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Riemannian geometry during the second half
of the twentieth century

M. Berger, Bures-Sur-Yvette

Contents

Introduction
Riemannian Geometry up to 1950

_ A. Gauss, Riemann, Christoffel and Levi-Civita . .............oooooooo. ...

B. Van Mangoldt, Hadamard, Elie Cartan and Heinz Hopf ..................
C. Synge, Myers, Preissmann: the use of geometric tools . ...................
D. Hodge, harmonic forms and the Bochner technique: the use of Analysis .. ...
E. Allendoerfer, Weiland Chern ............. . ... ... ... ... ... . . .. . .. ...

Comments on the main topics L, II, III, IV, V under consideration
An important digression: Curvature is a very complicated invariant/How does
one see curvature today? ...........

Curvature and Topology
A. Pinching Problems ............ ... ... ... .. .. .. .
Lo Introduction ......... ...
2. Positive Pinching . ........... ... ... ... .
A digression: Comparison theorems ............................... ..
3.Pinching around zero ................. ... .
4. Negative Pinching ............. ... ... ... . ... .. .
B. Curvatureof agivensign ............ ... . ... .. .. .. .. .
1. The positive side: Sectional Curvature ...............................
2. The positive side: Ricci Curvature ...................................
3. The positive side: Scalar Curvature ..................................
4. The negative side: Sectional Curvature ...............................
5. The negative side: Ricci Curvature ..................................

SITUCTUTES .o e e
L. Finiteness results . ............... ... .. . .

A digression: Does the curvature determine the metric? ................
2. Compactness, Convergence Results .................. ... ... .. ..



46

11

111

IV

M. Berger

The geometrical hierarchy of Riemannian manifolds: Space Forms

A. The constant CUTVALUIE CASE ... ..ottt eeee e iiiiiieee e nans
B. Space formsof rankone ...... ... ...
C. Space forms of symmetric spaces of rank larger thanone .................

The set of Riemannian structures on a given compact manifold:

Is there a best metric?

A Theproblem .. ...

B. The minimal volume and Min ||R||“? ... ... oo

C. The case of Einstein manifolds .............. ... ..o
Digression: The Yamabe Problem ........... ... oot

D. Some topological closures ............. ... i
The Spectrum, the Eigenfunctions

Periodic Geodesic, the Geodesic Flow

A. Periodic geodesiCs .. ..ottt
A digression: Geodesics joining two points ...,

B. The geodesic flow (geometry and dynamics) ...,
Digression: Entropies in Riemannian Geometry .........................

TOP. Some other Riemannian Geometry topics of interest

LVOIUIMES o vttt e e e e e e e e e e e e e i
A. Bishop’s Theorem ....... ...t
B. The isoperimetric profile ............. ... i
C. Theembolic VOIUME .. ..o ottt
D. The minimal volume . ...... ...t
E. The SystoliC STOTY ..o vuuit i e

2. Isometricembedding .. ........o i e

3. Holonomy groups and special metrics: another (very restricted) Riemannian

hierarchy, Kéhler manifolds ......... ... . ..o
A. HOIONOMY ZIOUPS ..t i vve vt et et et
B. Kéhler manifolds . ......... i e

CCUtOCT o

. Non-compact manifolds ..............oiiiiiiiieniiiii

. Bundles over Riemannian manifolds ............. ... ... . oot

A. Exterior differential forms (and some others) ........................
B. SPIMOTIS oo\ttt ettt e e e e
C. Various otherbundles ............ooiiiiiiiiiiiiieiii

. Harmonic maps between Riemannian manifolds ........................

. Low dimensional Riemannian Geometry ................cooiiiiiiinnnn

. Some generalizations of Riemannian Geometry ......................o..

L SubmAanifolds . ... s

A. The case of surfaces in R® ... .. .o ieie e
B. Higher dimensions ..............coeioiiie i
C. Geometric measure theory and pseudo-holomorphic curves ............

AN B

—_
O \O 00\

Bibliography



Riemannian geometry during the second half of the twentieth century 47

-1 Introduction

From the 50’s to the 70’s the task of describing the evolution, the techni-
ques and the results of Riemannian Geometry would have been easy enough. But
since the 70’s Riemannian Geometry has experienced such a dramatic increase that
this task has now become almost impossible. This is not only for reasons of vo-
lume, but also because of the difficulties of forming an ordering. In fact today’s
results, techniques and examples are so strongly interrelated that we have been
forced to take several steps.

First: not to be exhaustive. Secondly we have adopted quite an artificial
classification. As a consequence this text is not really a complete survey. On the
contrary, we will refer to existing partial surveys whenever we know of their exis-
tence. Finally we will mention briefly at the end some topics which are important
but are not treated in this text explicitly or even in general, due to the lack of space.
We still hope that we will be clear and fair enough. And also that our text is, at the
present time, reasonably up-to-date.

There is also the problem of defining “Riemannian Geometry”. For obvious
reasons of dimension and competence we restrict it quite strongly to what’s really
happening downstairs on the Riemannian manifold itself, in particular as a metric
space. In particular we are going to ignore completely most of the topics of differ-
ential geometry, even Riemannian bundles. This is a field which has to this day un-
dergone tremendous developments, including among others: differential topology,
fiber bundles and connections, singularities and transversality, contact manifolds,
symplectic geometry, minimal surfaces and generalizations of them, Yang-Mills
(gauge) theory, twistors, foliations, submanifolds of R, conformal geometry. For
example, despite their great importance among various Riemannian bundles,
Yang-Mills fields are not considered, at least here, as Riemannian Geometry but of
course they are an important part of differential geometry. We will of course men-
tion them, though only very briefly in TOP. 6 . The tangent bundle, in particular
the unit tangent bundle, will be used, but typically in connection with the geodesic
flow. Some people may find our “definition ” of Riemannian Geometry too nar-
row. They might be right, as it reflects the (biased) “elementary geometry” temper
of the present author as well as his liking for results which are simple to state. Be-
cause of their basic use in Riemannian Geometry and the way they are constructed,
we will explain exterior differential forms and spinors in a little more detail in TOP.
6.A and B. One conclusion is the desire that some form of “Handbook of differen-
tial geometry” will appear quite soon; for the moment one can consult the three
volumes of (Greene & Yau, 1993).

We also took one more gamble: we aim to give an historical overview,
but, at the same time, describe the state of affairs as it is today. This will not
take too much space since we will use an “author-date” reference system, which
will hence give credits automatically. Concerning references we will be far from
exhaustive, since we are not presenting a complete survey and also because our
bibliography would have become unreasonably extensive. In most cases what we
will do is to give a reference which is good with respect to date and will, at the
same time, enable the reader to go backwards using one or more bibliographies
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by induction. This will be especially helpful for the topics which are only men-
tioned briefly.

manifold (unless otherwise stated) =
Riemannian manifold = a (the) ' Riemannian metric”
= metric

most manifolds will be COMPACT
and never with a boundary (closed)
and if not compact then always complete

Acknowledments are very important for the present text. First, to the edi-
tors of a book to appear on mathematics during the second half of the century,
who asked me to write such a text for the differential geometry part. I soon started
writing and very quickly found myself embarked upon a project whose length
would exceed by far (as the reader can now see) the twenty page allowance I was
offered. Therefore I decided to submit it to the Jahresbericht of the DMV,

I was able to write such a text with enthusiasm thanks to the Rome Univer-
sity La Sapienza, the Indian Institute of Technology at Powai-Bombay, the Univer-
sity of Pennsylvania and the Ziirich Polytechnicum who all invited me to give lec-
tures, Roma in 1992, Bombay in 1993, Penn in the fall of 94 and Ziirich in the Win-
tersemester 95-96. Most important is the fact that these four departments
permitted me to give lectures entitled “Topics in Riemannian Geometry” in which I
covered a lot of material but with almost no proofs, simply sketching ideas and in-
gredients. I would like to thank those four mathematics departments very much for
having accepted my lectures which did not fit into any classical framework.

Last but not least, a preliminary version was sent out to fifty colleagues. I
got many answers, all of them important. [ will now give a list of names and for
obvious reasons I will do this without trying to state the importance of the indivi-
duals’ help. Those who helped me a lot, and whom I even bothered many, many
times, will recognize themselves. All of them gave help which was very valuable:
Stephanie Alexander, Michael Anderson, Ivan Babenko, Victor Bangert, Pierre Bé-
rard, Lionel Bérard Bergery, Gérard Besson, Armand Borel, Jean-Benoit Bost,
Jean-Pierre Bourguignon, Robert Bryant, Dan Burghelea, Peter Buser, Jeff Chee-
ger, Shiing-shen Chern, Tobias Colding, Alain Connes, Yves Colin de Verdiére,
Thibault Damour, Jost Eschenburg, Kenji Fukaya, Jacques Gasqui de Saint-Joa-
chim, Paul Gauduchon, Robert Greene, Mikhael Gromov, Nancy Hingston, Do-
minique Hulin, Mikhail Katz, Ruth Kellerhals, Bruce Kleiner, Horst Knorrer,
Jean-Louis Koszul, Jacques Lafontaine, Rémi Langevin, Blaine Lawson, André
Lichnerowicz, Paul Malliavin, Wolfgang Meyer, René Michel, Robert Osserman,
Pierre Pansu, Peter Petersen, Hans-Bert Rademacher, Takashi Sakai, Katsuhiro
Shiohama, Shanta Shrinivasan, Alain-Sol Sznitman, Iskander Taimanov, Domingo
Toledo, Lieven Vanhecke, Takao Yamaguchi, Wolfgang Ziller.

I do hope that, whatever its imperfections are, the present text will be of
help to Riemannian geometers of every age and might even be pleasant to read in
part or in totality for non-experts.
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Finally I heartfully thank the DMV, the editors of the Jahresbericht, in par-
ticular Ernst Heintze, for having made very special efforts to publish the present
text which does not fit into any classical category. Special thanks are due to Karin
Seeger for the difficult and lengthy job of transforming my inaccurate English into
the present form, as well as for converting my oldfashioned Word 5 into IXTEX.

0 Riemannian Geometry up to 1950

A. Gauss, Riemann, Christoffel and Levi-Civita

In 1827 Gauss was the first, for ordinary surfaces in R3, to decouple the in-
trinsic metric from the surfaces’ embedding. In fact he had arrived at that result
long before 1827, see (Dombrowski, 1979). More precisely he proved that the total
curvature, namely the product of the two principal curvatures, could be computed
using only the intrinsic metric (“theorema egregium”).

In 1854 Riemann defined surfaces with a “Riemannian metric” in a comple-
tely abstract way, making them free of any embedding or immersion. Moreover he
did so in arbitrary dimension and for all manifolds, even if his notion of a manifold
was somewhat imprecise. See volume II of (Spivak, 1970) for a perfect analysis of
Riemann’s founding paper. With the now solidly established notion of a differenti-
able manifold one can define a general Riemannian manifold (M, g) as a differenti-
able manifold M endowed with a Riemannian metric g, i.e. one is given, at every
point m of M, some positive definite quadratic form g(m) on the tangent space
T,M to M at m. Moreover, one requires the mapping m — g(m) to be differenti-
able. Riemann defined the metric d(p,q) as the infimum of the length of all the
curves joining p and g, the length making sense precisely because of g. He also de-
fined the curvature tensor, as well as the sectional curvature. We will come back
later to this very hard object, which will be tackled in the digression at the end of
COMMENTS on TOPIC L.

Thereafter, Christoffel succeeded partially to understand what was going
on, namely the, at that time still obscure, notion of connection. This was around
1865, see (Klingenberg & Pinl, 1981). Then at the turn and the beginning of the
century it was known that Riemannian manifolds can be associated with a golden
triangle, which is the primary tool in Riemannian Geometry. This result was due to
Levi-Civita and Ricci: (Levi-Civita & Ricci, 1901) and (Levi-Civita, 1917). The tri-
angle is made up of the three vertices

parallel transport absolute (covariant)

derivatives of any order

curvature (tensor)



50 M. Berger

Let us be more precise. The aim is to be able to develop a differential calcu-
lus of any order on a Riemannian manifold. In affine spaces the tangent spaces at
various points can all be identified with a single vector space by translations and
that is good enough. But this is not possible a priori in a smooth manifold since
there is no way of comparing tangent spaces at different points. The discovery was
that such a comparison is possible in a unique way in infinitesimal terms if one de-
mands that the Euclidean structures of the tangent spaces are preserved and that,
moreover, the second differential of a function is symmetric. The precise notion of
such a connection was seen in various ways, mostly in terms of coordinates. Elie
Cartan used mobile frames. The notion of connection was introduced in various
settings by Elie Cartan, and Ehresmann put it into the most general framework in
(Ehresmann, 1950), for more on the history of connection see Note 2 in Volume I
of (Kobayashi & Nomizu, 1963-1969). One can also use, in the tangent bundle to
the tangent bundle, the notion of a horizontal subspace. Since Koszul the best way
of writing the canonical connection (as well as connections in various bundles with
ad hoc modifications) has been to define it as an operation Dy Y on vector fields
which is linear in X and a derivation on Y. Namely, if f is an arbitrary function,
then DiyY =fDyY but Dy(f.Y) = X(f).Y +f.DyY. Koszul introduced this
concept in 1951, it was used soon in (Nomizu, 1954) and finally presented in a sys-
tematic expository way in (Koszul, 1960). Preservation of the metric is insured by
X(Y,Z)=(DxY,Z)+ (Y,DxZ) for all X,Y,Z and the symmetry required for
the second differential is insured if and only if the connection is torsion-free, i.e.
DyY — DyX = [X, Y] for every pair of vector fields.

The connection can be integrated along any curve (but not on a surface in
general) because it is then a linear first order differential linear equation. The result
is the Levi-Civita parallelism and the tangent spaces along the curve can then be
identified with a single one of them: one can now take derivatives of any order
along a curve. It is important to note the fact that the parallel transport along a
loop is in general different from the identity. This lack of “holonomy” is the start-
ing point for TOP. 3.

Let us now comment on the arrows between the three vertices of the golden
triangle. Note first that the metric can be derived from it because shortest paths
(called segments) between points are supported by geodesics. The geodesics can be
defined as the self-paralleled transported curves v, i.e. Dy’ =0 for their speed
vector v'. The curvature tensor is given by the derivative of the parallel transport
along infinitesimal parallelograms and in writing it is nothing but the defect of
commutation in Dy o Dy, namely R(X,Y)= Dy oDy — Dy o Dy. So the curva-
ture tensor is an antisymmetric differential form with values in the endomorphisms
of the tangent spaces.

Now the absolute (covariant) derivative D,S of a form (or more generally
of any tensor S) is obtained by taking the ordinary derivative at 0 of the values
taken by the form on a set of vectors which are transported parallel along any curve
whose initial speed vector is v .

The third arrow concerns the relation between curvature and covariant de-
rivatives of tensors. In a differentiable manifold the differential of a function is well
defined, but the second differential no longer is because the chain rule formula is
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not valid for the second derivatives when one looks at coordinate changes. The Rie-
mannian canonical Levi-Civita connection yields precisely such an invariant second
derivative, called the Hessian of the function: it is a bilinear symmetric differential
form (this is the commutativity of the second derivatives for Riemannian mani-
folds). And one can keep going on with derivatives (covariant) of any order. How-
ever, then typically the third differential of a function is no longer symmetric, but
exactly the defect of this symmetry is given by the curvature tensor. The same holds
true for the second derivative of 1-forms, etc. This is fundamental in many places
below and can be seen as the revenge of the Riemannian geometer. The explicit for-
mulas for those defects are called Ricci commutation formulas, see their first use in
D below. In Koszul’s notation Ricci formulas are straightforward.

The curvature tensor, known to Riemann, is introduced above, as a tensor
of type (3,1), namely the exterior 2-form R(X,Y) with values in the endomorph-
isms of the tangent spaces. But alternatively (using the duality given by the me-
tric) it can be defined as a differential form of degree four (quadrilinear)
R(x,y,z,t) = (R(x,y)z,t), enjoying moreover some symmetries. We will see be-
low in various places that such an object, even from the point of view of linear
algebra alone, remains quite mysterious today, see the digression in 1. COM-
MENTS on I).

B. Van Mangoldt, Hadamard, Elie Cartan and Heinz Hopf

In (van Mangoldt, 1881) it was already known that negative curvature
and simple connectedness for surfaces embedded in R? are enough to insure un-
iqueness of geodesics joining two points, implying that, moreover, any piece of a
geodesic is a shortest path (segment). In (Hadamard, 1898) the study of negative
curvature surfaces was brought into a very general setting, in particular the study
of their periodic geodesics and geodesic flow. But this is still a long way from the
modern statement: any complete abstract Riemannian manifold of negative curva-
ture (in fact nonpositive and of arbitrary dimension) is the quotient of its univer-
sal covering, which is diffeomorphic to R, by a discrete group of isometries. This
is needed in particular for studying space forms of negative curvature, see II and
I.B.4. For the early history of geodesics, see (Nabonnand, 1995).

Missing, as well-defined notions, were abstract manifolds and the complete-
ness of Riemannian manifolds (in any dimension). Hopf was interested in soundly
establishing the meaning of completeness (with a good notion of manifolds) in rela-
tion to the prolongability of geodesics. This is done in (Hopf & Rinow, 1931), sur-
prisingly enough only for dimension 2. It was remarked only in (Myers, 1935a) that
the Hopf-Rinow proof applies to any dimension without any non-trivial change. It
should be noted that an important boost to Riemannian Geometry came from the
arrival of General Relativity.

In the second edition (Cartan, 1946-1951) of his fundamental book (Cartan,
1928a), Elie Cartan was interested in the technical tools (and ignored systematically
what precisely constitutes a manifold). He developed a dual version of the second
order differential equation, today called Jacobi fields (known to Gauss for surfaces).
A Jacobi field is, by definition, the transverse derivative of a one-parameter family
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of geodesics. In vector writing (and using parallel transport to work with only “or-
dinary derivatives”) the equation for Jacobi fields reads Y + R(Y) = 0 where R is
the R(v/,.)y part of the curvature tensor given by the speed 4 of the geodesic 7,
along wich one is working. For the curvature tensor, a frightening object, see var-
ious places below. Cartan’s tool was “repére mobile” but this is equivalent. He ob-
tained the fact that the curvature tensor and the parallel transport together deter-
mine the metric (see the end of TOP. 4 for the global Ambrose problem). Note that
one here needs to know the geodesics through a point and not only the curvature,
see the digression in I.C.1. From his “philosophy” (Chapter X of (Cartan, 1946—
1951)) Cartan deduced that a real analytic Riemannian manifold was determined
locally by the values, at any given point, of the curvature tensor and of all its cova-
riant derivatives. In fact Cartan had knowledge of that philosophy long before,
when he was studying the symmetric spaces in the mid 20’s (II.C), since in that case
the curvature tensor has a vanishing covariant derivative and then the metric is
known as soon as the curvature tensor is known at a single point. As a corollary he
showed that nonpositive curvature implies (simple connectedness is required) an in-
equality which says that triangles are in this case “larger than or equal to the corres-
ponding Euclidean ones™:

a® > b* + % — 2bc cos a

In (Cartan, 1929b), Section 16, this inequality is used to prove the existence and
uniqueness of the center of mass in those manifolds (see I.C.1). From this he de-
duced that compact maximal subgroups of semi-simple Lie groups are always con-
jugate because a symmetric space of nonpositive curvature is simply the quotient of
a non-compact Lie group and one of its maximal compact subgroups.

Parallel to that and with obvious interactions he also developed the com-
plete theory of symmetric spaces (see II.C below) and a complete mastering of their
geodesic behavior.

One can now see that the simply connected manifolds of constant sectional
curvature are unique: they are the “round” spheres in the positive case, the Eucli-
dian spaces for the zero case and the hyperbolic spaces Hyp“ for the negative case.
Remember here that the first correct and complete definition of Hyp? appeared for
the first time in Riemann’s 1854 text. Moreover the other space forms are “just”
quotients of these by some suitable groups of isometries. These quotients will be
studied in quite some detail in Chapter II. For the case K = 0, which is equivalent
to locally Euclidean, one uses the wording flat.

C. Synge, Myers, Preissmann: the use of geometric tools

Back in the late 20’s Heinz Hopf was working very hard on the links be-
tween curvature and topology, see his landmark paper (Hopf, 1932). In (Myers,
1941) the second variation formula is used to prove that the diameter can be
bounded (optimally) when the manifold has a positive lower bound for the Ricci
curvature (see . COMMENTS on I). The striking corollary is that the fundamental
group is finite as soon as one has a positive lower bound for the Ricci curvature
(just look at the universal covering with the lifted-up metric).
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In the case of surfaces the second variation formula had already been
exploited in (Bonnet, 1855) to show the diameter property for surfaces of positive
(total, Gauss) curvature, which coincides with the Ricci curvature in dimension 2.
For higher dimensions, this formula was introduced in (Synge, 1925) and (Schoen-
berg, 1932).

The second variation formula was again used in (Synge, 1936), together
with the parallel transport along a periodic geodesic, to prove that positive sec-
tional curvature, compactness and an even dimension force the fundamental group
to be zero (or Z; in the non-orientable case). A beautifully simple idea: move vec-
tors by parallel transport along a shortest curve in any free homotopy class (which
is necessarily a periodic geodesic). On coming back to the point of origin the vector
is moved by an orientation-preserving orthogonal transformation, which in odd di-
mension always has at least one non-zero fixed vector. This yields a strip of curves
that are arbitrarily close to the initial curve but whose lengths are smaller than that
of the initial curve, hence a contradiction.

Preissman’s paper (Preissmann, 1942-43) constitutes something of a tur-
ning-point. Apart from the theory of symmetric spaces, it contains on 40 pages all
global results which were available on Riemannian Geometry in those years. Preiss-
mann used Jacobi fields to rediscover the above triangle inequality of Cartan’s for
nonpositive curved manifolds. Moreover he used this triangle comparison to show
that if the curvature is negative then abelian subgroups of the fundamental groups
are necessarily cyclic. This was generalized only in (Gromoll & Wolf, 1971) and
(Lawson and Yau 1972), see 1. B. 4.

D. Hodge, harmonic forms and the Bochner technique:
the use of Analysis

All the above results were obtained by geometric tools. A historical event,
which is still of fundamental importance, was (Bochner, 1946). At that time the de
Rham theorem, which links cohomology and exterior differential forms, was al-
ready available: (de Rham, 1931). Note that this theorem belongs to differential to-
pology, for the moment Riemannian Geometry does not enter into it at all. The
precise statement of the de Rham theorem appeared first in (Cartan, 1928b). Elie
Cartan suspected that this result was true when he was working on the computa-
tion of the topology of symmetric spaces, see (Cartan, 1928b) and more generally
that of homogeneous spaces, see (Cartan, 1929a) (or his complete works: the same
applies, books excepted, to all other Elie Cartan citations below).

But, in addition, the Hodge theory of harmonic forms was available:
(Hodge, 1941), although it was not until later that the solid foundations for this
theory were laid, see (de Rham, 1954). It says that (via the de Rham theorem) the
elements of the real cohomology of a compact Riemannian manifold are repre-
sented by exterior harmonic forms, and this representation is unique: for an exter-
ior form w harmonic means Aw = 0, where we, as usual, denote by A the Laplacian
operating on numerical functions and on exterior forms, see IV and TOP. 6. This is
a strong Riemannian condition on such an exterior form; the relation to cohomol-
ogy is insured by the de Rham theorem.
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Let us now use Ricci commutation formulas to permute the order of (cov-
ariant) derivatives: as seen in A the defect of the Schwarz lemma in classical differ-
ential calculus can here be computed solely with the help of the curvature tensor.
One finally gets a formula evaluating the Laplacian of the square norm of such a
harmonic p-form w:

1
- §A(|Iw||2) = [|Dw]* + Curvy(w,w)

where Dw is the covariant derivative of w and Curv, some universal algebraic term
involving only the form w (quadratically) and the curvature tensor (linearly). We
now integrate over the compact manifold and see that such an w cannot exist if
Curv, is positive definite, because the integral of a Laplacian is always zero by
Stokes’ formula. A short way to write the above formula is

A=dod +d od=D"D+ Curv,.

This was first used in a global setting for p = 1, i.e. for 1-forms, in (Boch-
ner, 1946), and very soon underwent a tremendous development, first for p-forms
and thereafter for various vector bundles and elliptic operators. The story is still
not finished, see the surveys (Wu, 1987), (Bérard, 1988), (Bourguignon, 1988) and
their bibliographies. We will meet applications of analogous formulas using this
vanishing technique in many places below. It was remarked in (de Rham, 1954),
page 131, that the above formula for A with Curv, in fact already appeared in
(Weitzenbdck, 1923), so that Bochner (Bochner, 1948) actually rediscovered it; note
that Weitzenbock included no global application. We now give some details of the
initial Bochner case.

This Curv, term is especially nice when p=1, since its value is
Curv| (w,w) = Ricci(w,w). As a conclusion the positiveness of the Ricci curvature
implies that the real 1-cohomology vanishes since the other two terms are nonnega-
tive. This is certainly weaker than Myers’ result. Yes, but it is such a completely
new technique! Moreover one can use it immediately to take care of the nonnega-
tive case: the positivity insures Dw = 0, and a parallel transported form (i.e. with a
zero covariant derivative) insures a local Riemannian product decomposition. See
the digression in 1. COMMENTS on I.

Thereafter people tried to see what results could be obtained for other de-
grees p, see among others (Lichnerowicz, 1950) and (Bochner & Yano, 1953). But it
was only in (Meyer, 1971) that it was made clear that it is the curvature operator
which completely governs the term Curv,: see the end of Section I.B.1; for Curv, a
very lucid exposition can be found in (Lawson & Michelsohn, 1989), Theorem 8.6.

It is important to see the philosophy here. The Laplacian A on exterior
forms is what is called a natural operator, because it finally involves only Rieman-
nian invariants: D, the covariant differentiation, D*, its adjoint (defined by the glo-
bal scalar product), and the curvature tensor. More generally for any operator S
the product S*S is always nonnegative by definition. Then one has Dw = 0 as soon
as Aw = 0. This scheme can and will be used for more general differential operators
on various bundles, e.g. in 1. B. 3 and TOP. 6.
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E. Allendoerfer, Weil and Chern

In the late 20’s Hopf thought about extending the so-called Gauss-Bonnet
theorem, which says that for a compact surface M and its curvature K the Euler-
Poincaré characteristic is given by

x() = 5= [ Km)am

Consequently, if K has a given sign then x has the same sign. In all books
this formula seems to have been called the “Gauss-Bonnet theorem”. This is quite
surprising, since the notion of x(.) did not exist then. It seems that this formula as
such and for abstract surfaces first appeared partially in (Blaschke, 1921), page
109, and completely in (Blaschke, 1930), page 167 (we owe this historical informa-
tion to Robert Osserman), however the formula was certainly around as part of
mathematical folklore. For embedded surfaces, it is a combination of (Kronecker,
1869) and (Dyck, 1888), but Poisson in 1812 remarked that that integral was con-
stant under variation and Rodrigues in 1815 used the Gauss map (not published at
that time) to prove the formula in some cases. It seems that there is no detailed his-
torical study of the Gauss-Bonnet theorem.

Hopf was looking at higher dimensions: when the sectional curvature (see
1. COMMENTS on I) has a given sign, does x necessarily have the expected sign?
Hopf managed to prove this only in the very special case of space forms (IL.A) in
(Hopf, 1925a) and also for hypersurfaces of Euclidean spaces in (Hopf, 1925b).
And he probably guessed that in the general case it would follow from a generaliza-
tion of the Gauss-Bonnet formula to higher dimensions. Such a formula was indeed
obtained in (Allendoerfer & Weil, 1943). In dimension 4 it reads

.. scal
8w (M) = [ (IRIP = [Rici ~ *5.¢l)

in invariant form. But using a nice basis the integrand becomes Kj;K3s+
Ki3Ksy + K14Kps + Ry, + R25, + RY,,, (with the obvious notations for the sec-
tional curvature). This implies Hopf’s conjecture as stated in (Chern, 1955). The in-
variant form of writing will be used in I.B.1 and in III.B. But starting with dimen-
sion 6 we will see that the formula is so complicated that it cannot be used to derive
very many strong results in general (cf.(Bourguignon & Polombo, 1981)), mostly
only some non-zero (vanishing) results: see TOP. 1.D. Starting with dimension 6
Hopf’s question is still open, see the end of 1.B.

In (Chern, 1944) Riemannian geometers were provided with a strongly con-
ceptual proof of the Allendoerfer-Weil formula. Then of course Chern tried to do
the same for the Stiefel-Whitney classes. But because they are derived from (real)
Stiefel manifolds, they are torsion classes and therefore not directly accessible via
exterior forms. Reading Ehresmann he learned that complex Stiefel manifolds have
no torsion and this led him to discover the “Chern classes”, which are cohomology
invariants defined for any complex vector bundle over a manifold. They generalize
the Euler-Poincaré characteristic and are, for “real” manifolds, the Pontryagin
classes Py (M): (Chern, 1946). His proof yielded integral formulas for those classes,
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with integrands involving universal polynomials in the curvature tensor. As above
for the Euler-Poincaré characteristic, the formula for P; in dimension 4 is useful,
see III.C for Einstein manifolds. Higher dimensions yield only general results of
“non-zero” type but, using algebraic examples of the curvature tensor, it is proved
in (Bourguignon & Polombo, 1981) that those formulas are “useless” or at least
disappointing for the Riemannian geometer when using only pointwise estimates of
the curvature tensor.

It is important to know that there are no other such universal Riemannian
integral formulas which yield topological invariants. This was a query of Gelfand’s,
proved finally in (Gilkey, 1974) (see also (Abrahamov, 1951)). See (Gilkey, 1995)
for an up-to-date text and also TOP. 6.

This does not prevent Chern classes from being fundamental. Recall that
they are defined for any bundle, not only the tangent one: (Chern, 1946). They are
today a building tool in algebraic geometry and in the heat kernel. But what also
counts is the fact that there is an integral formula which is polynomial and universal
in the curvature. See (Berline, Getzler & Vergne, 1992), (Gilkey, 1995) and TOP. 6.

A basic formula fact was discovered in the first edition (in 1956) of (Hirze-
burch, 1966). A suitable combination of Pontryagin classes yields the signature for
4k-dimensional manifolds. Read via de Rham theorem this signature is the linear
algebra signature of the quadratic form which is defined by the cup product of co-
homology 2k-classes. Hence this important fact: there is an integral formula invol-
ving the curvature for the signature. See most importantly (Gilkey, 1995) and (Ber-
line, Getzler & Vergne, 1992). See also TOP. 6 for secondary characteristic classes
and the n-invariant.

F. Existing tools and a brief look at the new ones

From the above one sees that the existing tools in 1950 were only the fol-
lowing ones: the golden triangle and its rules, and the equation for Jacobi fields,
which is the equation giving the transverse field to a one-parameter family of geo-
desics. The basic fact is that the equation is linear (of second order) and involves
only the curvature tensor whereas the equation for geodesics themselves is defi-
nitely not linear in general. It cannot be integrated explicitly for most manifolds
(not even for ones given explicitly), and even so the metric problem is often not fin-
ished. A general philosophy is that the exact (computable) solutions of a varia-
tional problem are also hard to handle. So one bypasses this difficulty by using var-
ious tricks. The curvature, on the other hand, can be computed explictly from the
metric, which explains the importance of the topics involving it.

In addition, one had the first and second variation formulas. The first is
given by angles of vectors at the extremities, the second needs an integral along a
geodesic where a sectional curvature term enters. The first variation was used to
prove that there exists at least one periodic geodesic in every non-zero free homoto-
py class of a compact manifold. It seems that this result was part of mathematical
folklore, for example it is used in (Hadamard, 1898), where moreover uniqueness is
proved in the negative curvature case. The first variation formula implies the strict
triangle inequality and is used very often, typically in I and V. The second variation
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formula gives for a geodesic the second derivative of the lenghts of a family of
curves as the integral along the geodesic which mixes the sectional curvature and
the deviation of the strip from a parallel one, more precisely the norm of the covar-
iant derivative of the transverse vector. Results that were available from Analysis
were Hodge theory and the Bochner technique.

The very geometric notion of convexity came up quite recently for both
subsets and functions in a Riemannian manifold, see its use in the non-compact si-
tuation in [.B.1 and I.B.4.

For the geodesic behavior, a basic tool is the Morse theory (Morse, 1934)
of the global calculus of variations, see the digression in V.A. Before 1950 this ex-
tremely general and powerful theory still did not yield substantial results in Rie-
mannian Geometry. This was not because of the theory in itself but because alge-
braic topology was not far enough advanced. It will be of basic use in V, see the
digression in V. A.

<+

More about tools. We will not give a systematic exposition, but will merely
give an indication of them at the time they are used. Tools used by Riemannian
geometers are of two kinds: those they created themselves for their needs and the
preexisting ones that they borrowed, and had to adapt in some instances.

Riemannian Geometry being “differentiable”, one can risk saying caricatu-
rally that “half of it is Analysis”. The reader might have noticed that many names
mentioned are those of Analysts: Jacobi, Hadamard, Poincaré, Elie Cartan, Morse,
Chern, Bochner, Rauch, among others. This fact can also be remarked in the con-
tinuation. We mention now some important tools coming from Analysis which
have appeared since the 50’s. We are certainly biased and again insist on the fact
that we are really sticking to Riemannian Geometry inside the huge world of differ-
ential geometry. The reader could consult the following surveys: (Yau, 1987),
(Schoen, 1991).

One basic tool is Geometric Measure Theory (GMT). The initial idea was
that of minimal surfaces, but GMT was the first to offer results which were general
enough. It will be used for example in TOP. 1.B, TOP. 10.C and 1.B.3. The major
impetus came from (Federer & Fleming, 1960) and things crystallized in (Federer,
1969). See more on this tool in TOP. 10.C.

There is also the control of functions of a special type, like distance func-
tions, harmonic functions, eigenfunctions of the Laplacian (in particular the first
one). The two basic facts are: in polar coordinates the formula giving the Laplacian
of a function depending only on the polar radius involves only the logarithmic deri-
vative of the angular volume element 6 (“solid angle”): in particular if d is a dis-
tance function (it can be a Busemann one “from infinity”) its Laplacian is
Ad = — %. And this is upper bounded when the Ricci curvature is lower bounded
by Bishop’s theorem (TOP. 1.A). The second formula is Bochner’s formula above
asl applied to an arbitrary function: written in full detail it reads
—QA(deHZ) = ||Hessian(f)||* — (dAf, df’) + Ricci(df,df). One can apply it to a
distance function and thus obtain, from the Ricci curvature, more control on the
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differential of its Laplacian d(A f), and/or to some suitably chosen harmonic func-
tions. We will see that these two facts are heavily used, not only for the spectrum,
but also to obtain metric comparison theorems with only a lower Ricci bound: see
e.g. the digression in .A.2.

Other tools are existence theorems for harmonic maps. The topic started
with (Eells & Sampson, 1964). Today it is of basic use, see TOP. 7.

Harmonic coordinates were systematically introduced in (Jost & Karcher,
1982) and are now indispensable: see the digression in I.C and 1. COMMENTS on
I. We note that harmonic coordinates were used a long time ago by theoretical phy-
sicists, see (Einstein, 1916) and (Lanczos, 1922). See the formula for Ag; in the di-
gression of 1. COMMENTS on I, then II1.C for the use of harmonic coordinates to
prove that Einstein manifolds are real analytic, and the basic use of them in I. C. 1
and 2.

<+

Quite a new concept is that of deformation techniques. This means, on a
manifold, a partial differential equation, like the heat equation, describing an evo-
lution. They are used to prove the existence of desired objects. The technique is to
prove first that the deformation equation (typically a partial differential equation
of parabolic type) has a solution for all time points t, and secondly that it converges
to “the” (or “a”) desired object as t tends to infinity. See TOP. 7 for harmonic maps
and V.A for obtaining periodic geodesics. If one deforms suitably chosen functions
in the complex case this is the technique suggested in (Calabi, 1954) to obtain Kéh-
ler Einstein manifolds. These deformation equations are quite natural: they consist
of deforming an initial object in the best way for reducing the defect with respect to
the imposed condition.

+

Calabi’s equation was a particular case of the more recent and more ab-
stract technique consisting of deformations in the space of all Riemannian metrics
on a given manifold, see II1.C. In the general case the deformation is really for Rie-
mannian metrics, not at the numerical function level. Very often one uses quite a
new tool, the Ricci flow. That is to say one considers a one-parameter family of
metrics g(¢) and the PDE:

9 _ HRicci(g(r))
ot

This equation appears in slightly different forms where the right-hand term
is normalized (in various ways depending on the authors) by adding the scalar cur-
vature and playing with both coefficients of Ricci and scalar curvature, the point
being to keep the volume fixed. The difficulty is that this equation is not really
parabolic, because the right side is only “elliptic degenerate”. We will meet various
results later on, a partial survey is Section 4 of (Besse, 1994). The Ricci flow was
first used by Hamilton in dimensions 3 and 4, see the results in I.B.1 and 2. In fact
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Hamilton used it also to recover the standard conformal representation theorem,
see the end of the story in (Chow, 1991). One of the most promising uses would be
to attack the various conjectures on manifolds of dimension 3 and 4, see TOP. 8.

See also TOP. 3.A for results on manifolds with holonomy G, and Spin(7)
which are obtained by such a deformation technique, but with completely different
equations. See also I.B.1 and I.C.2.

G. Existing examples and a brief look at the new ones

Another very important aspect of Riemannian Geometry is that of exam-
ples. This might not be obvious but some people even say that to feel, to under-
stand what a Riemannian manifold is, cannot be achieved without being familiar
with quite a few examples and we will mention them in time, even though only
briefly. The following books lay special emphasis on examples in an expository
way: (Gallot, Hulin, & Lafontaine, 1990), (Besse, 1987), (Petersen, 1998a). Here are
the examples which were, to the best of our knowledge, known in 1950 and whose
important geometric properties were more or less understood: first, following Rie-
mann, the hyperbolic spaces Hyp“ in arbitrary dimension. On the compact side first
of all of course the spheres. Then the complex projective spaces CP" with their Fu-
bini-Study metric: (Fubini, 1903) and (Study, 1905).

Those CP" were put into the general framework of all symmetric spaces by
Elie Cartan (see section II.C). This includes the symmetric spaces of rank one,
which are, on the compact side, the spheres, the various KP” for K = C or H (the
quaternion field), and of the Cayley numbers Ca only CaP! = S® and CaP? are per-
mitted. The Cayley projective plane CaP? is beautiful, we like to call it the panda of
Riemannian Geometry. Its projective lines are 8-dimensional spheres and satisfy
the projective plane axioms. Cartan suspected that this result was true in (Cartan,
1939), page 354. One had to wait until 1951 for a solid projective construction of it
by Freundenthal, which was never published. For this intricate history of the pan-
da, see Chapter 3 of (Besse, 1978) .

On the non-compact side, Cartan gave an exposition of the dual generalized
hyperbolic spaces HypKP". Higher rank symmetric spaces were also completely
classified by him, they include in particular all the Grassmann manifolds
Grassk(p, q) as well as their nonpositive curvature analogues, plus a very restricted
list. For the non-simply connected quotients of the above, see the entire Chapter I1.
Except for the spherical case and for surfaces compact quotients were not known
to exist in 1950 besides the dimension 3 hyperbolic examples of (Lobell, 1931) .

The complete theory of symmetric spaces (geometry, classification, see
more in II. C) was built up by Elie Cartan in the very short interval of 1926-27, in
a series of papers from (Cartan, 1926b) to (Cartan, 1927). See more in I1.C.

The geometry of the geodesic flow was understood: for surfaces of revolu-
tion (Clairaut circa 1730), for ellipsoids (Jacobi in 1832) see an exposition in (Klin-
genberg, 1982), Section 3 (these geodesic flows are called “integrable” in modern
jargon), for symmetric spaces see (Cartan, 1927). One should add Morse’s theorem
quoted in V.A. But one still does not have a complete mastering of the metric of
ellipsoids, see the end of TOP. 4.
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A trivial but basic concept is the product of two Riemannian manifolds.
The relation to holonomy groups (see TOP. 3) and the global product result in the
complete simply connected case are in (de Rham, 1952) and (Borel & Lichnerowicz,
1952) (we make this an exception to the 1950 rule). In the case of symmetric spaces
this notion of product and holonomy group was known to Cartan and was a basic
tool in his work we mentioned above.

+

This hides the, sometimes extremely hard, difficulty one has in building up
a Riemannian manifold with imposed properties. By this we most often mean the
control of the curvature and/or of the basic geometric invariants: volume, diameter,
injectivity radius (see L.A.1).

There is quite a variety of techniques for building up examples. It starts
with Algebra. First to come are homogeneous spaces G/H of Lie groups with H
compact: they always admit invariant (called homogeneous) metrics and there
are explicit formulas for computing the curvature, see also III.C. But their dis-
crete quotients are much much harder to build up. For example building up gen-
eral space forms was only in the air in the 50’s and, moreover one had to await
(Borel, 1963) for a general result. Note that it was more Number Theory than
geometry.

Then comes the theory of Riemannian submersions. This means a submer-
sion M — N between two Riemannian manifolds which should fulfill the following
condition: the metric in M determines, at every point, an orthogonal complement
(called horizontal) of the space tangent to the fiber; at every point the restriction of
the projection to this horizontal space is required to be a Euclidean isometry be-
tween it and the tangent space at its image in the basis. In this case the formulas of
(O’Neill, 1966) enable us to compute the curvature of the total space if one knows
the curvatures of the basis and of the fibers, how the fibration is twisted and finally
how the fibers are embedded (the best case is when the fibers are totally geodesic
submanifolds). For example topological surgery can be Riemannianly controlled
by these formulas. A now classical example is that for positive scalar curvature: 1.
B. 3. Particulary important Riemannian submersions are the warped products. De-
finitions here vary with authors. When the basis is one-dimensional, the metric will
appear in coordinates as g = df> + f(t).g4—1(¢). If gs— is independent of ¢ this is a
rotationally symmetric metric, a generalization of surfaces of revolution. O’Neill’s
formulas then become much simpler. More recent still are the double warped pro-
ducts. For books on these formulas see (Cheeger & Ebin, 1975), (Besse, 1987), (Sa-
kai, 1996) and (Petersen, 1998a). Warped products are of basic use in (Cheeger &
Colding, 1996) (and subsequent works of these authors), where they serve as
smooth rigid models for studying the structure of manifolds with a lower bound on
the Ricci curvature.

Other examples are those obtained by conformal changes: g becomes f.g
where f is a numerical positive function. Although they are extremely specialized
when d > 3 those changes are very useful sometimes and the formulas for the cur-
vatures are extremely simple.
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Mixing these two techniques one can compute the curvature of Riemannian
manifolds of high cohomogeneity. This means manifolds which are almost homo-
geneous, i.e. the isometry group is large in the sense that its generic orbits have low
codimension. The main difficulty is that of the singularities which occur at the
places where the dimension of the orbit is not the maximal one (the case of the
poles of surfaces of revolution is typical). This was used for example in (Page,
1979) and (Bérard Bergery, 1982) to build up Einstein manifolds. As one will see
below these kinds of examples have now become more and more numerous and are
often used as counterexamples.

Deep analysis, in particular strong results for various types of partial differ-
ential equations, is fundamental. See for example Chapter III and what was said
about the new tools from Analysis.

Another approach is quite recent. It turned out in the 60’s that some results
(of algebraic topology, then for complex manifolds and even more recently of Rie-
mannian Geometry) on a manifold cannot be obtained by just working on the
manifold itself. One has to study various bundles over that manifold, principally
vector bundles. Some bundles are canonically attached to a Riemannian manifold,
like those of exterior forms, but it is also important to build various “twisted” bun-
dles. This consideration has become a basic tool, we will devote TOP 6 to it. A spe-
cial mention should be given to spinors. A fairly complete reference is (Lawson &
Michelsohn, 1989), see also (Gilkey, 1995) and (Berline, Getzler & Vergne, 1992).

