) = (2 x + 1/k)/

(x + 1/k) and limy ., | f — 1, | = 1. Thus, since r*(x) ¢ K there can be no best approximation to
f from K.

In[54], Gilormini then stated a generalized type of existence result
for approximation with rationals satisfying Lagrange interpolatory constraints and
also corrected other existence claims in different rational approximation with
constraints settings [55], [56]. Also,in 1969, Barrar and Loeb [6] studied
uniform approximation with unisolvent families of variable degree satisfying
Lagrange interpolatory constraints. A standard theory is developed and by assuming
that the number of interpolating points is at least one, the possibility of a constant
non-zero error curve is avoided.

In[132], Perrie developed the theory of uniform approximation with
generalized rational functions satisfying Hermite constraints. The setting for this
study is the following. Let X be a closed subset of [a, b], {y;,..., yi} a fixed set
of k points in X, {m,, ..., my} a set of positive integers with m* = ZX_ , m,, and
s = max;(m; — 1). Suppose P and Q are two finite-dimensional subspaces of C*(X).
Define R to be

R={r=p/q: pEP,q€Q,q>00nX}
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(generalized rational functions) and for f € C3(X) define R(f) to be
R(f)={reR: D(y) =fW(y;),j=0,1,...,m —1,i=1,...,k}.

Next, for a fixed r € R, write P + rQ to denote the subspace {p +rq: pEP, q €Q}
and define S(r) to be

S()={he€P+rQ: hV(yi)=0,j=0,...,m; - 1,i=1,...,k}.
If f € C5(X) and r € R(f), define X(r), the critical set for r, to be
X@)={xeX: If(x) —r(x)|=If —rl}.
Some of the results proved by Perrie are

Theorem 2.1.13 ([132]) Let f € C3(X). r* is a best approximation to f from
R(f) if and only if 0 € Convex Hull of {o(x)%: x € X(r*)}, where 0(x) =
sgn(f(x) — r*(x)), {81(x), . .., 84(X)} is a basis for S(r*) and X = (g,(x), . . . , g4(X)).

Theorem 2.1.14 ([132]) Suppose that P + rQ is an extended Haar subspace
of order v=max m; + 1, r €R. Suppose further that d = dim S(r) and {g,, ..., g4}
is a basis for S(r). Then r is a best approximation to f € C3(X) from R(f), r £f, if
and only if there is a set of d + 1 points xo <x, <---<xq4 in X(r) such that
0(x) = (=D'""*Dog(x;4,),i=0,...,d — 1 where k(i) denotes the sum of the
multiplicities m; of the interpolating points y; which lie between x; and Xi, , .

Definition 2.1.3 ([134]) Assume dim S(r) = d for r €R fixed. Then S(x) is
called an interpolating Haar subspace if every nonzero element of S(r) has at most
d — 1 zeros distinct from the interpolating points y,, . . . , yy.

Theorem 2.1.15 ([134]) If S(r) is an interpolating Haar subspace and r is a
best approximation to f € C5(X) from R(f), then r is unique.

In addition, a strong uniqueness and a Lipschitz continuity of the best approximation
operator satisfying Hermite constraints is proved for normal functions, as well as some additional
results relating uniqueness and extremal signatures and some weaker convergence results. It ap-
pears that these results actually hold in the slightly more general situation where one only re-
quires Lagrange interpolation to f and the remaining Hermite constraints are set equal to an
arbitrary set of constants to determine K, the class of approximants.

To our knowledge, no computational studies of this particular problem have appeared
in the literature. It is our belief that a Remez-type algorithm can be developed for this theory
using ordinary rationals with the usual problems that this sort of algorithm has in the rational
case. Also, the differential correction algorithm could also be generalized to treat this problem
(see [81] and [93]). In a recent paper G e hner [50] studied characterization theorems for
constrained approximation using optimization theory. Among the cases he considered is uniform
rational approximation with Lagrange interpolatory constraints. In the conclusion of his paper
he indicates that he has submitted an algorithm for computing in these problems based on the
associated mathematical programming problems.

The final type of interpolatory constraints that we wish to mention in this
subsection is that of approximating with rational functions having fixed numerators.
Specifically, in 1972, Williams [174] considered the following problem. De-
note by D[0, b], 0 < b < oo, the set of all continuous functions f of the form
f=B - g where g, BECI[O, b], g(x) > 0 for all x € [0, b] and B satisfies B(x,) =0
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for distinct x, €[0, b],»=1, ..., R. fis called an oscillating decay-type function
with B(x) its oscillation factor. Let V denote an n-dimensional Haar subspace of
C[0, b], fix p a positive number, and set K equal to

K= {r(x) = _B® .S ev and px)>0forall x €0, b]}.
(p(x))?

He remarks that the approximation of such functions with elements of K is frequently
needed in various branches of physics and chemistry. In this setting, a theory of uniform ap-
proximation of functions of D[0, b] by K is given. Existence is claimed but in a followup paper
by Taylor and Williams [158] a counterexample to this claim is given and sufficient
conditions for existence to hold are proved. Also, proved in [174] are an alternation theorem
and de La Vallée Poussin estimate with the sign of alternation determined by (g(x) — 1/p(x))
and a uniqueness theorem. In addition, a Remez-type algorithm is presented; however,
Dunham in anote [35] points out that the leveling equations of this algorithm may not
have an admissible solution. It is our belief that a recent algorithm (Remez-Difcor) given in [82]
which uses the differential correction algorithm on the leveling equations and also has a modified
exchange procedure to stop cycling from occurring could be modified to treat this problem. This
theory has been also developed for [0, ) and V=1I,_;.In[15] Brink and Taylor con-
sider this problem in this setting. It is shown that in this case a best approximation is charac-
terized by one of two types of alternation conditions holding, one of which is the same as that
givenby Williams. Also, Blatt [13]independently discovered this modified alternation
condition for approximating with reciprocals of polynomials on [0, ). In [36], Dunham also
studied the generalization of Williams’ problem to [0, ) with V =1I,,_; with the addi-
tional constraint that p in B(x)/p(x) have exact degree n — 1. Here the standard alternation
characterizes best approximations. However, existence is no longer true even in the special case
when B(x) = 1; whereas, it is true in this case without this additional restraint.

2.2 Approximation with constraints on the norm of the approximant

The first problem that we wish to discuss here is a recent study of Ross
and Belford [136] of uniform approximation with functions having prescribed
norm. Precisely, let L be an n-dimensional Haar subspace of C[a, b]. Then, set
K = {p € L: I pll=A}where X is a fixed positive real number. Without loss of
generality one may assume that A = 1. Let f €C[a, b] ~ K and let q € L be the
unique best approximation to f from L. If I qll=1 then q is the desired best ap-
proximation from K. If I qi> 1 and p €K then set X, = {x € [a, b]: [ f(x) — p(x)!
= f — pll} and X, = {x €[a, b]: | p(x)|= 1}. Then, using a result from the theory
of restricted range approximation [159], one has

Theorem 2.2.1 ([136]) Suppose Iqll> 1. Then p €K is a best approxima-
tion to f if and only if the function
sgn(p(x) — f(x)), x€X,
s(x) = § sgn(p(x)), x € X,
0 otherwise
is either not well defined or there exists a set of n+ 1 consecutive points in
X, U X, on which s alternately assumes the values +1 and —1.

When llqll< 1, the situation is more complicated and only locally best approximations
are characterized with a necessary and sufficient condition given in the presence of additional
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assumptions including smoothness requirements. Also, it is noted that in general for Il il # 1,
examples of nonuniqueness are readily available.

The second type of problem that we wish to describe in this subsection is
the problem of simultaneous approximation and interpolation with norm preserva-
tion (SAIN Approximation). This problem was first introduced by Deutsch
and Morris [32] and to date all studies have been concerned with either
Weierstrass or Jackson type of results. It appears that it might be possible to com-
bine the techniques of approximation with Lagrange interpolatory constraints [31]
and that of Ross and Belford [136] to obtain characterization results for
this theory. Following the paperof Lambert [89], we first state two definitions.

Definition 2.2.1 ([89]) The triple (X, M, I') satisfies the hypotheses of the
SAIN problem if X is a normed linear space, M a dense subspace of X and T a finite
dimensional space of X*. The triple (X, M, I') has a SAIN solution at x € X if given
€ >0, there exists y €M such that Ix —yl <e, Ixll= llyl and y(x) = y(y) for
every v in I'. The triple (X, M, I') is said to have property SAIN if (X, M, I") has a
SAIN solution for every x € X.