Last but not least: “pure” geometry. One can see it as consisting of two
parts. The first part is geometry on the manifold itself. Most often one needs to, in
the Riemannian context, adapt techniques coming from differential topology, sur-
gery in particular. In this case one needs to control the curvature, an example is
(Gromov and Lawson 1980a), used in 1.B.3. One also finds various geometric con-
trols of various volumes during surgery and other topological constructions, in re-
lation to TOP. 1.E. We will mention other examples in the continuation, but Gro-
mov’s construction of a sphere with almost negative curvature (see details in (Buser
& Gromoll, 1988)) and a generalization in (Bavard, 1987) show how high the de-
gree of sophistication can be when trying to build up examples with only purely
geometric tools. See the end of 1.B.4.

Complexity theory is entering slowly into Riemannian Geometry, see 8. 11
of (Semmes, 1996a) for the case of a bounded geometry (TOP. 5) and the end of V.A.
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1 Comments on the main topics I, I1, IIL, IV, V under
consideration

As already explained above we made a choice of five main topics, namely

I: curvature and topology (Hopf’s urge)

II:  looking for a construction and classification of space forms

III:  looking for distinguished metrics, in particular Einstein ones

IV:  study of the eigenvalues and the eigenfunctions of the Laplacian (in
brief: study of the spectrum)

V:  study of periodic geodesics, more generally the geodesic flow

TOP: at the end we will mention briefly some interesting and important to-
pics, but not in as much detail

TOPIC I started with Hadamard and was pursued by H. Hopf, Synge,
Myers, Preissmann and Bochner. The subject exploded with Rauch’s work in 1952
and has not levelled off since. We will devote a large part of our text to it. It was a
very strong incentive. Considering the huge harvest of results we had a very hard
time organizing the material. We will make a first division into three parts: pinch-
ing, curvature of a given sign, finiteness theorems (and more). The reader will judge
if that division is too artificial. Within each part the idea is also threesome, divided
into sectional, Ricci and scalar curvatures. But moreover we will at the same time
follow the dominant stream of today’s research in Riemannian Geometry: to ob-
tain results with fewer and fewer hypotheses, the simplification being that of having
ever weaker invariants in the statement and/or even to replace pointwise norms by
integral norms.

In particular one has recently obtained more and more impressive results
using only Ricci curvature bounds. The motivation is thus: in dimension d the Ricci
curvature has as many parameters as a metric: d(d + 1)/2, whereas the sectional
curvature depends on d?(d?> — 1)/12 parameters. For d = 2 this is not enough in-
formation, but for d > 4 this can be considered as “too much” information. We
saw above in 1.F one basic formula involving only the Ricci curvature, the second
one is in the digresssion below.

<+

An important digression: Curvature is a very complicated invariant/How does
one see curvature today?

The curvature tensor appears naturally as endomorphisms R(x,y) of the
tangent space attached to couples (x, y) of tangent vectors. A naively simple idea is
that of the sectional curvature attached (by means of the curvature tensor) to a 2-
dimensional tangent space P (a tangent plane) which is the scalar K(P) =
K(x,y) = R(x,y,x,y) when x,y is any orthonormal basis of P. Note that the form
R(x,y,z,t) is multilinear of degree 4 (“quadrilinear” or “biquadratic”) and enjoys
the following symmetries: it is anticommutative both in x,y and in z,t, one has
R(x,y,z,t) + R(x,z,1,) + R(x,t,y,z) = 0 and R(x,y,z,1) = R(z,t,x,y). Geome-
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trically the interpretation of the sectional curvature is wonderful: compute the
length of the small metric circles generated by the geodesics starting with a speed
vector in P. Then K(P) measures exactly the defect of that length as compared to
the Euclidean one; more precisely it gives the first non-trivial term in the limited
expansion into a function of the radius.

But despite the symmetries of the curvature tensor the function K as a
numerical function defined on the Grassmann manifold of the planes at a point
is still almost a complete mystery: where are the critical points (planes), what are
its critical values and in particular its extremal ones? Things are trivial in dimen-
sions 2 and 3 but starting with dimension 4 one has only one partial result in
(Singer & Thorpe, 1969) for 4-dimensional Einstein manifolds. A notation like
K < a for a Riemannian manifold will mean that the sectional curvature is smal-
ler than the scalar a at every point, and that this holds for every tangent plane at
that point.

The fact that the knowledge of the curvature tensor and the knowledge of
the sectional curvature are equivalent is important theoretically but it is hard to use
it explicitly. Important to know is the dimension of the space of curvature tensors
(pointwise): d*>(d? — 1)/12. It is also very important to realize that the curvature
tensor, in general, does not determine the metric, even though that dimension is so
huge (when d > 3) in comparison to the number, equal to d(d + 1)/2, of para-
meters for a metric: see the digression in I.C.1. The sectional curvature, on the
other hand, almost always does determine the metric; the difference between the
curvature tensor and the sectional curvature is that the sectional curvature involves
the metric.

Computing the curvature tensor explicitly in a coordinate chart {x;} in-
volves the first two derivatives of the metric (say the g; = g(9/0x;; 0/0x;)) but the
expression is very complicated. In short, however, one has in any coordinate sys-
tem: Ry = %(&kgj;, + Oingik — Ongjk — Ogin) + Q(0g,0g), where Q is quadratic in
the first derivatives of g. From this formula one sees that one cannot recover the
second derivatives of g from R, and this accounts exactly for the difference between
(d(d +1)/2)* and d?(d* — 1)/12. Roughly speaking, therefore, the curvature (ten-
sor or sectional) can be seen as a “twisted Hessian of the metric”. At the origin of
the normal coordinates of Riemann, those which are given by the geodesics issuing
from a given point as origin, one then has the treacherous formula 0;gws =
%(R,—kjh + Rinix). This does not explain but at least makes very plausible the compar-
ison theorems of 1.2: one can control a function when one has a control on its sec-
ond derivative. But there is a long way to go to be able to really state the results
and prove them.

It turned out (this will be seen in detail in I.C.1) that those very geometric
and natural normal coordinates are in fact badly suited for coordinate changes
when one controls only the curvature. This is because the equation for Jacobi fields
in 0.B appears to be of second order but this is only after having integrated the
equation for geodesics. The discovery of (Jost & Karcher, 1982) was that harmonic
coordinates (0.F) are the well-adapted ones. With them one does not lose any deri-
vatives. They are quite simple to define and build up, being just nicely chosen line-
arly independent harmonic functions (see 1.C.2 and IV).
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If the reader does not like biquadratic forms as algebraic objects or the still
not unveiled sectional curvature, he should be immediately more enthusiastic about
the Ricci curvature. It is nothing but the trace (with respect to the metric) of the
sectional curvature: for a unit vector x its Ricci curvature Ricci(x) is the sum of the
sectional curvatures K(x,x;) where {x,x2,...,x4} is any orthonormal basis com-
plementing x. One can also consider it as the mean value of the sectional curvature
through a given vector; this is a quadratic form and then has the same number of
parameters as the metric itself. It has been a vital lead in Riemannian Geometry to
deduce as much as possible about the metric from its Ricci curvature. This will be
seen amply in the continuation. One thing which really helped to unravel the situa-
tion was the fact that, in harmonic coordinates, (0.F), the Laplacian A of the metric
(see IV for the Laplacian) is exactly the Ricci curvature except for terms Q of lower
order (which are quadratic):

A(g(9/0xi;0/0x;)) + Q(g, 0g) = —Ricci(9/0x;; 0/ dx;)

Then one has at one’s disposal the entire classical Analysis to get informa-
tion on functions and their Hessian from the knowledge of their Laplacian. For dis-
tance functions and Ricci curvature see 0.F.

Another of the main points about the Ricci curvature was in fact discovered
in (Bishop, 1963): a lower bound on the Ricci curvature gives an upper (optimal)
bound on the volume of metric balls. This will turn out to be fundamental for topo-
logical implications, but even more so for convergence and precompactness results.
The proof is quite simple: the Ricci curvature is a trace and traces are derivatives of
determinants (volumes). For all this see TOP. 1.A and B. In fact the Ricci curvature
yields the first non-trivial term in the asymptotic expansion of the volume form
along a geodesic (solid angle). Bishop’s result is that it can be integrated with a low-
er bound. On the other hand, it definitively cannot be integrated with an upper
bound as soon as d > 4. Scalar curvature is the trace of the Ricci curvature, it is a
scalar (at every point). Infinitesimally it gives the first non-trivial term in the
asymptotic expansion into a function of the radius of the volume of balls centered
at a given point. But this time it cannot be integrated with a lower or an upper
bound.

+

TOPIC II is in fact the most natural one: study the Riemannian hierarchy.
Riemann’s idea was to generalize Euclidean geometry. So we look next for geome-
tries which are successively farther away from Euclidean ones. Stated in other
words: relax the Euclidean axioms more and more. This is the space form problem.
It goes back to Killing who convinced Klein of the importance of this question dur-
ing a lecture he gave. This explains partly the classical phrasing of “Clifford-Klein
spaces”.

Here is the place to comment on two sections (wings) of Riemannian Geo-
metry, namely those of positive and negative curvature. We will see more than once
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below how much these two sections differ, often paradoxically. In the case of space
forms the difference is the following: briefly speaking, it is child’s play to build up
space forms of positive curvature and they are “easily” classified. Negative space
forms are very hard to build up, they always require Number Theory even if in dis-
guise. In exchange, negative curvature space forms, once they are built up, enjoy
many optimal results, see I.B.4 and V.

Positive curvature space forms, on the other hand, are still very mysterious.
For example there are almost no reasonable invariants which are either explicitly
known for them or which characterize them: see III.B for the minimal volume,
TOP. 1.C for the embolic volume. And, as laid out in III.C, there are non-unique-
ness results for Einstein metrics on them in some cases, but not a single case of un-
iqueness is known. It starts with S*.

TOPIC 1II is satisfactory only for surfaces, in this case thanks to the con-
cept of conformal representation. For higher dimension, it started with a question
of Calabi’s in 1950. The first general answer to that question came only in (Yau,
1978). Among the few results obtained since, let us mention (Hamilton, 1982). In
particular the number one question “does any compact manifold of dimension lar-
ger than 4 admit. an Einstein metric or not?” is almost completely untouched and
even experts have no guess whether the answer is yes or no. One has only local
non-deformation results.

TOPIC 1V, which can be termed “Riemannian manifolds as quantum me-
chanics objects”, started seriously only with the combination of (Milnor, 1964) and
(McKean & Singer, 1967). But this subject then witnessed a real explosion. The
links between IV and V have been well developed since (Colin de Verdiere, 1973), a
fact which could be surprising considering what comes next. The point in IV can be
described as building up a Fourier analysis on Riemannian manifolds and studying
it. This is fundamental in some pure geometric questions. Let us mention in classi-
cal geometry the use of spherical harmonics for studying the kissing number of
spheres, see Chapter 13 of (Conway & Sloane, 1993) and in our text the control of
distance functions in the digression in .A.2.

TOPIC V, which can be termed “Riemannian manifolds as classical Hamil-
tonian mechanics objects”, enjoys satisfactory answers for “generic” (bumpy) Rie-
mannian manifolds, the strictly general case remaining quite mysterious. Results
started to appear with Poincaré and Hadamard, but despite the initial efforts by
Birkhoff, and even more efforts by Morse, one had to wait until the late 60’s for a
reasonable harvest. The case of surfaces is much better understood. It is only for
the negative sectional curvature case that one has good, in fact excellent, results:
they began with (Hopf, 1939) for surfaces and (Anosov, 1967) for the general case.

I Curvature and Topology

Since Heinz Hopf in the late 20’s this topic has been and still remains the
strongest incentive for research in Riemannian Geometry. Most books on Rieman-
nian geometry give some results on this topic but none covers it completely, so we
will rely on surveys and references. Some books which give special attention to this
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topic are (Cheeger & Ebin, 1975), (Sakai, 1996) and (Petersen, 1998a), see also (Pe-
tersen, 1998b). We explained at the beginning of 0.F why so much emphasis is given
to curvature.

A. Pinching Problems
1. Introduction

Recall that manifolds of constant sectional curvature are locally isometric
to spheres, to Euclidean spaces or to hyperbolic ones so that, if compact, they are
compact quotients of the sphere, the Euclidean space or the hyperbolic space by a
discrete isometry group with no fixed points. For more on these space forms see
I.A. To put this result on a firm foundation was one of Heinz Hopfs tasks in the
30’s and one of the motivations for the Hopf-Rinow theorem. The following ques-
tion now suggests itself: assume that a compact manifold has a sectional curvature
that does not vary too much (one will say that the manifold is “pinched”). Can one
deduce from this that the underlying manifold is topologically (or more even — dif-
ferentiably) identical with one of the above space forms? After normalization we
are left with three cases: the pinching question around ¢ = +1, 0, —1. We assume
that the sectional curvature satisfies (everywhere and for every tangent plane)
|K — o] < e and look for an e which will lead to the conclusion that we are on a
topological (or, better even, diffeomorphic to a) space form. Note that, for the zero
case, some normalization is needed, which is usually done by requiring the diameter
not to be too large. This restriction is needed because stretching the metric by a
large factor will make the whole curvature go to zero. We will discuss the positive
pinching problem in quite some detail because of its historical importance. Pinch-
ing is put into an interesting general perspective in (Gromov, 1990).

Back to the general pinching problem we will see that the answer has sur-
prisingly different answers for the three possible signs. This will serve as a first illus-
tration of the basic differences between space forms of different signs. There is a
solution covering all three cases together, but one needs, besides the pinching of the
sectional curvature, both an upper bound on the diameter and a lower bound on
the volume. This was achieved in a unified way in (Fukaya, 1990), see Theorem
15.1, and covers prior results: the positive case was solved in 1951 by Rauch, see
below, the zero case was solved in (Gromov, 1978a) and the negative case in (Gro-
mov, 1978b).

There are more general types of pinching, the most general being that for
symmetric space forms. A program of research on this topic was started by Rauch,
for references and intermediate results see (Min-Oo & Ruh, 1979; Min-Oo & Ruh,
1981), but these texts have still not been understood completely. Informative texts
are (Gromov, 1990) and (Petersen, 1996). For Ricci-pinching see the very end of 4
below.

2. Positive Pinching

The following quite natural question was repeatedly put forward by H.
Hopf, in particular when Rauch (an analyst and an expert in Riemann surfaces)
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visited Ziirich in the late 40’s. Noting that the standard sphere is the only simply
connected manifold of constant positive sectional curvature and bearing in mind
some heuristic principle of semi-continuity, one can hope to be able to prove that if
the sectional curvature is close to a positive constant, the underlying (simply con-
nected) manifold will still be the sphere. This was indeed proved in (Rauch, 1951)
with a pinching constant (i.e. the ratio of the lower to the upper bound of the sec-
tional curvature) of roughly 3/4. Rauch’s paper was seminal in two respects. First
of all, it gave a control on the metric on both sides: if the curvature is smaller than
A, then the metric (in a sense that of course needs to be made more precise) is lar-
ger than the metric in the sphere of constant curvature equal to A (at least in re-
gions small enough). And mutatis mutandis for a curvature larger than é. The case
where A = 0 was known to Cartan and Preissmann as we saw in 0.B and 0.C. Sec-
ondly, to get a global result, Rauch made a subtle geometric study in which he
proved that, under the pinching assumption, one can build (by a sort of analytic
prolongation using exponential maps) a covering of the manifold by the sphere.

We comment now on Rauch’s result and the results of his followers. First
we comment on the tools, thereafter on what assumptions are made about the cur-
vatures (sectional or “only” Ricci), and finally on optimality. We will mainly give an
historical overview, surveys are (Shiohama, 1990) and (Abresch & Meyer, 1997).

<+

The basic role of the injectivity radius (as linked to the cut-locus: TOP. 4)
was made precise in (Klingenberg, 1959). The injectivity radius Inj(g) of a Rieman-
nian manifold (M, g) is the largest real number such that every pair of points whose
distance is less than it is joined by a unique shortest geodesic (segment). In particu-
lar every open metric ball of radius Inj(g) (or smaller) is diffeomorphic to RY. By
the elementary foundations of Riemannian Geometry, there is such a positive num-
ber for every point (called the injectivity radius at that point). Moreover this num-
ber is continuous as a function of the point and in particular it is positive if the
manifold is compact. We will see below how fundamental the injectivity radius is.
In the positive curvature case two results of Klingenberg’s tell us that, in even di-
mension and with simple connectedness, the double hypothesis 0 < K < 1 always
implies that Inj(g) > = (think of the sphere). The proof uses Synge’s result. This in-
jectivity radius bound is definitely wrong in odd dimensions, see below. But it re-
mains valid even for odd dimensions if moreover 1/4 < K < 1. This remains true
even for 1/4 < K < 1, but the proof is more difficult. The key idea is due to Klin-
genberg, but some gaps still had to be filled. This was done in (Cheeger & Gromoll,
1980), a preprint of which was circulated as early as 1972. See also (Klingenberg &
Sakai, 1980). For both results the use of Morse theory is fundamental, see the “long
homotopy” below. One combines this with comparison theorems for Jacobi fields.
We will see below in Section C.1 that a control on the injectivity radius from below
in all generality definitely requires four conditions: an upper and a lower bound on
the sectional curvature, an upper bound on the diameter and a lower bound on the
volume. Note that Rauch’s proof implies, under his pinching constant, Klingen-
berg’s lower bound on the injectivity radius.
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++

A digression: Comparison theorems. The best possible local control for the
metric from A = sup K and § = inf K follows directly (for A or 6 of arbitrary sign)
from Rauch’s estimate for Jacobi fields. Even though other techniques are now
available, see below, the geometric metric two-way bounds obtained from sup K
and inf K for (large or small) triangles are fundamental. Later Rauch, by integra-
tion along curves, obtained bounds for (small) triangles (i.e. within the injectivity
radius). One calls these results RCT (Rauch comparison theorems).

They are to be distinguished from Toponogov’s theorem: (Toponogov,
1959), (Toponogov, 1964b). The remarkable fact in Toponogov’s theorem is that,
for a lower bound on the sectional curvature, one can “ignore the injectivity radius
or the cut-locus” (TOP. 4). This definitely cannot be the case for a Toponogov result
with an upper curvature bound: just look at a very small periodic geodesic in a flat
torus. However this is possible in the negative curvature case if moreover one has
simple connectedness: see Cartan’s result in 0.B and 1.B.4 below. The Toponogov
theorem is simple to state: for K > 0 it just says that every triangle is infra-Eucli-
dean: @ < b + & — 2be cos a. For K > k it is the analogous inequality but as ap-
plied to the classical formulas for triangles in the space of constant curvature equal
to k, namely the spheres or hyperbolic spaces when k > 0 or & < 0 respectively. The
relevant formulas are the classical ones of spherical or hyperbolic trigonometry.

One should be very careful not to expect too much from these comparison
theorems. They are great in the sense that a double control on the sectional curva-
ture gives us a double control on the metric. For example one recovers the classical
fact that, locally, spaces of constant sectional curvature are isometric to the stan-
dard ones. But for variable curvature, things are different. Here are for example
two cases where care is needed. The first problem is that the curvature tensor does
not determine the metric in general; the case of constant curvature is a clear excep-
tion. This is a whole new topic in itself and started only fairly recently, we will come
back to it in the digression of C.1. The second problem is that of pinching around
zero, see A.3 below.

Rauch’s proof of RCT was quite painful, as well as the proof of Topono-
gov’s theorem. It was discovered in (Gromov, Lafontaine & Pansu, 1981a) (the
“little green book™) that the important idea was the control of the distance func-
tions (distance to a point, to some hypersurface, to some periodic geodesic or
from infinity: Busemann functions in B.2). The key idea of Gromov’s was to look
at the ODE for the second fundamental form of the level hypersurfaces: this is a
Ricatti equation (this is not too surprising since any second order linear equation
— in particular the Jacobi field equation — can be reduced to one of Ricatti type).
These points are described well in (Karcher, 1989), thereafter in the lectures notes
of (Eschenburg, 1994), and also in the books (Sakai, 1996) and (Petersen, 1997a).
But heuristically, if one thinks of the sectional curvature as “the Hessian of the
metric” (see the digression in 1. COMMENTS on I), such results are not really
too surprising.

The Toponogov triangle theorem needs essentially a lower bound for the
sectional curvature. But these days one can make use of more and more results of
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metric type which were obtained previously using the sectional curvature and are
now valid under bounds just on the Ricci curvature. We saw in 0.F why such a
hope was not too unrealistic. Some landmarks are (Calabi, 1958), (Cheeger & Gro-
moll, 1971) and (Abresch & Gromoll, 1990). A text that can be quite astonishing
for the reader is (Colding, 1996¢c). One finds there a statement yielding both an
upper and a lower bound for triangles and this holds using only a lower bound for
the Ricci curvature (of arbitrary sign). The result is of L'-type and implies that
most of the (thin) triangles are OK for what one wants to do with them. We state
this explicitly:

“In a Riemannian manifold of dimension 4 with nonnegative Ricci curva-
ture, for every € > 0 there exists some 7(d, ) > 0 such that for any R > 0, for any
r < 7R and any points p, g with d(p, ¢) > 2R one has

1
VT (/ =0

— r{v,grad(d(p,.)))| dv) < eR,

where U(B(g, R)) denotes the unit tangent bundle over the ball B(g, R)”.

There are analogous formulas when the lower bound for the Ricci curva-
ture is any real number, as well as an L'-formula for the angles. Two remarks are
now in order. The triangles should have at least one side which is large with re-
spect to another. But in exchange, they are controlled on both sides. The reader
may find it surprising that both sides are controlled by just a lower bound on the
Ricci curvature. The heuristic explanation is the following: the second variation
formula and Myer’s trick (see 0.C and below) lead one to the conclusion that a
long segment forbids any too large sectional curvatures along it: a segment being
an absolute minimum the second variation along it cannot be negative. This two-
sided control using only a lower bound appears in fact in the rigidity theorems in
B.2 below for non-compact manifolds with nonnegative sectional and Ricci curva-
ture, where infinite segments (lines) are used. Colding likes to think of his result
as a predictability one. Given a point p, if one is given the initial velocity of a geo-
desic which starts close enough to ¢ and is not too long, then one knows, to a
fairly high degree of probability, i.e. in a local integral fashion, where the end of
this geodesic is as seen from p. In the positive Ricci case, there is a stronger result,
namely an L?-formula and this is, moreover, valid for practically any triangle (not
necessarily thin).

Colding’s results are of L'- and L?-type but optimal; in (Dai & Wei, 1995)
one can find Toponogov-type theorems with only a lower bound on the Ricci cur-
vature, but then the bounds differ exponentially from those of the comparison
space.

The tools used here are those explained in 0.F: playing Analysis, in particu-
lar with distance functions and suitably chosen harmonic functions. Colding’s for-
mula introduced a new point of view which is put into a very general framework in
various texts quoted below, see in particular for a systematic exposition (Cheeger &
Colding, 1997a), (Cheeger & Colding, 1997b), (Cheeger & Colding, 1998). The phi-
losophy could be the following: the interplay between the lower bound on the Ricci
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curvature and the Laplacian on functions plays a role analogous to that of RCT
and the Toponogov theorems in the case of a lower bound on the sectional curva-
ture. The philosophy (see also section C.2) is that the sectional curvature is, up to
some twisting, the Hessian of the metric, whereas the Ricci curvature is only the
Laplacian of the metric. Playing with the sectional curvature is an ODE game, with
the Ricci curvature it is a PDE one.

++

We now come to the optimal constant in the (positive) pinching problem.
As early as 1961 (Klingenberg, 1961) one knew that a strict (1/4)-pinching is en-
ough to insure that the manifold is the sphere. In the literature, this is called the
sphere theorem. And one cannot do better since the KP" (with K # R) have a cur-
vature betweeen 1/4 and 1. The classical proof consists simply in covering the
manifold with two topological balls (which are metric balls in the construction,
but beware of the fact that metric balls are not always topological ones when their
radius is too large, typically beyond the injectivity radius). But only topological
spheres can be covered by two balls (Reeb’s theorem, see (Milnor, 1963), page
25). To find two such balls one takes two points whose distance equals the dia-
meter and applies the Toponogov theorem to prove that the two balls centered at
those points with a radius just a little larger than half the diameter do have a ra-
dius smaller than the injectivity radius. In fact the proof can be made precise in
order to prove directly the desired homeomorphism, see (do Carmo, 1992), page
287. For “sphere theorems and below”, see, besides the following, the survey
(Abresch & Meyer, 1997).

An interesting proof is due to Gromov and is explained in (Eschenburg,
1986). It is in fact very close in spirit to Rauch’s original proof. Look at balls centered
at a fixed point: then just beyond 7/2 the boundary becomes concave (this was
proved and used by Rauch). With some work-effort and using positive curvature,
one shows that the outside of that concave ball can be contracted to a point just by
“following the normal field”. This proof does not use Toponogov’s theorem or Klin-
genberg’s injectivity radius bound, this bound being in fact a corollary of the proof.

The sphere theorem triggered geometers to go further. We will now men-
tion the essential developments; surveys on the topic are (Shiohama, 1990) and
(Wu, 1990).

+

The sphere theorem as stated above involves two dramatic provisos. The
first one can be stated as follows: a covering by only two balls characterizes spheres
but only topological spheres. Now there exist topological spheres with differenti-
able structures that are different from the standard one (so-called “exotic” spheres).
Moreover some exotic spheres are obtained exactly by gluing two half-spheres to-
gether along their equator, but with a weird identification. So we are led to the “dif-
ferentiable pinching problem” (since the simply connected manifolds of constant
positive curvature are the standard spheres, see 0.B).
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The second problem is to see what can be done for the non-simply con-
nected case. For sure, looking at the universal covering, one can be sure that the
manifold downstairs is a quotient of a sphere, but this does not say that the topol-
ogy is that of a space form. The problem is the equivariant pinching question. It
was solved progressively, a definitive result is (Im Hof & Ruh, 1975), but the pinch-
ing constant is still very close to 1. For the non-simply connected case in relation to
the diameter see (Flach, 1994).

But work is still being carried out on the pinching constant, the latest refer-
ence for the simply connected (diffeomorphism) case is (Suyama, 1995) with a
pinching independent of the dimension: 0.654. See also the references there for in-
termediate results. Nobody knows if 1/4 is possible or not. Worst of all: there is no
exotic sphere known which has positive curvature, only nonnegative ones are
shown to exist in (Gromoll and Meyer 1974). For more on this, see (Grove & Wil-
helm, 1997).

Historically the differentiable pinching problem was solved by Calabi (un-
published) and in (Shikata, 1967) by methods similar to those which will appear in
Section C below, but yielding no explicit pinching constants. Then Gromoll did the
following (Gromoll, 1966): looking back at the proof “with two balls” centered at
diametrically opposed points, he uses the Toponogov theorem and an extra control
on parallel transport to show that the gluing together of the two balls along their
boundary (d — 1)-spheres is close to the identity. Then differential topology implies
a total diffeomorphism. Gromoll’s pinching constants were given explicitly, but
they tend to 1 as the dimension tends to infinity.

The method of (Ruh, 1971) was completely different: the sphere was seen
“from outside”. The fact that the curvature is strongly pinched enables us to con-
struct a line bundle on the manifold A/ which resembles the normal bundle of the
standard sphere in R“*! far enough to finally yield an embedding from M into
R*!. This embedding yields a sphere which is close to the standard one and hence
diffeomorphic to it. There are other techniques, in (Otsu, 1993) for example one
uses thin triangles. For lower Ricci and volume bounds, see below.

There is also the recent “pinching” result of (Grove & Wilhelm, 1995)
which yields manifolds diffeomorphic to the standard sphere. It uses in the hy-
pothesis a pure metric invariant called pack,,,(g). For a Riemannian manifold
(M4, g) it is defined as one half of the maximum of the minimum non-zero mu-
tual distances between d + 1 points: the maximum is to be taken over all such sets
of points in M. When one considers only two points instead of d + 1 one has the
definition of (half) the diameter. The result is then the following: if the sectional
curvature is such that K > 1 and pack,., > n/4 then we have diffeomorphism
with the standard sphere. The proof uses Alexandrov geometry (see TOP. 9) and
is also a method “from outside” just like Ruh’s method, except that it just uses
the metric to get a suitable embedding. A very informative survey of these kinds
of results (and of some others below involving the radius) is (Grove, 1992). An-
other type of result was that of (Otsu, Shiohama, & Yamaguchi, 1989): if K > 1
and the volume of the manifold is close enough to that of the standard sphere,
then one has diffeomorphism. But now one can obtain this using only the Ricci
curvature, see below.
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It is now natural to ask what happens at exactly 1/4 or a little below 1/4.
There is a survey: (Abresch & Meyer, 1997). We will only give the essential points
here. First, for exactly 1/4 , if we are not on a sphere, then we are necessarily on a
KP" which is moreover endowed with the standard metric: (Berger, 1960). This
kind of theorem is called a rigidity result. One can think of it as a susceptibility re-
sult: the slightest touch on the standard metric of KP" (with K not R) will force the
curvature range to be strictly outside the interval [1/4, 1].

But today one can go a little bit below 1/4. There is an £(d) > 0 such that a
(1/4 — €)—pinching implies that one is on a sphere or on a KP": (Berger, 1983).
The proof was not only incomplete, see the survey, but moreover the € was not gi-
ven explicitly since it was obtained by the compactness result in C.2 and a contra-
diction. In (Abresch & Meyer, 1994) and (Abresch & Meyer, 1996) one has explicit
pinching constants ¢(d). But their work yields the optimal topological answer only
in odd dimensions. For even dimensions one only gets a piece of strong topology
information which yields “almost only” the KP", see the references for more de-
tails. The proof is very geometric, using Toponogov control of triangles on the one
hand and Morse theory and parallel transport on the other to control the injectivity
radius. The idea of the proof is as follows. If the injectivity radius were too small
some very small periodic geodesic would exist. The simple connectedness enables
us to deform it through a point by a “long critical homotopy”. The homotopy has
to be long because the mountain pass point is a conjugate point and of index ex-
actly 1. But the curvature conditions finally yield a contradiction. The best e(d) is
unknown, the present one is of the order 10~ but in view of B.1 any guess is use-
less.

We have to stop here with the pinching constant. In fact, to go further be-
low 1/4 would mean merely looking for a classification of all manifolds (since any
manifold has some Riemannian structure) or at least for manifolds of positive cur-
vature: see B.1 and C.

<+

But the game is far from finished as one would like to get results using weak-
er hypotheses. An important event was (Grove & Shiohama, 1977). Their result was
that one still gets a sphere when one only requires the curvature to be bounded be-
low by 1 and the diameter to be larger than 7/2: the upper bound on the curvature
disappears. This is perhaps not too surprising, as we saw in Colding’s comparison
theorem in the digression above, because of results of Myers’ type. The technique
was new; it still made use of the Toponogov theorem, but the main point was being
able to go beyond the injectivity radius. The trick is to use the distance function
d(p,.) from a point p. One says that a point q is critical for d(p, .) if for any direction
v at ¢ there exists a segment (a shortest geodesic) from p to ¢ whose speed vector w
at ¢ forms an angle with v that is not larger than 7/2. Heuristically this means that
one can get closer to p in any direction. Two extreme examples of critical pairs are
the following: first when the distance between p and ¢ is equal to the diameter. This
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was exactly the idea of the proof of the sphere theorem above. The second case is
when g is the antipodal point of p on a geodesic loop with origin p.

If ¢ is not critical then, on the contrary, one can find some direction in
which d(p,.) is strictly increasing. Then, as above, one succeeds in covering the
manifold with two topological balls: like in Morse theory one can “push things
without changing the topology” as long as one does not meet a critical point: with-
in the contractibility radius, like for the injectivity radius, balls are contractible.

The study of what happens for the limiting case when the diameter is equal
to 7/2 was far advanced in (Gromoll & Grove, 1987) but is still not finished, more
details are to be found in (Wilhelm, 1996). The point is to look at points in the cut-
locus (see TOP. 4) and the fibration this determines on the unit sphere; then one
has to show, if possible, that those fibrations are in fact isometric to the Hopf stan-
dard fibrations.

The critical point technique is now a basic tool in many instances. It was
put into quite a general framework in (Greene & Shiohama, 1981a) and (Greene &
Shiohama, 1981b). Surveys of this technique and its applications are (Cheeger,
1991), (Grove, 1985), (Meyer, 1989), (Grove, 1990), (Greene, 1990), and (Karcher,
1989); see also various places below.

<+

In fact the Grove-Shiohama result is of a flavor very similar to Myers’ the-
orem ((Myers, 1941), see 0.C), which says the following. Assume that the Ricci
curvature is bounded below by d — 1. Then the diameter is bounded from above by
w (think of the standard sphere) and one can look for a Myers-type diameter pinch-
ing result. The first thing to do is to look whether the equality characterizes the
standard sphere. This can be done in many ways, the first appearance is (Cheng,
1975) but it is trivial with the Gromov-Bishop theorem, see TOP. 1.A. In (Ander-
son, 1990a) it was shown that a pinching result cannot exist, see also (Otsu, 1991).
This was achieved by constructing suitable examples with Ricci > d — 1 and a dia-
meter closer and closer to m, with tools from Riemannian submersions. On the
other hand, with an additional positive lower sectional curvature bound, one can
arrive at the desired conclusion: (Perelman, 1995b).

But if the diameter is replaced by the volume then there is first of all the
result of (Shiohama, 1983): there exists an e(d) such that Ricci >d —1 and
volume > ((d) — e(d) imply homeomorphism with the sphere, but with an addi-
tional lower (negative) bound on the sectional curvature (of course here 5(d) de-
notes the volume of the standard sphere S%). In (Perelman, 1994a) homeomorph-
ism with the sphere is obtained without any additional condition. The proof is very
geometrical. In brief it combines techniques of critical point theory, the contract-
ibility of balls into concentric ones of larger radius and playing smartly with alge-
braic topology (see B.1 and also the notion of contractibility functions at the end of
TOP. 5). Gromov’s view of it is that a “non-trivial homology generates large sha-
dows” and hence restricts the volume too strongly. Needless to say that the injectiv-
ity radius is ignored. By using the full force of K > 1 and volume > 3(d) — £(d) the
same conclusion was proved in (Otsu, Shiohama & Yamaguchi, 1989), in this case
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with an explicit ¢. The technique is to build up an embedding into R?*!, it is an
“outer” method. But all these results have now been superseded by (Cheeger &
Colding, 1997a). In its Appendix 1, diffeomorphism with the standard sphere is
proved under a lower Ricci bound and a volume close to the canonical one (more-
over the volume bound can be computed explicitly). This is only the tip of the ice-
berg, whose total content will be revealed in the future. We will see below some
other results in that vein. We advise the reader to read the introduction and Appen-
dix 2 of (Cheeger & Colding, 1997a) for a survey of ideas, results and a program
concerning Ricci curvature. Among other tools Colding’s L>-Toponogov type the-
orem mentioned in the digression above is fundamental. The fact that “thin” trian-
gles are useful, as they were first of all for the splitting theorem which appears in
B.2 below, can be explained heuristically if one sees sphere theorems as “splitting
spheres into two balls”. A systematic tool introduced by the authors for the general
study of manifolds with a lower bound on the Ricci curvature is that of suitable
warped products (0.G).

A recent result on pinching with “distances” is (Colding, 1996a). There the
diameter is replaced by a very close but still stronger metric invariant, the radius.
The radius looks very similar to the diameter but is surprisingly more powerful. It
is the minimum of the radius of a metric ball which contains (and is hence equal to)
the whole manifold. Think of a very thin ellipsoid: then the radius is close to half
the diameter. It is proved in (Grove & Petersen, 1993) that K > | and radius > /2
imply homeomorphy to a sphere. Colding’s result is that Ricci > d — 1 and a radius
close enough to 7 imply homeomorphism with the sphere (how close enough it
must be can be stated explicitly). The idea of the proof is to show that the Gromov-
Hausdorff distance (see C.2) between the manifold and the standard sphere can be
made arbitrarily small. This is done by squeezing suitable balls into the manifold
and defining with them a map to the sphere. Then one uses Colding’s predictability
result (see the digression in A.2) as applied to the unit tangent bundles of these
balls. Repeatedly using Bishop-Gromov estimates for the volume of balls (TOP.
1.A), volume arguments complete the proof.

One should mention also the pointwise pinching problem: the curvature is re-
quired to be squeezed in a given ratio at every point, but the global sup and inf need
not be squeezed. Due to the lack of space we just refer to the almost final set of re-
sults of (Margerin, 1991, 1993, 1994) for detailed statements and the very subtle con-
trol of the deformation technique. A nice survey of the deformation technique along
the Ricci flow (see 0.F) is Section 4 of (Besse, 1994). See the solution of the (1/4)-case
in B.1. For an exposition of some of these results in book form see (Hebey, 1997).

<+

But one would like hypotheses that are weaker again. The drive started with
sectional curvature, then one tried to replace it by Ricci curvature and now finally
by integral norms for various curvatures. We give only a few references: (Gallot
1987), (Anderson and Cheeger 1991), (Gao 1990a), (Gao 1990b), (Petersen & Wei,
1996b), (Anderson, 1990c) and the book (Petersen, 1998a). Note that the work to
do here is more Analysis than geometry. See also C.1.
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3. Pinching around zero

The space forms with zero curvature are flat tori or finite quotients of them
(see II). Can one prove the following: there exists some ¢ > 0 such that if a mani-
fold has a diameter bounded by 1 and a curvature bounded on both sides by € and
—e¢, then this manifold admits a flat structure? Contrary to the positive case the an-
swer in the present case is no. There are other manifolds which are known to be “al-
most flat”, namely the so-called “nilmanifolds”. They can be defined as compact
quotients of nilpotent Lie groups. Topologically they are nothing but successive fi-
brations, whose fibers are always a circle and end in a point. They admit, for any
€ > 0, a metric with a curvature between —¢ and ¢ and a diameter equal to 1. Heur-
istically, this almost flatness is possible because a circle (a curve) has no curvature.
Then one just applies the formulas for Riemannian submersions (0.G), see also
C.3.

The basic paper (Gromov, 1978a) proved the opposite: the solution of the
pinching problem is true, but it is not flat manifolds but nilpotent ones (in fact pre-
cisely the so-called infranilmanifolds, namely the finite quotients of nilmanifolds)
that are the answer. The complete result appeared in (Ruh, 1982a). It says that
there exists some universal e(d) > 0 such that this is the conclusion for manifolds
with —1 < K < 1 and diameter < ¢(d). A detailed proof of Gromov’s result is gi-
ven in (Buser & Karcher, 1981). Techniques are purely geometric but a complete
proof is quite long and involved. Two good sketches of it are (Sakai, 1996), pages
319 up, and (Fukaya, 1990), §8 and §9. Using Toponogov triangle control, one stu-
dies in detail the fundamental group made up of isometries of the universal cover-
ing. The curvature being extremely small, the exponential map is a covering at very
large distances and moreover not much different from an isometry. Then the ele-
ments of the fundamental group almost commute, as can be seen by controlling
also the parallel transport (remember the golden triangle: the curvature is related to
the parallel transport around infinitesimal parallelograms). Using the control on
the commutators of the fundamental group one can finally prove that the group
has to be nilpotent. Except for the fact that the best () has yet to be found, this
result is then optimal.

4. Negative Pinching

Here the answer is an even stronger no than for the zero case. First in (Gro-
mov & Thurston, 1987), then in (Farrell & Jones, 1989a), one finds many manifolds
with a curvature arbitrarily close to -1 which can never have a metric of constant
curvature. One cannot hope either for a general result around 1/4 for the negative
HypKP", as shown in (Farrell & Jones, 1994). The techniques used are very geo-
metric. One uses smart gluings along totally geodesic hypersurfaces in one instance.
In the other, one forms connected sums with exotic spheres and then controls the
curvature with the formulas for the curvature in Riemannian submersions. With the
first type of construction the resulting topology can be quite sophisticated, but with
the second technique one gets only manifolds homeomorphic to space forms. Note
that, from Section C.1 onwards, larger and larger diameters are enforced. For real
analytic constructions, which are a harder game, see (Abresch & Schroeder, 1996).
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There is however the following optimal result. Assume that M is such that
—4 < K < —1 and that 7 (M) is group-isomorphic to the m; of a compact space
form of negative curvature which is moreover not of constant curvature (i.e. not
real hyperbolic but of rank 1). Then M is isometric to that space form. This ap-
peared in (Ville, 1985) for dimension 4, for the complex case independently in (Her-
nandez, 1991) and (Yau & Zheng, 1991). For the quaternionic and the Cayley case
this follows from (Hernandez, 1991), (Corlette, 1992) and (Gromov, 1991c). Com-
pare this rigidity result with the one in A.2.

<+

All of the above concerned various hypotheses to get space forms (espe-
cially ones of constant curvature) under various pinching conditions. These condi-
tions almost always first of all, at least on one side, involved sectional curvature
and the aim was to get space forms. They always started with |K — o| < e. Let us
now suppose we want to do the same for the Ricci curvature. Then the first thing
to do is to discover which are the manifolds with constant Ricci curvature. This will
be the topic of the entire Section III. C. Such manifolds are called Einstein mani-
folds. Roughly speaking the answer, starting with dimension 5, is almost comple-
tely open (the reader will or will not agree with me after reading that section). But
it is still natural to ask if a strong enough Ricci pinching on a given manifold im-
plies for this manifold the existence of some Einstein metric; moreover such a kind
of result could be a clue in the search for these wild animals.

There is a very good answer in (Anderson, 1990b): there exists a universal €
depending only on d, i, D and o such that a d-manifold with a diameter smaller
than D, injectivity radius larger than i and Ricci pinching |Ricci — o < € always
admits an Einstein metric. The ¢ is not given explicitly since it is obtained by a con-
tradiction proof using general compactness results (see C.2).

B. Curvature of a given sign

We are going to see again how much the picture differs for the positive and
negative sign respectively.

1. The positive side: Sectional Curvature

Relevant surveys are (Gromoll, 1990), (Abresch & Meyer, 1997), Appendix
A, and (Greene, 1997). Concerning this topic, we are still in an almost completely
mysterious situation. We will now describe the only known examples of (compact)
manifolds with positive sectional curvature: because of Myers’ theorem, except for
a finite (although not trivial) classification problem, we can essentially afford to
look only at the simply connected case. First come the spheres, the KP” and a few
other homogeneous spaces of dimensions 6, 7 and 13 respectively.

Among them the Aloff-Wallach manifolds W, , are especially interesting:
(Aloff & Wallach, 1975). They are suitably defined homogeneous metrics on the
quotient of the Lie group SU(3) by the “(p, ¢)- circle”: this means that the direction
of the circle is given by the coordinate point (p, ¢) in the integral lattice defining a
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maximal torus of SU(3). Recall that all maximal tori of SU(3) are of dimension 2
and conjugate and note that this “universal lattice” is the regular hexagonal one.
Within the desert-like area of manifolds of positive curvature, Aloff-Wallach mani-
folds are in fact a fascinating family. We mention three of their properties. First,
there are infinitely many homotopy types of Aloff-Wallach manifolds W, ,, de-
pending on the couples (p, g) (and there are even some pairs which are homotopy
equivalent but not diffeomorphic). Secondly, they carry for every (p,g) a metric
with a positive lower pinching not much different from 16/29.37: see (Huang,
1981). Thirdly, they also admit homogeneous Einstein metrics and if the volume is
normalized to 1 the set of Einstein constants (which are all positive) is infinite: see
(Wang, 1982) and (Wang & Ziller, 1986). Note first of all that these Einstein me-
trics are not of Aloff-Wallach type; in particular they have sectional curvature of
both signs. Another of their properties is that the set of those positive Einstein con-
stants, when the volume is normalized to one, does not converge to a smooth me-
tric: this shows that the Palais-Smale “C-condition” (see (Jost, 1995)) is not valid
for Riemannian metrics, at least not in the ways known to be possible today: see
II1.C for this type of question.

There is a complete classification of positive curvature homogeneous
spaces: there are no other homogenous spaces of positive curvature apart from the
above ones: (Bérard Bergery 1976). It was discovered in (Wilking, 1997) that, even
though this result is true, there was some curious mistake in the proof, finally com-
pensated by the fact that some space missing in the list of (Berger, 1961) turns out
to be isometric to one of the Aloff-Wallach spaces.