Definition 2.2.2 ([89]) Let X be a normed linear space and M a dense subset
of X. A linear functional x* € X* is said to be a SAIN functional if (X, M, x*) has
property SAIN. A finite sequence x¥, x¥, . . ., x¥ is said to be a SAIN sequence in
case every x* €span{xf, ..., x*} is a SAIN functional.

Now for the special case that X=C[a,bJand M=11=U,5,II,, Johnson
[71] proved ([89] has a shorter alternate proof of this result)

Theorem 2.2.2 ([71]) (Cla, b], I, I') has property SAIN if and only if T is a
SAIN sequence.

Since J o hnson also proves that (C[a, b], II, x*) has property SAIN
whenever x* has finitely atomic support, one has that if I' = {e,, . . . , e, } where
e,(f) = f(t) for all f € C[a, b] then (C[a, b], I, I') has property SAIN. That is,
given f € C[a, b] and € > 0, there exists p € 1, (some n) such that I f — pll <e,
p(t) =f(t;),i=1,...,kand llpll= I fl. (This special result was first proved by
Deutsch and Morris.)

In addition, Jo hnson [72] has proved the following two theorems for
“weak SAIN” (requires Il pll = |l fll rather than I pll = | fIl) and SAIN settings.

Theorem 2.2.3 ([72]) Let f € C(T) where T is a compact, Hausdorff set.

Suppose {Xy,...,%xx} CTand that |f(x)|< Iflfori=1,...,k. Then there
exists C and N such that for every n Z N, there is a p, € Il, for which (1) pa(x;) =
f(xi),i=1,...,k,(2) Ip, I Ifland 3) I f —p, I X Cinf{lf —pll: p EM,}.

i=1 =

n
2z ajiex;, j = 1,..., m where e,(g) = g(x;) for all g € C[a, b]. Then there exists C

and N such that k £ N implies there is a p, € Il for which (1) y*(p) =y (),
1/4
i=1,...,m (2 Ip I = 1fland (3) 1f — py I < c{w(f; l)} .

Theorem 2.2.4 ([72]) Suppose f € C[a, b], {x;}~, C[a, b] and ¥ =

k
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These results should be compared with both the hypotheses and conclusions of Theorems
2.1.9 and 2.1.12, respectively, to see the additional cost in requiring (2) in addition to Lagrange
interpolatory constraints (for the second comparison setm =n and yf =e,, fori=1,...,nin
Theorem 2.2.4).

2.3 Approximation with functional identity constraints

In 1968, Geiger [51] considered the problem of uniform approximation
inC[—1, 1] with

K ={r€ RA[—1, 1]: r(x) = p‘z(xz) ,pEI,, p(x)>0forall x €[-1, 1]}.

Note that each r €K satisfies r(x) - r(—x) = 1 for all x € [—1, 1]. In this setting, existence,
characterization, lower bounds for the error of approximation, normality and degree of approxi-
mation are studied. With regard to the degree of approximation, it is shown that if f, the function
being approximated, satisfies f(x) - f(—x) =1 on [—1, 1] then dist(f, K) > 0 as n > > and upper
and lower estimated for dist(f, K) are given in terms of dist(f, RR[—1, 1]). For this theory the
characterization theorem is

Theorem 2.3.1 ([51]) Let f€C[—1,1]~K and r €K. Then 1 is a best ap-
proximation to f if and only if one of the following conditions holds:

(1) 0 is an extremal point of f(x) — r(x).

(2) There are two extremal points X, , X, €[—1, 1] of f(x) — r(x) such that
X; = =Xy and f(x;) —1(xy) = f(x3) — 1(x2).

(3) There are N extremal points X, . .., Xy such that 0 < Ix; 1<+ --<
Ixn IS 1 and sgn{x; [f(x;) — r(x)]} = —sgn{x+; [f(Xj+1) —1(xi+ )]}, i=1, ...,
N — 1, where N =n — [d/2] with d = n — dp = the defect of p.

It is observed that whenever condition (3) holds, then uniqueness is guaranteed.

Recently, Blatt [14] has studied this problem with I, replaced by a
linear subspace of C[—1, 1]. He characterized best approximations by transforming
to a problem of approximating vector-valued functions and using the characteriza-
tion of best approximations in normed linear spaces.