<+

Only four other types of examples (not homogeneous) are known. They are
in dimensions 6 and 7 ((Eschenburg, 1992), (Taimanov, 1997)) and in dimension
13: (Bazaikin, 1996). The latter ones belong to a family closely related to the Aloff-
Wallach examples. Pinching constants for these various spaces have funny coinci-
dental properties which are explained in (Taimanov, 1997). Taimanov’s study is
pursued in (Piittmann, 1997) where the pinching constant 1/37 appears and is ex-
plained via Taimanov’s deformations of Aloff-Wallach metrics. The starting point
is to embed Aloff-Wallach manifolds as totally geodesic submanifolds in the 13-di-
mensional examples. Moreover there is enough “room” (transversality) to deform
the metric quite a lot and still keep the totally geodesic property. One even gets a
series of metrics which converge to a smooth one with a pinching constant equal to
1/37. This supported the conjecture that the best pinching constant for Aloff-Wal-
lach manifolds is 1/37 and a complete proof of this is given in (Wilking, 1997).

No other manifolds of positive curvature are known, except of course small
enough deformations of the preceding ones.

If we turn to manifolds of nonnegative curvature, the situation is not really
any better. As examples we have all Riemannian homogeneous compact G/H’s
when the metric downstairs on G/H is induced by a biinvariant metric on G, in
particular symmetric spaces of “positive” type (see II). Note that these do not make
up a long list, since one knows how to classify all Lie subgroups of compact Lie
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groups. One has also the Riemannian products of the above known manifolds of
positive and of nonnegative curvature. Besides those, to our knowledge the only ex-
amples are some exotic spheres and the connected sum of two symmetric spaces of
rank one: see (Cheeger, 1973) and (Gromoll & Meyer, 1974). Those examples are
constructed by a clever mixture of large actions (low cohomogeneity) of isometry
groups and the Riemannian submersion technique to compute the curvature.

+

But one knows at least that not every compact, simply connected manifold
can carry a metric of nonnegative curvature (a fortiori of positive curvature). First
came the basic theorem of (Gromov, 1981c): manifolds of nonnegative curvature
have a sum of Betti numbers (for every field the way the proof goes) that is univer-
sally bounded by the dimension. Hence we are left with only a finite number of (in-
tegral) homology types (in a weak sense). The tool is somewhat, but not in reality,
analogous to Morse theory. It requires subtle algebraic topology arguments, based
on the compressibility of balls and the topological “content” of them. The basic
lemma is that, by Toponogov’s theorem for triangles, a succession of critical points
for the distance function (see A.2) to a given point whose distances grow at least at
the rate of a geometric progression, has to be finite (the cardinality being universal
in the dimension). In short “critical points cannot be too far away”. To prove this
the idea is as follows: the initial speed vectors from the point p under consideration
to two different critical points, when their distances are a lot different, have to form
an angle that is large enough. This means putting onto the unit sphere at p a large
number of points whose spherical mutual distances are all larger than a given num-
ber: the cardinality of such sets must be bounded from above. A rough (but not too
bad by the way) estimate can be obtained just by computing a measure of spherical
caps. For refined estimates, which form a central problem in pure and applied
mathematics, namely that of spherical codes, see (Conway, 1995) or the bible (Con-
way & Sloane, 1993).

Then one has to play with distance functions to different points. The reader
can look at the various presentations, involving also simplifications of the original
text: (Cheeger, 1991), (Meyer, 1989) and the text (Grove, 1990) which explains in
very short time what is happening. Today the bound for the Betti numbers is huge,
the conjecture is that their sum is bounded by 2¢ with equality only for tori (then
necessarily flat, see below at least two reasons for that).

Gromov’s result was extended in (Abresch, 1985) to the non-compact com-
plete case. Playing with concentric balls the smaller of which is contractible in the
larger one is an essential tool today, for example in the Perelman text quoted above
and for the finiteness results in C.1, see the end of TOP. 5.

Do not hope now to extend these results to the Ricci curvature. Except for
the first one (Bochner’s result) there are examples of nonnegative Ricci curvature
manifolds with arbitrarily large Betti numbers: this was achieved simultaneously in
(Anderson, 1990c) and (Sha & Yang, 1991). In (Sha & Yang, 1991) one constructs
connected sums, using delicate metric surgery on double warped products. An extra
difficulty here is that one needs to spread the modifications all over the manifolds



Riemannian geometry during the second half of the twentieth century 79

during the gluing operation. In (Anderson, 1990c) one uses models from (Gibbon
& Hawking, 1978). This construction was put into the more general framework of
the Schwarzschild metric in (Anderson, 1992b). More recently Perelman (Perelman,
1997) constructed examples showing that the Betti numbers need not be bounded
when the Ricci curvature is bounded from below even if both the volume is
bounded from below and the diameter is bounded from above (contrast this with
the finiteness theorems in Section C.1), see also (Wei, 1998).

<+

The above still does not tell us the least thing about the following question:
is there any difference between positive and nonnegative sectional curvature? A
baffling remark in (Yau, 1982), page 670, is that one does not know of any (com-
pact) simply connected manifold with nonnegative curvature for which one can
prove that it does not admit a metric of positive curvature. For example Gromov’s
bound on the Betti number does not make any difference between positive and
nonnegative curvature. Yau starts with Hopf’s conjecture on S? x S, see the last
paragraph of B.5. For the non-simply connected case, Rong’s results below provide
a partial answer.

<+

Positive and nonnegative sectional curvature is a case where non-compact
manifolds enjoy optimal results, so that we make an exception to our rule. Moreover
this is fundamental when studying compact manifolds with an infinite fundamental
group. In (Gromoll & Meyer, 1969b) it is proved that a complete non-compact mani-
fold of positive curvature is diffeomorphic to R?. The basic geometric notion in non-
compact manifolds is that of a ray (half-line): it is a geodesic defined on [0, co[ with a
segment on every subinterval. There are in some sense at least as many rays as “ends”
of the manifold. The basic fact is that any ray has associated with it a strongly convex
subset, namely the set of points which are at a negative distance (suitably normal-
ized) from the point at infinity on that ray. We will come back to these objects called
Busemann functions in Section 2 below. They were defined and used first in (Buse-
mann, 1955), but they were introduced and systematically studied in the Riemannian
case in (Greene & Shiohama, 1981a) and (Greene & Shiohama, 1981b). In (Gromoll
& Meyer, 1969b) the technique introduced enables one to prove that the total group
of isometries is still compact (this is a classical and quite trivial result in the compact
case, an isometry being determined by its effect on a single orthonormal frame); but
this is no longer true for the positive Ricci case: (Wei, 1988).

In (Cheeger & Gromoll, 1972) it is proved, with a more subtle use of convex
functions, that a complete manifold of nonnegative curvature is a vector bundle
over a compact totally geodesic submanifold of positive curvature. Such a subma-
nifold is called a soul, it need not be unique (think of a flat cylinder). This theorem
was recently made more precise in (Perelman, 1994b), consult this text for its refer-
ences to intermediate results. Recent expositions in book form are found in (Peter-
sen, 1998a) and (Sakai, 1996).
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+

Another kind of positivity is now in order. Topological spheres can be char-
acterized (up to homeomorphism today for d > 5) by a suitable positive curvature
condition, namely that of the curvature operator: (Micallef & Moore, 1988). The
curvature operator is the symmetric endomorphism of the 2-exterior tangent bun-
dle defined by the curvature tensor. The proof uses strong geometric analysis,
namely the existence of minimal harmonic maps of S? into our manifold, see TOP.
7. Then one analyses the second variation. This will finally yield the fact that the
homotopy groups of the manifold all vanish in dimensions smaller than that of the
manifold, and we will now use the solution of Poincaré’s conjecture for d > 5.
Using Bochner’s technique for exterior forms, (Meyer, 1971) yielded only real
homology spheres. For d = 4 one even has a characterization of spheres up to dif-
feomorphism: (Hamilton, 1986). The tool this time is the deformation of Rieman-
nian metrics, see the comments in 0.F.

An interesting byproduct of Micallef and Moore is the solution of the
“pointwise” (1/4)-pinching problem: we assume that at every point m one has, for
all the sectional curvature at m: sup K/ inf K < 4 (and inf K > 0). Then the mani-
fold is homeomorphic to the sphere. Note that such a result is completely out of
the reach of RCT and/or Toponogov type results. In (Ruh, 1982b) this result was
obtained with non-explicit pinching, using deep Analysis and the results of (Min-
Oo & Ruh, 1979) mentioned at the very begining of A.1.

But we are left now with three questions: how about diffeomorphism in
every dimension, the equivariance (the non-simply connected case) and the case of
just nonnegativity? None of these questions has been completely solved up to now.
It seems for the moment that the right curvature condition, especially if one wants
to take care of the nonnegative case, is a more subtle question than that of the cur-
vature operator. This is the contribution of the book-sized (Margerin, 1991, 1993,
1994) and we refer to Margerin’s various references for a precise definition of which
curvature deviations from constant sectional curvature should be considered. Mar-
gerin’s contributions started with (Margerin, 1984a), (Margerin, 1984b), the most
recent one is (Margerin, 1994). The equivariance is automatic since the technique is
the Ricci flow and the results are, in some sense, weaker and stronger than the posi-
tivity of the curvature operator.

The question of going right to the zero level has been only partially solved
to this day, the hope “of course” is to be able to prove that only products of spheres
and KP" can appear. This is almost known, due to various authors, see (Chen,
1990) and (Petersen, 1998a) for references. The answer is: There appear only, ex-
cept spheres, symmetric spaces and manifolds biholomorphic to CP".

<+

Back to a “classification” of the manifolds of positive curvature, we are still
lacking any general structure statement. We quote here four different approaches
to attacking the problem. The first and the most promising is that of (Rong,
1996a). Thanks to the finiteness theorem in C.1, in a given even dimension, there
are only finitely many diffeomorphism types of manifolds with 0 < § < 1. If the di-
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mension is odd, we no longer have Klingenberg’s lower bound 7 for the injectivity
radius. The first thing to do is to look at the odd-dimensional case, always here for
a given dimension and positive pinching . One of the results in (Rong, 1996a) is
that, modulo a finite number of cases and in the simply connected case, one can
modify the Riemannian metric, creating a new one which is still of positive curva-
ture, but which now admits a circle acting freely and by isometries. Since the quoti-
ent is also of positive curvature by the Riemannian submersion formulas, one has
then reduced the classification to that of the even-dimensional case and the classifi-
cation of some circle bundles over them (always modulo a finite number). For this
kind of result see also (Tuschmann, 1997). The initial idea is to look at the condi-
tions in Cheeger’s finiteness theorem (C.1) and to assume that things do not work,
namely that we have a very small volume. But then we ought to be in the collapsing
case (see C.3). Thereafter one applies the structure results for the collapsing situa-
tion and the main point now is to change the metric to a new one which satisfies
the condition above. This is achieved in particular using the Ricci flow (see 0.F),
but note that the pinching is now smaller than §.

For the non-simply connected case, recall first that by Synge’s theorem in
0.C, this is again an odd-dimensional story. The fundamental group m, is finite by
Myers (0.C) and in (Gromov, 1978a) one finds an upper bound for its number of
generators which depends only on the dimension, by using a smart basis for 7, as
acting on the universal covering and Toponogov’s theorem. But we would also like
an upper bound for the possible group structures as a function of the pinching. An
old conjecture of Chern’s was that every abelian subgroup of the 7 of a manifold
of positive sectional curvature is cyclic. In (Rong, 1996a), by the very technique
used for the proof above, it is proved that this is true, but only up to an index which
is bounded by a constant w(d, §), which is universal in the dimension and the pinch-
ing 6. Rong’s conjecture today is that w(d,§) can be chosen independently of é.
With a much deeper analysis of the collapsing case, (Rong, 1996b) gives a partial
result in that direction, namely that there are w(d) and w/(d, §) such that ; either
has a finite cyclic subgroup of index less than w(d) or is of an order less than
w'(d,8). In (Rong, 1997a) things are more refined. Finally Chern’s conjecture is dis-
proved in (Shankar, 1998), using the W, -manifold seen at the beginning of this
section.

Of course, always looking for a complete classification, the basic question
is: look at all manifolds M“ that are of a given dimension and admit a positive cur-
vature metric and call §(M) their best pinching constant (see below if in any
doubt). Define 6(d) as the infimum of all these §(M9): is 6(d) positive?

In another direction an interesting result was conjectured in (Gromov,
1988): nonnegative curvature manifolds “look like convex bodies, like ellipsoids”.
The precise notion is that of various widrhs for a Riemannian manifold: these are
purely metric invariants. This conjecture was proved in (Perelman, 1995a).

<+

We will now give some details of the third approach to nonnegative curva-
ture, which we will meet again in V.A and V.B. This approach is concerned with
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rational homotopy theory, see (Grove & Halperin, 1983) and TOP. 6.A for the con-
text. In (Felix & Halperin, 1982) one considers the rational homology H,(M; Q) of
manifolds and the following very strong dichotomy is proved: either the Betti num-
bers of the loop space {2 of M grow exponentially (heavy use of this will be made in
V.A) or the sum of the rational Betti numbers of M is bounded by 2¢. By defini-
tion, the first class is that of rationally hyperbolic manifolds and the second class is
that of rationally elliptic ones, whose definition is very simple: the homotopy
groups 7, (M ) are required to be finite for every p > 2d — 1. A conjecture of Bott’s
is that manifolds of nonnegative sectional curvature are rationally elliptic. Please
compare this with the 2¢-conjecture derived from Gromov’s theorem on Betti num-
bers (this time over any field). The complete classification of elliptic manifolds is
still not finished. For more on this approach, leading to the “double soul” problem,
see (Petersen, 1996), Problem 21.

+

A last approach would be to look at the best pinched metric on a given
manifold admitting a metric of positive curvature. There is an optimal pinching ¢
(of course < 1/4 to be of interest). At least in even dimensions, the hypothesis
8; < K < 1 for a’sequence of &; converging toward the upper bound ¢ satisfies the
hypothesis of convergence in C.2: the diameter is bounded above by Myers’ theo-
rem and the volume from below because of Klingenberg’s result on the injectivity
radius. So we have an optimal metric, presently only belonging to the class C Lo 1t
seems there is no text that studies this approach, the main difficulty being that it
seems very hard, at least today, to use the pinching condition. More precisely when
one looks for extrema one can always first compute the first differential. This is
possible for differentiable objects, and the sectional curvature, for a given tangent
plane, is of course differentiable for families of metrics (see the formulas and more
in (Bourguignon, 1973)). But the curvature is such a weird animal that the points
where the sectional curvature is extremal have still not been understood even in di-
mension 4 (unless the manifold is Einstein: (Singer & Thorpe, 1969)), recall the di-
gression in 1. COMMENTS on L.

<+

The last question concerns moduli: assume a manifold admits at least one
metric of positive curvature. What does the set of all such metrics look like? To this
day, we know only that it may be non-connected, an example being the two Aloff-
Wallach manifolds W_sgise61.s82656 and W _soa149,5052965, Which are diffeomorphic
but cannot be connected by a path of positive scalar curvature: see (Kreck & Stolz,
1993) and Section B.3 below.

2. The positive side: Ricci Curvature

For the Ricci curvature (in the compact case), it is still a mystery today
what exactly the implications of its positivity are, the only exceptions are the finite-
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ness of m, the special situation in dimension 3, see below, and of course the neces-
sary conditions for positive scalar curvature. In fact no other condition is known —
can for example any product manifold S? x N carry a positive Ricci curvature me-
tric ? There is only a conjecture for a necessary condition in the simply connected
case in (Stolz, 1996). This conjecture is supported by the following heuristic princi-
ple: in the same way as positive scalar curvature (see Section B.4 below) forbids
harmonic spinors and then implies the vanishing of a topological invariant, the A-
genus, one can interpret positive Ricci curvature as forbidding “harmonic spinors
on the loop space of the manifold for a suitable operator” and then some topologi-
cal invariant would again have to vanish. If one excludes this conjecture, no other
restriction is “known” today except for those induced by positive scalar curvature.
A very informative text is Section 5 of (Gromov, 1991b): positive Ricci curvature
has a strong implication, namely that the index of geodesics (see the digression in
V.A) grows at least linearly with the length, so that one could hope to get informa-
tion on the Betti numbers of the manifold via Morse theory. But precisely this hope
is dashed by Gromov’s theorem mentioned in V.A. In contrast, this is used in (Wil-
helm, 1997) to obtain simple connectedness with the help of a systole condition (see
TOP. 1.E).

But for the fundamental group one has very strong and optimal recent re-
sults for nonnegativity and just below zero. We saw already in 0.D an application
of Bochner’s technique. Precisely if the Ricci curvature is nonnegative the first real
Betti number b; is bounded by the dimension, with equality holding only for flat
tori. A homotopy result is that of (Milnor, 1968), to the effect that the fundamental
group is of at most polynomial growth when the Ricci curvature is nonnegative:
this is obtained from an argument counting balls by volume in the universal cover-
ing, using Bishop’s result in TOP. 1.A to control the volume of these balls. Which
groups are really possible is far beyond our knowledge today. We know only from
(Gromov, 1981b) that the groups we are looking for are discrete subgroups of nil-
potent ones. For the complete case, see (Wilking, 1998).

The challenge now is to relax the hypothesis and to go a little bit below zero.
For what follows, there is the informative text (Gallot, 1998). There is a heuristically
motivated hope for that case. Recall now Bochner’s result in 0.C: since Ricci > 0
implies b; < d, it is reasonable to expect that b;, being an integer, will remain < d
when the Ricci curvature is not too strongly negative (with some normalization).
And moreover equality should be expected only for flat tori. Partial results appeared
in (Gromov, Lafontaine & Pansu, 1981a) and (Gallot, 1981), see 5.21 of (Gromov,
1998). Using the basic Colding comparison theorem (see the digression in A.2) one
has today two very strong results in (Colding, 1996b) and (Cheeger & Colding,
1996). First there exists some ¢(d) > 0 such that Ricci.Diameter> > —¢(d) and
by = d imply that the manifold is diffeomorphic to a torus (d # 3). Secondly there
exists an e2(d) > 0 such that Ricci.Diameter? >—¢,(d) implies that the fundamental
group is almost nilpotent. For the moment both ¢, and ¢, are not given explicitly,
since they were obtained by a limit-contradiction argument. An application of the
Cheeger-Colding result is to be found in (Paun, 1997).

The latter e;-result is incredibly much stronger than the “old” pinching-
around-zero result in A.3. In fact this result was conjectured by Gromov and
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proved in the case of a lower bounded sectional curvature in (Fukaya & Yamagu-
chi, 1992). The proof involves a thorough study of collapsing under only a lower
bound, which is done in (Yamaguchi, 1991), and the authors mentioned there that
their technique could be extended to the Ricci case, modulo some reasonable
“splitting” conjectures. The proof of the Ricci case is based on the framework of
the proof of the sectional case, but also uses some new techniques arising from a
thorough study of the geometry of non-compact Riemannian manifolds with a
lower bounded Ricci curvature, in particular an extension to Gromov-Hausdorff
limits of the splitting theorem of Cheeger and Gromoll. The initial idea is to study
the structure at infinity of the manifold under consideration, this is explained in
TOP. 5.

The ¢-result is proved as follows. One starts with Gromov’s proof that
b1 < d: on the universal covering of a suitable finite covering of diameter D, one
constructs a basis of the deck transformations such that the generators do not dis-
place the points too much, but every element displaces them enough (in order to
avoid triangles being squeezed too much). Independently, on suitable balls, one
constructs d harmonic functions which have L?-small Hessians and have L2-almost
orthogonal gradients. One combines this with predictability arguments and a smart
basis as above to obtain, when inf(Ricci.Diameterz) tends to zero, a Gromov-
Hausdorff limit which is a torus.

Last but not least, in dimension 3 at least, the situation is completely under-
stood. In (Hamilton, 1982) it is proved, by the deformation technique along the
Ricci flow (see 0.F), that any positive Ricci metric can be deformed into one of con-
stant sectional curvature. Note that in dimension 3 the Ricci and sectional curva-
ture have the same number of parameters, namely 6. In (Sha & Yang, 1993) it is
proved that a simply connected manifold of dimension 4 admits a metric of positive
Ricci curvature if it is homeomorphic to one which admits a metric of positive sca-
lar curvature. Moreover the technique completely covers the nonnegative case: the
possible manifolds are diffeomorphic to S3, S* x R, or R, or one of their quotients
by a group of fixed-point-free isometries of the standard metric.

The nonnegative case versus the positive one is a little mysterious: there is
no known manifold which has a metric with positive scalar curvature (see just be-
low), which is simply connected and for which one can prove that there is not a
single metric with positive Ricci curvature. This will seem less surprising if you look
here at a fact from III.C: Ricci flat manifolds are very mysterious, one only knows
some examples. Still (see C.3) they deserve to be called the harmonic Riemannian
manifolds.

<+

Manifolds of positive and nonnegative Ricci curvature show a very nice and
useful form of behavior when non-compact (it was heavily used already in the re-
sults above for the case of a lower bound on the Ricci curvature), so that we will here
once again make an exception to our rule. Here the basic notion is no longer that of
a ray but of a line, namely a geodesic defined on | — oo, oo, which is a segment on
any of its intervals. Assume there exists a line in a manifold with Ricci > 0. Define
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along this line two distance functions (one from +oo and the other from —oo, nor-
malized of course: they are called Busemann functions). Then use the basic formula
for the Hessian of a distance function (see 0.F); the Ricci condition finally implies
that these two functions coincide and that their gradient is a parallel vector field.
This forces the manifold to split as a Riemannian product with R. Looking now at
the universal covering of a compact manifold with Ricci > 0, one can prove the ri-
gidity result: the universal covering of M? splits as a Riemannian product of
RF x M=% with some compact manifold M“~*. So for example the fundamental
group is extremely special as the situation is essentially reduced to the finite case.
The above result is to be found in (Cheeger & Gromoll, 1971), see also (Eschenburg
& Heintze, 1984). Before that a splitting was obtained in (Toponogov, 1964b), re-
quiring more, namely the sectional curvature to be nonnegative. The proof consisted
in looking at Toponogov’s theorem “when one goes to infinity” along a line on both
sides. Namely, one ultimately proves that equality has to hold in the comparison
theorem and this forces all the transverse sectional curvatures to vanish.

A new technique for studying the complete nonnegative Ricci case was in-
troduced in (Abresch & Gromoll, 1990). One proves that the topology is bounded
under a diameter growth condition. The result can also be thought of as a weak
quantitative generalization of the splitting theorem. The tool used was the first ap-
pearance of “thin” triangles. Colding’s L?>-Toponogov theorem quoted in the di-
gression in A.2 is a dramatic generalization. The strongest splitting result is the one
for Gromov-Hausdorff limits, in (Cheeger & Colding, 1996), §6.

<+

Moduli for positive Ricci curvature are not well understood. A recent result
is included in (Kreck & Stolz, 1993): some Aloff-Wallach manifolds have a set of
positive Ricci curvature metrics whose number of connected components is infinite:
in fact what is proved is that those metrics cannot be connected even within positive
scalar curvature, see 3 below.

3. The positive side: Scalar Curvature

This subject forms one of the most beautiful chapters of recent Riemannian
geometry (even though still not completely finished). Today we know exactly which
simply connected manifolds are able to carry a metric of positive scalar curvature:
the keystone is (Stolz, 1992), see the report (Rosenberg & Stolz, 1994) for the many
intermediate results. Bring your simply connected compact manifold M to a topol-
ogist and he will first check for you whether that manifold admits a spinor structure
(TOP. 6.B) or not, then, if the answer is yes, he will compute for you an invariant
called the a-genus. Thereafter you, the geometer, will be able to find a metric of
positive scalar curvature in two cases: first, always as long as the manifold is not
spin, secondly, if it is spin, then if and only if the a-genus is zero. This complete
classification was achieved through successive efforts of both geometers and topol-
ogists. Among interesting examples which admit no metric of positive scalar curva-
ture are some exotic spheres.
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The main geometric tool is that of (Gromov & Lawson, 1980a). It consists
in proving, using Riemannian submersions, that any topological surgery of codi-
mension smaller than 3 can be carried out in order to obtain positivity for the sca-
lar curvature of the total manifold, provided that both manifolds coming under
surgery themselves already have positive scalar curvature. We refer the reader to
the survey (Rosenberg & Stolz, 1994). The first result, a necessary condition, goes
back to (Lichnerowicz, 1963), see below for more. Another early partial result was
(Lawson & Yau, 1974).

Another geometric tool was the use of GM T (Geometric measure theory, see
section 0.F) to get stable minimal hypersurfaces: (Schoen & Yau, 1979). They proved
that, in a manifold with scal > 0, any cohomology class of codimension 1 can be rea-
lized by a hypersurface which admits some metric with scal > 0. This metric is not
the induced one but is obtained after a conformal change of it. This change with fi-
nally positive scalar curvature is made possible if one uses the second variation for-
mula for stable minimal hypersurfaces. But this works only in dimensions smaller
than 8, since this is needed in GMT to be sure to get submanifolds without any singu-
larity. See a nice exposition of the ideas on pages 91-95 of (Gromov, 1991b).

Comments on the advantages of both tools figure on page 246 of (Rosen-
berg & Stolz, 1994) and in Section 5% of (Gromov, 1996). According to Gromov, a
basic question is to find the geometric concept unifying both techniques, see more
on this below.

<+

The above results do not complete the story. First the non-simply connected
case is well advanced but still not finished and in fact it is related in part to the
famous Novikov conjecture, one of the driving forces of recent topology, see (Gro-
mov & Lawson, 1980b). See also (Rosenberg & Stolz, 1994), (Gromov, 1996) and
the references there for more on this.

Secondly the topologist’s description is not geometrical enough. Moreover,
as we will see, the proof of the main result above is everything but geometry, except
for the surgery control. On the contrary, the product of any manifold with the 2-
sphere always carries a metric of positive scalar curvature (just shrink the 2-sphere
far enough). Also minimal hypersurfaces of a positive scalar curved manifold carry
a metric with the same property, at least “today” in low dimensions, this is the nice
construction mentioned above. A geometric classification in that spirit is sketched
in (Gromov, 1996).

So an interesting question today is to look for a purely geometric study of
manifolds with positive scalar curvature. There is in fact a purely geometric state-
ment in (Llarull, 1996), to the effect that a Riemannian metric g on S9, such that
g > 8ean (this means everywhere, i.e. all the lengths for g are larger than or equal to
those for gean), necessarily has one point m such that scal(m) < d(d — 1) (the value
of the scalar curvature for ge,, of S9), unless g is the canonical metric. But today
the proof uses all the techniques of spin geometry (see TOP. 6.B) of the proof
sketched below. It would be great to have a geometric proof of Llarull’s result, see
also (Llarull, 1995).
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Spinors do not really look like metric objects but it is interesting to know that
in (Connes, 1994) the Riemannian metric d(., .) is computed using the Dirac opera-
tor. In (Connes, 1995-6) Riemannian geometry is put into a very general context.

Bishop’s theorem on the growth of the volume of balls is wrong for scalar
curvature, even locally. One has only an infinitesimal version of it, which is useless
for global purposes. It would be basic, according to Gromov, to decide whether or
not a CO-limit preserves the nonnegativity of the scalar curvature, see II1.D. Note
that this is definitely wrong for the negative side by Lohkamp’s result quoted in B.5
below. According to Gromov again, a starting point for proving this and under-
standing what is going on is the following: the nonnegativity of the sectional curva-
ture is equivalent to the non-divergence of geodesics as compared to the Euclidean
case. For scalar curvature one has, in a sense to be made more precise, a “non-di-
vergence result”, but only in at least one direction.

Thirdly we have the trichotomy problem. We are interested in a limit case of
nonnegative (scalar) curvature. On the positive side, things have been solved, on
the negative side also. A long time ago in (Kazdan & Warner, 1975a) and (Kaz-
dan & Warner, 1975b), it was proved that any manifold can carry a metric of nega-
tive scalar curvature (this is of course superseded by section B.5 below). But what
about in between? With a little more than the Kazdan-Warner results (see (Besse,
1987), Section 4.E for details), one knows that for the class of manifolds inbetween
there is only a third possible case: that of manifolds which cannot carry a metric of
positive scalar curvature but can carry a metric of zero Ricci curvature. We will
meet this mainly open question again in ITI1.C and TOP. 3. As said previously, the
class of zero Ricci curvature manifolds is still very mysterious today.

+

Fourthly the total set of positive scalar curvature metrics on a given com-
pact manifold can be non-connected. We saw above that this implies examples of
non-connectedness for both the total spaces of positive sectional and positive Ricci
curvature. The first example appeared in (Hitchin, 1974) where the 7 (the number
of connected components) and the 7 of the set of positive scalar metrics on a given
manifold were shown to be non-zero in many cases. In (Gromov & Lawson, 1983)
it is shown that m is infinite for the sphere S’. In (Kreck & Stolz, 1993) the subject
is continued. They make use there of the Aloff-Wallach manifolds we met before:
we quoted this both in B.2 and in B.3. For more examples one can consult among
others the survey (Lohkamp, 1996a) (for both signs by the way) and (Lawson &
Michelsohn, 1989), page 329. Note that non-connectedness is important but does
not say much about the topological structure of the components: does it have a
more or less trivial topology? The case of negative Ricci curvature in B.5 below will
be strikingly different.

+

At this point it is important both historically and for the future to look at
the proof of the above results. An expository sketch can be found on pages 95-100
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of (Gromov, 1991b). The tools are of three completely different types. The first one
is the above surgery, 100% geometrical. The second part is pure algebraic topology,
namely cobordism theory. This theory will tell you which manifolds can be built up
by surgery with simple building blocks (among them some of the KP"). More pre-
cisely, one has to show that any manifold satisfying the conditions above can be
obtained by surgery with building blocks which do have positive scalar curvature.
All this will insure the sufficiency of the condition.

The necessity is a completely different story and requires a new tool. It
started with (Lichnerowicz, 1963). This was historically the first condition obtained
from the positivity of the scalar curvature (and this even though those were the
times of the positivity of the sectional curvature!). Assume the manifold admits a
spin structure (see TOP. 6.B and the general scheme in 0.D). Then a generalization
of Bochner’s technique is available, through the theory of elliptic operators, in or-
der to yield harmonic spinors, namely those which vanish under the Dirac operator
6 that one can define canonically on the spinor bundle over the manifold. For this
Dirac operator, the new “Bochner’s formula” is surprisingly simple here and reads
in short: 6 = D*D + %“', to the effect that scal > 0 implies the non-existence of any
harmonic spinor. Then the Atiyah-Singer index theorem (see TOP. 6) implies that
some invariant called the A-genus has to vanish. Moving to the a-genus required
some extra work which was achieved in (Hitchin, 1974).

Last but not least, we cannot resist quoting the following beautiful result:
on a torus a metric of nonnegative scalar curvature has to be flat (Gromov & Law-
son, 1980b). The technique of the proof is put into a general framework in (Law-
son & Michelsohn, 1989), IV. §7.

4. The negative side: Sectional Curvature

This topic forms an entire world in itself and is quite satisfactory for Rie-
mannian geometers. In fact, since van Mangoldt in 1881 and Hadamard in 1898
and 1901, results have been appearing in a steady stream. First came Cartan’s work
in the 20’s, then E. Hopf’s in 1939, Preissmann’s in the 40’s and then the results
described below.

The Cartan-Hadamard theorem of the 20’s, clarified by Hopf-Rinow, im-
plies that nonpositive sectional curvature manifolds have a universal covering
which is diffeomorphic to R. This follows from the stronger fact that any pair of
points is joined by a unique geodesic which is automatically a segment. So the sim-
ply connected case “looks like a hyperbolic and/or Euclidean geometry”. Then ap-
parently, for the naive observer, the only problem consists in studying the funda-
mental group 7r: its algebraic nature and classification, the differences between the
negative and the nonpositive case, etc. But things turned out not to be so simple
and in particular there is still a long way to go towards a characterization of possi-
ble groups. Also one can hope that the compact case will look similar to space
forms, see 11, but the case of negative pinching seen in A.4 may arouse suspicion.

In fact the subject enjoys many strong results on the one hand. But at the
same time it appears more and more difficult to achieve a real understanding of
what is going on for . In particular it is definitely misleading to remain in the
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compact case, so that we will again make an exception to our rule. This is seen as
one of the contributions by Gromov and this can be justified for the following rea-
son. We will see below many nice results on the m; of compact negatively curved
manifolds. But as yet no property is known which is satisfied by these but not by
hyperbolic groups. This notion of hyperbolic groups was introduced in the founding
paper (Gromov, 1987a). An exposition in book form is (Ghys & de la Harpe,
1990). The strength of this notion lies in its four equivalent definitions, ranging
from group theory to Riemannian manifolds. Roughly speaking (and using the
word metric for groups) those groups enjoy the same asymptotic isoperimetric be-
havior and the same large triangle inequalities as in classical hyperbolic spaces. All
this is a strong incentive to leave, at least for the moment, the compact (or even the
finite volume) case.

+

We will now try to ask some questions and give solutions to them. A very
informative text is (Pansu, 1990/91) as well as the survey (Eberlein, Hamenstidt, &
Schroeder, 1990), but note that the authors admit to not being exhaustive, even on
their 50 pages. Among the books on this topic (Ballmann, Gromov, & Schroeder,
1985) was fairly comprehensive. The more recent book (Ballmann, 1995) is a com-
plete exposition of the “rank rigidity” for manifolds of nonpositive curvature and
finite volume, see below. For various points of view on the topic see the book (Far-
rell, 1996). Let us just extend the above remark by noting that space forms appear
in many instances in this survey. See II for the completion of our very partial and
biased exposition. We will now follow Gromov’s philosophy and refer, for a much
broader context, to (Gromov, 1987a), (Gromov, 1993), see also the “beginner’s
text” (Gromov, 1991b).

As remarked in the introduction to (Eberlein, Hamenstddt & Schroeder,
1993), the topic involves various techniques coming from different fields of mathe-
matics. Here we note interferences with the dynamical systems of V.B, the space
forms of 1I and the harmonic maps of TOP. 7. In particular to simplify the exposi-
tion we have put as many dynamical results as possible into V and the rigidity re-
sults for space forms (of negative curvature) into II.

<+

The simply connected story starts naively by looking for a comparison of
different metrics of negative curvature on R?. A helpful notion is that of quasi-iso-
metry. Two metrics are said to be quasi-isometric if there exist two constants such
that one metric is squeezed between the other multiplied by these two constants. It
turns out that it is very difficult to decide whether two given metrics (say of nega-
tive curvature) are quasi-isometric or not, we will soon sense the difficulty. This no-
tion itself arises quite naturally in the compact context, since any diffeomorphism
between two compact Riemannian manifolds lifts up trivially to a quasi-isometry
between their universal coverings. Now the universal covering of a compact nega-
tively curved manifold satisfies a < K < b < 0. So we will forget about this now
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and start with our first question: classify up to quasi-isometries the metrics on R?
with @ < K < b < 0 (this situation is a particular case of a “bounded geometry”).
The situation turns out to be extremely difficult as soon as d > 3. For d = 2 just
use the conformal representation and compute the curvature. One gets a Laplacian
for the conformity function and the bounds on the curvature finally yield a
bounded function. Hence when d = 2 all our metrics are quasi-isometric. The only
similar case is when both metrics under consideration admit a full orthogonal one-
point symmetry. This time the Jacobi field equation again yields a conformity func-
tion which is bounded.

But that is the end of the easy part. To realize that this is so just try to prove
that the first two space forms which come under consideration, namely Hyp* and
Hyp CP?, are not quasi-isometric. This is hard to see, it is a corollary of the Mostow
rigidity theorem (see I1.B). It seems very difficult to classify our spaces under our
condition when one has —4 < K < —1or—4 < K < —1. For example it was already
hard to find an example which can never be placed in the —4 < K < — 1-range (see
(Mostow & Siu, 1980)). We meet here the difficulty of constructing manifolds of
negative curvature (see also A.4). Even though one performs some geometry “after-
wards” they always come finally from “Number Theory”. On the contrary, as re-
marked in TOP. 9, singular objects of negative curvature represent, in some sense,
most of the natural geometric objects (glue together heptagons or higher-gons, and
probably the same might work — involving some additional difficulty — for higher
dimensions, but this is not clear today). In any case one now has quite a large family
(depending on real parameters) of manifolds that are pairwise non-quasi-isometric,
this is in essence in (Pansu, 1989). Moreover those metrics are homogeneous.

+

We stay with the difficulty at the R“-level with some nonpositive metric but
look at it from the other side: can any discrete finitely generated group act by iso-
metries with non-bounded orbits? There is no restriction known today, besides the
trivial one obtained from the fact that there is a quotient which is a K(m;1): our
group should have some non-zero homology in some dimension. No conjecture
seems in view, see (Gromov, 1993). The above considerations play a role in Novi-
kov’s conjecture, which still pervades geometry and topology.

Conversely one has a good understanding of how special groups act. In
(Kleiner & Leeb, 1997) it is shown that if the group of an irreducible symmetric
group of rank > 2 acts by quasi-isometries it has to act by isometries. This is wrong
for the reducible case. See also (Schwartz, 1995).

<+

The reader may be interested in the rools used. First we have the global tri-
angle comparison with hyperbolic geometry. This is a trivial extension of the Car-
tan-Preissmann super-Euclidean inequality seen in 0.B. This inequality is not en-
ough, it has to be refined. This is done by introducing the notion of convexity for
functions in a Riemannian manifold. Negative curvature implies strict convexity
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for many functions, e.g. Busemann ones, the distance between sides of a quadrilat-
eral and the distance function on the square of the manifold.

Basically the smarter tools all consist in compactifying the situation, since
working with infinity is hard. We are still in RY with a nonpositive metric, most
often with a lower bound for K. We will use a few results from the basic reference
(Ballmann, Gromov & Schroeder, 1985) and from the survey (Eberlein, Hamen-
stadt & Schroeder, 1990). One defines the sphere at infinity S(co) in this situation
by an equivalence relation between the set of all rays. This was already done in Ha-
damard’s language in (Hadamard, 1898) for d = 2. The first thing one gets on
S(o0) is a topology, the cone-topology defined in an obvious way through rays. It
does not depend on the choice of origin and quasi-isometries of .S still induce home-
omorphism of S(o0).

The next point is to have a measure/measures or even a metric/metrics on
S(00). The metric called “Tits metric” by Gromov is very special. It is always no-
where defined (as equal to +00) when the curvature is negative (more precisely
K < b < 0) and this is linked with the visibility condition introduced in (Eberlein &
O’Neill, 1973). Visibility between two points at infinity means that there exists a
geodesic joining them, which is definitely not the case for example for two different
directions in Euclidean spaces. More subtle are some other families of metrics one
can define on S(oc). Quasi-isometrical changes induce quasi-conformal transfor-
mations for these metrics. When those objects depend on the base point, they are
still changed in a reasonable way.

When the curvature is only nonpositive, Tits metrics become finite for some
pairs of points. These finite parts are associated with flat parts which we will meet
below. The totality is some kind of jig-saw (railway) type metric.

+

We now turn to properties of compact manifolds of negative (resp. nonpo-
sitive) curvature and of their fundamental group. First to come are volumes. As
will be the case for space forms in II, volumes are discrete (except in dimension 3)
and in particular isolated from O for space forms of any type. A basic fact is
(Heintze, 1976): when —1 < K < 0 the volume is bounded below by c¢(d) > 0,
which depends only on the dimension. This is often called the Heintze-Margulis
lemma, because it was obtained by Margulis in the special case of space forms. In
both authors’ works the proof is purely geometric, using a “collar” argument.
The strong divergence of geodesics for negative curvature as well as the nature of
hyperbolic isometries force the tube around the smallest periodic geodesic to have
not too small a diameter and then one is done with the comparison theorem
needed for the tube argument in I.C.1. So one can have some hope here, in the
negative case, of having finiteness results with milder conditions than the four
needed in the general Cheeger finiteness theorem in I.C.2. This was achieved in
(Gromov, 1978b), is detailed in (Ballmann, Gromov & Schroeder, 1985) and im-
proved in (Fukaya, 1984). We mention here a finiteness theorem of Gromov’s
which is true for real analytic manifolds but false in the differentiable case. It is
extremely rare in Riemannian geometry to have such a kind of situation. The re-
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sult is that if —1 < K < 0 for (M, g) and if the metric g is analytic then the sum
of its Betti numbers is bounded by ¢(d).Volume(g), where ¢(d) is universal in d.
This is optimal, as shown by examples: they are obtained by connected sums, a
typical smooth but non-analytic operation, see (Ballmann, Gromov & Schroeder,
1985) for details of the proof.

Compact space forms of negative curvature were already hard to construct,
see II. For variable curvature we saw some examples in A.4 but real analytic ones
are harder to construct, see (Abresch & Schroeder, 1996).

<+

Next come fundamental groups. The first statement appeared in (Milnor,
1968): for compact manifolds negative curvature implies that the fundamental
group exhibits exponential growth (see also (Svarc, 1955)). In (Gromov, 1978b)
(see (Buser & Karcher, 1981) for details) a bound is obtained for the number of
generators of this group. Milnor’s tools are just RCT and Bishop’s theorem (see
TOP. 1.A). Gromov uses the triangle comparison theorem and then one only has
to count points on the unit sphere whose mutual distances are bounded from below
asin B.1 above.

The most general statement is (Farrell & Jones, 1989b), which is a topologi-
cal version of Mostow’s rigidity theorem (see II): let M be a hyperbolic (compact)
manifold, i.e. a space form of dimension larger than 5 and let N be any topological
manifold which is homotopically equivalent to M. Then M and N are homeo-
morphic. For an exposition in book form see (Farrell, 1996).

Next, the product situation: if the manifold is compact with nonpositive
curvature and with a fundamental group which is algebraically a group product
(with moreover no center), then the manifold itself is a Riemannian product (Gro-
moll & Wolf, 1971). The result of Preissmann’s seen in 0.C was generalized in (Gro-
moll & Wolf, 1971) and (Lawson & Yau, 1972): in a compact manifold with K < 0,
commuting in 7; means flat parts, i.e. any free abelian subgroup of 7| implies the
existence of flat totally geodesic tori in the manifold. This can be seen as the con-
verse of the Bieberbach theorem for the classification of flat space forms: II.

+

For negative curvature we saw that, at least today, hyperbolic groups are
the “final answer”. The big problem now, in the compact manifold downstairs as
well as for the fundamental groups, is to appreciate the difference between negative
and nonpositive curvature. There are today some extremely strong results which
show in essence that the two cases can be dramatically separated — stated in other
words: to go from one to the other you have to make quite a jump. We give the
latest results and refer to (Eberlein, Hamenstddt & Schroeder, 1993) for a survey
and to (Ballmann, 1995) for the proofs.

We recall briefly that symmetric spaces (see 11.C) have a rank which is the
common dimension of their maximal totally geodesic flat submanifolds, which are
moreover all conjugate under the isometry group. This is of course of interest only
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when the rank is > 2, otherwise we just have geodesics. In particular every direction
is contained in at least one such flat. At the infinitesimal Jacobi field level, rank
> 2 implies the following: given any unit vector, along the geodesic it generates
there is a non-trivial parallel Jacobi field (orthogonal to the geodesic of course and
non-zero). This never happens for generic manifolds. In a Riemannian manifold we
define the rank of a unit vector to be the dimension of the space of parallel Jacobi
fields along the geodesic it generates. The rank of a Riemannian manifold is the
minimum of the ranks of its unit vectors. The strongest result today is the following
“tout ou rien” result for compact Riemannian manifolds of nonpositive curvature.
We assume any reasonable irreducibility condition. The theorem (for a manifold of
nonpositive curvature) says the following: “either the rank of the space is > 2 and
we are then on a space form with its symmetric space metric or the rank is 1 and
then the geodesic flow is ergodic on the subset of UM made up by the vectors of
rank 1.” Today it is still an open question whether this subset of rank 1 vectors is
of full measure or not.

Note that the rank, a geometric invariant, can be at least conceptually com-
puted from the fundamental group: (Eberlein, Hamenstidt & Schroeder, 1993).
The existence of flats and what they really imply is a major issue today, see for ex-
ample (Hummel & Schroeder, 1997).

The above dichotomy admits a lot of extensions with weaker hypotheses
like for instance a finite volume to replace compactness and/or a group restriction,
the so-called “ duality condition”, and also versions for metric spaces mimicking
Riemannian manifolds of nonpositive curvature. For all this the reader can look at
the given references and TOP. 9.

<+

Finally we end with the question of relaxing the condition K < 0 slightly
from above. It is important to realize that without any extra hypothesis “everything
is permitted”. A construction of Gromov’s was published in (Buser & Gromoll,
1988) and (Bavard, 1987). There, for any € > 0 examples are constructed of metrics
on spheres and other 3-dimensional manifolds whose curvature satisfies K < ¢ and
whose diameters are all smaller than 1. See also (Fukaya & Yamaguchi, 1991): the
results here are that one can obtain restrictions on the fundamental group, namely
that the universal covering is diffeomorphic to R?, but with an extra hypothesis,
like K > —1 and an upper bound on the diameter.

5. The negative side: Ricci Curvature

We have here the strongest possible answer: (Lohkamp, 1994) is one of a
series of papers in which it is shown that, caricaturally speaking, negative Ricci cur-
vature “means nothing” or, equivalently, “permits everything”. Worst of all: any
metric can be continuously approximated by a metric of negative Ricci curvature
(of course not with too high a degree of differentiability). The tools used stem from
Analysis, they are inspired by the A-principle of (Gromov, 1986) and also the for-
mula giving the variation of the Ricci curvature under deformations of metrics,
where one can see that it is quite easy to lower the Ricci curvature.
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Another very important point (compare e.g. with section B.2) is the fact
that, on any manifold, the total set of negatively Ricci-curved metrics is trivial.
That is much more than being just connected, namely contractible. We advise the
reader to consult the very informative text (Lohkamp, 1996a).

However even though negative Ricci curvature does not have any topologi-
cal implications, this does not prevent it from having metric structure implications.
In (Bochner, 1946) it was proved that negative Ricci curvature forbids non-trivial
infinitesimal isometries, in (Rong, 1997b) this is generalized as follows: the Ricci
condition forbids any non-trivial pure F-structure (see section C.3), namely a torus
action, whereas Bochner prevented only circle actions.

++

A final note. Two of the three favourite questions that Hopf had been ask-
ing since the 30’s are still completely open: does a given sign for the curvature imply
a certain sign for the Poincaré characteristic? Does S? x S? admit a metric with po-
sitive curvature or not? In 0.E we saw that Hopf’s conjecture is true for 4 = 2 and
d =4, for d > 6 it is completely open. Both questions today still leave experts with
no solid guess. But for the Kéhler case and negative curvature, Gromov arrived at
a solution in 1989, using the L2-Hodge-theory, see (Cao & Xavier, 1998).The latest
news for S? x S? is in (Kuranishi, 1990). Even more itching is Yau’s question men-
tioned in B.1. This question is most irritating, since Synge’s theorem (see 0.C) trivi-
ally excludes RP?> x RP? (as well as many other products of manifolds). Rong’s re-
sults quoted in B.1 exclude a lot more even. A recent general list of problems is to
be found in (Petersen, 1996).

C. Finiteness, Compactness, Collapsing and the space
of all Riemannian structures

The logical mathematical order in which to present the results below in C.1
and C.2 is the inverse of the one we are going to follow. This is the way things are
presented in the surveys (Abresch, 1990), (Fukaya, 1990), in book form in Appen-
dix 6 of (Sakai, 1996), in (Petersen, 1998a), in the second edition (Gromov, 1998) to
appear of the pioneer book (Gromov, Lafontaine & Pansu, 1981), and in (Chavel,
1993). Historically the order was the reverse of this and this is the one we are going
to follow.

1. Finiteness results

This topic started simultaneously in 1966 with (Cheeger, 1967) and (Wein-
stein, 1967). For reasons of clarity we present first the simplest case, which is the
only one treated by Weinstein. In a desperate search for a classification of positive
sectional curvature manifolds, Weinstein proved that there are only a finite number
N(6) of possible different homotopy types of even-dimensional manifolds M 4 with
0 < § < K < 1. Unfortunately N(6) tends to infinity (polynomially) as é tends to 0.
Note that, in contrast, Gromov’s theorem quoted above on Betti numbers of nonne-
gatively curved manifolds implies a weak bound, but only among homology types.
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The proof of the homotopy finiteness is purely geometrical and consists in covering
the manifold with convex balls whose number can be estimated simply as a function
of ¢ with Bishop’s bound for the volume (needing only the Ricci curvature and
hence valid a fortiori for the sectional curvature, see TOP. 1.A). This is done using a
standard, but still wonderful, purely metric trick: packing as many balls of radius r
as possible together implies that the corresponding balls of radius 2r form a cover-
ing. Such packings are called efficient. They also have the extra advantage that one
has a universal control on the number of balls which intersect a given one. Then the
homotopy type is that of a simplicial complex with as many vertices as the above
balls. An even dimension is required because in this case the convexity radius is
bounded from below by 7/2 thanks to Klingenberg’s theorem seen in A.2.

We will afterwards look at the next three levels: homotopy, homeomorphy
types and then diffeomorphy types. Note also that in any such finiteness result one
can also ask for explicit bounds for the cardinality of those finite sets. We will see
that in some cases there is no explicit such bound, because the proof is obtained by
a contradiction argument based on the convergence of some infinite set.

We will very briefly recall here some facts concerning the three ratios homo-
topy/homology, homeomorphy/homotopy and diffeomorphy/homeomorphy. The
first two ratios are in general infinite. Regarding the first one we just mention that
even the classification of homology spheres is not yet finished. Regarding the sec-
ond one, the theory of characteristic classes is an ideal tool, a lucid exposition is in
(Milnor & Stasheff, 1974). The third ratio is always finite as soon as d > 5; some
basic texts are (Hirsch & Mazur, 1974) and (Kirby & Siebenmann, 1977). These
finite numbers can be computed explicitly using various pieces of topological infor-
mation about the manifold under consideration. Dimension 4 is an exception,
counter-examples can be found even among algebraic surfaces.

It is fundamental to realize that one cannot extend the above result to odd
dimensions, for example we saw in B.1 that there is an infinite set of Aloff-Wallach
manifolds W, , that are homeomorphic but not pairwise diffeomorphic, see Theo-
rem 3.9 of (Kreck & Stolz, 1993). But one can still get not only homotopy but even
diffeomorphy finiteness, but under a stronger hypothesis. The pioneer work of
(Cheeger, 1967; Cheeger, 1970a), independent of Weinstein’s, yielded the following:
the set of simply connected possible types of diffeomorphisms is finite within the
set of Riemannian manifolds of a given dimension d > 4 satisfying the four condi-
tions K >a, K <b, volume > v > 0, diameter < D (where a, b, v, D are four
fixed real constants such that v has to be positive whereas a and b can be of any
sign). So one has finiteness not only for homotopy types but also for homeomorph-
isms and, starting from there, for diffeomorphisms and this does not require any
assumption about the sign of the curvature.

One remark is now in order: in some instances one can effectively get rid of
the condition volume > v > 0, for example when one works within the class of
manifolds with a non-zero characteristic number: as remarked in (Cheeger, 1970a)
this follows immediately from Chern’s formulas mentioned in 0.E. Another in-
stance is that of negatively curved manifolds, see Section B.4 above.

The way the proof works is important for the future. The first thing we
need is to be able to cover the manifold with an efficient packing of convex coordi-
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nate balls, the cardinality of the packing being universally bounded (universal ob-
viously means in @, b, v, D and the dimension &). This is of course done with effi-
cient packings. An estimation of the number of balls can be achieved with the help
of Bishop’s volume estimate using the Ricci curvature (which is here derived from
the sectional one), as long as one can get a lower positive bound for the injectivity
radius. This is the first part of Cheeger’s work: the injectivity radius has a universal
explicit (positive) lower bound which is a function of only a, b, v, D and d. The
original proof was a nice geometric argument (called the “butterfly”) which made
use of RCT and Toponogov. Today the best proof is that of (Heintze & Karcher,
1978): there is an estimate of the volume of the tube of a given radius around a
periodic geodesic, using a refinement of the RCT estimate for the left side. These
Jfour bounds are necessary to control the injectivity radius, the four counter-exam-
ples needed are flat rectangles with sides (¢,e7!) or (g, 1), very flat ellipsoids of re-
volution and very strongly strangulated spheres.

The second part works by contradiction and shows that the number of home-
omorphism types is finite (and if desired even explicit bounds for the number can be
obtained). Finally one will have to control the coordinate changes between Rieman-
nian coordinate balls for two different metrics. This is exactly what RCT can do for
you when you know that K > a and K < b, but note for the continuation that this is
only a C°-estimate. To go from homeomorphism to diffeomorphism types, Cheeger
used the results available from algebraic-differential topology which were mentioned
above: the number of possible different diffeomorphism types on a given topological
and simply connected manifold is finite when d > 4. However later on Cheeger man-
aged to prove diffeomorphism finiteness for any dimension (under these four
bounds) without having to appeal to differential topology. One relevant reference is
(Cheeger & Ebin, 1975) (Theorem 7.37), to be completed by (Peters, 1984).

++

A digression: Does the curvature determine the metric? We insist on the fact
that the curvature tensor does not determine the metric (except in very special
cases): this may shock the naive reader since the number of parameters is extremely
large as soon as d > 4. Bear in mind also that Cartan’s result in 0.B requires knowl-
edge not only of the curvature, but also of the geodesics as well as the parallel
transport along them. The subject started quite recently: there are many examples
of non-isometric Riemannian manifolds which admit diffeomorphisms that pre-
serve their respective curvature tensors. A trivial case is to move the metric of a sur-
face along the level lines of Gauss curvature equal to K. In higher dimensions
things are of course more subtle, since the curvature not only has many, many
parameters but is also a very weird algebraic object. For surfaces it was just a nu-
merical function. A complete mastery of this has not been achieved to this day, see
below and the bibliographies of the references given.

Reflecting more on the fact that the curvature tensor is “the Hessian” of
the metric, one fact is that it is not completely exact. From the curvature tensor one
cannot recover all the second derivatives 9jgxs, as is clear from the complicated ex-
plicit formula below in general coordinates, but can also be deduced from the fact
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that one needs (d(d + 1)/2)> numbers whereas the curvature tensor has only
d*(d*> — 1)/12 components. If at the origin of normal coordinates one has
0jigikn = % (Rijn + Rinjic), then this is because these coordinates enforce certain rela-
tions between the 0;;gxs. This agrees with Elie Cartan’s philosophy seen in 0.B. But
in general coordinates, Ry = %(aikgjh + Ojngik — Ongk — Ogin) + 0(0g,0g). The
above counter-examples, which are referred to below, as compared to Kulkarni’s
theorem just below, can be described as “threading one’s way” into the room left
open between (d(d + 1)/2)? and d2(d* — 1)/12.

On the other hand there is the result of (Kulkarni, 1970), to the effect that,
when the sectional curvature is not constant and the dimension is larger than 3, dif-
feomorphisms preserving the sectional curvature are isometries. This is not in con-
tradiction to the above examples because the definition of the sectional curvature
involves not only the curvature tensor but also the metric. For lower dimensions
see (Ruh, 1985).

Another meaning can be attributed to the question “does the curvature
determine the metric?”. It consists in looking for metrics whose curvature tensor
satisfies at every point some imposed purely algebraic condition. A typical exam-
ple is to require the curvature tensor to be the same as that of a complex projec-
tive space. One would then in some cases expect (local) isometry and in general at
least local homogeneity, as well as a description of the moduli. Since the founding
papers (Ambrose & Singer, 1958) and (Singer, 1960), the field has developed and
today uses various definitions and enjoys many results. The books (Tricerri &
Vanhecke, 1983), (Berndt, Tricerri, & Vanhecke, 1995) and (Boeckx, Kowalski, &
Vanhecke, 1996) can be used as surveys. See also (Prifer, Tricerri & Vanhecke,
1996) and (d’Ambra & Gromov, 1991). The result in (Tricerri & Vanhecke, 1986)
is of examplary simplicity: if the curvature tensor agrees with that of an irreduci-
ble symmetric space at every point then the manifold is locally symmetric and
thereby isometric to this model. The result is local, it uses a formula from (Lich-
nerowicz, 1950), which expresses the Laplacian of the full square norm of the cur-
vature tensor as —(1/2)A(||R|]*) = ||DR|* + Univ(R, R, R) + Q(D(Ricci)), where
Univ(R, R, R) is a universal cubic form in the curvature tensor itself and Q is
quadratic in the covariant derivative of the Ricci curvature. Then the hypothesis
implies immediately that ||R||* is constant, that D(Ricci) =0 and also that
Univ(R, R, R) since it is obvious in the symmetric case which is characterized by
DR = 0. It seems to us that this basic formula is still not used as much as one
would expect.

For the curvature with parallel transport see 0.B and TOP. 4 (Ambrose’s
problem).

Many people think that the curvature and its derivatives are the only Rie-
mannian invariants. This is in fact true and classical when one demands the follow-
ing strong condition: they have to be algebraic invariants which stem from the con-
nection, see page 165 of (Schouten, 1954) and the references there. But things are
dramatically different if one asks only for tensors which are invariant under isome-
tries (called “natural”). Then there is not even any hope of getting any kind of clas-
sification, as explained in (Epstein, 1975). For more on this see (Munoz & Valdés,
1996).
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++

Back to finiteness there are two ways in which to improve upon Cheeger’s
result. The problem is to find a stronger control than just C° on coordinate
changes using only the sectional curvature (without the metric). One way is to use
compactness theorems, see Section 2 below. The other is to use the center of mass
technique. The center of mass in Riemannian geometry can be obtained for convex
balls by two equivalent definitions (hence its usefulness). The first way is to mini-
mize the sum of the squares of the distances, the second one is to demand linear
dependence between the speed vectors from the center of mass to the points under
consideration. The first definition being purely metric and the second one involving
tangent vectors, one automatically gets some kind of C'-behavior from a metric
one via RCT. For the center of mass technique and some applications see (Karcher,
1989), (Buser & Karcher, 1981), Chapter 8, and (Cheeger, Miiller, & Schrader,
1984). But it should be noted that the existence of a unique center of mass and in
the large for nonpositive curvature was already proved and used by Elie Cartan
back in the 20’s (see 0.B), and also that for the general case (but only locally of
course, think of the standard sphere) by Calabi in his unpublished result, quoted in
A.2, where he solved the differentiable pinching problem. The center of mass tech-
nique was the one used in (Peters, 1984): he put suitably chosen d + 1 points into
very small balls.

<+

Now back to what has been the favourite game since the 80’s: look for re-
sults that require weaker and weaker hypotheses. The first kind of result is to be
found in (Gromov, 1981c), where it is remarked that the technique used to bound
Betti numbers for nonnegatively curved manifolds (see B.1) extends without any
modification to manifolds with K > k (for any real k) and diameter < D. More

_precisely the Betti numbers (over any field) of Riemannian manifolds of a given di-
mension are exponentially bounded, with the real number (diameter)?.(— inf K) as
exponent. Then we have finiteness for homology types (in the simply connected
case of course) with only bounds on inf K and the diameter. An improvement on
this bound appeared in (Abresch, 1985).

A very new idea was that described in (Grove & Petersen, 1988). A priori it
seems impossible to get rid of some kind of injectivity radius estimate in Cheeger
type results in order to get contractible, or more even, convex balls. But remember
Gromov’s proof for the Betti number of nonnegatively curved manifolds (see B.1):
one of the basic facts is that critical points for the distance function cannot “appear
too far from the center”. In (Grove & Petersen, 1988), using the center of mass
technique and Toponogov’s theorem, it is proved that the class of Riemannian
manifolds of a given dimension satisfying K > k, volume > v > 0 and diameter < D
has only finitely many possible homotopy types. The cardinality is bounded expli-
citly in d, D, k and v. One would be done, “a la Weinstein” as in Section C.1, if
one could just control the criticality radius using the Grove-Shiohama technique
met in A.2. This is impossible, think of a cone near the vertex. The trick is that one
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can control the mutual criticality radius, namely the infimum of the distances be-
tween two points which are critical for each other; this is done by generalizing the
tube argument met in Section C.1. Easy examples show that none of these three
bounds can be removed from the statement.

In (Grove, Petersen & Wu, 1990-1991), using the same hypothesis the result
was extended to finiteness for diffeomorphism types. There are, however, some di-
mensional restrictions where this result does not hold: when d = 3, due to the status
of Poincaré’s conjecture, and when d = 4 one has to be happy (today at least) with
just homeomorphisms. We remark here that it is also an open question today
whether the counter-examples (mentioned above) yielding infinitely many differen-
tiable structures on some topological manifolds of dimension 4 can or cannot satis-
fy these bounds. It seems also that the cardinalities cannot be universally bounded
today using the same kind of proof. But if one has bounds at the homeomorphism
level, then one has them also at the diffeomorphism level. The proof definitely in-
volves new ideas beyond the 1988 result. It makes fundamental use of convergence
techniques from Section 2 below and a lot of algebraic topology for manifolds, in
particular the technique called “controlled topology”. This is strongly linked with
the notion of uniform contractibility, see the end of TOP. 5.

In the same article there is this astonishing result: finiteness of homeo-
morphism types (hence diffeomorphism if in addition d # 4) for the class of mani-
folds of a given dimension d # 3 under only two purely numerical bounds:
volume < V and injectivity radius > i > 0. We will comment on this in TOP. 1.C in
the embolic story. Before, homotopy finiteness was obtained under the same condi-
tions in (Yamaguchi, 1988). The result by Grove, Petersen and Wu used essentially
the basic Croke’s local embolic result mentioned in TOP. 1.C and the ingredients
for the proof of the above result.

Back to the Grove-Petersen-Wu finiteness result, (Greene, 1994) and
(Greene & Petersen, 1992) throw an interesting light onto it, in particular explain-
ing the role of the volume of tubes around (periodic) geodesics.

<+

Again there are results obtained by replacing pointwise bounds on the cur-
vatures by various integral bounds. Precise statements are always quite elaborate
and hence not stated here, see (Yang, 1992), (Petersen & Wei, 1996a), (Petersen,
Wei & Ye, 1997), and in book form- there is (Petersen, 1998a). One geometrical
point was to control the volume of a tube around a periodic geodesic, this was done
in (Petersen, Shteingold, & Wei, 1996). The proofs are not only geometrical but
also involve a lot of Analysis.

<+

Now how about finiteness with bounds only on the Ricci curvature? We
saw above that already Gromov’s homology finiteness for K >k and
diameter < D does not extend to Ricci > r. However this did not stop geometers
from seeing what inf Ricci means, since the Ricci curvature is hopefully a “reason-
able” curvature control. Results started with (Abresch & Gromoll, 1990) and very
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strong ones now exist. We make a partial choice among them and refer to the very
informative survey (Anderson, 1994) and the references therein. Note that some of
them are optimal with respect to the ingredients in view of the examples in (Perel-
man, 1997).

First, there is finiteness of diffeomorphism types in a given dimension pro-
vided that Ricci > X (of any sign), vol < ¥ and inj > i > 0: (Anderson, 1990b).
Since one succeeded for sectional curvature in going beyond the injectivity radius,
the urge is to do the same here. The story is not finished but we know this from the
combination of (Anderson, 1990b) and (Anderson & Cheeger, 1991): in a given odd
dimension there are only finitely many diffeomorphism types under the conditions
[Ricci| < A, vol > v >0, diam < D and [, ||R||/> < A. When the dimension is
even it is compulsory (there are examples) to add orbifolds (see TOP. 9) to mani-
folds. Moreover in dimension 4 the L%?-bound on the full curvature tensor is not
needed thanks to the Allendoerfer-Weil formula (in 0.E). It is not clear if it is rea-
sonable to conjecture that this extra condition is not really needed. Note finally
that all these results are obtained by contradiction, hence they do not yield explicit
bounds for the cardinalities.

The idea underlying the above results is to prove C'*-compactness. A fun-
damental fact is (see the digression in 1. COMMENTS on I) that the Ricci curva-
ture is in harmonic coordinates, up to fist-order terms, equal to the Laplacian of
the metric. But one has to control the harmonic radius (i.. the largest balls on
which harmonic coordinates are well defined and linearly independent, see the
next section for more on this). When using the bound on f;, ||R||d/ 2 the difficulty
lies in understanding how the curvature concentrates, this is achieved in (Ander-
son & Cheeger, 1991) by looking for singular points in sequences converging in
the Gromov-Hausdorff space to an orbifold. Then one rescales the metrics around
the singular points and shows that iteration of this process ends after a finite
number of steps.

For the fundamental group, one has in (Anderson, 1990b) finiteness of
group structures with a positive lower bound on the volume, an upper one on the
diameter and a lower one on the Ricci curvature.

From B.3 it is clear that no finiteness statement is to be expected from
bounds on the scalar curvature.

2. Compactness, Convergence Results

When climbing Jacob’s ladder, even in fog, a question that arises quite
naturally is that of looking at any kind of convergence and/or compactness within
the set of Riemannian manifolds and/or of various subsets of it. Moreover we met
before many problems where a convergence existence theorem would have been
useful. Look for example at finiteness diffeomorphism theorems or even more sim-
ply at the differentiable pinching problem. It is intuitive that — of course in a sense
to be made more precise — the set of differentiable stuctures is discrete. Then within
a compact subset we have finiteness. Another example is the isolation of the stan-
dard sphere. Note that this would be a very pleasant proof but not very explicit, in
particular it would not yield any precise pinching constant.
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Another motivation is that of III: look at some functional on the set (or
some subsets) of Riemannian metrics on a given manifold M. Does there exist
some Riemannian manifold that realizes the infimum of that functional (a “best”,
an extremal Riemannian structure on M)? Sadly enough, all the convergence re-
sults we are going to see are unable to give an answer to this question, see e.g. the
minimal volume and the embolic volume in TOP. 1.C and D as well as Einstein
manifolds in IIL.C.

<+

It seems that the first appearance of results in that direction was in (Shika-
ta, 1967), where an isolation result was obtained for differentiable structures.
Thereafter considerations of that kind were implicit in (Cheeger, 1970a). Then ap-
peared the (unnumbered) theorem on page 74 of (Gromov, 1983b). The proof uses
implicitly a convergence theorem that the author always used to take for granted.
According to him, since some people doubted it or at least asked for more details
he published a proof in (Gromov, Lafontaine & Pansu, 1981). The proof was still a
little incomplete until (Katsuda, 1985) offered a complete proof. In 1985 various
proofs of the optimal result (see below) started circulating, all using centers of mass
and harmonic coordinates. Printed references are (Greene & Wu, 1988), (Peters,
1987) and (Kasue, 1989). We now have to state matters more precisely since the
notion of convergence needs a topology.

<+

We will now present the notions and the related results in the order which is
now the appropriate one and is moreover well suited for a generalization to more
general geometric objects than Riemannian manifolds. This is in fact indispensable
for understanding what is going on and moreover considerably simplifies the proofs
quoted above. We will follow mainly (Fukaya, 1990) and refer to this text for precise
definitions. Surveys are (Petersen, 1990), (Petersen, 1997) and the second edition
which is to appear of (Gromov, Lafontaine & Pansu, 1981): (Gromov, 1998).

Things start with the Gromov-Hausdorff distance dg_p (X, Y) between iso-
metry classes of abstract compact metric spaces. Its definition and properties ap-
peared first in (Gromov, Lafontaine & Pansu, 1981). The set of all compact metric
spaces, denoted by MET, endowed with dg_g, is Hausdorff and complete, this is
an extension of the well-known analogous statement for compact subsets of RY.

Already for MET we have the Riemannian geometry result of (Gromov,
Lafontaine & Pansu, 1981): inside (MET, dg-_p) the subset of Riemannian mani-
folds of a given dimension d, with diameter < D and Ricci > —(d — 1) is precom-
pact. The argument is just an “efficient packing”. The cardinality can be bounded
from above using precisely the improvements to Bishop’s theorem that are due to
Gromov and explained in TOP. 1.A. But of course the closure of such sets is not in
the realm of (smooth) manifolds of dimension d, just think for example of flat tori.
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The next topology to feature in our story is the Lipschitz one. In MET we
call it dy. Its value d7 (X, Y) is the best Lipschitz constant for the Lipschitz home-
orphisms f: X — Y together with the constant of /~!. Back in (Shikata, 1967), the
following is proved , which we called a discreteness result in the motivations above.
We work within the set RM (d, a, b, D, v) of Riemannian manifolds of given dimen-
sion d with a < K < b, diameter < D and volume > v > 0. Then if N is the d;-limit
of a sequence {M;} then for i large enough M; is diffeomorphic to N. This is how
Shikata solved the differentiable pinching problem.

But this is still not a convergence statement for any sequence (or some sub-
sequence) in the set RM(d,a,b, D, v). This is achieved in two steps. The first one
appeared in (Gromov, Lafontaine & Pansu, 1981) and was completed in (Katsuda,
1985). It says that if lim;_» dg_g (N, M;) = 0 then lim;_. dr(N, M;) = 0. At this
stage we do not know if the limit metric is a Riemannian metric. This requires more
work and is to be found in the works of Gromov, Greene-Wu and Peters referred
to above. We saw above in the digression in 1 that the difficulty lies in the fact that
the control on the curvature gives a metric control but not a differentiable one in
the metric itself. This is because RCT shows only C °-behavior. The basic trick is to
replace normal (geodesic) coordinates with apparently less geometric ones that are,
however, in fact more suitable finally. Those are the harmonic coordinates (see 0.F
and 1. COMMENTS on I): one chooses d harmonic functions which are linearly
independent and satisfy some ad hoc boundary conditions. It works only within
the harmonic radius which was first systematically introduced and controlled in
(Anderson, 1990b). Such a control is fundamental for many results and we refer to
the various references which we will come across. For sectional curvature bounds,
it is easier than for Ricci ones.

The exact statement is the convergence of some subsequence in any infinite
sequence {M;} in RM(d,a,b, D, v) toward a Riemannian manifold (N, g) which is
diffeomorphic to M; for i large enough, but the Riemann tensor g is known in gen-
eral to be only of class C'* (for any « in (0, 1)). The proof uses coverings with sui-
table balls whose number is controlled as explained in C.1 above and harmonic
coordinates on them. One can show that this is optimal, one cannot in general hope
for C2-results, as a flat cylinder with two spherical caps shows.

If one wants to get smoother limits one uses smoothing techniques, which
are important in other instances and were obtained first, using the Ricci flow (see
1. COMMENTS on III), in (Bemelmans, Min-Oo, & Ruh, 1984) and thereafter in
(Abresch, 1988) and in (Shi, 1989). See further statements in (Fukaya, 1990).
Smoothness means that the absolute value of the covariant derivatives of the curva-
ture tensor of any order, especially the first one, which is technically very useful,
can be made arbitrarily small. One of the main points of smoothing is that it re-
spects most hypotheses and that one can for example add smoothness in
RM(d,a,b, D, v) etc. See also the norms in (Petersen,Wei & Ye, 1997).

+

Like in some instances we met above one is tempted to obtain results of
compactness (convergence) with weaker hypotheses, in particular with only Ricci




Riemannian geometry during the second half of the twentieth century 103

curvature control. Convergence results where the curvature control is mostly
Ricci > —(d — 1) started with (Gao, 1990a) and were followed by (Anderson,
1990b). The best result today is that of (Anderson & Cheeger, 1992): one has pre-
compactness in the C%¢- topology (for any « in (0,1)) under the conditions
Ricci > r, injectivity radius > i > 0 and volume < V. The link between finiteness
and compactness is explained in (Anderson & Cheeger, 1992a) and is of quite a
general nature. If moreover the k-covariant derivatives of the Ricci curvature are
bounded in absolute value by suitable constants, one has precompactness in.the
Ck+le. topology. See an extremely brief exposition in (Hebey & Herzlich, 1998).
Note that these extra conditions can be achieved by smoothing as seen above. The
proof uses essentially (with a lot of Analysis, e.g. Sobolev inequalities) harmonic
coordinates and a study of the harmonic radius which can be bounded by the me-
tric injectivity radius (this is not too surprising) together with a Ricci bound: (An-
derson, 1990b). See also (Cheeger, Colding & Tian, 1997) and (Brocks, 1997).

The philosophy here, as noted in the digression of Section C.1, is a PDE
game and a basic fact is the formula given in 1. COMMENTS on I: in harmonic co-
ordinates, up to first-order terms, the Ricci curvature is the Laplacian of the metric.

For applications of convergence theorems we refer the reader to the various
surveys above. We just note that in most cases, like for instance pinching theorems
or “just below”, the convergence theorem yields an ¢ that is not given explicitly.
This still leaves much work to do to get “direct” proofs and explicit constants.

A final remark is in order. Most of the above results work for (complete)
non-compact manifolds, provided one sticks to the pointed category. These results
are essential for example when one studies the fundamental group as in B.

3. The set of all Riemannian metrics: Collapsing

The desire here is very natural: if a sequence of Riemannian manifolds does
not converge nicely (as we have seen this is mainly because the injectivity radius
tends to zero) then what is really happening? Do we have some limit space of some
kind — e.g. still a manifold, but of a smaller dimension, or a reasonable generaliza-
tion of Riemannian manifolds (see TOP. 9), or just some metric space? In some
sense one is looking for a compactification of the set of Riemannian metrics (of a
given dimension) and an understanding of what happens when one approaches the
boundary. This of course makes sense only within suitable subsets, namely when
one imposes some curvature bound(s) and some metric invariant(s). When there is
no convergence towards a Riemannian manifold (of the same dimension, even per-
mitting singularities) the situation is called collapsing. This is vague, we now study
things more precisely. Here again the reference we follow is (Fukaya, 1990), at least
up to 1990. An informative text is (Pansu, 1983-1984). The basic papers are (Chee-
ger & Gromov, 1986-1990), (Fukaya, 1987a), (Fukaya, 1989) and by the whole
team: (Cheeger, Fukaya, & Gromov, 1992), whose introduction is very informative.
For recent works on the set of all Riemannian structures on a given manifold,
showing that its structure is quite sophisticated and that one might have to resort
to complexity theory, see (Nabutovsky, 1996b). See also the toy model of it in (Na-
butovsky, 1996c¢).
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The first situation we study arises when one drops the last condition
volume > v > 0in RM(d,a,b, D, v) and works in RM(d,—1,1, D) (an obvious no-
tation) after the normalization from (a, ) to (~1,1), which is not restrictive when
looking only for general statements. Next we have to study the situation where the
volume tends to zero, which by Croke’s local embolic theorem in TOP. 1.C implies
that the injectivity radius tends to zero uniformly. The first thing to do is to find
examples. We saw in the section about pinching around zero (see A.3) that nilmani-
folds are members of our class. Note then that the limit space is the smallest possi-
ble one, namely it is reduced to a point.

The other basic general example appeared in (Gromov, 1983b): any mani-
fold admitting a circle action without fixed points, or say fibered by S! over some
other manifold N, collapses to N. This is just an application of Riemannian sub-
mersion formulas: take first a fixed Riemannian metric invariant under S' and
make the fibers smaller and smaller keeping the “horizontal” metric component
fixed. One gets the nilmanifolds as a particular case upon applying this trick to the
successive S'-fibrations which arise from the nilpotent structure. From the Hopf
fibration ST — $¥*! — CP" one gets a collapsing of the sphere S"*! to CP". A
fortiori of course this extends to manifolds which admit a torus simple action. If
you are familiar with the maximal tori in compact Lie groups, you will discover
how to collapse the group SO(2d) onto the homogeneous space SO(2d)/T?.

A more elaborate type of example is the following. Take two 2-dimensional
manifolds N and N’ of the same dimension with a boundary which is a circle and
take the products M = S! x N and M’ = S' x N'. These are manifolds with
boundary, in both cases the boundary has the topological type of a torus 72. Then
glue M and M’ along that 72, not in the trivial way but interchanging the two cir-
cles in T2 (exchange the parallels and the meridians). The resulting manifold does
not in general admit a global S'-action, only a local one on both parts, since on the
common part they do not coincide but locally they agree as both being part of the
same local 2-torus action. Then it is still possible to define a collapsing structure in
RM(3,~-1,1,D) for this manifold. This example was put into a very general con-
text in (Cheeger & Gromov, 1986-1990), where the notions of F- and T-structures
were defined. Extremely important notions are those of polarized and pure-polar-
ized F-structures. Detailed definitions are also to be found at the end of the survey
(Fukaya, 1990). The existence of various structures of those types is linked with the
topology of the manifold, but the question of how exactly is still partially unsolved,
see the various references for precise statements. What is difficult is to decide
whether one is within manifolds with a bounded diameter or not.

For example, for a general F-structure, one can build up only Riemannian
metrics with —1 < K <1 and an injectivity radius tending to zero. If the structure
is moreover polarized, then one can get the volume to tend to zero, and if moreover
it is pure-polarized then one really has a collapsing in RM(d, —1,1, D). In (Chee-
ger & Gromov, 1986-1990) many results are obtained for the study of what hap-
pens to the various Riemannian invariants during the process of collapsing. The
above theory is used also to study the existence of characteristic numbers and inte-
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gral formulas for these when the manifold is no longer compact but still of finite
volume: see (Cheeger & Gromov, 1985). For what happens with the spectrum
(Chapter 1V) see (Fukaya, 1987b).

<+

A byproduct of (Cheeger & Gromov, 1986-1990) is a structure statement
for any Riemannian manifold. Namely there exists a universal number ¢(d) which
depends only on the dimension d such that, given any complete Riemannian mani-
fold M of dimension d and with —1 < K < 1, there exists an open set U (the thin
part) of M with the following properties: on U there exists an F-structure (of posi-
tive dimension) and at points in M \ U (the thick part) the injectivity radius is lar-
ger than e(d). The results on F-structures are typically used in (Anderson, 1996a).

+

We now look at the structure of the collapsing itself when the limit set of
{M;} is a (compact) manifold N. The answer appeared in (Fukaya, 1987a) and (Fu-
kaya, 1989). We are in RM(d,—1,1,D) and assume lim;_., do_w(M;,N) = 0.
Then, at least for large i, there exist maps fi: M; — N which are fibrations. The fi-
bers are infranil-manifolds and every f; is almost a Riemannian submersion. In
(Cheeger, Fukaya & Gromov, 1992) the two points of view are united to get a very
strong statement for collapsing. See this text for detailed statements and open pro-
blems in this topic. Finally the bold question of the nature of the dg_g-closure of
RM(d,~1,1,D) was addressed in (Fukaya, 1988). When one is interested in var-
lous closures on a given manifold things are much easier, see I11.D.

+

We now look at the boundary structure for subsets involving weaker curva-
ture bounds. The first thing to do is to discard K < 1 as we did in Section 1 for finite-
ness results, still keeping K > —1 however. It is intuitively clear that limits can now
have singularities, think for example of small fingers, bubbles, etc. The major discov-
ery was that there exists a reasonable generalization of Riemannian geometry which
is preserved under metric limits provided that K > —1. This is the notion of Alexan-
drov’s space, see TOP. 9 for more on this. For the case of collapsing under only
K > —1 with a smooth limit one has a strong structure result in (Yamaguchi, 1991).

<+

One now has the strong wish to find a control using only the Ricci curva-
ture plus of course various metric invariants. This is a topic which is the focus of
lively activity today and is hence hard to present concisely. Besides the references
of the preceding two sections, we mention (Anderson, 1992b); (Cheeger & Colding,
1997a) marks the beginning of a series of papers which take into account previous
results. Recall that Colding’s L?-Toponogov theorem (see the digression in A.2)
plays the role of Toponogov’s theorem when one has only a lower Ricci bound. To
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give a better insight we mention that those results are part of a program by Ander-
son and Cheeger, which includes the conjecture that “dg_p-convergence in the pre-
sence of a lower Ricci curvature bound implies volume convergence”. This has
since been proved in (Colding, 1996b).

*

A further way of weakening the assumptions is to use only integral bounds,
sometimes mixed with various others. We just mention (some of them we have al-
ready met): (Gallot, 1986), (Gallot, 1987), (Yang, 1992), (Gao, 1990a), (Gao,
1990b), (Petersen, 1997), (Petersen & Wei, 1996b) and the expository texts (Ander-
son, 1990d) and (Petersen, 1998).

II The geometrical hierarchy of Riemannian manifolds:
Space Forms

Defining, constructing and classifying space forms can be very hard and is
still not finished. We will explain at the same time what we mean by this hierarchy.
Here again the situation will be completely different according to the sign under
consideration. There are some books and partial surveys: (Buser, 1992), (Wolf,
1972), (Gromov & Pansu, 1990) and (Vinberg, 1993). For the hyperbolic case (Ben-
edetti & Petronio, 1992) and (Ratcliffe, 1994) are two excellent references. So we
will give below only a few references, mainly to locate the dates. Do not believe that
a complete mastering of the geometry of space forms has already been achieved.
Amazing relations between geometry (volumes of polytopes, cross-ratios and their
generalizations) and Number Theory are the focus of lively research and enjoy
some beautiful results. We just mention Chapter 14 by Kellerhals of the book (Le-
win, 1991) and the informative text (Oesterlé, 1992/93).

Once again we will work only within the compact case but the most natural
and important cases are those of finite volume, see TOP. 5. Surveys on rigidity are
(Gromov & Pansu, 1990), (Pansu, 1993-94) and the book (Farrell, 1996).

A. The constant curvature case

A fundamental property of Euclidean spaces is the congruence axiom: two
triangles with equal respective sides are always deduced from one another by an
isometry of the space. Let us say that these triangles cannot be distinguished: “they
are the same”. Another way to formulate this is to say that they are metric spaces
which are 3-point transitive. So the beginning of the hierarchy is formed by looking
for all metric spaces with this property, first globally, then only locally. The global
answer was known in the 20’s and follows from Hopf-Rinow’s and Cartan’s philo-
sophy, see for example the book (Cartan, 1928a) (the second edition (Cartan,
1946-1951) is also good of course). Look at infinitesimal triangles. Their infinitesi-
mal shape will yield the sectional curvature and the spaces we are looking for are
those of constant sectional curvature. The global answer is given by the simply con-
nected ones, namely the spheres (with the canonical metric if the curvature equals
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1), the Euclidean spaces and the hyperbolic spaces Hyp? (most often normalized to
a curvature equal to —1).

Local (non-simply connected but compact) answers are then the quotients
of one of those three spaces by discrete groups of their isometry group. What is the
state of affairs today? Things were quite clear by the late 30’s for surfaces. We dis-
card first the trivial cases of positive and zero sign. On the negative side it is easy to
build up examples geometrically, one way is to take suitable triangles or polygons
in the hyperbolic plane and make tessellations with them. But note that the group
yielding the quotient is then hard to visualize. Another way is to glue together pan-
taloon pieces along their boundaries, provided they are closed geodesics, the panta-
loon pieces are obtained by gluing together identical hyperbolic hexagons all of
whose angles are equal to 7/2. This latter way enables us to construct all examples,
as seen by working back by dissection (this is explained perfectly in (Buser, 1992)).
The other way is to use conformal representation for compact topological surfaces
of any genus. Finally the complete classification was worked out by Teichmiiller in
the late 30’s. On an orientable surface of genus v, the constant curvature structures
form a space with 6y — 6 parameters. Building those space forms by group theory
is harder and is basically Number Theory, see for example (Vigneras, 1980a). The
link between the algebra and the genus of the surface is already subtle.

Starting with dimension three, the difficulties appear formidable. We will
describe things in a very sketchy way. For all dimensions the positive and the zero
case were understood almost completely in the 60’s and are detailed in the book
(Wolf, 1972) (try to get the second edition). Contrary to what most people think
the classification is not completely finished but this is more of an algorithmic pro-
blem. Moreover the rigidity problem has hardly been studied in the positive case, in
contrast with the negative case to come now. To get some feel of the mysterious
and hard component in the positive case see (Milnor, 1966). The flat case is based
on the famous Bieberbach theorem (1911-12): the flat compact manifolds are tori
or finite quotients of them.

The negative case is already difficult starting with dimension three. It was
only in 1931 that examples were constructed in (L&bell, 1931). These were geo-
metric, using tessellations with polyhedra in a three-dimensional hyperbolic space.
In the 60’s the existence of negative curvature space forms was more or less folk-
lore, see in particular Selberg’s work. More surprising: many papers appeared
which studied these space forms without knowing of their existence. For a general
result one had to wait until (Borel, 1963). It is important to know that Borel’s con-
struction is entirely Number Theory, the point being to find suitable discrete sub-
groups (called “arithmetic™) of the isometry group of Hyp“.

There is a good reason for that. In (Vinberg, 1984) it was realized that geo-
metric tessellation constructions cannot exist in large dimensions. A question we
are left with today is the exact value of the limit dimension, see (Vinberg, 1993).

‘
How about some kind of Teichmiiller theory now (deformations, number

of parameters)? The big event was (Mostow, 1968): space forms of constant nega-
tive curvature (d > 3) are rigid. As soon as the fundamental group is given as a
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group, one has Riemannian uniqueness, in particular on a given space form. So im-
portant and conceptual is this rigidity that a succession of ever simpler proofs ap-
peared. The last one is nothing but a direct corollary of ( Besson, Courtois & Gal-
lot, 1995a) and (Besson, Courtois & Gallot, 1995b), to be found also in V.A and
V.B. See also the survey (Besson, 1996), the expository texts (Pansu, 1996-97) and
(Pansu, 1993-94) and the book (Farrell, 1997).

This rigidity does not imply a classification. Today one still does not know
everything. On the one hand, we have the Borel type arithmetic examples (a precise
definition of arithmeticity would be rather too long). On the other hand, in (Gro-
mov & Piatetski-Shapiro, 1988) examples which are definitely not arithmetic are
constructed in any dimension. Whether arithmetic or non-arithmetic ones are more
numerous is the principal open question.

<+

An important issue for negative space forms is that of volumes. When d = 2
the Gauss-Bonnet theorem implies immediately that the set of volumes is an arith-
metic progression. The existence of a universal positive lower bound for any dimen-
sion is shown in (Wang, 1972) where it is proved that starting with dimension 4 the
set of volumes is discrete for space forms of any rank. In (Prasad, 1989) the vo-
lumes of all arithmetic space forms are computed explicitly. The case of dimension
3 was solved in (Jorgensen, 1977) and (Thurston, 1978) and the result is fascinating:
volumes are isolated from zero (although the best value is still unknown today) but
they have accumulation points located on a discrete scale. For more see (Gromov,
1981a) and (Ratcliffe, 1994), page 501. See the recent text (Goncharov, 1997) to get
an idea of the depth of the problem.

B. Space forms of rank one

Pursuing down our hierarchy we now look for metric spaces which are
“only” 2-point transitive, i.e. there is always an isometry mapping one pair of points
to another pair (provided of course that their respective distances are equal). Alter-
natively, an infinitesimal formulation is that we look for spaces which are isotropic,
namely where all unit tangent directions are metrically equivalent. In the simply
connected case they are all known. Discarding the preceding ones of constant cur-
vature, one is left with the KP” and their negative curvature analogues, denoted
here by Hyp KP". Their curvature range is from 1/4 to 1 or from —1 to —1/4 after
normalization. The CP” together with the Hyp CP" are the complex geometries
corresponding to the spheres and the hyperbolic spaces. This classification is to be
found in (Wang, 1952) for the compact case and in (Tits, 1955) for the non-com-
pact one. It is still a long story to do the classification in detail, the best reference
today is, to our knowledge, that of (Karcher, 1988) (see page 120). The difficult
part of the proof is to show that the space under consideration is a symmetric
space, see (Szabo, 1991) for a short proof. Then it obviously has to be of rank one,
see C below.

We will now look for compact quotients of those simply connected spaces.
In the positive case (spheres excepted) there are no such quotients (except up to 72
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because dimensions are even here and we then have Synge’s theorem, see 0.C). We
now turn to the negative curvature case. The complex case is particularly interest-
ing because of the connections with complex analysis and algebraic geometry. Gen-
eral existence is again shown in (Borel, 1963), of course of arithmetic type. Non-
arithmetic examples appeared in (Mostow, 1980), built up using subtle tessellating
polyhedra in Hyp CP? and in Hyp CP3, also later on in (Deligne & Mostow, 1986)
by different and expensive Number Theory techniques. The question of deciding
whether any non-arithmetic examples exist for the Hyp CP" is still open today for
higher n. But for the quaternionic and the Cayley case, for HypHP" and
Hyp Ca P? it is proved in (Gromov & Schoen, 1992) that all compact quotients of
these spaces are necessarily arithmetic. The proof uses hard Analysis, more pre-
cisely harmonic maps into manifolds with singularities, see TOP. 7.