Finally, in a study related to the problem of approximating certain elemen-
tary functions for computer subroutines, Fike and Sterbenz [47] studied
a problem of this sort. Precisely, let f € C[a, b] satisfy f(x) > 0 for all x € [a, b]
and let W denote either IT,, or R [a, b]. Let r* and T € W denote the unique best
relative and logarithmic approximations to f from W, respectively. That is,

f—r

f—r*
i | F

f

= infrew "

I=p* and lln Sl=infey Iln SH=X.
f r>0 f

The existence and uniqueness of such approximants follow readily by standard arguments.
Then, it is first shown (this was also proved independently by Taylor [160]):

Theorem 2.3.2 ([471, [160]) T(x) =r*(x)(1 — (u*)?)~ V2.

Next, fix f € C[a, b], let a functional constraint C be given and let K denote
the set of all functions in W which satisfy this constraint. Assume that K satisfies
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the following conditions: (a) T €K; (b) If r €K and r > 0 on [a, b], then for any
X € [a, b] there is a point y € [a, b] such that In(r(y)/f(y)) = —In(r(x)/f(x)); (3) for
anyr€K — V* thereisa q €K N V* such that I (f — g)/f | < I(f — r)/f I, where
= {r € V: r(x) > 0 for all x € [a, b]}. It is noted that the three following ap-

proximation problems satisfy these conditions:

(1) Find the best approximation to e* on —a < x S a from R} [—«, «]
which satisfies the constraint r(—x) = 1/r(x).

(2) For 0 < a < 1, find the best approximation to\/xona < x £ 1/a from
R™ [«, 1/a] which satisfies the constraint r(1/x) = 1/r(x).

(3) Forn>0and 0 <a< 1, find the best approximation to\/X on
a S x £ 1o from R e, 1/a] which satisfies the constraint xr(1/x) = r(x).
In this setting it is proved that

Theorem 2.3.3 ([47]) I (f —=T)/fl = inf,cx I(f — D)/rll=€* — 1.

2.4 Approximation with linear equalities imposed on the coefficients

In 1965, Brosowski [16]studied the problem of approximating

f € C[a, b] by a linear combination Z a;h; of functions in C[a, b] whose coefficients
i=1

satisfy certain linear equalities. Precisely, let C = (c;;) be an m x n matrix (m <n)

of rank mandletd =(d,;,...,dy, )T € R™ . Then define K by
’ = i - i=1
l 2 g cija; = d;, ,...,Mm
where it is assumed that span¢h,, .. ., h,)is a Haar subspace of C[a, b].

In this setting existence, a sufficient alternation condition and other general results are
given. In 1967, Gilormini [55] announced the results of the generalization of this problem
to a rational setting. Existence, characterization and other results which agree with the standard
nonconstrained theory are stated. As was noted earlier, the existence claim was subsequently
modified [54].

2.5 Approximation by polynomials having integer coefficients

There is now a large body of results in the area of approximation by poly-
nomials with coefficients which are, in some sense, integers. A detailed survey by
Ferguson [46], who graciously provided this subsection, is in existence and
should be consulted for more details.

In the most general setting one considers a normed space of functions defined on a set X
and approximates elements of the space by elements of a subspace A[X]. The simplest case of
this theory is that of C[a, b], with A[a, b] the ring of polynomials with coefficients in A, the set
of rational integers ({0, £1, £2, .. .}). The elements of A[a, b] are called integral polynomials.

The theory breaks into two parts which can be called qualitative and quantitative. The
qualitative aspect is concerned with characterizing those functions which can be approximated
by integral polynomials. The quantitative theory is concerned with the rate at which the error

of best approximation by integral polynomials tends to zero as the polynomial degree tends to
infinity.
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There are two main distinctions in this setting between approximation by integral poly-
nomials and approximation by polynomials with arbitrary real coefficients. On the one hand, if
the interval is too large then nontrivial approximation by integral polynomials may be impossible,
i.e., the only approximable functions in C[a, b] are those which are identically equal to an integral
polynomial. This is the case if and only if (b — a) 2 4. On the other hand suppose that f € C[a, b]
and (b — a) <4. It is obvious that if n is an integer in [a, b] and f(n) & A then f cannot be ap-
proximated (arbitrarily closely) by integral polynomials. In this case there is a finite subset J,
the “algebraic kernel” of [a, b], such that an element f € C[a, b] can be approximated by integral
polynomials if and only if it can be interpolated by them on J. This is proved in He witt and
Zuckerman [64]. These results have been generalized to the ‘“‘complex case” where X is a
certain compact subset of the complex plane and the ring of integers A is any discrete subring
of rank 2 of the complex numbers. See Fekete [40],[41]and Ferguson [43], [44].
These qualitative results have also been extended to a number theoretic settingby Cantor
[17].

In order to illustrate the quantitative side of the subject we quote the following Jackson-
type result of Trigub [164].

Theorem 2.5.1 ([164]) Let f €C'[a, b] and J be the algebraic kernel of
[a, b]. Then there exists a number C depending on f, r and [a, b] but not on n or
X € [a, b] and a sequence {q,} of polynomials in A[a, b, with degree of q, < n,
such that foraS x £ b,0 2 v < rand any positive integer n we have

110900 ~ 01 £ € [max | VO—DE=0 )

rl2
if and only if there is an element q of Ala, b] satisfying
g (x) = fP(x) 0svinxel

For other results, see work by Andria [3], Ferguson [45],and
Miller [115].

3 Inequality Constraints

3.1 Approximation with constraints on the ranges of the approximants

Probably the most natural approximation problem in this category is the
problem of one-sided approximation. A detailed study of this problem was given
by Kammerer [79]in 1959. This problem was generalized to allow more
general control of the range of the approximating functionsby Laurent [91],
Taylor [159],[161],[162], Schumaker and Taylor [15]] (restricted
range approximation), and Duffin and Karlovitz [34] (non-negative
approximation). In what follows we shall briefly describe the theory of restricted
range approximation as developed in [161], [162]. This theory contains both the
one-sided and non-negative approximation as special cases. (In the study of
Laurent one-sided approximation was considered where the constraints were
allowed to exist outside the domain of approximation.) Thus, let X be a compact
subset of [a, b] containing at least n + 1 points and let W be an n-dimensional Haar
subspace of C[a, b]. Define two extended real-valued functions £ and u defined on
X subject to the following restrictions:
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(i) —o0 S (x) <o and —o <u(x) £ o forall x € X,
(i) X_ o = {x €X: Ux) = —o0} and X, = {x € X: u(x) = o0} are open
subsets of X.
(iii) £ is continuous on X ~ X_.. and u is continuous on X ~ X...
(ivy¢<uforall x€Xor
(iv)' € £ u for all x € X with equality holding for at most n points.
In this setting one defines K by

K={peEW:2(x) = p(x) = ux) forall x € X}.

In case (iv), a general theory has been developed in [159] which includes existence, characteriza-
tion (zero in the convex hull and alternation — see [94] for a Kolmogorov criterion and a linear
functional characterization), uniqueness, a de La Vallée Poussin estimate, strong uniqueness

and a Lipschitz continuity of the best approximation operator. Except for existence and a special
characterization result, all of these results are proved for the class of functions

C(X) = {fECX): 2x) S £(x) S u(x) for all x € X).

Here the alternation theory is dependent upon enlarging the set of critical points. Precisely, fix

f€ C(X) and p €K. Define X;, and X, by X, = {x €X: |f(x) — p(x)|= I f — pll} and

Xe = x€X:p(x) =2(x) or p(x) =u(x)}. If f& K and 2 < u we define ¢ on Xp UX, by

o(x) = sgn(f(x) — q(x)) if x E X, ~ X, 0(x) = +1 if x € X, with p(x) = 2(x) and o(x) = —1 if

X € X, with p(x) =u(x). In this case o is well defined and the following alternation theorem holds.

. Theorem 3.1.1([159]) Under the above assumptions p is a best approximation to
f€ C(X) ~ K if and only if there exist n + 1 consecutive points in Xp UX,, {xi}?:l' , at which
o(xj) = (-D)"to(x,) fori=1,...,n+1 holds.

Thus by setting 2(x) = f(x) and u(x) = +oo for all x € X one has the problem of one-sided
approximation (from above); by setting 2(x) = 0 and u(x) = +°° one has the problem of approxi-
mating with nonnegative approximants; if one selects x,, . . . , Xy in X, € > 0 (for all i) and sets
2(x;) = f(x;) — € and u(x;) = f(x;) + ¢; then one has the problem of finding best e-interpolators
[159] by the usual arguments.