There is a rigidity theorem as well for the compact quotients of the
HypKP" (Mostow), but today it can be obtained by the general result of (Besson,
Courtois & Gallot, 1995a) already mentioned.

The search for spaces which are only measure-isotropic (so-called harmonic
ones) started in the early 40’s. There are many equivalent definitions, the first one
says that at every point the solid angle (the infinitesimal measure along a geodesic
starting from this point) depends only on the distance. The word harmonic was
chosen because this condition is equivalent, at least locally, to the fact that the va-
lue at every point p of any harmonic function f (A f = 0) is equal to its mean value
on every distance sphere centered at p. Lichnerowicz conjectured in 1944 that such
spaces are, at least locally, isometric to a space form of rank one, so that measure-
isotropy will force metric isotropy to hold. After many intermediate results the con-
Jecture was proved for the compact case by Szabo in 1990 and then disproved in
the non-compact case by Damek and Ricci. All the references can be found in
(Berndt, Tricerri & Vanhecke, 1995) and its bibliography.

C. Space forms of symmetric spaces of rank larger than one

Next after 2-point transitive spaces come the 1-point ones. But these are
nothing more than homogeneous spaces. In some sense this category is too general,
even though we will meet it many times below when constructing examples of Rie-
mannian manifolds.

But there is a basic intermediate category, that of the symmetric spaces, dis-
covered by Elie Cartan in 1926. These are the manifolds for which the geodesic
symmetry around any point is (at least locally) an isometry. This implies immedi-
ately (local) homogeneity by composing those symmetries at pairs of points. But
another equivalent definition (this has to be proven and is due to Elie Cartan) is
that the curvature is invariant under parallel transport. It is the most natural homo-
geneity condition (think of the golden triangle in 0.A and of Ambrose’s problem at
the very end of TOP. 4). Elie Cartan showed that these (local) geometries can in
fact be completely classified, a job done first at the level of Lie algebras. The result
for irreducible ones is a very restricted list, containing infinite series and a finite
number of exceptions in low dimensions. All members of the infinite series are
spaces known in geometry: the simple Lie groups themselves, the Grassmann mani-
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folds over the fields R, C, H, the set of complex structures, of Lagrangian sub-
spaces, and a few others.

A symmetric space has attached to it an integer, called its rank. It is the
common dimension of all maximal totally geodesic flat submanifolds. They are all
conjugate under the group action. The rank one spaces are those of Section B
above. These flat submanifolds are, in the simply connected case, tori for the com-
pact case and Euclidean spaces for the non-compact case. This completely deter-
mines the geodesic flow (see V.B). In particular all the geodesics of the spheres and
the KP" are simple, closed (periodic) and of a common length.

These irreducible symmetric geometries split again into two classes: those
of nonnegative and those of nonpositive curvature. Finding all the quotients in the
positive case is a finite job, which was done back in (Cartan, 1927). For the nega-
tive case it was again in (Borel, 1963) that compact quotients were proved to exist
for the first time, always by arithmetic considerations. But here, if there is a classifi-
cation problem, it is one for number theoreticians because, in (Margulis, 1977), a
superrigidity result was proven, which implies not only toplogical rigidity but also
arithmeticity for the rank > 2 case. Margulis’ tools were expensive, today there are
other ways to recover Margulis’ result: see for example (Jost & Yau, 1990). Results
like (Besson, Courtois & Gallot, 1995a) still do not yield the superrigidity.

+

Now one can look at generalizations of Euclidean geometry with spaces
more general than Riemannian manifolds. In fact one is more or less forced to do
so when working in Riemannian geometry, this was seen in 1.C.3: see TOP. 9.

III  The set of Riemannian structures on a given compact manifold:
Is there a best metric?

A. The problem

We still stick to the compact case. A question that clearly suggests itself is
the following one: given a compact differentiable manifold, does it carry a best, or
a family of best, Riemannian structure(s)? We saw in IL.A that things work wonder-
fully in the case of surfaces. Any compact surface admits a metric of constant cur-
vature. Moreover on a given surface they are completely classified (Teichmiiller
theory), forming a finite-dimensional “moduli” space. How about higher dimen-
sions? This question was put to the author by Thom around 1960 and is the very
first problem in the list of (Yau, 1990). In the low dimensions 3 and 4 the question
is of primary importance since Riemannian geometry seems to be a basic tool for
solving the various topological conjectures that are still open (see TOP. 8).

Today there is not a single satisfying general statement in a dimension lar-
ger than 4, there are only some partial results. The lower dimensions are better un-
derstood. One of the reasons which makes the problem difficult is the following
one. To get a best metric it is reasonable to work with the condition -1 < K < 1.
But we saw in 1.C.2 that in order to obtain a limit we need moreover
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volume > v > 0 and diameter < D. Even when the topology of the manifold satis-
fies the volume condition, there is still no way of controlling the diameter.

Another scheme of attack is to look at a suitable numerical functional F(g)
defined on the space of metrics g and then search for those for which F(g) reaches
its minimum (or is at least critical, that is to say the derivative of F(g) at g is zero
for any variation of the metric). If the functional is scale-dependent, just normalize
it. If criticality means anything to us, we can stop here. If we need more, we can
then look for an extremum. For the general context see Chapter 4 in (Besse, 1987) ,
(Anderson, 1990d) and (Sarnak, 1997a). Sarnak considers in particular as a func-
tional the determinant of the Laplacian, see IV.

The first thing to do is to study the space of all Riemannian metrics on a
given compact manifold, but also its quotient by the set of all diffeomorphisms,
since we are interested mainly not in metrics but in structures (metrics up to isome-
try). There is no reason for this (infinite dimensional) structure space to be smooth,
but there is a nice slice result which gives a local structure and its “tangent space”,
see 12.C of (Besse, 1987). See also (Gil-Medrano & Michor, 1991). Concerning the
topology of the set of all Riemannian structures on a given manifold we know only
of (Bourguignon, 1975), (Nabutovsky, 1996¢) and (Nabutovsky, 1996b): these lat-
ter references show that the situation might well be extremely sophisticated.

B. The minimal volume and Min||R| |d/ 2

It seems to us that the most natural definition of an optimal metric is the
following: “it is the least curved one”. So the obvious functional is f,, ||R||d/ % and
we immediately attach to a compact manifold M the invariant min||R|“/>(M),
which is the infimum of all the [}, ||R||*/* when considering all Riemannian metrics
on M. Note that the Gauss-Bonnet theorem shows that this functional is certainly
not good in dimension 2, but we are interested precisely in higher dimensions. It
turns out that, at least in dimensions larger than 4, the condition for g to be critical
is not understood today: it is a partial differential equation for g and its curvature
which is actually indecipherable. There are only results telling us that this invariant
is zero in some cases and non-zero in some others. But the exact delimitation re-
mains a mystery, as well as knowing if its vanishing is or is not equivalent to that of
the minimal volume, see TOP. 1.D. The functional [,, |IR||“/? is also encountered
in finiteness theorems using the Ricci curvature: see I.C.1.

But the lower dimensions 3 and 4 are exceptions. For dimension 4 the gen-
eralization of the Gauss-Bonnnet theorem (Section 0.E) reads:

sx(M) = [ (IR = [Ricei — *3 g | dm

Then, on a given M, our functional is an absolute minimum when the Ricci
curvature of g is proportional to it: Ricci(g) = S—C“i' g. This proves, by the way, that
the characteristic of an Einstein 4-manifold is always nonnegative, see Section C.
But the converse works only when (M) is nonnegative. The metrics whose Ricci
curvature is proportional to the metric itself are nothing but what we are below

going to call Einstein metrics. And we will study them in quite some detail in C,
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because it is the sole notion of a best metric which seems really systematically work-
able today in general dimensions.

In dimension 3 partial (but strong) results are obtained in (Anderson,
1996a) and (Anderson, 1996b), which pave the way to the Thurston geometrization
conjecture.

+

Three other functionals are more geometric (in fact two of them are curva-
ture-free) and look interesting: they are the minimal volume, the systolic volume
for some very special manifolds (see TOP. 1.E) and the embolic volume. The mini-
mal volume of a compact differentiable manifold is the infimum of the volumes of
all Riemannian metrics on this manifold which have a sectional curvature between
-1 and 1. This is equivalent to looking at the infimum of sup |K| under the condi-
tion volume = 1. This is another way of looking at the “least curved” condition.
The embolic volume is the infimum of the volumes under the condition that the in-
jectivity radius is equal to 7 .

Despite such simple definitions results on them are so few that we discard
them here and defer a more detailed account of MinVol to TOP. 1.D. For the sys-
tolic story, which is quite interesting in itself, see TOP. 1.E. Finally for the embolic
story some recent references are (Croke, 1988) and (Grove, Petersen & Wu, 1990-
1991) (see their Theorem C), see also I.C.1 and TOP. 1.C. The difficulty of studying
these invariants can be illustrated just by pointing out that it is already beyond our
knowledge whether they are zero or not. This is a place where Chern’s integral for-
mulas are useful but not enough (see 0.E and [.C.1).

However we mention here the main result of (Besson, Courtois & Gallot,
1995a) in V.B. One of its many byproducts is the fact that the best metric is known
on compact space forms of negative curvature (rank 1): it is unique and is precisely
this locally symmetric metric. This is true for more than only the minimal volume,
see for this result V.B and TOP. 1.D.

In the case of a manifold which admits a metric of a given sign, a best me-
tric would naturally be one with the best pinching. Except the cases met above in
[.A.2 no answer to this question exists today and we already explained the difficul-
ties at the end of 1.B.1.

Finally, in (Nabutovsky & Weinberger, 1998) the critical diameters are stu-
died under a bounded curvature, and it is shown that the space of Riemannian me-
trics on a given manifold can be a very subtle object.

C. The case of Einstein manifolds

We now turn to Einstein manifolds. The story started with (Hilbert, 1915).
There, motivated by theoretical physics, the author computed the directional deri-
vative in the space of all Riemannian metrics of the total scalar curvature

F(g) = /M scal(g) dg.
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Without normalization, critical implies for g that Ricci(g) = 0, which is too
restrictive, see below. So we normalize the volume to some given constant (which
does not matter) and get the condition “Ricci(g) is proportional to g
Riccei(g) = Laé(—gl g (this is nothing but the classical technique of the Lagrange multi-
plier). Using the Bianchi identity the proportionality function is necessarily con-
stant as soon as d > 3. Such a metric will be called Einstein. In dimension 3 this
condition is too strong, it implies constant sectional curvature, so we discard this
dimension from now on. In dimension 4, we saw that this is equivalent to minimiz-
ing the total square norm of the full curvature tensor. Note that Einstein manifolds
come into the picture automatically when one looks at Ricci pinching, see the end
of LA 4.

The fact that the equation defining Einstein metrics is a PDE (because the
number of parameters is d(d + 1)/2 on both sides) gives rise to great hope, as does
the fact that we have a smooth functional. However there is today no way of using
any available kind of Morse theory to get some form of existence (of critical
points). In fact experts are divided, some think it cannot because of an interval
structure nature. Some others think a tool like Floer homology (see (Hofer,
Taubes, Weinstein & Zehnder, 1995)) could help. See the end of I.B.1, Besse’s book
and below for more comments, and (Nabutovsky, 1996b), (Nabutovsky & Wein-
berger, 1997).

This Hilbert functional was considered from a new perspective in (Connes,
1995-6), where it appeared as the (d — 2)-volume of the manifold, in particular an
“area” in dimension 4.

++

Digression. The Yamabe Problem. We will here give a short historical di-
gression on a topic which is completely omitted elsewhere in this survey, except
here and indirectly in TOP. 8. This is the Yamabe problem. In (Yamabe, 1960) the
author tried, starting with any Riemannian metric g, to deform it conformally into
an f.g of constant scalar curvature, where f is a positive numerical function. It
seems probable that the author’s secret hope was to attack the Poincaré conjecture
in dimension 3 (compare this with Hamilton’s result in 1.B.2). Going further in di-
mension 3 is the content of (Anderson, 1997) and references therein.

The problem that needed solving was a non-linear elliptic equation in the
unknown conformity function /. This question from Analysis is extremely hard
and has been studied extensively. The difficulty is that the equation is of the non-
linear type Af + ﬁ[_il)scal = f(4+2)/(d=2) " where the unknown conformity function
J/ comes with the “limit” exponent for the Sobolev embedding. For larger or smal-
ler exponents standard results are available but they are of no use here. Today the
Yamabe problem is almost completely understood thanks to basic contributions by
Aubin and Schoen. We refer to the surveys (Besse, 1987), 4.D, (Hebey, 1993), (He-
bey, 1995) and the references therein. We just note that the set of metrics of con-
stant scalar curvature is always an infinite dimensional space as soon as d > 2 and
this is definitely not what we want when looking only for a “best” metric, see also
(Anderson, 1997).
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++

We now come back to Einstein manifolds. What is the state of affairs today
concerning the existence, uniqueness and/or moduli of Einstein metrics? This is a
whole subject in itself; the book (Besse 1987) is devoted entirely to it and was up-
to-date at that time. The introduction (Chapter 0) gives a good resumé. Since 1987
a few papers have appeared on the subject, very recent ones are (Eschenburg &
Wang, 1997), (Boyer, Galicki & Mann, 1994a), (Boyer, Galicki, Mann & Rees,
1997) and the survey (Anderson, 1994). We now give very briefly the main results
and the main open questions.

In dimension 4 there are some topological obstructions. The first type uses
the Allendoerfer-Weil formula, which yields among other conditions the nonnega-
tivity of the Euler characteristic x seen above in B. With a more refined analysis of
the integrand one can obtain the inequality x (/) > %|T(M )| between the charac-
teristic x and the signature 7: (Thorpe, 1969), see Chapter 6 of (Besse, 1987) for
more. The second type uses the minimal volume of Gromov and its inequality with
the simplicial volume (see TOP. 1.D). Combining both techniques one can see that
in some sense “many 4-dimensional manifolds do not admit any Einstein metric”:
see (Sambusetti, 1996), which uses also techniques from (Besson, Courtois & Gal-
lot, 1995a), and (LeBrun, 1996).

On the other hand, the most baffling open question is that, starting with
dimension 5, no obstruction to the existence of an Einstein metric is known on any
compact manifold. This means that it is not out of the question that any compact
differentiable manifold (with this dimensional condition) can be endowed with an
Einstein metric. It seems that experts have only one guess today, namely that most
manifolds (4 > 5) will admit Einstein metrics but with reasonable singularities:
(Anderson, 1994).

We turn now to the existing known examples and results. First come the
locally irreducible symmetric spaces (in particular generalized space forms). The
reason is that the isotropy group is irreducible and cannot have, up to a scalar,
more than one invariant quadratic form: use diagonalization. For homogenous but
non-symmetric spaces, even though in theory the curvature is algebraically compu-
table, it can be a very subtle question to find Einstein homogeneous metrics, and it
can even be proved to be impossible in some cases. For more on this, see a series of
papers by Wang and Ziller quoted in (Besse, 1987) and (Wang, 1992). Needless to
say that we are far from a classification of homogeneous Einstein manifolds. A re-
cent text is (Kowalski & Vlasek, 1993), which in particular gives a complete classifi-
cation of the Einstein and homogeneous metrics on the Aloff-Wallach spaces W), 4;
we met those examples in I.B.1.

Then comes quite a large variety of non-homogenous examples, obtained
by different techniques: spaces which have a group action and are “more or less al-
most homogeneous”, fiber bundles of various types, twistor theory (see TOP. 6), 3-
Sasakian manifolds (TOP. 3.A). Today examples are becoming more and more nu-
merous. We only give some references to texts that appeared after Besse’s book.
The very recent (Bohm, 1996) is important in two respects. First it gives among
others non-standard Einstein metrics on even-dimensional spheres. The technique
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uses cohomogeneity-one-manifolds and the equations of (Bérard Bergery, 1982) for
obtaining an Einstein metric. Secondly, it presents examples of infinite sequences of
Einstein metrics on given compact manifolds with fixed volume which do not con-
verge to any metric, and this shows that the Palais-Smale “condition C” (Palais &
Smale, 1964) is not satisfied in general for Riemannian metrics. For this condition
see (Jost, 1995) and see other types of such “counterexamples” in 1.B.1. Before, in
(Jensen, 1973), non-standard homogeneous Einstein metrics were constructed on
the S*"+3-spheres.

The subject of uniqueness and classification is still in its infancy. The above
examples show the complexity of the topic. We meet here our favourite paradox:
one knows that uniqueness holds for the compact space forms which are quotients
of Hyp* and Hyp CP2. For the latter it is proved in (LeBrun, 1995), where the tools
used are the new Witten invariants (TOP. 8). For Hyp* it is a byproduct of the
strong result of (Besson, Courtois & Gallot, 1995a), which is quoted in V.B and in
TOP. 1.D. An exceptional case is that of K3-surfaces. Using ingredients of various
horizons and the Kihler facts just below, one has a complete description of all the
Ricci flat metrics on them: see details in (Besse, 1987), 12. K .

An interesting question is that of the signs of Einstein manifolds, i.e. the
sign of the proportionality factor (i.e. of the scalar curvature). For example it is
plus, zero or minus in the case of space forms of positive, zero and negative curva-
ture respectively. In (Catanese & LeBrun, 1998) one finds examples of 4k-dimen-
sional manifolds which admit at the same time two Einstein metrics, one with posi-
tive and one with negative sign. In fact each one is a Kéhlerian manifold in two
completely different ways and one applies the results just below.

Non-compact Einstein manifolds are also studied, see among others (He-
ber, 1997), (Hitchin, 1995) and (Lanzendorf, 1997).

+

We now turn to the only domain where things are very satisfactory, namely
for Kiihler manifolds (see TOP. 3.B). Moreover this topic turned out to be impor-
tant in mathematical physics. The basic remark is the following: using the complex
structure one can transform the symmetric differential form which is the Ricci cur-
vature into an exterior form (of degree 2) which is automatically closed. It was part
of mathematical folklore in the 50’s that, by Chern formulas and the de Rham the-
orem, this form belongs to the first Chern class of the Kihler manifold under con-
sideration. So we have an immediate necessary condition for a Kdhler manifold to
admit any Einstein metric: the first Chern class should have some de Rham repre-
sentative 2-form which (via the complex structure) is either zero, positive definite
or negative definite. This condition is not all that strong. Many algebraic manifolds
satisfy it and it can be checked by using techniques that are standard today (see e.g.
(Hirzeburch, 1966), (Griffiths & Harris, 1978)), which enable one to compute their
Chern classes (see TOP. 3.B).

We explain briefly here why things are “workable” for Kahler manifolds.
In fact the Kéhler structure g yields an exterior closed 2-form w of complex type
(1,1) and Kaébhler variations in the same cohomology class are easily seen to be ne-
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cessarily of the form w +v/—18df, where f is a numerical function on the mani-
fold. The partial differential equation needed for f to yield an Einstein metric is of
Monge-Ampére type and then hopefully solvable.

This led Calabi to conjecture in the pioneer paper (Calabi, 1954) that as
soon as one has insured that the Chern class is zero or definite, one can change the
initial Kéhler metric into a new one which is finally Einstein. More even: in the ne-
gative case one has uniqueness. It was only in (Aubin, 1970) that any progress was
made and in (Aubin, 1976) and (Yau, 1978) that the following was proven. Aubin
proved the existence in the negative case, Yau proved it in the zero and the negative
case. Then in (Futaki, 1983) an obstruction was found for the positive case. In
(Tian, 1990) one has a definite answer for complex surfaces (d = 4): necessary and
sufficient conditions to get Einstein Kahler metrics of the positive type. For larger
dimensions, the latest result is (Real, 1996). A conjecture is formulated in (Tian,
1996), see also (Tian, 1997) and (Bando & Mabuchi, 1987). For the zero case and a
proof following the Ricci flow see (Cao, 1985).

Calabi-Yau existence results are extremely useful. First to prove the unique-
ness of the Kahler structure on CP" (for any n): (Yau, 1977). Besides Yau’s exis-
tence result one needs the profound text (Hirzebruch & Kodaira, 1957). For CP2
one even has uniqueness of the complex structure. Another application is the in-
equality ¢Z — 3¢, < 0 between the first two Chern classes of any Kéhler manifold.
For this and more see 11.B in (Besse, 1987). A still mysterious application is the
fact that, for a Kéhler manifold, the vanishing of the two first Chern classes ¢; and
¢y implies that the manifold can be made flat and in particular is a finite quotient
of a torus: see the references and comments on page 67 of (Bourguignon, 1993).
The mystery lies in the fact that nobody knows a direct proof.

To stay in the Kahler Einstein domain, we mention (Hulin, 1995). The
author used the very interesting notion of diastasis introduced by Calabi in 1953,
see the expository text (Berger, 1993b) and TOP. 3.B. She went on to prove some
very strong results for the complex submanifolds of CP" which are Einstein. The
diastasis has been rarely used up to now but it might still have a significant role to
play in the future.

<+

Moduli of Einstein metrics are not bad, in the sense that we know they are
always finite-dimensional and real analytic stratified spaces. But they are known
explicitly only in extremely few cases, the most spectacular being that of K3-sur-
faces seen just above. For all this see Chapter 12 of (Besse, 1987). In (Anderson,
1992a) the moduli space of Einstein metrics for any compact manifold of dimen-
sion 4 is studied thoroughly for the three possible signs. Special attention is given
to the closure, here orbifolds (TOP. 9) appear and in particular the above results
for K3-surfaces are made more precise and (algebraic) surfaces with singularities
appear on the scene.

Of special interest and completely mysterious is the case of Ricci flat me-
trics (the zero sign case), which one can call the harmonic manifolds in view of the
formula in the digressions in 1. COMMENTS on I (not to be confounded with
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those in II.B). For all examples known today the holonomy group is a special one,
namely SU(n) and Sp(n) in the Kdhler case, then G, and Spin(7), which are very
special, see TOP. 3.

Some final facts on Einstein manifolds: first of all they are, in a sense to be
made more precise, always real analytic. This is a good example of an application
of harmonic coordinates, see Section 5.E of (Besse, 1987) and the references there-
in. Secondly, many results more recent than 1987 exist on pinching and conver-
gence for Einstein manifolds. Most of these are contained in the texts mentioned in
the corresponding sections: the end of I.A.2 and I.C.1, 2. Non-compact Ricci flat
manifolds are important and are studied exhaustively today, see TOP. 5 and the
recent text (Cheeger & Tian, 1994).

In dimension 4 there is a notion weaker than that of Einstein, namely that
of anti-self-duality. See the entire Chapter 13 of (Besse, 1987) and complement it
with (Donaldson & Kronheimer, 1996), (Donaldson, 1996) and the expository pa-
pers (Gauduchon, 1992/93) or (Taubes, 1992). For the proof of Taubes’ result spe-
cial norms are introduced which are close to the various global norms we men-
tioned in different places in 1.

D. Some topological closures

We come back to a strict interpretation of the title of the present section. In
the space of all Riemannian metrics on a given M one looks, in the spirit of I.C.2,
for the closure of the various subsets defined by some curvature condition. This is
surveyed systematically in (Lohkamp, 1992). We just mention a few cases. The no-
tations are obvious for those spaces, e.g. C®-closure (Ricci=*(M)). Following
(Gromov, Lafontaine & Pansu, 1981) the RCT theorems imply the strongest possi-
ble closure: dg_p — closure K2¥(M)) = K=X(M) and the same is true for the case
< k. This implies any desired C*-smoothness. For a lower Ricci bound it is an open
problem for dg_p but true for C°. For a lower scalar curvature bound things are a
complete mystery, see I.B.3. For an upper bound, Lohkamp’s result in I.B.5 can be
written as C %~ closure(RicciS®*(M)) ={all metrics on M}. See (Gromov, 1991b),
(Gromov, 1996) and also TOP. 9.

IV The Spectrum, the Eigenfunctions

Recall that on a Riemannian manifold we have a canonical differential op-
erator A of second order operating on functions, namely just take the trace (with
respect to the metric) of the Hessian (the second covariant derivative):

Af = —trace,(Hess f). Expressing this with the star-operator on differential forms
(see TOP. 6.A) we get just A = — xd = d. At the center m of normal coordinates
this is written as Af(m) = — 3., danZ (m). The Laplacian of Riemannian mani-

folds controls for them first the heat equation Af = — %1,, where f(m,t) is the
. . . 2

temperature at the point m at time ¢. Also the wave equation Af = — ZT{: the wave

equation for the height f(m, r) of “water” after time ¢ at the point m, if you consider

(M, g) more or less abstractly as a thin sheet of water. The equivalent language of
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geometrical optics may be preferred to the acoustic and/or tidal language and one
may talk about the propagation of /ight. The wave equation can also be considered
as describing (M, g) as an abstract vibrating object. Finally the Schrédinger equation
uses complex valued functions. It is written as #>. A f = ih % (where i = v/—1 and his
the Planck constant). Very close in fact to the heat equation is Brownian motion on
Riemannian manifolds, whose “propagation speed is the Ricci curvature”. We can
quote (Stroock, 1996), the text by Elworthy in (Diaconis, Elworthy, Nelson, Papani-
colaou & Varadhan, 1985-87) and (Elworthy, 1988), (Pinsky, 1989), (Pinsky, 1990).

Despite its importance, the spectrum of Riemannian manifolds (“spec-
trum” is a short-cut for the study of the eigenvalues and the eigenfunctions of the
operator A) does not seem to have interested mathematicians much before the
texts (Minakshisundaram & Pleijel, 1949) and (Avakumovich, 1956). Some excep-
tions are the spherical harmonics and the computation of the spectrum of the
complex projective space in (Cartan, 1931). Add the result of (Lichnerowicz,
1958) on A;, which will be commented on at the very end of this section. In brief,
thanks to A, one has on every compact Riemannian manifold a well-defined
Fourier analysis and, with the wave equation and the hard work of Hérmander, a
Fourier transform. This is one reason, among others, for the success of the notion
of Riemannian manifolds.

There are some books devoted to the topic. The first one was (Berger, Gau-
duchon & Mazet, 1971); some people still like it because it is a quick introduction
to the topic. (Buser, 1992) is exhaustive for the case of Riemann surfaces (namely
the curvature is a negative constant), (Chavel, 1984) and (Chavel, 1993) cover a
good part of the “classical” material, then (Bérard, 1986), which, besides many
things, contains a systematic bibliography, is up-to-date but only up until 1982, see
also (Colin de Verdiére, 1992). The books (Gilkey, 1995) and (Berline, Getzler &
Vergne, 1992) concern the case of general elliptic operators, especially in connec-
tion with TOP. 6. (Hormander, 1985) encompasses many things.

The isospectral problem was first around in the 60’s, when the question of
isospectrality was raised by Leon Green and soon answered in the negative in (Mil-
nor, 1964), see (Buser, 1996) for a historical account. This paper launched a lot of
activity to find examples of isospectral (non-isometric) manifolds, see below. But
the paper that really triggered research was (McKean & Singer, 1967). The problem
was to find out what information it is really possible to extract from the asymptotic
expansion of the heat kernel obtained in (Minakshisundaram, 1953), see below.
Apparently not much is extractable in a naive sense, but with the help of (Patodi,
1971) and the following paper in the same journal, people managed to link this with
the already existing Atiyah-Singer index theorem. Then one got a complete set of
results. The discovery of the n-invariant, see TOP. 6.A, was quite special, the La-
placian was, however, needed not only on functions but also on all exterior forms.
This, in turn, triggered the development of the heat equation technique for various
bundles over manifolds, as well as spinor bundles. We will not elaborate on this,
instead we refer the reader to the books (Gilkey, 1995), (Berline, Getzler & Vergne,
1992) and (Lawson & Michelsohn, 1989). We met spinors in Section 1.B.3 when the
case of positive scalar curvature was investigated, see TOP. 6 for more. The techni-
ques used for the above combine Analysis and topology.
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We now come back down to the manifold itself and to the most natural
question: describe the behavior of the spectrum as a subset of R under various con-
ditions. First in general, then under some geometric conditions (like curvature, vo-
lume, diameter), finally as linked with the geodesic flow, in particular with ergodic
theory for the geodesic flow and periodic geodesics. We will describe now what is
roughly the state of affairs today.

Already in (Minakshisundaram & Pleijel, 1949), where a parametrix and
the ¢-function of the spectrum ¢(s) = 3, A~ were used, one knew that the spec-
trum has an asymptotic behavior whose first term is given by the dimension and
the total volume Vol(g) of the manifold:

N()\) = number of eigenvalues smaller than X
~ro oo WVol(g)Ad/z—i—o()\d/z)
(where $(d) is the volume of the ball of radius 1 in RY)

This is the so-called Weyl’s estimate, the name comes from (Weyl, 1911) (or
his Complete Works), where this estimate is obtained for plane domains with
boundary by cutting them into smaller and smaller pieces and using the minimax
principle, see an exposition in III. C of (Bérard, 1986). But the second term of the
asymptotic expansion is a completely different story, which we will address now.

In (Minakshisundaram, 1953) the so-called heat kernel

K(x,p,0) = ) _exp(=Xit)i(x) 2;()

(where the )\; are the eigenvalues and the ®; are corresponding orthonormalized ei-
genfunctions) was constructed in a way which yields immediately, when ¢ tends to
zero, an asymptotic expansion of the following form:

IR o BN
K(x,x,1) ) (k; i (x)¢ )

The numerical functions u(x) are given by universal (but not explicit) for-
mulas involving, thanks to Elie Cartan’s philosophy of normal coordinates (0.B),
only the curvature tensor of (M, g) and its covariant derivatives at x. In particular

1 2
Xi:exp(—)\,-t) ~ioo W(Vol(g) +Uit+Ust* +...)

where Ux = [, uk(x).

This gave rise to great hope since the knowledge of the spectrum is equiva-
lent to that of the series >, exp(—\;t) (always converging for ¢ > 0). Sadly enough
these invariants Uy are of almost no direct use, except the first one which is the
volume and the second one only in dimension 2. Indeed u; (x) = %scal(x) and then
the formula of the Gauss-Bonnet theorem (0.E) yields the Euler-Poincaré charac-
teristic as a function of the spectrum. To recognize the weakness of the Uy in gener-
al, think of manifolds of constant curvature (space forms, e.g. flat manifolds). They
will, by their universality, all have the same Uy for every k as soon as the volume is
known. And the volume is certainly not enough to recover the manifold up to iso-
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metry (except in dimension 1 — it is already insufficient in dimension 2); see also
Lohkamp’s result below. However, although it is not of too much direct use, the
question of what happens in higher dimensions was in fact a tremendous incentive.
For example a query of the mid 60’s was whether Uy is a topological invariant for
every manifold of dimension d = 2k. This turned out to be false but see in TOP. 6
what other results one arrived at while working on this query. It is fair to say that
the asymptotic expansion and its universal curvature form are of basic use in the
finiteness and compactness results to be seen soon below.

Finally we remark that it is hard to extract any topological information
from the spectrum (on functions) (except when the dimension is 2). To our knowl-
edge there is no connection between the spectrum (only on functions) and the to-
pology. But the story is different when using the spectrum of objects more general
than functions, in particular all exterior forms, see TOP. 6. One reason for the case
of dimension 2 being special is that the spectrum of functions determines the spec-
trum of all differential forms by duality (just use Hodge theory, 0.D and add the
first Betti number for harmonic 1-forms).

If one knows the asymptotic behavior of the heat kernel for pairs of points,
one can recover the metric by the formula in (Varadhan, 1967): lim,_¢ log

K(x,y,1) = —ﬁ(;i). This formula is valid for points close enough, but at the cut-
locus (TOP. 4) things explode, typically for antipodal points on the sphere: see
(Malliavin & Stroock, 1996). This formula does not seem to be useful for the var-
ious problems we met.

+

Coming back now to the asymptotic value of N()), a classical theorem of
Analysis yields the Weyl asymptotic from the first term in that of 3, exp(—\t),
but only with a “small 0”. Note here that }_,exp(—\;?) is, as we will see, “practi-
cally weaker” (when using only its asymptotic expansion in ¢ near zero) than the
classical ¢-function {(s) = Y a0 A" In (Avakumovich, 1956) (only for dimension
three) and (Hormander, 1968) in general (in fact for any elliptic operator with the
obvious modifications in the powers involved) it was shown that the next order
term is in fact a “capital 0”: O(A\“~1)/2), This is the best possible result as seen on
standard spheres. This last result will control the gaps in the spectrum: they cannot
be too large, there is some regularity. But Hérmander’s result yielded only a non-
explicit O(A~1/2) it was only in (Gromov, 1996) that an explicit control on the
gaps in terms of the geometry was first obtained. Gromov needs upper and lower
bounds for the curvature and a lower bound for the injectivity radius and the di-
mension needs to be odd. This is not surprising in view of 1.C.2. The proof is extre-
mely involved and indirect, this is in contrast to Hormander’s proof, based on the
wave equation. The question of obtaining the desired control with the wave equa-
tion is still open today. Even in the case of flat tori a fine study of the gaps is extre-
mely subtle, see (Sarnak, 1997b).

It is important to realize that an a-priori-control of the gaps requires some
geometric conditions as (Colin de Verdiére, 1987) proved the following basic fact:
given any manifold of dimension three or more, one can always find on it a metric
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for which the beginning of the spectrum is any finite given subset of R* (including
any desired multiplicities). In (Lohkamp, 1996b) much more is done: any finite be-
ginning of the spectrum can be given, but with strong extra conditions, like nega-
tive Ricci curvature but also the dramatic killing of the Uy above: one realizes any
infinite “spectrum” by successive finite exhausting parts such that the so obtained
sequence of metrics has all the Uy, tending to +oco and at the same time all the
Uskes1 tending to —oo.

This does not touch the question of finding sufficient conditions for a se-
quence to be the spectrum of some manifold, the question is studied, to our knowl-
edge, only in (Omori, 1983).

<+

In the spirit of control theory like in the digression in I.A.2, one can expect
to be able to get both upper and lower bounds for the eigenvalues from various
conditions on the geometric invariants of the metric. There is a very satisfying an-
swer which started with (Gromov, 1980) and was finished in (Bérard, Besson &
Gallot, 1985). More references are to be found in the book (Bérard, 1986). Upper
bounds are obtained using only the volume and a lower bound for the Ricci curva-
ture. Lower bounds require a lower bound for the Ricci curvature and the dia-
meter. Examples show that this is optimal as far as the ingredients are concerned,
only the explicit constants leave room for improvement. Both bounds are in terms
of A4 in agreement with Weyl’s asymptotic. For the first eigenvalue \; this shar-
pens considerably the preceding “classical” inequalities of Lichnerowicz and Chee-
ger, see the very end of this chapter.

The proof uses a function-symmetrization of the heat kernel, in order to
compare it with the heat kernel of the comparison space of constant curvature. On a
simple function, this technique was introduced in (Faber, 1923) and (Krahn, 1924).
So in fact the result of (Bérard, Besson & Gallot, 1985) yields much more, since it
controls K(x, x, t) at every point and for all ¢. Another basic tool for the proof is the
control of isoperimetric inequalities in a Riemannian manifold, which was achieved
also in (Bérard, Besson & Gallot, 1985), controlling the so-called “isoperimetric pro-
file” with the help of only a lower bound for the Ricci curvature and the diameter.
These ingredients are optimal, only the best constants still need to be found. For
more on the isoperimetric profile, see TOP. 1.B. For surfaces, there are relations with
the area, this started with (Hersch, 1970), see now (Bér, 1997).

In the spirit of Chapter I the work (Gallot, 1987) improved upon the pre-
ceding results on the eigenvalues by replacing uniform lower bounds on the Ricci
curvature with integral norms. The basic tool is still the isoperimetric profile and
the work consists in extending the control of this using only integral norms on the
Ricci curvature, see TOP. 1.

<+

The link with periodic geodesics came first in (Colin de Verdiére, 1973). One
uses here the heat equation with complex time, which is the Schrédinger equation in
disguise. But the simpler and more essential wave equation explanation appeared
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just after in (Chazarain, 1974). Immediately afterwards came (Duistermaat & Guil-
lemin, 1975). The first essential link is the following: the distribution
> k>0 €xp(Fiv/Ax 1) (this is luckily never a converging series, unlike 3", exp(—A¢?))
has a singular support contained in the set £ of the lengths of the periodic geodesics
(including 0). A very caricatural heuristic explanation is that the waves emanating
from a periodic geodesic with a good (bad) frequency in 27N /length will give birth
to some kind of resonance (a tidal wave). The explicit solutions for the KP” are in
(Bunke & Olbrich, 1994). If the set £ is discrete and if the sets of periodic geodesics
of a given length are “well organized”, then there is a Poisson type formula:
im0 exp(£ivAc ) = 3, . T, where the T} are distributions with a singularity in
L which can described by an asymptotic expansion, see more in (Chazarain, 1974).

This is a result in just one direction. In the special case of space forms, one
gets much more with the help of Selberg’s trace formula: see (Iwaniec, 1975) and
(Hehjal, 1976). But in general it is only in dimension 2 that results are very strong,
see (Huber, 1961). The reason is that one needs to know not only the length of the
periodic geodesic, but also what happens when one makes one turn around it. This
involves two things: the Poincaré return map and the holonomy (parallel trans-
port). Recently some progress in higher dimensions was made in (Guillemin, 1993),
see also (Guillemin, 1996). There it is proved that the spectrum completely deter-
mines the symplectic invariants of the Birkhoff canonical form for the Poincaré
map. A spectacular result, even though it does not solve the problem for manifolds
all of whose geodesics are closed (see V.B), tells us that this property is equivalent
to the fact that the eigenvalues are concentrated in intervals in arithmetic progres-
sion: (Colin de Verdiere, 1979).

There are many links between the spectrum (for functions) and the length
spectrum (the set of the lengths of all periodic geodesics). The belief which was ex-
pressed in (Balian & Bloch, 1972) is that the oscillations in the eigenvalue density in
the spectrum are related in some sense to the length spectrum. The jumps could be
understood, for example, roughly as deviations from Weyl’s asymptotic law.

An interesting link between the spectrum and the periodic geodesics is the
notion of quasi-modes. The story started in (Babich & Lazutkin, 1967) and is far
from finished today, instead it remains quite mysterious, see (Colin de Verdiéere,
1977). Briefly speaking, one can associate with a given periodic geodesic (satisfying
certain conditions) a series of numbers which approach quite a lot of eigenvalues.
The idea of the proof is to build up approximate solutions of the wave equation
which will propagate along the geodesic. It is natural to ask whether there are many
cases for which one can obtain the whole spectrum in that way. The answer is that
it is an exception and happens only when the geodesic flow is integrable. In general
the hyperbolic zones between the KAM tori will yield a contradiction, the entire
book (Lazutkin, 1993) is devoted to this topic.

*
Those were direct problems: One knows the manifolds and some of its in-

variants. What can one say about the spectrum? Inverse problems are of the follow-
ing form: one knows various things about the spectrum — what can one recover of
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the metric? This can also be seen as a “recognition” problem. The book (Andersson
& Lapidus, 1997) can be used as a survey.

The first question is that of uniqueness: are two isospectral manifolds neces-
sarily isometric? The first counter-example appeared in (Milnor, 1964): two flat tori
of dimension 16, quotients of R'® by two lattices famous in Number Theory: Eq
and Eg + Fg. Further questions are the following ones: Is the set of isospectral me-
trics compact? Are generic Riemannian manifolds determined by their spectrum?
Concerning an eventual compactness of isospectral sets there are today only partial
results in dimensions 2, 3 and 4: (Osgood, Phillips & Sarnak, 1989), (Anderson,
1991) and (Brooks, Perry & Petersen, 1994). For topological finiteness of isospec-
tral sets, see (Brooks, Perry & Petersen, 1990) and (Brooks, Perry & Petersen,
1992). One introduces the ¢-function: ((s) = 3 x0 A" and one can manage by
Analysis to define its derivative ¢’(0) at the origin. This value is linked to a suitably
defined determinant of the spectrum, which is formally defined as the infinite pro-
duct []; Ai. Note that the determinant is studied as a functional when trying to ob-
tain extremal metrics in (Sarnak, 1997a), see III.A. The curvature nature of the
asymptotic expansion of the heat kernel is also of basic use. The determinant is also
fundamental in (Osgood, Phillips & Sarnak, 1988), where the classical conformal
representation theorem for compact surfaces is proved in a Riemannian way using
the Ricci flow (see 0.F and (Chow, 1991) for the final proof). For Riemann surfaces
(surfaces of constant curvature) there are beautiful explicit formulas relating this
determinant to the geometry of the surface, see (Pollicott & Rocha, 1997).

The generic situation is completely open today, except within the very re-
stricted class of Riemann surfaces. In dimension 2 the conjecture is the finiteness of
isospectral sets: (Sarnak, 1997c). The subject of uniqueness is especially irritating,
one can prove it today only for RP?, 2-dimensional flat tori and spheres up to di-
mension 6: (Tanno, 1980). The proof uses only Minakshisundaram’s asymptotic ex-
pansion of the heat kernel, which is too weak when the dimension gets large.

For isospectrality the results extend from 1964 up until today with still
much ongoing research. The main aim is to find more and more examples of less
and less geometrically special isospectral manifolds, and even one-parameter iso-
spectral deformations. A survey is (Bérard, 1989). Important intermediate texts
were (Vignéras, 1980b), (Sunada, 1985). See (Gordon & Mao, 1994), (Gordon,
1994), (Pesce, 1992), (Gornet, 1998) and the references therein. Two major ques-
tions remain: Are generic Riemannian manifolds spectrally isolated (solitary)? Are
isospectral manifolds of only finite topological type possible?

For some special cases one has finiteness or non-deformability results: for
Riemann surfaces see Chapter 13 of (Buser, 1992), for “solitary surfaces” (Buser,
1996) and for negatively curved surfaces (Guillemin & Kazhdan, 1980). This last
text puts together the fact seen above that the spectrum determines the length of
periodic geodesics and the fact that negative curvature implies a lot of well distribu-
ted periodic geodesics. Then one uses a Fourier analysis of the derivative of the me-
tric as a function on the unit tangent bundle. This beautiful technique does not
seem to have been used much since.

This is the place to remark that the wave equation technique used in these
results combines both microlocal analysis (which is essentially Analysis but in the
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tangent (phase) bundle) and symplectic geometry. Strictly speaking, the symplectic
structure is defined on the cotangent bundle 7*M; on UM one has only what is
called a contact structure and more precisely a Sasakian structure, see definition
2.1 in (Boyer, Galicki & Mann, 1994a).

+

Another important and natural question is to know whether the ergodicity
(V.B) of the geodesic flow does or does not imply a very good regularity for both
the spectrum and the eigenfunctions. Is the spectrum very well distributed? For the
sake of simplicity let us look only at the case of dimension 2 because then Weyl’s
asymptotic is linear: here d/2 = 2/2 = 1. One then searches for a probabilistic re-
sult on the variance of the quantities [N (A + L) — N(\) — L], suitably averaged in
Aand L.

It was conjectured in (Pandey, Bohigas & Giannoni, 1984) that the spec-
trum is that of a GOE (i.e. a Gaussian random symmetric matrix) when the geode-
sic flow is ergodic. Today there is no theoretical general answer. There are many
numerical experiments by theoretical physicists, see also (Lazutkin, 1993). At the
other end stands the integrable case, see (Sarnak, 1997b).

From some numerical experiments it seems that the distribution could be
other than GOE for some arithmetic Riemann surfaces. This was mathematically
proved in (Luo & Sarnak, 1996). However the geodesic flow is ergodic. So the belief
today is that the distribution will still be GOE for generic Riemann surfaces. To
explain heuristically why arithmetic forms form an exception, one remembers what
was said above, namely that the jumps in the spectrum are linked with the structure
of the length spectrum. But precisely the length spectrum of arithmetic forms is
very “degenerate” in the sense that the lengths are given (after normalization) by
integers. The asymptotic exponential behaviour (see V.A) then forces all these peri-
odic geodesics to have very large multiplicities, hence the huge jumps in the length
spectrum. Relevant texts are (Sarnak, 1995), (Luo & Sarnak , 1995), (Luo & Sar-
nak, 1996), (Rudnick & Sarnak, 1996) and the references therein.