For the case of (iv)’ (equality) existence and uniqueness were developed in [151] under
the assumption that € and u are continuous on X. In [162] a general alternation theorem was
given for the case (iv)’ where it was assumed that £ and u have special local Taylor expansions in
a neighborhood of each point where £ = u holds in addition to axioms (i)—(iii). Also, given were a
zero in the convex hull theorem and it was remarked there that strong uniqueness and continuity
of the best approximation operator follow by the usual arguments. More recently, Sippel
[155]and Lin g [98] have also considered the equality case. In [155] a slightly different alter-
nation theory is presented with different assumptions on the behavior of the restraining curves ¢
and u at the points of equality. In [98], an alternation theory is developed for a slightly larger
class of functions than those considered in the above theories. Also, in [23], [24], [25], Cimoca
generalized the theory of restricted range approximation to a theory combining the work of
[159] and [91], to one involving linear mappings and to one where all functions are composed
with a monotone function prior to imposing the restricted range conditions, respectively. See,
also, [37] for a recent paper on an aspect of one-sided approximation.

Concerning the question of computation of best restricted range approxima-
tions, Jones and Karlovitz [77] developed a Remez-type algorithm for
nonnegative approximants. This was generalized to give a single point exchange for
the restricted range problem (<u)by Taylor and Winter [163]. A mul-
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tiple exchange algorithm with applications to designing digital filters was developed
independently by Hersey, Tufts and Lewis [63]Jand Gimlin, Cavin
and Budge [57].

Le wis [95] gave a proof of convergence of the multiple exchange in this setting when
Xis a finite set and a detailed analysis of the discretization error when an interval is replaced by
a finite set. In addition, he considered the digital filter design problem and discussed the numeri-
cal implementation of this algorithm. Another recent application of the restricted range multiple
exchange has been by Hull and T aylor [70] where an adaptive curve fitting routine was
developed.

For computation in the case of constraints of the form (iv)’, a Remez-type algorithm
based on the use of generalized weight functions is described in [113]. In [98] some suggestions
for the development of a Remez-type algorithm are also given. To our knowledge, there are no
(running) Remez-type multiple exchange codes for this particular problem at present. Recently,
Watson [171], [172] has developed algorithms for calculating best linear one-sided Chebyshev
approximations and best restricted range approximations, respectively. These algorithms are based
on linear programming and in the second algorithm the Haar subspace assumption is weakened.

In 1975, Johnson [73] studied the problem of whether or not K is
empty. In this study necessary and sufficient conditions on the restraining curves £
and u are given to guarantee that K is not empty when W = II,, for sufficiently
large n. Also given is a Weierstrass-type theorem for approximating any f satisfying
2(x) S f(x) S ux) fromK=U,5, {p €M,:2(x) £ p(x) £ ux) for all x € X},

X a compact subset of [a, b]. In another study, Johnson [67] derived a Weier-
strass theory for a combination of one-sided approximation and a finite number of
general interpolatory constraints. Precisely, a set of n bounded linear functionals,
{A}, ..., \}}, is said to be span indefinite provided each nontrivial linear combina-
tion of this set is not a positive linear functional. Then, it is proved

Theorem 3.1.2 ([73]) Suppose ¥, ..., N} are linearly independent bounded
linear functionals on C[a, b]. Then, for any f €C[a, bl and € > 0, there isa p €Iy
(some k) for which (i) p(x) 2 f(x) for all x € [a, b], (ii) Ap=AM,i=1,...,nand
(iii) If — pl <e if and only if the \¥, ..., \* are span indefinite on C|a, b).

Observe that any set containing a point evaluation will not be span indefinite. Thus, one
cannot have a Weierstrass theory if one wishes to combine one-sided approximations with
Lagrange interpolatory constraints. However, it does seem reasonable that for smooth functions
both Lagrange and Hermite constraints could be combined with one-sided approximation to give
a Weierstrass type theorem. Also, a Jackson-type result in this setting is proved in [74]. More
recently, J oh nson has studied restricted range approximation with side conditions in [75],
[76]. In these papers restricted range approximation with algebraic polynomials subject to n
linear functional interpolatory constraints is considered. Both papers characterize those n-tuples
of linear functionals for which a Weierstrass theory holds with the second paper obtaining results
when one also assumes that the functions being approximated are continuously differentiable.