+

Here is another question: Are the nodal sets (the sets of points where the
eigenfunction vanishes) evenly distributed? Even more important is the following
one: Are the eigenfunctions evenly distributed? This has been proved up to now
only for a subset of the eigenfunctions (but, however, of full density) in (Colin de
Verdiére, 1985), which follows ideas of (Schnirelman, 1974). See also (Zelditch,
1987) and (Zelditch, 1992) for the non-compact case.

This is linked with the question of “scars™: in a numerical experiment, it
was found that the nodal lines of some surfaces were, in some sense, accumulating
along some periodic geodesics. But in (Sarnak, 1995) it is proved that this can never
happen for arithmetic space forms (for a certain definition of a scar). This is an
amusing paradox: the arithmetic case implies more regularity, at the same time it is
a less common case (in the realm of space forms). The question of what the general
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state of affairs is still divides experts, since scarring is today almost purely experi-
mental and the definition of scars varies according to authors. See (Rudnick & Sar-
nak, 1996), (Shimizu & Shudo, 1995) and the references therein.

For the volume of the nodal sets (i.e. the set of zeroes of an eigenfunction)
a conjecture by Yau in 1972 on the asymptotic behavior of their volume was par-
tially solved in (Donnelly & Fefferman, 1988). One has c(g)v/A < Vol(®;1(0)) <
d(g)V/X for every eigenfunction @, attached to the eigenvalue . The story is not
finished because today one first needs analyticity and secondly the constants c(g)
and c/(g) are not explicit, whereas one would like to have for them an explicit esti-
mation based on Riemannian invariants. See also (Donnelly & Fefferman, 1990).
The intuitive idea behind Yau’s conjecture was the following: eigenfunctions for A
behave roughly like polynomials of degree v/, which is the case for the standard
sphere, for which the eigenfunctions are the restrictions to the sphere of the harmo-
nic polynomials of the Euclidean space.

<+

Another paradox is this: first, as we will see in the next chapter, the sole
existence of periodic geodesics is an almost completely open question, whereas, at
the same time, we have some very good general results for the spectrum. But in the
case of ergodic manifolds, especially for manifolds of negative curvature and even
more specially for space forms, one has on the contrary a very good control of the
periodic geodesics: an asymptotic expansion of the length counting function, a reg-
ular distribution in space and even more so in phase. We have just seen that, in ex-
change, for these space forms both the eigenvalues and the eigenfunctions are still
not completely understood. An open problem is the question of the multiplicty of
these various lengths.

+

One may ask oneself why we are so much interested in the asymptotic prop-
erties and not in the individual eigenvalues. There is more than one reason for that.
The first one is that, most often, only asymptotic properties are accessible, recall
Colin de Verdiére’s result above: any finite part of the reals can be realized as the
beginning of the spectrum of some Riemannian manifold. Then in Physics asymp-
totics are highly significant in quantum theory. A basic question is to understand
to what extent classical and quantum mechanics are linked. The hope is that the
classical case is the limit of the quantum one when the Planck constant 4 tends to
zero in the Schrodinger equation h>.Af =i h%. One sees that this amounts to
studying what happens for large eigenvalues. The various studies connected with
this type of question are called semi-classical analysis.

<+

On the other hand it is also extremely important to have a good lower con-
trol on the first non-zero eigenvalue A; depending on the geometry. This is impor-
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tant for example in order to exclude some possible “resonances”. The first inequal-
ity came with (Lichnerowicz, 1958) (see page 135): from a positive lower bound on
the Ricci curvature one deduces a lower bound for A; which is optimal. Equality
holds only for the standard sphere (Obata, 1962). For more references see (Croke,
1982) which has more, namely a pinching type theorem. Lichnerowicz’s proof used
just Bochner’s formula given in 0.F, but his bound appears in many contexts. A
typical example of its application is that by the geometer when studying distance
functions, as in Colding’s triangle theorem seen in Section I.A.1. Thereafter came
(Cheeger, 1970b), which was concerned with the isoperimetric profile (TOP. 1.B)
and its minimum value A, over [0,%] T A > "—‘hg and had a great impact. Now the
inequality of Bérard et al. seen above is much stronger and this is not surprising in
view of Cheeger’s inequality since the authors’ estimation is obtained using their
bound for the whole isoperimetric profile A(z).

The nature of the first eigenvalue for Riemann surfaces and their locations
with respect to % is a fascinating and fertile topic, see a description in (Buser,
1992).

For other spectra and operators, see TOP. 6.A.

\" Periodic Geodesics, the Geodesic Flow

A. Periodic geodesics

Here one has some good results but also some quite irritating unsolved ques-
tions (except in the negative curvature case). A very good survey is (Bangert, 1985)
and there is the book (Klingenberg, 1978a) (Lemma 4.3.4 contains gaps, as do other
statements, but there is a Russian translation with critical annotations). See also
(Klingenberg, 1982). Note that many authors use the word “closed” instead of peri-
odic, but this can be misleading when one thinks of geodesic loops. For the point of
view of classical mechanics periodic geodesics play the role of the eigenfunctions of
the Laplacian and their length that of the eigenvalues, hence the name “length spec-
trum” below. They represent the stationary moves, the length being the energy (its
square, strictly speaking), so that their importance cannot be overestimated, they
could even replace Fourier analysis. Hadamard said that they were “a kind of coor-
dinate system in which all the other geodesics can be expressed”.

First let us state what seems reasonable to ask. One would expect first, like
for the spectrum of the Laplacian, the existence of infinitely many periodic geode-
sics on any compact manifold. This means “geometrically distinct”, one does not
consider as geometrically different two periodic geodesics which are both an itera-
tion of a common periodic one, hence having the same geometric support (for the
physicist they will be different, as having different lengths, hence different energy
levels). Secondly, assuming such an existence, what is the growth of the counting
length function? The counting function CF(L) is the number of periodic geodesics
of length smaller than L. One can expect different results depending on the geome-
try of the manifold. Note that, if the counting function shows exponential growth,
then the iterates will not appear because they make only linear contributions to the
counting function; this will be important in the continuation.
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Before giving the positive existing results, we draw attention to the fact that
it is not known today, in all generality, whether there is more than one periodic
geodesic for every manifold of dimension larger than 2 (this starts with S3), so that
the counting function question does not even make sense. Also one thing is sure
due to (Weinstein, 1970): in the general case, the periodic geodesics are not dense in
the phase space. But they could still always be dense in the manifold itself, this is an
open question.

<+

Two points will help the reader realize the difficulty of the problem and
make clear that one cannot work purely with topology, i.e. the metric enters essen-
tially into the game. First, the following surprising theorem in (Morse, 1934) shows
how weird the set of periodic geodesics can be in an apparently very nice manifold.
Given any length L (think of it as very large) there exists an £(L) > 0 with the fol-
lowing property. Assume an ellipsoid in R? has all its principal axes a; < a, <
... < aq satistying |1 — a;| < e(L), then the only periodic geodesics of length smal-
ler than L are the d(d — 1)/2 intersections with the 2-planes of coordinates. The
proof given in (Klingenberg, 1982), Lemma 3.4.7, is just a subtle play with the
Sturm-Liouville type equations for the coordinates of a geodesic. In some sense, ex-
cept a finite number of them, all the other geodesics “disappear” as the ellipsoid
approaches the sphere: they are “ghosts”. This implies that it can be expensive to
find them. Note also the paradox for the limit case, the standard sphere.

Secondly, an example due to Katok (you can find this in (Ziller, 1982), along
with many generalizations), exhibits a Finsler (today still non-symmetric) metric on
S? with only two periodic geodesics. But the free loop space structure is basically the
same for Riemannian and for Finsler metrics. For Finsler metrics see TOP. 9.

+

The initial positive fact is that, as soon as the manifold is compact, in any
non-zero free homotopy class (these are the conjugacy classes of the fundamental
group) there always exists at least one periodic geodesic: just take the shortest curve
of the class (see 0.F). So there is (again) a radical difference between the simply
connected case and the other extreme, the negative curvature one. Then we immedi-
ately have a huge number of periodic geodesics since 7, is huge. And, in the case of
space forms of negative curvature (those of rank 1), the results are beautiful. Back
in (Katok, 1988) and (Katok, 1982) and thanks to conformal representation, it was
proved that any metric on such a negative curvature surface has as many or more
periodic geodesics than the constant curvature one. More precisely the counting
function is exponential, with an exponent which is larger than that for the constant
curvature case, unless we are precisely in this case. One can paraphrase this result
by saying that these spaces are very susceptible animals, reacting very strongly: any
time you touch them, even as slightly as possible, they develop exponentially more
periodic geodesics. Inevitably “hidden” behind these statements are the various no-
tions of entropy, see the digression in B below.
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In (Besson, Courtois & Gallot 1995a) this result is generalized to any di-
mension. But today negativity of the curvature is still required. Things work for
rank 1 symmetric spaces and their products but not today for higher ranks. This
means as much suceptibility as described above. See B for details of the proof. The
exact value of CF(L) can be derived easily from the volume entropy, in the case of
constant (negative) curvature in dimension d one has lim; . %log(CF (L)) =
d—1.

The way the periodic geodesics are distributed in those manifolds of nega-
tive curvature is a subtle question but more or less understood, see (Eberlein, Ha-
menstidt & Schroeder, 1990) and Section 3 of (Besse, 1994). One fact is that an
even distribution characterizes space forms. See also for this and the next section
the expository text (Pansu, 1990/91) and Chapter 20 of the fairly complete book
(Katok & Hasselblatt, 1995).

As soon as one leaves the negative curvature realm, things are not under-
stood (except what is said in 1.B.4), for example the case of various metrics on tori
seems intractable at the moment (see however (Bangert, 1988)). Via its conjugacy
classes, the fundamental group will easily yield a counting function which is poly-
nomial of degree equal to the dimension, but it might well be that the counting
function is always exponential (at least for dimensions larger than 2).

++

A digression: Geodesics joining two points. We comment here in an indirect
way on the difficulty of obtaining periodic geodesics, and also give some interesting
results concerning the two-point case. Morse’s theorem above on ellipsoids was
one remark. To sense the other difficulties, let us look first before at the collection
of geodesics joining two given points p and ¢g. Morse theory is fundamental for
that. In (Serre, 1951) algebraic topology and Morse theory yielded an infinite num-
ber of geodesics between any pair of points of a compact manifold. They might be
all covering a periodic one (like for the standard sphere), but this situation is an
exception (if it is true for any pair of points, it probably implies that we are in a
manifold all of whose geodesics are periodic, see below for this); moreover this
never happens for bumpy metrics (see below). In (Morse, 1934) this conclusion was
obtained only for topological spheres. For more on the counting of geodesics be-
tween two points see (Mentges, 1987). The proof of Morse-Serre goes as follows.

In brief: between two given points, Morse theory (see (Klingenberg, 1978a))
provides at least as many geodesics of index equal to k as the kth Betti number
bi(Q) of the space  of all curves in the manifold joining these two points (to save
time we will completely skip the problem of which field the Betti numbers are con-
sidered on, see the references for this); this space of curves is denoted by the fixed
letter  because it is the same as the space of loops pointed at some (any) given
point. The index is the number of conjugate points between the two extremities but
it is of no consequence here. Now Serre’s contribution was that for any compact
manifold there is an infinite number of non-zero b4(f2). A minor technical point
here is that Morse theory requires the two points to be not conjugate (along any
geodesic joining them). Two points are said to be conjugate along a geodesic join-
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ing them if there is a non-zero Jacobi field which vanishes at both ends. This is of
no consequence at the end since, given any point, the set of its conjugate points is
of zero measure. But in the case of periodic geodesics the difficulty is inevitable and
a major one, besides the others to be explained below.

Now Morse theory is useless as it stands for the counting function, since it
gives information on critical points as a function of their index but not of their va-
lue. So there is apparently no way of using one’s knowledge of the Betti numbers of
Q to obtain some information on the counting function CF(p, ¢, L) which counts
the number of geodesics that join two points p and ¢ and are of a length smaller
than . The pioneer result is to be found in (Gromov, 1978¢c): for a Riemannian
manifold there are two positive constants a and b such that, for all points p and ¢
one has CF(p,q,L) > ad ., bi(S2).

It remains now to elicit from algebraic topologists what they know about
the b, (), and the results are wonderful, even though not completely finished. We
saw in I.B.1 that manifolds fall only into two classes, those in the first class are
called rationally hyperbolic, the others rationally elliptic. And the Betti numbers of
the rationally hyperbolic ones grow exponentially, so that one has the following
strong statement: for any metric on any rationally hyperbolic manifold and all
pairs of points p, g the counting function CF(p,q, L) grows exponentially, with an
exponent which can moreover be estimated by the Betti numbers of the loop space.
It is important to note that one is sure to count geometrically different geodesics,
since the iterates have a length growing linearly. Since hyperbolic manifolds form
the majority, say a generic manifold is hyperbolic, then one knows now that, gener-
ically in the realm of Riemannian manifolds, the counting functions CF(p,q,tL)
grow exponentially.

For manifolds that are not necessarily hyperbolic, one knows from (Ziller,
1977) for symmetric spaces and (McCleary & Ziller, 1987) for general homoge-
neous spaces, that, for any metric, the couting functions grow polynomially, but if
one wants to be sure of non-covering ones, one should subtract 1 from the degree
of the poynomial, since the coverings grow linearly. For symmetric spaces the de-
gree of the polynomial growth of the Betti numbers of the loop space is precisely
equal to the rank.

<+

There is now a completely different way of estimating the counting func-
tions, namely the formula which says that the double integral of the counting func-
tion is exponential with an exponent equal to the (topological) entropy of the geo-
desic flow: (Mané, 1997) and (Paternain & Paternain, 1994). The other entropies
will be defined below in Section B. Define the geodesic entropy hgeoq as

1
hgeod(M, g) = lim — /M ,, 18(CF(p.g; L)) dp dg,
X

where the counting function CF(p, g, L) is the number of geodesics that join p and
g and are of a length smaller than L. Then both Mané and the Paternains proved
that figeoq < hiop. The other inequality hgeod > hiop i a particular case of a more
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general inequality for smooth flows in (Przytycki, 1980). The proof of the first in-
equality is strongly Riemannian, working on the product manifold M x M. There
the set of geodesics joining two points in M becomes the set of geodesics initiating
orthogonally from the diagonal. To obtain this result, start from the middle point
of the geodesic and go an equal length in both directions. This “naive” idea was
already used in (Grove & Petersen, 1988). To get the entropy at the end one uses a
strong theorem of (Yomdin, 1987) (see also (Gromov, 1987b)), where the computa-
tion of the entropy uses differentiability. Note that /geoq is for the Riemannian ge-
ometer a definition of the entropy of absolute simplicity. It is not clear today
whether, possibly in some cases like negative curvature or genericity, one can just
use the same definition but with only two fixed points (not taking a mean value).
Or whether one can at least do so for almost all pairs of points. This is certainly not
true in general because in (Burns & Paternain, 1996) a large set of metrics was
found on S? for which the strict inequality

lim sup—Il:log(CF(p, q;L)) < hop
L—oc
holds for an open set of pairs (p, g).

Note finally that the two results are quite distinct, since there is in general
no direct link between the entropy and the topology. This is shown in (Lohkamp,
1998), where it is proved that any manifold admits some metric of positive topolo-
gical entropy. But Gromov’s result above, joined with the above formula, shows
that any metric on a rationally hyperbolic manifold necessarily has positive entro-
py: this was known already in (Paternain, 1992).

++

For obtaining periodic geodesics “a la Morse” following the scheme above,
one has to replace the space of curves joining two points by the space of all closed
curves in the manifold. Serre’s theory still formally applies but there are two diffi-
culties. The first one concerns the “non-degeneracy” of a periodic geodesic, which
here plays the role of non-conjugacy for pairs of points. This can be overcome by
considering only bumpy metrics, for which all desirable conditions are satisfied: all
periodic geodesics are non-degenerate, their lengths are different, their indices are
different, etc. For a precise definition and the result that bumpy metrics are dense
in a reasonable sense in the set of all metrics, see (Klingenberg & Takens, 1972),
(Anosov, 1983), (Klingenberg, 1978a) and (Rademacher, 1994a). Even if this diffi-
culty is overcome there is the fact that this infinite number of periodic geodesics so
obtained might be only the covering of a finite number of them! The second diffi-
culty is that the space Q* of maps from the circle S! to a manifold is much more
subtle than the set of pointed loops Q. The job to do in algebraic topology is al-
ready treacherous. Many mathematicians made wrong statements concerning the
topology of the space of closed curves in a manifold. Moreover, even a perfect
knowledge ot this topology would not be enough, in view of the Morse and Katok
examples, since the fact that one is “only” in a Finsler manifold does not make any
difference at the level of the topology of the space of closed curves.
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So the job is now to look more carefully simultaneously at Morse theory
and at the geometry of the manifold. Indices here matter a lot. One should decouple
indices and homology classes, looking at the behavior of the indices of the various
iterates of periodic geodesics. The two basic tools here are the following: first, ac-
cording to (Bott, 1956) and (Gromoll & Meyer, 1969a), the index of the iterates of
a given periodic geodesic grows linearly plus or minus a fixed constant. The second
tool is provided in (Gromov, 1978c), see also in book form (Gromov, 1998): for a
bumpy metric CF(L) > 73, .,y bk (Q2*). Here now is what can be done today: com-
pared with the above CF(p, g, L) case, the bumpiness is needed to insure the non-
degeneracy and the division by L is needed to take care of the coverings, but note
again that in the exponential case the % will be swallowed by the exponential. This
statement is improved upon in (Ballmann & Ziller, 1982) by replacing the sum by
the sup of the Betti numbers.

Now it turns out that all the growth results above for the Betti numbers of
the loop space 2 are valid also for the space Q*. So one has the following double
generic result: for a generic (namely a rationally hyperbolic) manifold and a generic
(bumpy) metric on it CF(L) grows exponentially, moreover the exponent can be
estimated with the Betti numbers of Q*. For bumpy metrics on homogeneous
spaces, in particular globally symmetric ones, one has polynomial growth. It is an
open question today whether the above results remain valid without bumpiness.

<+

We turn now to the general case, i.e. the metric is not necessarily bumpy.
Then matters become extremely difficult for the reasons explained in general above,
it is even extremely difficult to get just an infinite number of geometrically different
periodic geodesics.

The case of surfaces is not too bad, the only problem arises for the sphere,
the only simply connected compact surface, and this problem was addressed in
(Poincaré, 1905). For the real projective plane RP?, one looks at its spherical two-
sheet covering and projects to downstairs the periodic geodesics above. The pro-
blem of getting an infinite number of non-null-homotopic ones still remains open
today. Despite his efforts Poincaré could not show the existence of at least one per-
iodic geodesic. Birkhoff proved it in 1917 and this made him famous overnight. He
succeeded by using a minimax principle applied to “tapestries” of the sphere and
by reducing this infinite dimensional problem by approximating curves by broken
geodesics (using the injectivity radius). This is now a finite-dimensional story and
results can be obtained with the help of classical compactness results. This was the
birth of Morse theory. Note that the Birkhoff geodesic is not necessarily simple (i.e.
without self-intersection), see (Calabi & Cao, 1992).

In (Lusternik & Schnirelman, 1929) the existence of at least three simple
geodesics was claimed, still on S2. The topic is very treacherous. Things seem to be
OK now after many incomplete proofs, see (Taimanov, 1993) and the analysis
there. It is fair to say that the “intermediate” results gave true and important facts.
Note in recent works the use of a deformation technique involving Analysis (see
also 0.F), see the references on page 209 of (Jost, 1995). The idea was first used in
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the plane in (Gage & Hamilton, 1986). Deforming a plane curve by normal varia-
tions which are proportional to the curvature makes the curve look more and more
like a circle ("the” curve of constant curvature). In a Riemannian manifold the
curve will (hopefully, this has to be proved) have as a limit a curve of zero geodesic
curvature, i.e. a geodesic. The equation is a parabolic PDE for which the existence
of solutions for small time is quite easy, the greater part of the job consists in show-
ing first the existence for any time and secondly, a good geometric behavior of the
limit curve, see (Grayson, 1989).

The important event was the combination of (Bangert, 1993) and (Franks,
1992), which yielded at least an infinite number of periodic geodesics. This made
popular writers rejoice: “a million rubber bands around a potato”. Since the result
was made more precise in (Hingston, 1993) one has even known that the counting
function grows at least as a constant times L/log L. There is also the problem of
the real projective plane. But taking the sphere covering of it and bearing in mind
that there is an infinite number of periodic geodesics on the sphere, those geodesics
will project down and again yield an infinite number. There remains the problem of
seeing whether there is an infinite number of periodic geodesics which are not null
homotopic. The answer is not known today, but is probably yes following the
proofs of Bangert and Franks (courtesy of Rademacher). To this day there is still
not a single explicit surface of the type of the sphere, the projective plane, the torus
or the Klein bottle for which the asymptotic order of the counting function is
known exactly. No expert seems to have any guess even what the answer to the fol-
lowing question is: is it always polynomial, exponential, or generically exponential?
Note that you can discard the question when a manifold, e.g. a surface of revolu-
tion or an ellipsoid, possesses a one-parameter continuous family of periodic geo-
desics (then necessarily locally of the same length).

<+

For higher dimensions, one had to await (Lusternik & Fet, 1951) just to get
one periodic geodesic. The proof is in the Birkhoff spirit. There is no generalization
of the Lusternik-Schnirelman three geodesics result to higher dimensions today,
only with the strong extra hypothesis of %—pinching, see (Ballmann, Thorbergsson
& Ziller, 1983) and do not forget Morse’s theorem above. Thereafter came (Gro-
moll & Meyer, 1969a): one is sure to get infinitely many periodic geodesics as soon
as the Betti numbers of the space of closed curves of our manifold are not bounded.
The beautiful idea is to use the fact that the index of the iterates of periodic geode-
sic grows only very close to linearly when one iterates it. By contradiction a finite
number of periodic geodesics will then force the Betti numbers to be bounded. But,
as explained above, one has to handle the case of degenerate geodesics. The authors
succeeded in doing so by a technical “tour de force”, unfortunately this achieve-
ment is useless for overcoming the bumpiness when one desires an estimation of
the counting function using the Betti numbers of Q*, this is one of the main ques-
tions today.

This leaves us with the topological problem of deciding when this Betti
number condition is true, and this is part of the problem of classifying the ration-
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ally elliptic manifolds. The story is still not completely finished today, but it is al-
most true that the only exceptions are the positive curvature space forms, the
spheres and the KP”. What a paradox: all the geodesics of these manifolds are per-
iodic for their canonical metric! So we are left with the first example: on the three-
dimensional sphere one still does not know whether there is, for any metric, always
more than one periodic geodesic. For periodic geodesics of manifolds of the ra-
tional homotopy type of spheres or the KP”, see (Rademacher, 1994b).

In fact a real understanding of the situation requires more technicalities.
One knows that, as soon as a periodic geodesic is of the so-called “twist type”, there
is an infinity of periodic geodesics in any tubular neighborhood of it, this was
shown in (Birkhoff & Lewis, 1933). Moreover the counting function grows at least
at the rate of prime numbers. So one of the main questions is perhaps not about an
infinite number of geodesics but the following: does there exist on S? a metric all of
whose geodesics are hyperbolic? The same question arises in fact for every simply
connected manifold in any dimension, and one can also ask the same for only an
open set of such metrics. Hyperbolicity for a periodic geodesic means that the Poin-
caré return map (met also in IV) has no eigenvalues of modulus equal to one, ellip-
ticity means that all eigenvalues are of modulus one, the twisting condition involves
a little more.

<+

In the absence of a general statement, we look at the bumpy situation on
any manifold, i.e. one that is not necessarily rationally hyperbolic. Recently it was
proved in (Rademacher, 1994a) that one can decouple the indices of periodic geo-
desics by small perturbations of the metric. Then one knows that, at least in the
generic case, there always exist infinitely many periodic geodesics on any mani-
fold.

Moreover the proof yields more. If one adds the validity of the conjecture
above on the haunting KP" and combines the results of Gromoll-Meyer, Hingston,
Rademacher and Moser, then the counting function grows at least as a constant
times L/ log L in the generic case. The factor L/log L, as well as the one above for
surfaces, is not mysterious, it comes from the fact that one has to look finally at
prime numbers in a given arithmetic progression. Dirichlet’s theorem gives pre-
cisely such an order of magnitude. But, except in the rationally hyperbolic case
above, nobody seems to have any guess whether things always (or in the generic
case) grow faster, say like a polynomial of a degree possibly related to the dimen-
sion, or even exponentially, etc.

We finally mention quite a special result, which throws some light on both
the difficulty of the problem of periodic geodesics and the necessity to use complex-
ity theory when dealing with Riemannian manifolds. In (Nabutovsky, 1996a) one
finds special finitely generated discrete groups which have the following property:
for any Riemanian metric on any manifold whose fundamental group is such a
group the counting function for periodic contractible geodesics grows exponen-
tially.
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B. The geodesic flow (geometry and dynamics)

The geodesic flow is the set made up of the collection of the G' (where ¢ is any real
number) which act on the unit tangent bundle UM by traveling along geodesics of
a length equal to . More explicitly: G*(v) is the speed vector +,(¢) at the point ~,(z)
of the geodesic vy, whose initial speed vector at 0 is v = 7/ (0). A fact that is funda-
mental for this entire study is that (cf. Liouville’s theorem) the flow respects the
canonical contact structure of UM, hence the attached measure. For the impor-
tance of contact structures in Mechanics, see (Arnold, 1988) and (Arnold, 1978).
The symplectic structure is defined on the cotangent bundle T*M (isomorphic to
TM for Riemannian manifolds). So we have a natural and geometric dynamical
system in Riemannian geometry. The inevitable invariant is the entropy, but there
are two difficulties concerning this. First the definition is never very short, secondly
there is more than one definition of entropy, see the digression at the end of this
section and the general references given there.

Problems are of a direct or inverse (recognition) type. The direct one: know-
ing certain things about the manifold, what can we say about its geodesic flow? In-
verse problems are of the following type: assuming the geodesic flow is known, what
can be said about the geometry of the manifold? In particular there is the uniqueness
problem: if two manifolds M and N have the same geodesic flow (the precise defini-
tion leads instead to the “conjugacy of geodesic flows™) are they then isometric? A
partial survey is Section 3 of (Besse, 1994) and a very detailed reference is (Eberlein,
Hamenstadt & Schroeder, 1993). Conjugacy means the existence of a map UM —
UN which commutes for every ¢ with the two geodesic flows G%,: UM — UM and
GY: UN — UN. Commutation with the projections UM — M and UN — N is not
demanded and would be too strong to be of any interest. This means that, when
flying, you are interested in the trajectory of the plane itself, but not in looking
through the window to see above which point of the earth you are.

(Hopf, 1939) gave the first direct result: the geodesic flow of a compact sur-
face of negative curvature is ergodic (this was Eberhard Hopf, not Heinz Hopf).
Ergodicity means for a dynamical system that almost every trajectory is everywhere
dense. It is equivalent (thanks to Birkhoff’s main theorem) to the following extre-
mely practical and useful definition: “space and time averages coincide”. For entro-
pies see the definitions at the end of this section and the references there. A much
weaker notion is that of topological transitivity: there exists at least one trajectory
which is everywhere dense.

In fact Hopf’s result had a precursor in (Morse, 1921a) and (Morse,
1921b), where topological transitivity was obtained and secondly, even better, a
coding for the trajectories. Coding is extremely important, it enables people to
study the geodesic flow by looking only at the model called the “discrete shift”. We
mention only some recent references: (Parry & Pollicott, 1990), (Katok & Hassel-
blatt, 1995) and (Katok, 1996). H. Hopf’s result was extended to any dimension in
(Anosov, 1967) where it was proved moreover that the geodesic flow is stable (one
can trace this type of question about “structural stability” to (Hadamard, 1901)).
Anosov’s proof is quite involved, even today. The best exposition is included in the
appendix by Brin in (Ballmann, 1995).
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In (Katok, 1982) for surfaces, and in (Besson, Courtois & Gallot, 1995a)
for any dimension, there is a very strong statement: when one looks at various me-
trics on a locally symmetric space form of negative curvature (i.e. of rank 1), the
topological entropy of the geodesic flow reaches a minimum for the locally sym-
metric metric and only for this metric. This strong result has many corollaries, we
saw one of them for the case of Einstein metrics in III. Another one concerns the
inverse problem of the counting function, see A above, these manifolds can also be
recognized by counting their periodic geodesics (at least in the negative curvature
case). As seen above in A one can present this as a “susceptibility” result.

<+

Below we will come back in detail to that result. We first address two ques-
tions stemming from Hopf’s and Anosov’s results. First: is negative (or nonposi-
tive) curvature really needed to get ergodicity? Does one really need a manifold
with a large fundamental group? Recent results seem to say no. We know now that
there exist ergodic metrics on S? (Donnay, 1988) but it is still an open question
whether one can obtain ergodic metrics in the case of positive curvature (a convex
surface). There are real analytic convex surfaces (close to ellipsoids) with positive
topological entropy: (Paternain, 1993). More generally there are C?-deformations
of ellipsoids in any dimension with positive topological entropy and exponential
growth of the counting functions: (Petroll, 1996), see also (Knieper & Weiss, 1994).
And one knows more: any compact manifold has some ergodic metric according to
(Lohkamp, 1998). For what is meant by “chaos” see the end of the section. Matters
are unsolved for the measure (metric, Liouville) entropy. It seems that the main
question (see also A above) is to know whether S? can or cannot carry a metric all
of whose geodesics are hyperbolic. This never happens for a %—pinching: (Ballmann,
Thorbergsson & Ziller, 1982) and this implies that one will have to go quite far to
find such a metric.

The second question is an inverse (recognition) problem in the spirit of IV.
Does the length spectrum (the set of the lengths of all periodic geodesics) determine
the Riemannian manifold? In all generality it certainly does not as we have counter-
examples of isospectral surfaces and for surfaces the knowledge of the length spec-
trum and the knowledge of the ordinary spectrum are equivalent. The situation is
radically different for the marked length spectrum. This means one “remembers”
for lengths which free homotopy class they come from. And for manifolds of non-
positive curvature the equal marked length spectrum condition is equivalent to the
conjugacy of the geodesic flow. Then many partial but strong results are available,
in particular (Otal, 1990a). We refer the reader to Section (9.2) of (Eberlein, Ha-
menstddt & Schroeder, 1993) for more details, but note that in general one can
have the same marked length spectrum and yet not have isometry: (Gornet, 1996).

<+

Let us now give some more details of (Besson, 1996) and (Besson, Courtois
& Gallot, 1995a). In the various statements we will always assume the volume is
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normalized. The authors address the more general problem of maps of non-zero
degree but we simplify matters by working on a given manifold (namely we pick up
the identity map). Now let(M, go) be a compact space form of negative curvature
(hence locally symmetric and of rank 1 by definition). The theorem is that for any
other metric g on M the volume entropy hy(g) satisfies the inequality
hyoi(g) > hvoi(go) and equality holds only if g = go. Since the inequality Aop > Aol
always holds with equality holding for nonpositive curvature, the same result is va-
lid for Ayp.

The very definition of the volume entropy and Bishop’s theorem (TOP.
1.A) imply immediately the minimal volume result (see TOP. 1.4) in the case of con-
stant sectional curvature. The result on counting periodic geodesics comes from the
estimation of their counting function with the topological entropy and the fact that
hyot = hyop in the nonpositive curvature case. The result on Einstein 4-manifolds
(see I1.B) is derived from the formula in 0.E for the characteristic, see the original
text for other corollaries.

The more natural and conceptual proof would be to prove that the entropy
is a strictly convex functional on the space of all Riemanian metrics and that the
locally symmetric metric is a (the) critical point. Unfortunately this program does
not work as such except in a conformal class, see (Robert, 1994). The original proof
was quite involved but used nice techniques, like the center of mass for the struc-
ture of the sphere at infinity (see 1.B.4) and the technique of calibration (see
TOP.3.B). In (Besson, Courtois & Gallot, 1995b) the proof is greatly simplified by
introducing the Patterson-Sullivan measures on the sphere at infinity: with these it
is easier to work on the center of mass. Finally the result yields an extremely simple
proof of Mostow’s theorem (see II.A and B) for the case of rank 1. For an exposi-
tory text, see (Pansu, 1996/97).

The theorem also shows that conjugacy of the geodesic flow to that of a
space form implies isometry: one can recognize the compact space forms of rank
one (and of negative type) by their geodesic flow. This is now the place to mention
another recognition procedure for those forms among negatively curved manifolds.

<+

Basic to the proof of Anosov’s main result are the stable and unstable folia-
tions. For the Riemannian geometer they are the vector fields normal to a family of
spheres centered at the same point at infinity. Equivalently one can prefer to look
at Jacobi fields which are zero at infinity when given an initial condition: the stable
one when they are zero at +oco and the unstable one when they are zero at —oo.
These foliations are always defined for negative curvature and are of course smooth
for space forms. Historically they appeared first in (Hadamard, 1901). But smooth-
ness when one looks from infinity is known to be a difficult game in Analysis. And
this is dramatically illustrated now: if the curvature is negative then the smoothness
of the Anosov foliations implies that we are metrically on a space form. This is a
very strong recognition result, just by smoothness. After intermediate results (see
(Eberlein, Hamenstidt & Schroeder, 1993)) this was obtained by combining (Bes-
son, Courtois & Gallot, 1995a) and (Benoist, Foulon & Labourie, 1992).
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<+

Back to the geodesic flow, in particular for tori, there were partial results,
see e.g. (Croke, 1992). We mention the recent proof of a long standing conjecture
stemming from the result in (Hopf, 1948) in dimension 2, to the effect that a metric
without conjugate points on a torus (of any dimension) has to be flat: (Burago &
Ivanov, 1994). We also recall here the strong results of 1.B.4 which study the hard
problem of distinguishing between manifolds of negative curvature and those of
nonpositive curvature, see also Finsler spaces in TOP. 9.

In all the above results the proofs combine more or less classical results of
ergodic theory with various geometric techniques. The notion of Busemann func-
tion was already mentioned previously. Variations of them can be described carica-
turally as follows: one looks at the universal covering of the manifold of nonposi-
tive curvature under consideration. It looks topologically like R?. One defines on it
various kinds of structures “at infinity” and looks at the metric “from infinity”. We
met this technique already in Section I.B.4.

+

The extreme opposite case is that of space forms of positive curvature, the
spheres and the KP". They have a beautiful geodesic flow, since all the geodesics
are periodic, simple and of the same length (this is understood for their canonical
metric): see I1.C. They can be called the harmonic oscillators of Riemannian geome-
try. We saw in IV that this property of all geodesics being closed can be character-
ized by the fact that the spectrum of the Laplacian concentrates in intervals which
are in geometric progression. However the inverse problem is almost completely
open. The spheres and the KP" behave very differently. Back in (Zoll, 1903) one
finds on the two-dimensional sphere many examples of metrics all of whose geode-
sics are periodic (not isometric to the standard metric). They have been classified
completely only for surfaces of revolution, (Besse, 1978), Theorem 4.13, and for
metrics close enough to the standard one in (Guillemin, 1976) (see also Section 4.H
of (Besse, 1978)). For higher dimensional spheres a very partial technical result is
(Kiyohara, 1984), but the classification question is left untouched.

For the reader who might underestimate the difficulty of the subject, we
mention a few facts. For more details and for some references see Besse’s book.
First, even though it is trivial to show that the lengths are all multiples of a smallest
one, it is true but hard to show that the lengths are finally bounded. Worse: even
though there are plenty of examples for which the lengths are different (not of the
iterates of course), e.g. lense spaces and more generally any space form of curvature
1, it is an open question whether all the lengths are equal in the simply connected
case. There is also the question of simple or self-intersecting periodic geodesics.
The only result we know of is on S?: (Gromoll & Grove, 1981) shows that then in
fact all the lengths are equal and the geodesics are all simple. But the proof is very
much two-dimensional and uses the three geodesic result of Lusternik-Schnirelman
mentioned above.

On the other hand no metrics on any KP” are known all of whose geodesics
are periodic (except of course the standard one, see I1.C). The case K = R has been
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solved: only standard metrics have that property. This is a direct corollary (look at
the universal covering) of the result on spheres all of whose cut-loci are reduced to
a point, to be seen in TOP. 4. For the other K, we have only a partial result, i.e. this
is true for metrics close enough to the standard one: (Tsukamoto, 1981). This is
used in (Kiyohara, 1987) to prove the spectral isolation (solitude) of the KP": the
link with the spectrum is insured by the results quoted above concerning the con-
nection between periodic geodesics and the spectrum. Other results of this “infinite-
simal rigidity” type are to be found in (Gasqui & Goldschmidt, 1994) and (Gasqui
& Goldschmidt, 1997).

+

In the field “geometry and dynamics” a special mention should be given to
(d’Ambra & Gromov, 1991), see also TOP. 9. Some geodesic flows are very special,
they are called integrable. This is the case for surfaces of revolution as well as ellip-
soids. For more on these, see (Spatzier, 1990).

++

Digression.: Entropies in Riemannian Geometry. Entropy is a difficult con-
cept. Heuristically it is not difficult: it is nothing but the measurement of the expo-
nential factor of anything you want to compute in a dynamical system: the loss of
information when time goes by, the dispersion (divergence) of trajectories, etc.
Strict definitions are less simple. Moreover there is more than one type of entropy.
Two are standard: the metric (measure theoretic) and the topological one. Up to
quite recently the labeling was ridiculous: metric entropy requires only a measure
to be defined and is really a measure notion, topological entropy needs a metric
(even if it is finally independent of it) and is really a topological notion. The third
type of entropy (volume entropy) makes sense only for manifolds whose universal
covering is “huge”. Metric (measure theoretic) entropy was historically the first.
General references are the following: up to 1982 (Walters, 1982) was the standard
and efficient book, now there is (Katok & Hasselblatt, 1995). See (Sinai, 1976) for
its very informative style, besides (Katok & Hasselblatt, 1995) and (Mané, 1987)
especially for the smooth case. For references to results we refer mainly to the bib-
liographies there. For the geodesic entropy, see above.

Entropy is defined, on a compact space X endowed with a measure, for dis-
crete dynamical systems f: X — X, i.e. the map f is a measure preserving homeo-
morphism. In the case of the geodesic flow one takes X = UM as the unit tangent
bundle and f as f = G' (the geodesic flow for a length equal to 1). It does not mat-
ter that the “length” 1 looks rather special since in fact one is interested only in
what happens for large iterates f* and this means essentially that 1 — oo.

The simplest one to define is the volume entropy in compact Riemannian
manifolds (M,g). Let M* be its universal covering. We look at the metric balls
B(p, R) in M* and set

1
hvoi(g) = lim —log(Vol(B(p,R))),
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which is easily seen to exist and to be independent of the base point p € M*. Unfor-
tunately it is of no interest unless M* (that is 7; (M)) is “huge”. For “smaller” fun-
damental groups and a polynomial renormalization, see (Babenko, 1992).

For a general dynamical system f: X — X endow X with any metric and
look at the iterates /% of f. One gets new metrics d, for every integer n by setting
du(x,¥) = supg<r<n d(f*(x),/*(¥)). Now let N,(¢) be the minimum number of e-
balls in the metric d,, needed to cover X and define the topological entropy to be

hiop (X5 f) = hm lim llog( N,(¢)).

e—0n—oon

It is easy to check that this exists and does not depend on the choice of metric on
the compact manifold under consideration. We saw in A how to compute it with
geodesics joining two points.

Finally the metric entropy (more and more frequently now called measure
theoretic or just measure), which was historically the first to be defined, was defined
by a mixing definition which was, however, quite lengthy and moreover almost im-
possible to compute explicitly in given situations. We still use an auxiliary metric
which can be ignored in the end. This time we define N,(e,8) to be the minimum
number of e-balls (still for the metric d,;) needed to cover some subset of X whose
complement has a measure less than §. Then one checks that the following defini-
tion makes sense:

hmet (X3 f) = hm lim lim llog( Ny(g,6)).

6—0e—0n—oon

These entropies enjoy many inequalities and properties in various instances. First,
always hiop > hmee; then hyo < hyop and equality holds as soon as the curvature is
nonpositive: see (Manning, 1979) and references there for intermediate results. The
link with periodic geodesics is the following (see (Margulis, 1969)): if the curvature
is negative then

.1
hiop = Lll_‘r{.loleg(CF(L))'

Do not be led to believe that positive entropy implies ergodicity, even locally, it
only implies “some kind of local chaos”. Metric (measure) entropy is the strongest
invariant. For example positive metric entropy in a Riemannian manifold implies
the existence of a set of positive measure where a geodesic is everywhere dense. This
is definitely not the case for the topological entropy. In Riemannian geometry one
also calls the metric (measure) entropy of the geodesic flow the Liouville entropy:
ALiouville-

We end with a formula giving explicitly a piece of Riemannian quantitative
information on divergence. This is the formula of (Ballmann & Wojtlowski, 1989)
for the geodesic flow of compact manifolds of nonpositive curvature:

hiiouvilie Z/ trace(y/—R,) dv,
uM

where the integral is on unit vectors v and R, denotes the linear map u — R(v,u)v
in terms of the curvature tensor. The trace is taken with respect to the Riemannian
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metric. Moreover equality holds only for locally symmetric spaces. This formula
was preceded by weaker ones, see the references in (7.3) of (Eberlein, Hamenstddt
& Schroeder, 1993). In (Foulon, 1997) there is a generalization of the above formu-
la to Finsler spaces (TOP. 9).

It is interesting to compare the formula above with the special “entropy”
introduced by Hamilton for proving the standard conformal representation theo-
rem for surfaces with the Ricci flow (see 0.F), namely this entropy is defined as
[y Klog K dm, where K is the Gauss curvature: see (Chow, 1991).

TOP. Some other Riemannian Geometry topics of interest

1. Volumes
A. Bishop’s Theorem

In (Bishop, 1963) manifolds M with Ricci > (d — 1)k are studied where k
can be of any sign or zero. It is proved that the volume of any ball B(p, R) of radius
R is bounded by the volume of “the” ball B*(R, k) in the simply connected space
form M*(k) of constant curvature equal to k and of the same dimension. This was
stated for balls which lie within a coordinate ball. The following statement was
stronger: the ratio Vol(B(p, R))/Vol(B*(R,k)) is nonincreasing with R. The origi-
nal proof was in the spirit of RCT. Modern proofs are simpler, they use the dis-
tance function “a la Gromov”, see (Eschenburg, 1994) for a very detailed and nice
proof. Despite its simplicity, the importance of Bishop’s theorem should not be un-
derestimated. We saw above many applications of it and the importance is under-
lined strongly by Gromov’s following double remark. In (Gromov, Lafontaine &
Pansu, 1981) it is proved (even if it is not difficult once Bishop’s theorem is taken
for granted) that the statement remains valid for any metric ball, that is to say one
can go “beyond the injectivity radius”. Then a lower bound on the Ricci curvature
yields first an upper bound for the volume of balls. But the non-increasing property
now also gives a lower bound once the diameter or the volume of the manifold is
known, since the equality Vol(B(p,diameter)) = Vol(M) always holds trivially.
This is the key to many results, the most spectacular being the precompactness of
I.C.2. Such a two-sided bound on the volume of balls using only a lower bound on
the Ricci curvature should be compared with Colding’s formula seen in the digres-
sion of I.A.2.

B. The isoperimetric profile

In IV we used the fact that there is for general Riemannian manifolds an
isoperimetric inequality involving only the diameter and the lower bound on the
Ricci curvature. The isoperimetric profile h(t) of a compact Riemannian manifold
(M9, g) is defined as the map 4: [0, 1] — R, where k() is the infimum of the mea-
sures of the boundaries () of all domains €2 in the manifold whose volume is
volume(f2) = t.volume(g). Note that 4(1 —¢) = h(z) (look at the complements).
The domains have to be reasonable and then the measure of their boundary is any
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classical (d — 1)-dimensional measure. It is in general impossible to know what the
explicit domains realizing the infimum are in explicit (standard) manifolds. Typi-
cally they are not metric balls, so that Bishop’s inequality is not of any help. What
is important, and is very often enough for applications, is to have a lower bound
for A(z). Even a lower bound on the Ricci curvature (together with the diameter) is
enough as was discovered in (Gromov, 1980). This was made more precise in (Bé-
rard, Besson & Gallot, 1985), the case of a negative Ricci lower bound being more
tricky because of the lack of an optimal comparison manifold. In the positive case
one of course compares things with spheres. A description of the proof, which is
very important to know as it is a very new technique, is given below. Moreover
Gromov’s result (called Lévy-Gromov in the literature), which is apparently pure
Riemannian geometry, triggered a lot of applications in Banach spaces as well as in
probability theory : see the report (Ledoux, 1992/93).

The basic tool here is GMT (see TOP. 10.C). It insures for us first the exis-
tence — under some reasonable extra conditions — of a submanifold (smooth or with
reasonable singularities) which realizes the minimal volume in its homology or
homotopy class. Regarding the isoperimetric profile it insures for us the existence
of extremal domains. Gromov’s idea was to fill up the “inside” of the domain
with the geodesics normal to its boundary 9(£2). One then gets an inequality be-
tween volume((2), volume(d(f2)) and the mean curvature 5 of 9(€2). This inequal-
ity, which is to be found in (Heintze & Karcher, 1978), generalizes Bishop’s one
and applies to the sheaf of geodesics orthogonal to a given hypersurface, involving
only the mean curvature of the hypersurface and the lower Ricci bound. Here 7 is
constant because GMT insures that the boundary is smooth almost everywhere and
then its mean curvature is constant by the first variation formula for hypersurfaces.
But this is apparently a dramatic situation since we have no information on this
constant 7. Gromov’s amazing trick is to look both at © and its complement M \
and then one is done because the effect is just to change n to —.

For the amateur with regard to problems that are naive to state, seemingly
obvious or at least simple but still open, we mention here the question of comput-
ing the exact value (and also if possible the shape of the optimal domains) for our
preferred manifolds: the spheres S and the KP”. One can add the cubic flat tori.
For the sphere the isoperimetric profile (then called “the isoperimetric inequality™)
has been known since (Schmidt, 1948-1949). Schmidt by the way also solved the
problem for hyperbolic geometry (the simply connected space forms of constant
negative curvature). The optimal domains are, as expected, metric balls. The tool
used is symmetrization and today the best reference is (Burago & Zalgaller, 1988).

But symmetrization does not work any longer, not globally for the real pro-
jective spaces RP4 and not even locally for the other KP”. The problem has to this
day been solved only for RP? in (Ritoré & Ros, 1992). The solution is as follows:
for small ¢ the optimal domains are metric balls but, starting at a number ¢ which is
trivial to evaluate, the tubes around a periodic geodesic (a projective line) give a
better answer. The proof for RP3 is complete because one is able to completely clas-
sify the constant mean curvature surfaces in R® (these surfaces moreover have a
nonnegative second variation and are then called “stable”). A reasonable conjec-
ture is the following: in all the KP" the isoperimetric profile is given by the succes-
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sion of the tubular neighborhoods around a point, a projective line, a projective
plane, etc.

In fact the isoperimetric profile is a subtle object, in (Pansu, 1997b), (Pansu,
1997a) one can find surprising results. In particular this one: in general this profile
will not be smooth at zero.

<+

Another important control is that of A; using Cheeger’s more brutal older
“h-constant” (which is the infimum 4, of A(¢) for ¢ in [0,1/2]): (Cheeger, 1970b).
His inequality reads A\, > %hf and is optimal by (Buser, 1978) but never attained by
a smooth object, see the very end of Chapter III.

The formula in (Savo, 1996) and (Savo, 1997) studies the volume of various
tubes and then covers many results of the above type with a very nice proof: the
second derivative with respect to the radius of the tube is computed and linked with
the Laplacian.

Recently, in the spirit of many results in Riemannian geometry (some of
them were met above), the article (Gallot, 1987) succeeded in controlling the iso-
perimetric profile using only integral bounds on the Ricci curvature, see this text
for precise statements. There are many corollaries: finiteness theorems (see 1.C.1)
and a control on the spectrum (see IV). Moreover Gallot also controls the volume
of tubes around hypersurfaces. A key tool, as we saw in [.C, would be to control
the volume of tubes around geodesics. Using weaker hypotheses, in particular an
integral Ricci bound, this was achieved in (Petersen, Shteingold & Wei, 1996).
However examples by Eguchi-Hanson show that the volume of tubes cannot be
controlled with only the Ricci curvature.

+

A special mention should be given to the nonpositive (sectional) curvature
case. The conjecture is the following: in a simply connected manifold of nonpositive
curvature the isoperimetric profile is super- Euclidean. This means that for any com-
pact domain Q the ratio Vol?(d(Q2))/Vol?~(Q) is larger than or equal to its value
for balls in R?. Today matters are still mysterious. For surfaces this conjecture was
probably stated by Paul Lévy in a talk at Hadamard’s seminar in 1926, then imme-
diately proved by André Weil, using conformal representation: (Weil, 1926). In
(Croke, 1984) it was also proved for d = 4 using integral geometry and there is no
hope of making it work in any other dimensions. For d = 3 this is the result of
(Kleiner, 1992). Then in (Cao & Escobar, 1995) it was proved for piecewise linear
(PL) manifolds of CAT(0) (see TOP. 9 for those manifolds) of any dimension.
However it is not clear today whether any (smooth) Riemannian manifolds of non-
positive curvature can be approximated by PL-manifolds of CAT(0). The main dif-
ficulty is that GMT is no longer of use in a straightforward way: because of the lack
of compactness, optimal domains can “escape at infinity”.
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<+

In Analysis the Sobolev inequalities are a basic tool, and they are used for
many results quoted in this text. For a numerical function f: M — R on the Rie-
mannian manifold (M, g) and the integers (p, q) with% + 5 = 3—[ they say that one al-
ways has the following inequality between the function and its gradient for the glo-
bal L? and LY norms:

oI, < Alldfll, + Bl /1l

In most cases the Riemannian geometer is interested not in just having
some 4 and B but in a control of them using the curvature, etc. The problem of
finding the optimal A4 and B are a lot different. For B it is basically the work of
Gallot, see the various references to this author above. For A4 it is the work of Au-
bin, see for example (Aubin, 1982). See the recent reference (Hebey, 1996) and its
bibliography. We just mention that the control of the isoperimetric profile is basic
to both works.

C. The embolic volume

This was alluded to in IIL.B. The simplest numerical and curvature-free
functional invariant on the set of compact differentiable manifolds M is the em-
bolic volume, namely the infimum MinEmb(M) of the ratio Vol(g)/Inj?(g), where
g runs through all possible Riemannian metrics on M. Today one does not know
whether there is some kind of convergence result for MinEmb which will insure the
existence of a minimal metric on M, even if one admits metrics with (reasonable)
singularities. However the situation is not completely desperate thanks to the fol-
lowing three results. First the very strong finiteness theorem of (Grove, Petersen &
Wu, 1990-1991) says that (at least when d # 3, 4) the possible diffeomorphism
types with MinEmb < 4 are always finite, so that the various real numbers
MinEmb can be considered as a nice scale using Riemannian geometry to evaluate
the degree of complexity of a manifold. The second result is (Berger, 1980):
MinEmb(M) is always larger than or equal to that of the standard sphere, namely
B(d)/m? (where 8(d) denotes the volume of the standard sphere of dimension d)
and equality holds for Vol(g)/Inj¢(M) only in the case of constant curvature. In
particular any embolic volume is always positive. The third result is the isolation
result in (Croke, 1988a): there is some ¢ > 0 such that for any manifold M which is
not a topological sphere one has MinEmb(M) > 3(d)/m¢ + c. It seems an interest-
ing question to relate MinEmb(M) in various ways to the different topological in-
variants of M. Finally we cannot resist telling the reader that the exact value of the
embolic volume for the KP" is completely unknown. If it were equal to the value
obtained for the standard metric, this would solve (or at least help a lot towards a
solution of) the problem of characterizing the KP" by their geodesic flow (see the
end of V.B).

Of basic importance in various domains of Riemannian geometry is the lo-
cal embolic result of (Croke, 1980), which tells us that, when the injectivity radius
of the manifold is given, every ball with a radius of half the injectivity radius (or
smaller) has a volume bounded from below by a constant which is universal in the
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dimension (and the radius). This was used above in many finiteness and conver-
gence theorems of 1.C. It is an open question whether the value of this universal
constant is or is not always simply equal to the value it takes on the standard
sphere. This of course would be the optimal value.

*
D. The minimal volume

One natural functional to evaluate when one wants to get the “least curved”
metric on a compact manifold is Gromov’s minimal volume. MinVol(M) is the
minimum of the volumes of all Riemannian metrics on M such that —1 < K < 1.
Here this functional can be zero, think of flat tori or even nilmanifolds. More gen-
erally it is zero whenever the manifold M admits a sequence of collapsing metrics,
see 1.C.3. Thinking back to the finiteness results in [.C.1 for manifolds with
a < K < b, diameter < D and volume > v > 0, the importance of deciding if Min-
Vol is positive or zero cannot be exaggerated. This is because ¢ < K < b can always
be written as —1 < K < 1 after normalization when one is not interested in precise
values or when one is looking for a best metric on a given manifold (see 11I). Finally
a positive minimal volume is an insurance against collapsing. There is no general
survey of the minimal volume, but one of the sections of (Fukaya, 1990) is devoted
to it.

Apart from the case of surfaces where the Gauss-Bonnet theorem (0.E) tells
us everything, the minimal volume remained quite mysterious up to 1996. Let us
take a quick look at the state of affairs today. We saw previously that the main
point is to know when the minimal volume is zero and when it is positive. We first
remark (following Cheeger) that the minimal volume is positive as soon as the
manifold has some non-zero characteristic number: this is thanks to the Chern inte-
gral formulas for characteristic classes seen in 0.E. Note that this works only in
even dimensions and mainly in dimensions which are multiples of 4. In (Gromoyv,
1983Db) it is proved that the minimal volume is non-zero for space forms (see II) of
negative type and hence for many other manifolds, using various functorial proper-
ties of the minimal volume. But note that those are always highly non-simply con-
nected. Today one still does not know any odd-dimensional simply connected mani-
fold for which one can prove that its minimal volume is positive.

On the other hand (Gromov, 1983b) exhibited many manifolds with Min-
Vol = 0. He started with manifolds where there is a free action of the circle, the first
example (besides the obvious flat space forms) of course being the odd-dimensional
sphere where the circle action is that of its Hopf fibration. Next, this was extended
to various manifolds which laid the foundations for the study of collapsing, see
I.C.3. So we are left with the basic question whether there are more manifolds with
MinVol > 0 or more with MinVol = 0. The fact that MinVol = 0 implies the exsi-
tence of an F-structure (see I1.3.B) is not enough. We will see now that the recent
work (Cheeger & Rong, 1996) seems to show that “most” manifolds have a mini-
mal volume of zero.

A basic inequality in (Gromov, 1983b), see also (Besson, 1996), relates the
minimal volume MinVol(M) to the simplicial volume ||M||: for any manifold M
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one has MinVol(M) > ¢(d)||M|| with ¢(d) universal in the dimension. The simpli-
cial volume ||.|| is defined in a purely topological way, namely by writing the fun-
damental class as a sum of simplices with real coefficients. However, do not ex-
pect to find many manifolds with MinVol > 0 with the help of this inequality: in
fact the simplicial volume is such a deep invariant that, today, only manifolds ad-
mitting a metric of negative curvature, products of them and connected sums of
them with anything else can be shown to have a non-zero simplicial volume.
Many attempts have been made to prove that (compact) locally symmetric spaces
of any rank, not only of rank 1, have a non-zero simplicial volume, see (Savage,
1982).

<+

Let us finish the MinVol story by addressing three questions. The first one
is the following: what does the subset of the reals made up of the minimal volumes
of all manifolds of a given dimension d look like? Is it a discrete set? For surfaces
the Gauss-Bonnet formula tells us that our subset is the arithmetic progression
27N. Discreteness at 0 is equivalent to the isolation of 0 (existence of a gap). This is
true in dimension 3 and is stated implicitly in (Cheeger & Gromov, 1986-1990). On
the other hand the proof of the isolation of 0 in dimension 4 obtained in (Rong,
1993) is extremely involved and not completely geometric. It uses the n-invariant
(see TOP. 6) in a basic way. But for d > 5 it is an open question whether there is or
is not a gap (one of Gromov’s conjectures). In (Cheeger & Rong, 1996) the exis-
tence of a gap is proved when one restricts the problem to manifolds whose dia-
meter is bounded. Namely, for any d and D there exists an £(d, D) such that
Vol < ¢(d, D), |K| < 1 and Diameter < D imply MinVol = 0. By Cheeger’s finite-
ness theorem (I.C.1), this implies moreover the discreteness of the set of all MinVol
when the diameter is bounded. The problem is to know whether a gap and/or dis-
creteness can be preserved as D tends to infinity. The proof uses collapsing theory
(I.C.3) and consists in constructing, when Vol < ¢(d, D), a polarized F-structure
on the manifold. When the manifold is simply connected the result is an application
of the previous collapsing results of Cheeger-Fukaya-Gromov, where one can ob-
tain a pure-polarized structure.

The second question is the computation of the minimal volume of “stan-
dard” manifolds, e.g. space forms of different types. Matters are again dramatically
different according to the sign of the curvature. For positive or nonnegative curva-
ture not a single minimal volume (when it is non-zero of course) is known. It starts
with S*. The only known fact is a local result for the even-dimensional spheres in
(Ville, 1987). Conversely, for negative curvature (hyperbolic) space forms one has
an unbelievably strong result. As a corollary of the main theorem in (Besson, Cour-
tois & Gallot, 1995a) (we already saw more than one application of it in III; the
result is detailed in V.B) one has that any metric on a compact hyperbolic space
form has a volume larger than or equal to that of the hyperbolic metric under the
sole condition Ricci > —(d — 1). Moreover it is equal to it if and only if the metric
is the hyperbolic one. So we know once again that the hyperbolic metric on a nega-
tive space form is “the best one”.
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The last and third question concerns the relation of MinVol to the func-
tional g — |, M||R||d/ ? (see IILB). The minimum of this functional for various
metrics on a given compact M is called Min(||R||'i/ %) and, except for the case
d =2, it is of interest because of the Gauss-Bonnet formula. It plays a role in I.C.
Trivially it is universally bounded by MinVol so that MinVol = 0 implies
Min(||R||/?) = 0. The converse should be obvious with the convergence theorem
in RM(d,—1,1,v,D) since we can always normalize our sequence to within
—1 < K <1 and argue by contradiction. But we forgot about the diameter. Today
the question of whether this converse is true or not remains open, despite many at-
temps.

E. The systolic story

In A above the game was to control volumes of different kinds with a con-
trol derived from the metric, e.g. curvatures of various types. The systolic story is
entirely different: one wants to have inequalities for volumes which are independent
of the metric, depending only on the topological structure of the manifolds. Here
the results are basically complete, all major questions have been solved. Only a few
points (which might be very hard however) remain open. The story, which we will
now relate, is mainly Gromov’s work. An almost complete survey is (Berger,
1993a) — add (Gromov, 1992a), which contains a lot of information, for a survey in
book form see Chapter 4 together with Appendix D of (Gromov, 1998). For the
use of systoles for the problem of characterizing the Jacobians of complex surfaces,
see (Buser & Sarnak, 1994a) and (Gromov, 1992a); this characterization is the
Schottky problem, see (Beauville, 1987).

The work on this topic started with Loewner’s theorem (1949, unpub-
lished). Define as the systole of a two-dimensional Riemannian torus (72, g) the in-
fimum of the lengths of closed curves which are not contractible. Let Sys(g) be this
positive real number. Then the area Area(g) of our torus satisfies the inequality
Area(g) > ‘/T§Sys2(g) and equality holds only for the flat regular hexagonal torus.
The proof is not too hard and rests essentially on conformal representation: when
averaging the conformity function under the translations of the flat underlying
structure the systole can, by its very definition, only increase and the area decreases
by the Schwarz inequality.

+

The challenge is obvious: generalize this to surfaces of higher genus, then to
(non-simply connected) manifolds of higher dimension and also to higher dimen-
sional systoles. Call Sys,(g) the infimum of the volumes of all homologically non-
trivial k-dimensional submanifolds (for some Riemannian metric g on M) of M. In
this broader context René Thom’s question to the present author in the 60’s was to
find out when there is some universal inequality between the different systoles, the
total volume of M? being nothing but Sys,(g). In short we know today that we
have an almost complete positive answer in the case of the 1-systoles and a negative
answer for higher dimensional systoles. Let us be more precise in the next para-
graph.
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For the 1-systole and surfaces of higher genus an answer appeared in (Ac-
cola, 1960) and independently in (Blatter, 1961), but the lower constant for
Area/ Sys® was very poor, that is to say it went against intuition since it tended to
zero extremely fast with an increasing genus whereas one on the contrary expects
some increase with an increase of the genus. For the special case of the real pro-
jective plane the expected optimal answer was obtained “a la Loewner” in (Pu,
1952). Nothing more appeared on the subject before (Gromov, 1983a), which
gave first an optimal answer for surfaces (at least asymptotically with the genus
~) with a lower bound c¢v/log? y (with ¢ universal). The result is the same for the
homotopy systole as for the homology systole. Secondly, for the homotopy 1-sys-
tole and for any dimension d Gromov proved the existence of a positive lower
bound for Vol/Sys? for any reasonable manifold, namely for a class containing
all acyclic ones and some more, like RP?. The technical definition is that of an
essential manifold.

Gromov’s proofs are very involved. The one for higher dimensional mani-
folds introduces many interesting new geometric invariants for Riemannian mani-
folds: the filling radius and the filling volume. Like the minimal and the embolic vo-
lumes their explicit values for standard manifolds are very difficult to compute ex-
plicitly. The latest state of affairs for the important filling radius is to be found in
(Katz, 1983) and (Katz, 1991): this radius is known for the spheres, the real projec-
tive spaces and the complex projective plane, but still unknown for the remaining
KP". These invariants will certainly have a great role to play in Riemannian geo-
metry in the future. For example the filling radius is used in (Greene & Petersen,
1992) to improve upon the recent finiteness theorems mentioned in I1.C.1. The sim-
plest filling volume, namely that for the circle S', was only obtained in (Katz,
1998).

Back to Gromov’s proof, the game is to deduce various inequalities be-
tween the above invariants (even with a non-optimal constant) and relate them fi-
nally to the systole. The proof uses an important trick: embed a Riemannian mani-
fold in a Banach space using the distance functions to various points (see TOP. 9)
(even if during the proof one makes systematic use of finite dimensional approxi-
mations). The proof of optimal (in the ingredients) systolic inequalities for surfaces
of high genus is even harder, it uses the notion of simplicial volume and a diffusion
process for simplicial cycles. These two ingredients are basic to the results we men-
tioned on the minimal volume in (Gromov, 1983b), see D above.

We are left with three questions. The first one is to find the optimal value
and to decide whether “extremal metrics” exist and which they are. For this, be-
sides the “Filling paper” (Gromov, 1983a), see (Calabi, 1992) and (Gromov,
1992a). The second one is to characterize the manifolds for which we have such a
universal inequality. This is done in (Babenko, 1992) for the homotopical Sys, , as-
sociated with the fundamental group. Such a result can be seen as a “systolic” char-
acterization of a topological property. This is also valid for the homological systole
Sys,  (but does not figure in the text), just be careful about the non-orientable
case.
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For higher dimensional systoles, negative results started to appear in (Gro-
mov, 1992a), a recent reference is Appendix D of (Gromov, 1998). There were some
intermediate results, Gromov’s example of (1, 3)-softness on S' x S3 is basic and
consists simply of metrics on S' x S* obtained from [0,1] x S* by identifying
{0} x $% with {1} x S3 after enough twisting with the Hopf fibration. We now
have an extremely large category of negative examples in (Babenko & Katz, 1997)
and (Babenko, Katz & Suciu, 1998), see also Katz’s appendix in (Gromov, 1997).
One says that a manifold M? is systolically (k,d — k)-soft (or free) if the infimum
of the quotients Vol(g)/Sys; (g)Sys,_x(g) is zero for all metrics g on M. The above
authors proved softness in the following cases: first, for any orientable (k — 1)-con-
nected M“ where d > 3, k < d/2 and k is not a multiple of 4, one has (k,d — k)-
softness. Secondly, for simply connected M“=2" with d > 6 one has (n, n)-softness.
Startling examples are the S¥ x S* for any k > 3 and HP2. The (4,4)-softness of
HP? is most surprising since the projective lines really fill up the whole space in the
most geometric fashion possible and should have permitted us (sniffing all around)
to prevent softness. The “freedom” can be very large, for example on S* x S one
can even use metrics that are homogeneous. It is not clear today if the various topo-
logical restrictions are really necessary in addition to the dimensional ones. In fact
no example of a hard inequality is known as soon as the involved systoles are 2-di-
mensional or higher dimensional. However dimension 4 might be an exception. In
(Babenko & Katz, 1997) it is shown that the (2,2)-softness of $? x S? and that of
CP? are equivalent.

An important parallel worth mentioning is (Besicowitch, 1952) (see Chapter
7 of (Gromov, 1983a)), this concerns manifolds with boundary (see TOP. 9). The
author proves that for any Riemannian metric the volume of a cube has a volume
larger than or equal to the product of the infima of the lengths of the curves joining
two opposite pairs of faces. But for a cylinder, there are metrics with ever decreas-
ing volume even when both the infima of the lengths of the curves joining the two
boundary disks and the areas of the disks whose boundary belongs to the cylinder
itself are larger than one.

The techniques used for the above results are completely geometric. One
builds up submanifolds which are “roomy” like in a Besicowitch cylinder, but are
constructed like Gromov’s S! x S counterexample above. Then one can find asso-
ciated exterior forms which are calibrating (see TOP.6.A) to insure that the systoles
are lower bounded. All the above softness results can be interpreted as instability
results for the homology, see (Babenko & Katz, 1997) for more on this.

<+

One can still talk about the 1-systole on any manifold being the length of
the shortest periodic geodesic, even if it is contractible. For surfaces one has a cur-
vature-free inequality, still not optimal, in (Croke, 1988b). For higher dimensions,
one is more or less forced to enter some curvature term, see (Wilhelm, 1997), (Rot-
man, 1997).
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2. Isometric embedding

Since (Whitney, 1936) one has known that there are no more abstract mani-
folds than topological submanifolds of Euclidean spaces. Since (Nash, 1956) one
has known that abstract Riemannian manifolds are nothing more than submani-
folds of Euclidean spaces endowed with the induced Riemanian metric. The game
of finding the optimal codimension is hard. Questions here can be local or global
or they can address real analyticity. For the general case a good part of the book
(Gromov, 1986) is devoted to it. We refer the reader to this and just mention a few
points.

A spectacular case is the following one: any abstract metric on S? of posi-
tive curvature can be realized by a convex surface. This was achieved through suc-
cessive efforts: in (Lewy, 1938) for the analytic case, in (Nirenberg, 1953) for the
twice differentiable case. A related result for the case of polyhedra (tending to the
limit) was deduced back in 1941-42 by A. D. Alexandrov. For more precise and
the most general statements in connection with singular Riemannian manifolds, see
the book (Pogorelov, 1973).

It is important to note that the differentiability assumptions are basic to
this game and to the general existence result above. For example any compact Rie-
mannian manifold M¢ admits a local C'-isometric embedding in R*! and a global
one in R? (a dimension which is already needed topologically). This was achieved
in (Kuiper, 1955) and (Nash, 1954). The idea is related to that of the Lebesgue
handkerchief for developable surfaces: clever crumpling and creasing. This result
can be compared with Lohkamp’s on negative Ricci curvature in I1.B.5. A result
that is very interesting to visualize is that of (Bleecker, 1995). This text first extends
Kuiper’s result to one-parameter families, then uses it to obtain C I isometric defor-
mations of, for example, ellipsoids in R? which are prolate enough. Paradoxically,
these deformations increase the volume. The wording of the author is “finely corru-
gated wrinkling”. This of course does not exist under a C?-condition since Gauss’
theorem would imply convexity and hence rigidity by the theorem quoted in TOP.
10.B.

3. Holonomy groups and special metrics: another (very restricted)
Riemannian hierarchy, Kihler manifolds

Since the parallel transport is the most natural geometric operation in Rie-
mannian manifolds, we ask the following question: are there any manifolds for
which the parallel transport preserves some “extra” structure, besides obviously the
Euclidean metric of the tangent spaces? Manifolds could then, in some sense, be
classified by those structures. A typical case is the Kihler one, it was made clear in
(Lichnerowicz, 1955) that the manifold being Kéhlerian is equivalent to the com-
plex structure being preserved by parallel transport.

A. Holonomy groups

Such a classification, at least in a special case, was Elie Cartan’s hope in
(Cartan, 1925), where he introduced the notion of holonomy groups for general
relativity theory purposes; then he did some calculations up to dimension three in
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(Cartan, 1926a). The holonomy group of a Riemannian manifold is simply the
subgroup of the full orthogonal group created by the parallel transport along all
possible loops based at a given point. Changing the point does not change the
structure of the group, the only possible difference is that the manifold may be
simply connected in one case and not in the other. Then one has to distinguish
between the full and the restricted holonomy group (use only contractible loops).
Surveys of holonomy groups are Chapter 10 of (Besse, 1987) and the book (Sala-
mon, 1989).

Holonomy groups were completely forgotten (or might at least have been
found too hard to study) between Elie Cartan’s time and the 50’s. They came back
under study in (Borel & Lichnerowicz, 1952). Matters here are in some sense com-
pletely local, holonomy groups make sense even for non-complete manifolds. The
only problem left is this still unbelievably open question: is the holonomy group of
a compact manifold compact? Since, by Borel-Lichnerowicz, the restricted holon-
omy is always compact, the question arises of course only in the non-simply con-
nected case. The answer is yes for many cases of the classification below, but the
answers are indirect: one first uses the fact that most groups in the classification
have a finite normalizer in the full orthogonal group. Secondly, for the Ricci flat
cases, one uses the splitting theorem, see Theorem 6 in (Cheeger & Gromoll, 1971).

The question to look at next is the reducibility of the group. Things were
finally cleared up in (de Rham, 1952). The reducibility of the group implies quite
easily that the metric is locally a product. Then simple connectedness implies more-
over a global product but this is harder to prove.

Next, in (Lichnerowicz, 1955) (pages 258-261) it is proved that the Kahler
condition is equivalent to the holonomy group being a subgroup of the unitary
group U(n) for M". Moreover the special unitary group SU(n) characterizes Ricci
flat Kéhler metrics. Before Yau’s solution of Calabi’s conjecture in 1978, no (com-
pact) manifold with holonomy SU(#) was known (see the end of II1.C).

How about other irreducible subgroups of the orthogonal group? The re-
sult of (Berger, 1953) (see (Simons, 1962) or the surveys indicated above for a much
better proof) says the following. Note first that the result is completely local, no
completeness is needed. Satirically speaking the holonomy group is almost always
the full orthogonal group in general, or the unitary group for the Kéhler case. So
there exists a two-step hierarchy: the general case and the Kihler one. There are
however a few exceptions to this hierarchy. The first exception is formed by the
space forms of the general type, namely of any locally symmetric space, so that our
new hierarchy is finally not too much different from the one in II.

Then come two other exceptions in general dimensions: the first one is the
case of manifolds called quaternionic (even though they do not really admit a qua-
ternionic structure): their holonomy group is that of HP" or HypHP", which is the
group S(Sp(n) x Sp(1)) C SO(4n). It is an open question today whether there exist
many quaternionic manifolds besides the locally symmetric ones, no compact one
is known today. Recent references are (Le Brun & Salamon, 1994), (Boyer, Galicki
& Mann, 1994a) as well as the entire Proceedings (Gentili, Marchiafava & Ponte-
corvo, 1994). The recent notion of 3-Sasakian manifolds is very useful for con-
structing examples.
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The second exception is the case of the group Sp(n) C SO(4n). Those mani-
folds are called hyperkdihler. Paradoxically there are quite a few such manifolds.
The first complete (non-compact) example appeared in (Calabi, 1979). Compact
ones can be constructed using the solution of Calabi’s conjecture and some alge-
braic geometry: (Beauville, 1983). In practice they are Kahler manifolds with more
than one Kibhler structure, in fact they really admit a quaternionic structure. They
are today encountered in mathematical physics, in particular in the theory of “mir-
ror manifolds”: (Voisin, 1996). Recent references for them are (Salamon, 1996), the
report (Hitchin, 1991/92), (Besse, 1987), (Biquard & Gauduchon, 1996) and the
book (Greene & Yau, 1997).

The naive reader should be warned against thinking that hyperkéhler mani-
folds are the quaternionic analogue of complex manifolds and enjoy coordinates
like complex ones: holomorphy (“quaternionorphy”), quaternionic derivatives, etc.
This can, sadly enough, happen only in the flat case (then the holonomy is zero and
not Sp(n)). This result, which is due to Fueter, who deduced it prior to the 40’s, can
be found worded in modern language in (Salamon, 1982), see also (Sommese, 1975)
and (Batson, 1992). However in (Joyce, 1997) the development of a theory of “qua-
ternionic functions” on hyperkahler manifolds was achieved.

The list in (Berger, 1953) ended with three exceptions in dimensions 7, 8
and 16. The case of dimension 16 was that of the subgroup Spin(9) C SO(16). But
this group has to be struck off the list because of (Alekseevskii, 1968), where it is
proved that this group forces such strong curvature relations to hold that in fact it
implies local isometry with the panda CaP? or its negative analogue, which is a
symmetric space, see (Brown & Gray, 1972) for a more detailed proof. One is left
with two possible groups which are G, C SO(7) and Spin(7) C SO(8) respectively.
It was only in (Bryant, 1987) that the first examples appeared, sadly enough only
local ones. Complete ones appeared in (Bryant & Salamon, 1989). Compact ones
exist now in (Joyce, 1996a) and (Joyce, 1996b). It is not clear whether manifolds
with these holonomy groups are numerous or scarce. Joyce’s construction is extre-
mely expensive but very nice. It uses deformations of metrics, singular manifolds
and the Atiyah-Singer theorem. For example, for G,, the idea is to start with a
manifold with a reasonable G,-structure on its frame bundle. Such a structure has
a torsion which measures the defect of it as compared to being parallel transported.
Then one uses a one-parameter deformation technique to get finally a metric with
vanishing torsion.

Note that, just like as SU(n) and Sp(n), holonomy G, and Spin(7) force the
manifold to be Ricci flat, see the end of section III. There is also a strong relation-
ship between these special holonomy groups and parallel spinors: see TOP. 6.B.
This is due to the fact that both G, and Spin(7) are, contrary to SO(d), simply con-
nected and hence induce a canonical spin structure on the manifold. Using parallel
objects one can define the case of G, (or Spin(7) respectively) very simply by just
requiring the manifold to have an exterior form of degree 3 (or 4 respectively) that
is invariant under parallel transport (i.e. with a covariant derivative of zero). The
picture below is taken from (Salamon, 1989).
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Recently holonomy groups have become important in mathematical phy-
sics: see (Frohlich, Granjean & Recknagel, 1997) for a systematic presentation of
this hierarchy from the viewpoint of theoretical physics and also (Andersen, Du-
pont, Pedersen & Swann, 1997). The holonomy group classification is also useful
when studying nonpositive curvature manifolds, see Section 1.B.4, and on the non-
negative side for the characterization of symmetric spaces among compact Kéhler
manifolds by their bisectional curvature, see (Mok, 1988) and 1.B.1.

We mention here an important heuristic meaning of the holonomy classifi-
cation, whose consequences have still not been exhausted: objects (tensors) that are
invariant under parallel transport do not exist in general in a Riemannian manifold.
On the contrary, when one does exist it implies some extremely strong restrictions
for the Riemannian structure. The reason is that the full orthogonal group has “no
invariant” besides the trivial ones. On the other hand, as soon as an object is invar-
iant, it has to be very special, e.g. the Kdhler form, etc.

B. Kihler manifolds

This is an entire topic in itself and we will have to be extremely brief. We
know of no recent survey. A classic is the book (Weil, 1958), thereafter there is
(Wells, 1980). Although motivated by algebraic geometry, (Griffiths & Harris,
1978) is invaluable for Kéhler geometry. See also Chapter 2 of (Besse, 1987), more-
over Besse’s book contains many facts on Kéhler manifolds, in particular a detailed
study of the homogeneous ones. The book (Amoros, Burger, Corlette, Kotschik &
Toledo, 1996) (see also (Toledo, 1997)) is concerned entirely with the fundamental
group of Kahler manifolds but it can be used indirectly, with its references, as a
survey or a partial survey of the “Riemann-Kéhler” domain. For more general
complex geometry one can consult the three volumes of (Bedford, d’Angelo,
Greene & Krantz, 1991).

An analysis of the historical contribution of Kdhler himself can be found in
(Bourguignon, 1993). Of course part of the interest of Riemannian geometers was
to add the Kéhler hypothesis in order to attack many problems too difficult to
solve in the general Riemannian context. However the motivation was not purely
pride, since Kdhler manifolds appear most naturally in algebraic geometry. More
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even: Kahler manifolds have recently become extremely important in mathematical
physics: see for example (Voisin, 1996), the references there and (Frohlich, Gran-
jean & Recknagel, 1997). Just be careful that Kédhler manifolds are almost never to
be considered as “complexifications” of “real” manifolds. However they are of
course wonderful to work on, since we have the holomorphic calculus for them.

By definition a Kédhlerian manifold is one with a complex structure (this
means in particular that the coordinate changes are holomorphic for the complex
coordinates) together with a Riemannian metric which has the best possible link
with this complex structure, namely the complex structure is first compatible with
the metric but moreover invariant under parallelism. This is equivalent to the con-
dition for the holonomy group to be included in the unitary group and is hence
equivalent also to requiring the existence of a 2-form of maximal rank and of zero
covariant derivative. An equivalent definition is the following (but the proof is a
little tricky): we have a complex structure J with a Riemannian metric g such that
both are compatible: g(Jx,Jy) = g(x,y) for all x,y. Then one gets an exterior 2-
form w, called the Kdhler form, defined as w(x,y) = g(x,Jy). Then the manifold is
Kéhlerian if and only if w is closed: dw = 0.

To many people Kihler manifolds look like algebraic ones. There is a good
reason for that: a celebrated theorem of Kodaira asserts that this is the case under
the sole condition that, via de Rham, the form w belongs to the rational cohomol-
ogy (or, equivalently, it has rational periods). For a proof in book form see (Grif-
fiths & Harris, 1978) or (Wells, 1980).

Beware also that Riemann-Cartan normal coordinates can never be com-
plex, except in the flat case. But a fundamental concept (even if trivial) is heredity:
a complex submanifold of a Kéhlerian one is also Kdhlerian. The parallelism of the
complex structure J immediately implies the curvature relation R(Jx,Jy) = R(x,y)
as endomorphisms. Note that a Kdhler manifold is then canonically a symplectic
manifold, so that the whole of symplectic geometry becomes available. Recent
books on the topic are (McDuff & Salamon, 1995), (Hofer & Zehnder, 1994) and
also (Audin & Lafontaine, 1994). Another strong point is that the Kéhler notion is
heriditary not only for (complex) submanifolds but also for many algebraic geome-
try operations, in particular that of blowing-up. Note also that w and its exterior
powers w* are “calibrating", see TOP. 6.A.

Gromov’s complaint was that the above definition is not all that geometric:
(Gromov, 1992b). A rarely used geometrical tool is the diastasis. Invented in (Cala-
bi, 1953), it is some kind of adapted metric (in fact it should be viewed more as a
potential), but in general it is defined only locally. All points of interest concerning
this tool can be found in (Hulin, 1995) and its bibliography. In this text the diasta-
sis is used to study Einstein manifolds (see II1.C).

Concerning curvature, two notions besides the sectional curvature are nat-
ural for Kéhlerian manifolds: the first one is holomorphic curvature, namely the
sectional curvature of the real 2-planes which are complex lines. Stated explicitly
these are the K(x, Jx) (where ||x|| = 1). Metrics of constant holomorphic curvature
are locally isometric to C", CP", HypCP" (please use normalization): this is a stan-
dard result now and is one very special case among the general type of questions
raised in the digression of I.C.1. It was stated in (Bochner, 1947), see (Igusa, 1954)
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or (Hawley, 1953) for a detailed proof. A weaker notion is that of bisectional cur-
vature: B(x,y) = R(x,Jx,y,Jy) = R(x,p,x,y) + R(x,Jy, x,Jy) and equal in parti-
cular to K(x,y) + K(x,Jy) if {x, y, Jy} is orthonormal. A very strong result is that
of (Siu & Yau, 1980) and, independently, (Mori, 1979): positive bisectional curva-
ture implies that the underlying manifold is CP". The nonnegative case is settled in
(Mok, 1988): one can only have biholomorphy with CP" and isometry with Hermi-
tian symmetric spaces, plus of course products and coverings.

For complex manifolds the theory of exterior forms is richer, they (at least
the pure ones) can be associated with a type (p, ¢) which refers to their representa-
tion in terms of complex coordinates. But one has more, namely that the exterior
differentiation can also be split into two: 8 and 8. The holomorphic forms are those
swallowed by 9. If moreover the manifold is Kéhler then the (total) Laplacian %A
coincides with both the partial Laplacians coming from 8 and 9. Via the Hodge-de
Ram theorem and the exterior product with w (which is of course harmonic), this
yields a lot of information. Let us first mention the increase of the Betti numbers
up to the intermediate dimension: b,.» > b,. Another simple example is that posi-
tive Ricci curvature forbids the existence of holomorphic forms of any degree.

Secondly, the Sullivan theory mentioned in TOP. 6.A is much stronger
here. It is proved in (Deligne, Griffiths, Morgan & Sullivan, 1975) that the real
homotopy of a compact Kdhler manifold is a formal consequence of the real
homology ring (compare this with I.C.1). It is also easy to imagine now that the
Bochner vanishing technique will yield a lot of strong results under various as-
sumptions about the curvature in the Kéhler case. This is indeed the case and is
used heavily for various bundles over a Kahler manifold, especially (complex) line-
bundles. There is an immense literature, see the classic (Hirzeburch, 1966), (Grif-
fiths & Harris, 1978) and thereafter, among others, (Siu, 1980) and (Sampson,
1986).

Can one tell by the spectrum of a Riemannian manifold whether it is a
Kiéhler one? We are far from it. Using the asymptotic expansion some special re-
sults were obtained in (Gilkey, 1973a). Then (Gromov, 1992b) was more ambitious.
There are some good results for A, see (Lichnerowicz, 1958), where a lower bound
for A; depending only on a positive Ricci lower bound is given and (Bourguignon,
Li & Yau, 1994), where an upper bound is given which uses the volume for alge-
braic manifolds.

4. Cut-loci

A question that suggests itself on a Riemannian manifold is to ask when
two points p, g are joined by more than one segment (a segment is a shortest path,
hence supported by a geodesic). There is a technical problem here, which partly ex-
plains the difficulty of the topic.

Assume compactness for simplicity. Starting from a given point p a geode-
sic will be a segment (realizing the distance) up to a certain value, called its cut-va-
lue (certainly smaller than or equal to the diameter). The cut-locus of p is by defini-
tion the set of these cut-points. But at such a point two things can happen (simulta-
neity is possible): a second segment may appear or/and the point may be conjugate
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to p, i.e. the exponential map may not be of maximal rank. This is the “dichotomy”
for the cut-locus. The cut-locus of a point p is always the topological closure of the
set of points joined to p by more than one segment, see page 589 of (Warner, 1965).
The injectivity radius at p is the (positive) distance between p and its cut-locus. On
a compact manifold the injectivity radius, introduced in I.A.2, is the infimum of the
various injectivity radii at p when p runs through the manifold. It is a positive num-
ber and we saw above that it is often a basic tool (cf. I.C) and an important invar-
iant (cf. II1.B). A fairly detailed description of the cut-locus in book form is to be
found in Chapter III of (Sakai, 1996), in the last chapter of (do Carmo, 1992) and
in (Kobayashi, 1989).

We now address the question of the structure of the cut-locus. Contrary to
many topics we have considered in Riemannian geometry, results on the cut-locus
have appeared in a steady stream. But these results are very few in number and
quite far apart in time. The cut-locus was first considered for surfaces in (Poincaré,
1905), where it was called the “ligne de partage”. Then Elie Cartan used it for the
topology of Lie groups in (Cartan, 1936) and studied it also in (Cartan, 1946-1951)
(it seems that he was unaware of Poincaré’s and Myers’ results). For surfaces it was
well studied in (Myers, 1935b), (Myers, 1936) and (Whitehead, 1935), where the ex-
pressions cut-locus and conjugate locus were introduced (and by the way the gener-
al existence of local convex balls was proved). Next, it appeared explicitly in the
proof of the sphere theorem in (Klingenberg, 1959). One then had to wait until
(Wall, 1977) and (Buchner, 1978) to get structure results for the generic and the real
analytic case. At the same time (Gluck & Singer, 1978) showed that in general the
cut-locus can be very bad, typically non-triangulable for an open set of points. Very
recently the cut-locus made a strong comeback. Essentially “cut-loci are not that
bad”, more precisely their Hausdorff dimension is in a direct relation to the
smoothness of the metric, see (Itoh & Tanaka, 1997) and the references therein.

But still the cut-locus remains mysterious and basically unknown on a given
manifold. The sole exception is the case of symmetric spaces, see (Sakai, 1978) and
(Takeuchi, 1979). See for space forms (Hebda, 1995). The cut-locus on a two-di-
mensional ellipsoid (even on one of revolution), however, is still not known. For an
umbilic it is reduced to its antipodal umbilic. For all other points it is believed to be
a topological segment. But this latter assertion depends on the scandalously un-
proved Jacobi “statement”: the conjugate locus of a non-umbilical point m of an
ellipsoid has exactly four cusps. Geometrically this conjugate locus is the envelope
of the geodesics emanating from m.

Inverse results for the cut-locus are completely unknown apart from one ex-
ception: the cut-locus of every point is always reduced to a single point (Wiederse-
hensmannigfaltigkeiten) only for the standard sphere, see in book form Chapter VI
of (Sakai, 1996). This result was obtained for surfaces in (Green, 1963) and was a
conjecture of Blaschke’s in the 20’s. For higher dimensions it is the content of Ap-
pendix D of (Besse, 1978). A more general inverse problem could be stated as fol-
lows: which are the manifolds all of whose conjugate loci are submanifolds, in par-
ticular of codimension larger than 1? The problem is untouched today, even with
stronger conditions, see the sections concerning the Blaschke conjecture in (Besse,
1978). A very itching question, which is a very specialized case of the above, is the
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following one: which are the Riemannian manifolds for which the diameter is equal
to the injectivity radius? This occurs for the (standard) spheres and all the KP"
(with the standard metric). Are there any others? The question is raised in a general
setting in (Besse, 1978), where it is called the Blaschke conjecture. It is not too hard
to prove that the cut-locus of any point is a submanifold of constant dimension
(that of a K-hyperplane) and it is also true, but more subtle, by algebraic topology,
that it is almost only the KP"” that can appear as topological manifolds. We have
just seen that the question has been solved for the sphere. The question is also
solved for the sphere covering an RP?: there are no others. But for K = C, H or Ca
the question is open.

We now come back to the question raised in 0.B about Cartan’s local state-
ment: parallel transport and the curvature determine the metric. In (Ambrose,
1956) the global problem is raised where one knows the parallel transport and the
curvature for all geodesic segments starting in a given point. Ambrose conjectured
that this knowledge is enough for a complete determination of the metric. This is
linked with the structure of the cut-locus and is still an open problem. It was solved
recently for surfaces in (Itoh, 1996) using (Hebda, 1994).

A final remark is in order: the cut-locus is essentially a Riemannian notion
if one expects a reasonable form of behavior. As soon as one goes to more general
metric spaces things can become very very wild. See for example (cf. TOP. 9) (El
Alaoui, Gauthier & Kupka, 1996) for Carnot-Caratheodory spaces, (Shiohama &
Tanaka, 1992) for Alexandrov surfaces and (Zamfirescu, 1996) (as well as the refer-
ences therein) for the boundary of convex bodies. For Riemannian manifolds with
boundary see the references in TOP. 9.