The theory of restricted range approximation has also been extended to rationals and
other more general approximating families. In [102], Loeb, Moursund and Taylor
developed the theory corresponding to case (iv) and for continuous £ and u and generalized
rationals. Characterization and uniqueness results are given and for the case that the domain of
approximation is an interval [a, b] and W = R]'[a, b], an existence theorem is given. That £ and u
are continuous is essential to the proof of this existence theorem. In [103], results concerning the
continuity of the best approximation operator for restricted range approximations in a setting of




Uniform Approximation with Constraints 65

generalized rational functions are given. Included is a strong uniqueness theorem and a Lipschitz
continuity theorem for approximating normal functions, as well as some convergence results for
the non-normal case. More general studies are the work of Taylor [164], where a general
theory for the rational case with the restraining curves and approximation imposed on different
sets was studied; and the work of Dunham [38],[39]and Torgna [165] where this
theory was independently extended to general approximating families.

A recent problem involving constraints on the values of the approximants is
that of copositive approximation which was introduced by Passow and R a y-
mon [122]. In this theory, K is defined corresponding to f € C[a, b] by

K= {p€eW: p(x)f(x) 2 0forall x €[a, b]}.

Note that 0 € K. Each function in K is said to be copositive with f on [a, b]. In
[122], W is taken to be II, and existence, uniqueness and a J ackson-type theorem
are proved.

Existence follows from the usual compactness argument. The uniqueness result follows
via an application of restricted range theory (equality case). The Jackson theorem is developed
for a restricted class of functions (proper piecewise monotone functions) giving the same order
as in the nonrestricted theory (Ofw(f; 1/n)]). For the same class of functions, Hill, Passow
and Raymon [65] prove that there exists a sequence of polynomials {p,} such that p, €I1,,,
Pn and f are simultaneously comonotone and copositive for n sufficiently large and p,, converges
uniformly to f on [a, b]. Finally, in [123], Passow and Taylor develop an alternation
theory for copositive approximation under the assumption that W is an extended n-dimensional
Chebyshev subspace of C[a, b] of order 3.

More recently, approximation with rationals having negative poles has been studied [83],
[84], [90]. In [84], existence, local characterization (alternation), local uniqueness and computa-
tional results are given. This theory was motivated by the desire to approximate e~ * on [0, =)
with such approximants in order to develop numerical algorithms for solving linear systems of
ordinary differential equations. Many open questions remain. The degree of approximation for
the special function e™* from various classes of rational functions has been the focus of much
work by Saff and Varga. See [150] for a recent paper of theirs.

3.2 Approximation with constraints on values of the approximants and
their derivatives

In this setting the first problem studied was that of monotone approxima-
tion. The first published work was due to Shisha [153] where questions con-
cerning the degree of approximation were studied. A second early study was that
of Culbertson [26] who proved characterization and uniqueness results for a
specific problem. Although historically, to some extent, results on the degree of
approximation preceded the theory of best approximation for this problem, we
shall first describe the theory of best approximation. Thus, fix an interval [a, b],
integers 1 S 1, <---<r,signse; =%1,i=1,.. -» k and define K =K(r,, ..., ry;
€1,...,€) by

K={p€I,: p(x)2 0,as x = b,j=0,1,...,k withk S n}.

Denote K(r; +1) by K, in what follows. The first major study of this problem was
givenby Lorentz and Zeller [105], [106]. Existence, characterization and
a partial uniqueness result were given in these studies. One of the characterization
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theorems given was (set A = {x: |f(x) — p(x)|= I f — pl} and B; = {x: p{(x) = 0},
ji=1,...,k)

Theorem 3.2.1 ([106]) A polynomial p € K is a polynomial of best approxi-
mation to f € C|a, b] ~ K if and only if there exist points x; (i=1, ..., u) of A,

k
vii=1,...,N) of BjG=1,...,K) withu+ 3 N\ S n+2and numbers a; # 0,
by; > 0, such that =1

1

u k A
i}:} a;(f(x;) — p(xi))a(x) + j:l lbijq(rj)(Yij) =0
for all polynomials q €11,

Roulier in[138] also gives a characterization theorem for this general problem and
Culbertson [26]proved this particular characterization theorem for the special case of K,,
as well as uniqueness. Uniqueness of K, 2 1, was also proved in [106]. Uniqueness for the full
class K was proved by Lorentz [120]. The proof of this theorem used a sufficient condition
for a certain Hermite-Birkhoff interpolation problem to have a unique solution which was proved
independently in [4] and [42] (in an insignificantly weaker form in the second paper) a few years
prior. Theorems corresponding to strong uniqueness and continuity of the best (monotone)
approximation operator have not be