5. Non-compact manifolds

In various instances we already mentioned previously some extensions of
results for compact manifolds to complete ones. It is clear that one should restrict
oneself to some kind of non-compact Riemannian manifold to have some hope of
obtaining non-trivial results. Let us mention in particular the following restrictions:
replace compactness by finite volume, ask for asymptotic behavior of some given type
at infinity, e.g. quadratic decay, quadratic curvature decay, volume behavior, etc.
Note that non-compact manifolds occur necessarily when studying manifolds with
infinite fundamental groups.

A typical example is that of manifolds with nonnegative Ricci curvature. In
the case of nonnegative sectional curvature we saw in 1.B.1 a perfect structure theo-
rem (both a splitting and a soul theorem) by Cheeger-Gromoll and the bounded to-
pology result of Gromov-Abresch. Note that these results are valid without any ex-
tra condition on the geometry (boundedness or its behavior at infinity). But if one
asks the same question for nonnegative Ricci curvature, the splitting theorem is still
valid but there is no structure theorem and there is no bounded topology result as
seen in examples. This implies that results on nonnegative Ricci curvature on com-
pact manifolds should use extra hypotheses, typically some kind of growth. The re-
sults one expects could be of a different nature. Corresponding to various structures
on the sphere at infinity in the case of negative curvature (I1.B.4), it seems that the



Riemannian geometry during the second half of the twentieth century 157

right structure to be defined (even though not unique in general) is the following.
The idea is to look at the structure at infinity by considering, for a given (M, g), the
sequence of the (pointed) manifolds (M, p,r;!.g) when the “radii” r; tend to infinity.
This idea appeared first for the case of discrete groups in (Gromov, 1981b).

The convergence theorems in C.2 extend easily to the category of pointed
manifolds, see (Petersen, 1997). In particular one can extract a subsequence that
converges toward “some” limit “cone” (a cone at infinity, denoted with a slight
abuse of notation by M,,.); this cone need not be unique and might also depend on
p- In various instances, one can prove that M, is a volume cone, or better a metric
cone, and finally sometimes the Euclidean space itself. Here is a small selection of
results from among many recent ones: §7 of (Cheeger & Colding, 1996), (Cheeger &
Colding, 1997a) and their successors. An exemplary conjecture is that by Anderson
and Cheeger to the effect that, if a cone at infinity is isometric to R? and the Ricci
curvature is nonnegative, then the manifold itself is isometric to R?; this conjecture
has since been proved in (Colding, 1996b).

But we insist that non-compact manifolds are, to some respect, more im-
portant than compact ones. This is why our partial survey should definitely be
complemented in some way or another by the reader. The reader may discover a
way of doing so in the references given. Non-compact manifolds appear together
with surfaces, especially space forms, where the eigenvalue behavior with respect to
the value 1/4 is even more delicate than for compact ones, see for example (Luo,
Rudnick & Sarnak, 1995).

We saw in [.B.2 and 1.B.4 that some non-compact manifolds appear natu-
rally in the case of compact manifolds with a bounded Ricci curvature, of negative
or of nonpositive curvature, when one looks at their universal coverings. But they
are also used heavily in different instances, like in collapsing with diameters that
are not bounded or, more generally, when one drops the diameter bound in various
situations (see I.C and the references there). See also the very geometric text (Ba-
benko, 1992).

A natural case is that of finite volume. Many results we met above extend to
this case, involving a little or even a lot of pain, depending on the question. It is
even impossible already to give a short list of references, so that what follows is
very biased. Note just, to start with the naturalness of the topic, that the famous
modular domain SL(2,R)/SL(2,Z) is of finite volume for its hyperbolic canonical
metric (but also has singularities): see (Luo, Rudnick & Sarnak, 1995). We also
mention the problem of extending the integral Chern formulas to the finite volume
case. Surprisingly, this turned out to be an extremely hard subject, even for sur-
faces, where it was first studied in (Cohn-Vossen, 1935). See (Cohn-Vossen, 1936)
for the problem of extending the Gauss-Bonnet theorem. However a lot of work
remained to be done for surfaces. We refer to (Shioya, 1992) and the intermediate
references therein, and just mention that many topics introduced in I.B.4 (for nega-
tively curved manifolds) play a role here. For higher dimensional formulas, then
involving the characteristic x but also the characteristic (Pontryagin) numbers, the
job was started in (Cheeger & Gromov, 1985): in the non-compact case one can get
irrational characteristic numbers. More results are to be found in the recent text
(Rong, 1995), see also the survey (Liick, 1996).
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Finite volume is an especially strong condition in the negative curvature
realm, where most results valid for compact manifolds can be extended with
mostly not too much pain to the case of a finite volume. For space forms and
Mostow’s rigidity see (Farrell & Jones, 1989b), for the general case see (Ballmann,
Gromov & Schroeder, 1985) and of course (Eberlein, Hamenstidt & Schroeder,
1993).

Another condition is that of a bounded geometry. It arises naturally for cov-
erings of compact manifolds and homogeneous spaces, it appeared for example in
(Greene, 1978) and now forms a huge universe. The question is studied in (Semmes,
1996a) in connection with the fairly recent notion of complexity.

<+

An interesting question is to know when a complete Riemannian manifold
can admit a non-constant harmonic function (Af = 0) or, even more, a positive
spectrum. This possibility is linked directly with various curvature properties. The
founding text was (Yau, 1975), where positive Ricci curvature was shown to be en-
ough to exclude the possibility of non-constant harmonic functions (this is a “Liou-
ville type” result). Then results did not stop appearing, we refer only to recent texts
and their bibliographies: (Colding & Minicozzi 11, 1997) and (Yu, 1997). See also
(Benjamini & Cao, 1996) for connections with sectional curvature.

<+

In the non-compact realm, various results address the question of obtaining
results when the structure at infinity satisfies some condition, like being asymtoti-
cally Euclidean (with an asymptotic order to be made more precise). See among
others (Shen, 1996) and the references therein. There are also gap results, which for-
bid various compact metrics to be extended by completely flat ones at infinity (un-
less they are already flat everywhere), etc., see the introduction to (Lohkamp,
1996a) and (Greene & Wu, 1990) as well as what was seen in 1.B.4. Many results
are to be found in (Eberlein, Hamenstddt & Schroeder, 1993), like for example
asymptotically harmonic manifolds, see also (Funar & Grimaldi, 1977) and (Un-
nebrink, 1997). A strong result is (Cheeger & Tian, 1994), it is used for the results
of Cheeger and Colding in I.B.2.

There are many techniques in non-compact Riemannian geometry besides
the study of the structure at infinity seen above and the compactification in I.C.4.
Besides the use of the sphere at infinity in various ways, we mention the very geo-
metrical chopping technique of (Cheeger & Gromov, 1989). This is an exhaustion
technique where, as one goes to infinity, the boundaries of the successive compact
pieces keep a bounded second fundamental form and are also volume-controlled.
We also mention the notion of manifolds with a uniform contractibility function,
which extends the notion of the injectivity radius: the definition demands the exis-
tence of a function f(r) > r such that every ball of radius r is contractible in the ball
which has the same center and a radius of f(r), see (Greene & Petersen, 1992) and
the references therein.
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Very interesting also is the technique for proving the “mass conjecture” in
(Schoen & Yau, 1981) (see also the expository paper (Kazdan, 1981/82)): using
GMT one looks at minimal hypersurfaces in the manifolds and studies what they
develop into when their boundary goes to infinity. For other viewpoints see the re-
ferences in (Cao, 1996).

<+

On compact manifolds all homology and cohomology theories more or
less coincide. In the non-compact case matters are much more subtle. A helpful
notion for Riemannian geometry is that of L?-Betti numbers. There are the sur-
veys (Pansu, 1996) and (Liick, 1996). We just mention that the “only-compact”
motivated Riemannian geometer should consider this notion with respect. A strik-
ing example is (Gromov, 1991a), where L2-Betti numbers are used to solve H.
Hopf’s conjecture mentioned above (at the very end of I.B) for the Kéhler case: a
compact Kihler manifold M?" of negative curvature has a characteristic whose
sign equals (—1)".

6. Bundles over Riemannian manifolds

We introduce bundles in the order of their Riemannian geometric charac-
ter. First canonical or almost canonical ones (spinors), then those obtained by
twisting canonical ones, then Yang-Mills fields. The most natural ones are those
of exterior differential forms met in 0.D. A reference in book form is (Gilkey,
1995), but add also (Berline, Getzler & Vergne, 1992) for the index theorem in a
very general context and (Lawson & Michelsohn, 1989) for the spinors. Of basic
importance are the characteristic classes for various bundles over general differen-
tiable manifolds, so one should look at their connections with Riemannian geo-
metry.

A. Exterior differential forms (and some others)

Exterior differential forms exist on any differentiable manifold, their de-
grees extend from 0 to the dimension d of the manifold. The corresponding vector
spaces are denoted by QPM. The basic link is the exterior differential
d: QP — QP+ with d od = 0 (this collection is called the differential complex of
M). The closed forms are the w with dw = 0. This leads, as seen in 0.D, to the de
Rham theorems via Stokes’ formula. Although not a Riemannian story, one
should know that, even though this only yielded the real Betti numbers for the
topologist, more can now be extracted solely from the exterior differential com-
plex, as was discovered in (Sullivan, 1977), for example some topological finite-
ness type results (see 1.C.1), see also the rational homotopy theory in I.B.1, an
application in the digression in V.A and TOP. 3.B. What more can a Riemannian
geometer now ask and do? Of course he can look for interesting relations between
the metric and exterior forms.

A basic fact is the existence of the *-operator x: Q? — Q97 It is involutive
or antiinvolutive: x o x = (—1)?»*Y*! and needs an orientation. The form *w is de-
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fined by *w(xi1,...,%4) =w(x1,...,x,) for any positive orthonormal basis
{x1,...,x4}. For example on an oriented manifold the * of the constant function 1
is the volume form, namely the d-form which takes the value +1 on any positive
orthonormal set (of tangent vectors). Its existence is equivalent to orientability.

It is natural to look at the canonical norms ||w|| and, bearing in mind the
de Rham theorem to look (if it exists) at the minimum of the L2-norm
Jos Nlw(m )||* dm for w running through a given cohomology class. The basic theo-
rem of Hodge and de Rham (met in 0.D) says that this minimum is attained by a
unique form in the class which is characterized by Aw = 0, where the Laplacian A
on forms is d o d* + d* o d, with the adjoint d*: Q? — QP! of d being defined as
(= l)d(f’“)(* od o). There is no need for an orientation since one uses * twice.
Harmonic forms w are those with Aw = 0. Stokes’ formula implies that Aw =0 is
equivalent to dw = 0 (closed forms) and d*w = 0 (co-closed forms). The second
condition is exactly where the Riemannian structure enters.

Concerning harmonic forms one can wonder about the “inverse problem”
of whether harmonic forms are special among closed differential forms or not. This
is a tricky question and was attacked first for 1-forms and solved in (Calabi, 1969).
For higher degrees see (Farber, Katz & Levine, 1996).

One can also wonder about the fact that, except for 1-forms, exterior forms
are not well suited in general for computing volumes when one restricts them to
submanifolds. But there are some exceptions, as was first noticed in (Wirtinger,
1936). In a Kéhlerian manifold the Kahler form w enjoys the following property:
for any orthonormal pair x, y one has w(x,y) < 1 with equality holding only for
complex lines: y = Jx, and this works also mutatis mutandis for the exterior powers
Nw. Using Stokes’ formula along with the fact that w is closed, one can see that
this implies immediately that any complex submanifold of a Kéhlerian manifold
has an absolute minimal volume in its homology class (this is much stronger than
being only a minimal submanifold and is called stability). Wirtinger used his result
for various applications, for example to compute explicitly the volume of any alge-
braic submanifold of a given degree in CP”".

The above inequality may hold for some forms of degree p on some Rie-
mannian manifolds: w(x,, ..., x,) < 1 for every orthonormal p-tuple. This property
is called calibration (calibrating form, calibrated manifold) in (Harvey & Lawson,
1982). As above the straightforward property of a calibrating form w is that, if a
submanifold N” has a volume equal to f,, w, then it is an absolute minimum in its
homology class, in particular a stable minimal submanifold. For this it is necessary
and sufficient that w takes the value 1 on each tangent space to N”. Calibration was
used in (Berger, 1972) to prove the systolic inequality for the standard metric of
KP" for H and Ca (for C this is the work of Wirtinger). In (Harvey & Lawson,
1982) a general theory of calibration is given. In particular some generalizations of
Wirtinger’s are presented, in the sense that calibration is also linked with some
PDE in the same way as complex submanifolds can be defined as holomorphic,
namely by d = 0. Recently calibration was used for systolic softness (freedom) in
(Babenko & Katz, 1997) (see 1. E) and in (Besson, Courtois & Gallot, 1995a) in a
Hilbert framework.
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*

We now present the two outcomes of spectral considerations for exterior
forms which have a Riemannian geometry flavor. It seems that, today at least,
apart from the two results below and of course the knowledge of the real Betti
numbers via Hodge harmonic form theory, there are no other known implications
for topology that one can deduce from spectral considerations on the totality of
exterior forms. The Kihler case is more fertile as seen above in I.B.1. (McKean &
Singer, 1967) started off a firework of results which yielded a deep understanding
and many applications. We will describe it briefly, a complete reference is (Gilkey,
1995) (this second edition is very much up-to-date). Roughly speaking, what hap-
pens is the following: we look back at the asymptotic expansion in IV for
> exp(—A;z) with the integrals Uy (x), which are universal in the curvature tensor
(this will always mean including its covariant derivatives). People despaired at the
fact that U, is not a topological invariant as soon as d > 2. Since they also have
a canonical Laplacian we can do the same (it is not too much more expensive and
appeared first in (Gaffney, 1958)) for p-exterior forms and get the pointwise invar-
iants, denoted by u,«(x), appearing in the asymptotic expansions of the corre-
sponding heat kernels for the term in ¢*. They are still universal in the curvature
but differ in general with various values of p. Their integrals over M will be de-
noted by capitals: U,y; the eigenvalues of the p-spectrum will be denoted by

{)‘p:i 2

Now let us perform the alternate double sum y° >~ (—1)" exp(=Ayi £). As
both the operators d and d* commute with the Laplacian A they transform eigen-
forms into eigenforms. Now the Hodge decomposition theorem, which decomposes
any form into a harmonic part, a closed part and a coclosed part, shows that every-
thing will disappear in this alternate summation except at the harmonic level: there
the zero eigenvalue A,y has a multiplicity equal to the p'" Betti number b,. So
everything should disappear also in the alternate sum of the corresponding asymp-
totic expansions for any k, except when k = d/2. Hence the alternate pointwise
sums Y (—1)u,x(x), when integrated over M and added up after multiplication
with %, will identically yield the constant 3 (—1)’b, = x(M). This explains
McKean and Singer’s dream: a fantastic pointwise cancellation might well take
place in the pointwise u,; to yield the forced integrated cancellation. This was in-
deed proved in (Patodi, 1971) .

The rebound came first in (Gilkey, 1973b) then in (Atiyah, Bott & Patodi,
1973). One studies the Patodi cancellation result but puts it into the framework of
successively more and more general bundles equipped with suitable elliptic opera-
tors including the Dirac one on spinors and then uses Gilkey’s results. It then turns
out that those structures are numerous enough to yield all elliptic operators, giving
a new proof of the index theorem (see C below). The use of the theory of invariants
“a la Gilkey” and functorial behavior is important. The (final) result is obtained by
using this technique for more general statements. The harvest here is larger: Hirzeb-
ruch’s signature theorem (see 0.E) can be obtained in this way and of course this
new insight yields many results in differential topology. Research in this domain is
still actively ongoing, see the two books already mentioned. One point in this philo-
sophy is that “pointwise cancellation” shows that local type index theorems can ex-
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ist. But Riemannian geometry is quite far away. However here is the second bypro-
duct of the rebound: the n-invariant.

The main trick in the founding papers (Atiyah, Patodi & Singer, 1975-
1976) is to obtain the characteristic x(M) not as the alternating sum of the zero-
eigenvalues of the various Laplacians on the exterior forms of a given degree on
(M, g), but at one stroke as the index of the first order operator B = d — d* as act-
ing on the total set of exterior forms on M (one just has to be careful to put the
right signs in front of B). The eigenvalues of A are of the form A2, where ) is an
eigenvalue of B, but different signs are possible here. Hence the function

n(s) =Y (sign(N)A]

A#0

makes sense for suitable s. In a strict sense (as usual for this kind of function) 5(0)
is not defined but with some extra work one can still make some sense out of it. It
is then called the n-invariant of (M, g) and measures the “spectral asymmetry”. This
invariant is especially interesting for manifolds with boundary. For a 4k-manifold
M’ with a (4k — 1)-boundary M (and provided that locally at the boundary the me-
tric is a product) one can express the signature sign(M’) by the integral formula
sign(M’) = [, L(R) — n(M), where L is the universal curvature integrand for Hir-
zebruch’s signature seen in 0.E. This invariant has many applications when looking
at the subtle problem of the non-existence of pointwise invariant integration formu-
las for the “signatures”. Besides the original papers we refer the reader to (Atiyah,
Donnelly & Singer, 1983) and (Gilkey, 1995). There are also connections with the
secondary characteristic classes below, also with the A-genus when spinors are
being examined. An application of the n-invariant for 3-manifolds is the isolation
result of (Rong, 1993) for the minimal volume in dimension 4 seen in TOP. 1.D., a
recent result is (Bunke, 1995b). The 7-invariant is also used in Number Theory:
(Atiyah, Donnelly & Singer, 1983).

Another invariant based on the spectral analysis of differential forms is to
be found in (Ray & Singer, 1971). The result is that, from the sum 3_ (~1)".p.¢;(0)
built up with the (,-functions associated with the spectrum of the p-differential
forms of all degrees p, one can recover a topological invariant. Ray and Singer con-
jectured that their invariant coincided with the topological invariant called the Rei-
demeister torsion and gave some evidence for that. The conjecture was proved in-
dependently in (Miller, 1978) and (Cheeger, 1979). The proof is very involved and
was one of Cheeger’s motivations for the study of the spectrum on some singular
manifolds, see TOP. 9.

<+

There is no reason to stick with exterior forms and not to look at other ten-
sors. Lichnerowicz introduced the theory of canonical and special Laplacians in
(Lichnerowicz, 1961). Particularly important is his Laplacian for symmetric bi-
linear differential forms, as they can be interpreted as infinitesimal variations of a
Riemannian metric. For Hodge-de Rham type theorems concerning this, see Sec-
tion 12.C of (Besse, 1987), where it is used to study deformations of Riemannian
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structures, i.e. metrics up to isometries (diffeomorphisms). Lichnerowicz’ Lapla-
cians are natural, in the sense explained in 0.D.

B. Spinors

When it exists, the spinor bundle is “almost canonical”. For all what follows
and more on “spin geometry” see (Lawson & Michelsohn, 1989), and add for some
parts (Gilkey, 1995), (Berline, Getzler & Vergne, 1992). We are going to present
things in a very caricatural way. The basic idea is the following: Riemannian geo-
metry has a Euclidean structure on every tangent space, so that, if the space is
moreover oriented, the special orthogonal group SO(d) is “the basic object”. Be-
sides the fundamental representation on R, the special orthogonal group has a ba-
sic one on the exterior algebra and, using tensor products, one can construct all the
others. So apparently the Riemannian geometer should not look any further than
for those. But the Lie group SO(d) is not simply connected and its (nontrivial and
twosheeted when d > 2) universal covering group Spin(d) has an extra representa-
tion in a “canonical” complex vector space, the space of spinors of the initial Eucli-
dean space.

<+

First let us give some purely algebraic facts. The canonical quadratic form
on R gives birth to the Clifford algebra Cliff(d) of dimension 2¢. This algebra, only
as a vector space, is canonically isomorphic to the exterior algebra A(R?). Now
there is a basic link between Spin(d) and CIliff(d) to the effect that one finally ob-
tains two things in a canonical way. First, a complex vector space ¥(d) of dimen-
sion 2[%/2 (where [n] denotes the integral part of n). This space shows up when one
tries to write Cliff(d) as an endomorphism algebra End(?) and it is called the (com-
plex) spinor space of R?. Secondly, because Spin(d) can be realized as a subgroup
of the group made up of the unit elements of the algebra Cliff(d), one finally gets a
representation of Spin(d) on the space X(d). The theory is complicated by the fact
that this representation is irreducible only when d is odd but splits into non-iso-
morhic ones denoted by X (d) and X~ (d) of half the dimension when d is even.

Real spinors also exist, but the situation is more complicated with them
and is to be considered 8. It is a basic fact that this game cannot be played without
having fixed a quadratic form, because the universal cover of the special linear
group SL(d,R) does not admit any faithful finite dimensional represention, except
those in the exterior algebra.

+

Since all the above construction depends only on oriented Euclidean geome-
try, namely a (the) positive definite quadratic form on R¢, the game is to do this two-
step construction for any oriented Riemannian manifold (M¢, g). Since the (princi-
pal) bundle of oriented frames Pso(4) M has SO(d) as a structure group one first tries
to define a universal double covering of this bundle, demanding moreover of course
compatibility with the group covering Spin(d) — SO(d). This is not always possible
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and a necessary and sufficient condition for this is the vanishing of w,(M), the sec-
ond Stiefel-Whitney class of M: (Haefliger, 1956). Up to isomorphism, the spinor
structures so obtained are classified by H'(M, Z,). They are for example unique in
the simply connected case. However one in general keeps to a unique notation,
namely Psyinq)M to denote any spin-bundle covering Pso@yM. Now, attached to
any spin structure on the manifold, see C below, the representation of Spin(d) on
¥(d) automatically produces a (complex) vector bundle denoted by ¥(M,g) and
called the (“a”) spinor bundle on (M, g). A section of it is what is called a spinor field
on M. Still using general facts on bundles (C below) the above construction and the
Levi-Civita connection yield a canonical connection D on ©(M).

The third point, a major one, is that, using D, one can define on (M) a
canonical differential operator of degree one, called the Dirac operator and denoted
by 6. In even dimensions it exchanges the spinors I'(X*) and T'(£7). Now for 62
there exists a Bochner-Weitzenbdck type formula which is 6> = D*D + %scal (the
Lichnerowicz formula) and was already used heavily in 1.B.3. Compared with the
formulas for A involving the collection of the Curv, (see 0.D) this looks a priori a
disaster. But it is just the opposite: with much less information on the curvature,
one still gets information on the topology with the Hodge-type theorem for 6,
namely for harmonic spinors o, i.e. those satisfying 6o = 0.

The history of spinors is fascinating. It started with Elie Cartan when, in
(Cartan, 1913), he gave a complete classification of complex irreducible representa-
tions of simple Lie groups: besides the expected orthogonal and exterior representa-
tions he found an extra one which brought a new space to life. Moreover he pro-
phetically indicated how this representation could generate all others. Then, com-
pletely independently, Dirac invented spinors on physical grounds (hence their
name) in 1928 and defined the Dirac operator not for manifolds but just for the
Minkowski space R*!. The link was built by Cartan in 1937, but he concluded his
book (Cartan, 1937) by noting the “impossibility” of constructing a satisfying theo-
ry: this is so because coordinate changes with general Riemannian metrics on mani-
folds are only linear (not orthogonal) and we saw above that the universal cover of
the special linear group has no finite dimensional represention apart from those de-
rived from the genuine linear group. The construction of spinor bundles and of the
Dirac operator on them is hard to date precisely, it seems that they were more or
less part of mathematical folklore. But a historical year was 1963 which saw the
appearance at the same time of the index theorem, which among others yielded the
fact that the index for the Dirac operator is the Hirzebruch A-genus (hence an in-
teger), and of Lichnerowicz’ scalar curvature formula above. For this history and
more on spinors see the introductions to (Lawson & Michelsohn, 1989) and to
(Berline, Getzler & Vergne, 1992), as well as the postface “Spinors in 1995” by
Bourguignon to “The algebraic theory of spinors and Clifford algebras” in (Che-
valley, 1997).

We saw “the” basic applications of this in I.B.3, for more see the books
above. But the basic idea is that, when one defines much more general spin-type-
bundles, one can often prove that %scal is the dominant term. Other applications
are the following: some proofs of the index theorem, the construction of special
holonomy groups, see TOP. 3.
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A strong warning: as opposed to the case of the Laplacian and harmonic
forms, the kernel of the Dirac operator § depends on the choice of metric on a given
manifold. The dimension of this kernel (the space harmonic spinors) can change, as
was first discovered in (Hitchin, 1974). Worst of all: any spin-manifold can carry a
metric with some non-trivial harmonic spinor (at least today in dimensions 4n + 3):
(Bir, 1996). However, harmonic spinors are conformal invariants: (Hitchin, 1974).
The dependence on the metric is not easy to control because when one varies the
metric, the bundle also changes. In (Bourguignon & Gauduchon, 1992) a detailed
computation of everything in this context is presented, in particular the first varia-
tion of the Dirac operator and of its eigenvalues (see the references therein for in-
termediate results). Another type of result concerns the first eigenvalue of the Dirac
operator, in the vein of IV, regarding this long history we just mention a recent re-
ference: (Hijazi, 1995).

Finally, for the very geometrically minded reader, we mention that in (Con-
nes, 1994) one finds a formula giving the distance of two points using the Dirac
operator, which has the advantage of carrying over to the non-commutative set-
ting.

<+

Not much more complicated to define are the Spin, structures, they exist on
many more manifolds than spin ones. In particular they exist on any 4-dimensional
manifold, see TOP. 8 below for some references to some recent very significant ap-
plications. Beware of the notation: Spin,(d) is not the complex group Spin(n, C)
but “only” (Spin(d) x S')/Z,.

C. Various other bundles

The theory of bundles can be found in most books on differential geometry
and in detail in (Kobayashi & Nomizu, 1963-1969). From the topology viewpoint,
the classics are (Steenrod, 1951) and (Husemoller, 1975). Bundles E are differenti-
able manifolds equipped with a map E — B onto the basis B and a typical fiber F
such that the base B is covered with chart domains such that the counter-images in
E are products with F. On their intersections, these bundle charts should be smooth
on the fibers and most often preserve some given structure. For principal bundles
the fiber is acted on simply and transitively by a group, and chart changes have to
be group automorphisms. For vector bundles they should of course be linear maps.
An important point is the possibility, when given a principal bundle together with
an action of the group on some object (e.g. a representation in a vector space), of
deducing canonically from it an associated bundle, for example such a construction
was basic to the canonical construction of the spinor bundle above.

For bundles one has the notion of connection, that of curvature, of parallel
transport and of holonomy. The idea of connection is the same as the one explained
in 0.A, namely one wants to be able to compare (infinitesimally) two fibers and to
develop some kind of differential calculus. Of course, the connection that one uses
should preserve, in a reasonable sense, the various structures the bundle carries. In
particular, Riemannian vector bundles appear when a positive quadratic form is
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given on every fiber (with smooth dependence on the base point). For vector bun-
dles one has characteristic classes and the formulas of Chern type are still valid.
Relevant books are (Hirzeburch, 1966), (Berline, Getzler & Vergne, 1992) and
(Gilkey, 1995).

There exist some secondary characteristic classes: we mentioned in 0.E that
there are no other integral formulas involving the curvature besides Chern’s. In
(Chern & Simons, 1974) new subtle invariants were introduced. They occur in var-
ious bundles, they are not “downstairs” Riemannian objects. Although these are
typically topologically trivial their connections are not and the parallel transport
yields those new invariants. In (Cheeger & Simons, 1985) they were put downstairs
onto the manifold where they live as “differential characters”. These new invariants
have become more and more important, in particular recently in mathematical phy-
sics and in Number Theory: (Gillet & Soulé, 1994). In book form one can consult
(Berline, Getzler & Vergne, 1992) and (Gilkey, 1995), Section 3.11.

+

Yang-Mills fields first appeared in the late seventies because of a demand
by theoretical physicists. A book appeared as early as 1979: (Atiyah, 1979). But
since then the question has witnessed a dramatic increase and is now a topic in it-
self, with many subtopics. Yang-Mills’ question can be stated roughly as follows:
on a given compact Riemannian manifold, most often a “standard” one like the
sphere, one picks out some interesting vector bundle over it, some “bundle-Rie-
mannian” metric on it and some connection preserving this metric. Then one looks
for the “least twisted” one, typically in the L2-sense for the curvature of this con-
nection. This is a problem of calculus of variations and leads, for the curvature of
the bundle, to a condition which looks like the harmonicity of the curvature. A rich
harvest is possible on Yang-Mills fields because what one looks for is like looking
for harmonic forms, only that the harmonicity condition is on the curvature. There
are results like those of Hodge-de Rham. Besides their natural differential geometry
setting, they are basic to theoretical physics (gauge theory). Surveys and/or recent
references are (Donaldson & Kronheimer, 1996), (Donaldson, 1996) and (Ander-
sen, Dupont, Pedersen & Swann, 1997). Intermediate references were (Freed & Uh-
lenbeck, 1984), (Bourguignon & Lawson, 1982).

We just mention here that there is a drastic difference between Yang-Mills
structures on various bundles and the condition for this manifold to be Einstein
(see III). In the Yang-Mills game one keeps the metric downstairs fixed and varies
the connection in the bundle, while the Einstein condition consists in coupling the
Riemannian structure of the basis with the tangent bundle connection. To do both
at the same time is very difficult today as we have seen.

4

Twistor theory belongs more to Riemannian geometry than Yang-Mills
fields, even though there are strong links between them. Twistor spaces are mostly
bundles with compact fibers. They are constructed from a Riemannian manifold
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using its metric and some given additional structure, €.g. a complex structure, a spe-
cial holonomy, etc. In dimension 4 every Riemannian manifold has a canonical
twistor space above it, with fiber S2. The main point is that twistor spaces have a
richer structure than their basis, e.g. Kéhlerian. In many cases they have purely
geometric applications. One application is the classification of minimal surfaces in
standard spheres of high dimension done in (Calabi, 1967). They are also of basic
use for finding holonomy groups of some types (TOP. 3), but also to construct Ein-
stein manifolds, see for example (Hitchin, 1995). Besides a brief account in (Law-
son & Michelsohn, 1989), one can consult in book form (Besse, 1987). An inter-
mediate reference is (Atiyah, Hitchin & Singer, 1978). Twistor-like considerations
appear also in 3-Sasakian manifolds in connection with quaternionic holonomy:
TOP. 3.A.

+

General vector bundles are of course only differential geometry at the begin-
ning. The fact that the basis is Riemannian gives in particular a measure and also a
canonical connection on the tangent bundle. What makes vector bundles interest-
ing is the fact that the so-called K-theory is an algebra made up of all complex vec-
tor bundles over some given manifold. So one has succeeded in bringing in an alge-
braic tool to study differentiable manifolds, the maps between them, etc. For exam-
ple, one of the important facts about the Dirac operator is that it represents the
fundamental class in K-theory. For real vector bundles one had to use the more
subtle KO-theory.

For general Riemannian real vector bundles, the idea of Atiyah and Singer
was to extend to any such bundle the spinor construction of B (a sketch was given
for the complex case). The topological construction is the same as for the tangent
bundle. One can consider both the complex and the real case. Moreover Rieman-
nian connections have associated with them a canonical Dirac operator and a gen-
eralized Lichnerowicz formula, which is again surprisingly simple, even for twisted
bundles: see 11.§8 of (Lawson & Michelsohn, 1989). For various vanishing theorems
as used in 1.B.3 an important fact is that the scalar curvature of the base manifold
appears separately from the curvature term of the vector bundle under considera-
tion. Finally these generalized Dirac operators became essential for obtaining a bet-
ter understanding of the index theorem below. This was achieved through various
contributions of Atiyah-Bott, McKean-Singer, Patodi and Gilkey: see the introduc-
tion to (Berline, Getzler & Vergne, 1992). This book is devoted precisely to the in-
dex approach with generalized spinors and Dirac operators.

<+

If one now very broadly generalizes the Laplacian acting on functions and
on exterior forms by considering any elliptic operator on some vector bundle, there
exists a very deep and universal result, the Atiyah-Singer index theorem which was
a great event in 1963. This was a query of Gelfand’s who conjectured the topologi-
cal invariance of the index, see (Atiyah & Singer, 1963) for historical references and
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intermediate results. The index of an elliptic operator is the dimension of its kernel
minus the dimension of the kernel of its adjoint (cokernel). The theorem is that this
integer, on a compact manifold M, is equal to a number computed from only two
things: first the Todd class of M, which can be expressed in terms of the set of its
Pontryagin classes, secondly an invariant computed with the symbol of the elliptic
operator considered as acting on the various Chern classes of the vector bundles on
which the operator is defined. In the case of differential forms one just recovers the
characteristic via the Hodge-de Rham theorem. Applications of the index theorem
are numerous (and far from finished), for instance they yield the integrality of var-
ious invariants which are a-priori only real numbers. In the “pure Riemannian
case” we saw above in 1.B.3 the case of the scalar curvature. References are (Gilkey,
1995), (Berline, Getzler & Vergne, 1992) and the references therein.

<+

Starting with Witten in 1982, with Quillen in 1985 and with Bismut in 1986,
most of the above various notions for bundles were raised at a super level, e.g.
superspace, superconnection, supersymmetry, etc. In particular the Bismut Levi-Ci-
vita superconnection is fundamental for bringing the “super” concepts into Rie-
mannian geometry. Since then things have kept developing and have drastically en-
larged the panorama and changed the view, new concepts include connections, La-
placians and Dirac operators, asymptotic expansions of the heat kernel and the
index theorem. The book (Berline, Getzler & Vergne, 1992) is the ideal reference
for all this. For the holomorphic side, see (Bismut, Gillet & Soulé, 1988).

7. Harmonic maps between Riemannian manifolds

For the amateur of categories, systematically introducing maps between
Riemannian manifolds is quite a natural idea, if not a must. It was realized a long
time ago that geodesics do not only minimize the length f[o 1 [|f'(2)|] dt but also the

7 2 f s

energy f[o,l] [l//()|]°. The quadratic character, as opposed to the absolute value,
makeés the computation of the variational derivatives much easier. Moreover this
energy can be interpreted as follows: it concerns a map f from the interval into the
Riemannian manifold and is defined with only the Riemannian structure of it.
More generally one can attach to a map f between two Riemannian manifolds
(M,g) and (N, h) its energy E(f), which is the integral over M (for its canonical
measure) of the trace, with respect to g, of the quadratic form which is defined as
follows: the derivative f’(m) induces on every T,,M a quadratic form which is the
inverse one, by f’, of & on Ty, N. A map f is said to be harmonic if its energy is
critical among all maps from M to N.

This very general notion was introduced in the founding paper (Eells &
Sampson, 1964). The case of surfaces is quite special because harmonic maps are
directly related to minimal surfaces, thanks to the conformal representation. But in
higher dimensions there is in general no direct connection between minimal subma-
nifolds and harmonic maps, only in some special cases.

Since then, a rich history of this notion has developed, regarding the natur-
al questions as well as applications. The reader will find references, in particular to
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surveys, in the book (Eells & Rato, 1993). At the time of its publication, the book-
sized (Eells & Lemaire, 1988) was a very systematic, informative and complete sur-
vey. Important are various regularity results. In some cases harmonic maps are de-
fined in a more general context than the purely Riemannian one (see also TOP. 9),
see the books (Jost, 1995), (Helein, 1996) and for applications to Riemann surfaces
(Jost, 1996).

Harmonic maps are a basic tool today in Riemannian geometry as is very
well illustrated in the report by Eells-Lemaire. For example see their use for space
forms in IL.B, where the notion had to be extended to manifolds with singularities,
for manifolds with a positive curvature operator in I.B.1, for nonpositive curvature
manifolds (I.B.4) in (Jost & Yau, 1990). Harmonic maps are especially useful for
studying Kihler manifolds, in particular their fundamental groups, see (Amoros,
Burger, Corlette, Kotschik & Toledo, 1996) and the references in 3.B.

8. Low dimensional Riemannian Geometry

Even though dimension 2 is wonderful, we already saw above that dimen-
sions 3 and 4 have to be treated with care. For example many finiteness theorems
mentioned in I.C.1 start to hold only in dimension 5 or more. On the other hand, in
some instances one has very strong results in dimensions 3 and 4. For dimension 3,
there is the “topological” survey (Scott, 1983).

One of the points of interest of Riemannian geometry in low dimensions is
the hope of using Riemannian tools to solve topology and differential topology
problems which still haunt topologists. Recent reports are (Donaldson, 1996) and
the books (Donaldson & Kronheimer, 1996) and (Morgan, 1996). They present in
particular the basic tools: Yang-Mills theory, twistors, anti-self-duality in dimen-
sion 4 and the Spin,. theory of (Seiberg & Witten, 1994), see the end of TOP. 6.B.

For the “best metric” approach based on functionals and their critical
points, and the link with the geometrization program of Thurston, see the various
references to Anderson we gave in Chapter III, in particular (Anderson, 1997), as
well as (Kapovich & Leeb, 1996) . Finally we recall here the two Hamilton results,
using the Ricci flow, for the Ricci curvature in dimension 3 (I1.B.2) and for the cur-
vature operator in dimension 4 (I.B.1).

9. Some generalizations of Riemannian Geometry

A first generalization is that of Riemannian manifolds with boundary. Except
for the n-invariant above, we never mentioned them. For the general case one can
see (Alexander, Berg & Bishop, 1990) and the references therein. For the relation to
positive scalar curvature see (Lawson & Michelsohn, 1984). For the cut-locus see
(Alexander, Berg & Bishop, 1993) and (Alexander & Bishop, 1997).

We mention a problem which, besides its importance in itself, appears in
many practical problems. Assuming some kind of convexity on the boundary (M)
of a Riemannian manifold (M, g), one can define a good distance d(p, q) between
points of (M). To what extent does this distance d as a map (M) x O(M) — R
determine the “inside” metric g (up to isometry-diffeomorphism of the inside)?
Thinking a while of earthquakes, tomography, X-rays and scanners, one sees the
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practical importance of such a kind of problem. In an indirect way it was also met
in 1.B.4 and in the “gap” results in TOP.5. References are (Otal, 1990b), (Michel,
1994), (Croke, 1991), (Arconstanzo, 1994) along with its references, and (Bourdon,
1996). See also the Besicovitch results at the end of TOP. 1.E.

+

Back to generalizations, the subject exploded recently and results are now
appearing in a steady stream so that we will give a very concise overview. Some
cases appeared sporadically before, today strong incentives come from the wish to
obtain a deeper understanding of Riemannian geometry in various instances, for
instance that of I.C, namely to look at limits of a sequence of Riemannian mani-
folds. Interesting generalizations of Riemannian geometry can be of different types,
since of course looking at general metric spaces would be too general to obtain rea-
sonably deep results, for example to define objects playing the role of tangent vec-
tors, angles, curvature. We will try to guide the reader through this new realm by
suitable recent references and of course survey type ones when they exist. Concern-
ing references of a general type we know only of (Berestovskii & Nikolaev, 1993).

A special mention should be given to Gromov’s recent mm-spaces intro-
duced in Chapter 3% of (Gromov, 1998), these are metric spaces endowed with a
measure reasonably compatible with the metric, namely the metric should be a
measurable function on the product. One of their properties is that one can work
efficiently on the geometry of the set made up of all these spaces, in particular one
can study what happens when the dimension gets large, a fundamental problem in
statistical mechanics. Such mm-spaces are very general, the same applies to various
spaces which appear in the work of Semmes, see (Semmes, 1994). We turn now to
more direct (and less general) generalizations of Riemannian manifolds.

<+

Orbifolds were introduced in (Satake, 1956) and (Baily, 1957) in algebraic
geometry and they were revived in Riemannian geometry by (Thurston, 1978). Es-
sentially they are quotients of Riemannian manifolds by isometries when one per-
mits fixed points and moreover requires the isotropy group to be finite. This is typi-
cal for the case of space forms. But they arose in more subtle situations, for exam-
ple as limit spaces of some subsets of Riemannian manifolds with a Ricci curvature
bounded from below as well as when working on Einstein manifolds, see (Ander-
son & Cheeger, 1992), (Anderson, 1992a), (Anderson, 1994) and see also (Ballmann
& Brin, 1995). For orbifolds and quaternionic holonomy see (Galicki & Laswon,
1988), for orbifolds in the Kéhler realm see (Tian, 1991).

*
Spaces with an isolated conical singularity look quite simple, but for appli-

cations it is important to see what happens to the spectrum (see IV). More (or less)
generally one can think of studying Riemannian manifolds by approximating them
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by PL (piecewise linear) ones, metrically the pieces are all flat and “the curvature is
concentrated (distributionally)” at the vertices, the edges, etc. The PL-manifolds
are the very natural locally Euclidean version of general Riemannian manifolds but
with singularities. What happens to the curvature and to various formulas is the
object of (Cheeger, Miiller & Schrader, 1984) and (Cheeger, Miiller & Schrader,
1986), see (Lafontaine, 1985/86) for an expository text. This is in fact a very subtle
subject, we saw one case in TOP. 1.B for the isoperimetric profile of nonpositive
curved manifolds, see also the references given in 1.B.4 in connection with hyper-
bolic groups.

An extensive study of the spectral behavior of singular spaces was made by
Cheeger in a long series of papers: we refer to (Cheeger, 1983) and its bibliography.
This work was the outcome of the proof in (Cheeger, 1979) of the conjecture by
Ray-Singer concerning the Reidemeister torsion (see TOP. 6.A). One of its bypro-
ducts concerned Analysis, namely results on the diffraction of waves meeting some
kind of obstacles, another one was an explicit solution of the heat equation on stan-
dard spheres; for both see (Cheeger & Taylor, 1982).

+

Alexandrov spaces are a wonderful class because they enjoy two simulta-
neous properties. First they arise naturally at the boundary of the space of all Rie-
mannian manifolds whose curvature is bounded (only) from below. Secondly they
share many properties with (smooth) Riemannian manifolds. There are many texts
which are more or less of survey type: (Perelman, 1994c), (Berestovskii & Nikolaev,
1993), (Reshetnyak, 1993), (Burago, Gromov & Perelman, 1992), (Otsu & Shioya,
1994) and (Yamaguchi, 1992). We now give an extremely brief account.

These spaces appeared first in 1948 in A. D. Alexandrov’s work on convex
surfaces, but in 1957 Alexandrov made a more systematic study. Then came the
founding paper (Burago, Gromov & Perelman, 1992) and in between (Gromov, La-
fontaine & Pansu, 1981).

In I.C we had the desire to look at the boundary of suitable subsets of the
set of all Riemannian manifolds (compactness and convergence results). The de-
scription was possible (to some extent) for a bounded curvature, say —1 < K < 1.
But for K > k we had only finiteness theorems and no description of collapsing.
The solution lies in the theory of Alexandrov spaces with a curvature bounded
from below.

On the one hand, Alexandrov spaces with a curvature bounded from below
are defined very simply. They are first locally compact metric spaces which are
length spaces, namely the metric coincides with the infimum of the lengths of curves
joining the two given points. Note here a question of terminology. In (Gromov, La-
fontaine & Pansu, 1981) the wording was “length space”, in (Gromov, 1987a) the
wording “geodesic space” was used for the case when moreover any pair of points
can be joined by at least one shortest path. Busemann spoke of “intrinsic” metrics
in (Busemann, 1955). Here such a length space is called Alexandrov with curvature
> k if it enjoys (besides completeness of course) everywhere a local Toponogov
comparison theorem (see I.A.2) with the standard space form of constant curvature
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equal to k. One can then prove a global Toponogov theorem but also much more.
Only with such a mild condition one has a notion of angles, a notion of a tangent
cone which is itself an Alexandrov space of curvature > 0 and can be defined in
many equivalent ways. The points where this cone is not Euclidean are the singular
points and their set is of Hausdorff codimension at least 2, so that our spaces are
almost everywhere locally Riemannian manifolds. Note however that the singular
set can be everywhere dense, just think of a suitable limit of convex polyhedra. Im-
portant for generalizations of Riemannian results in the spirit of [.A and B is the
fact that the notion of critical points for distance functions is well defined and that
regions without critical points can be deformed into each other.

On the other hand, because the definition of curvature > k is purely metric
within the set (MET, dg-p) introduced in I.B the limit points of Riemannian mani-
folds with K > k are automatically Alexandrov spaces with a curvature > k. Hence
the results above constitute the answer to our main query and any further results on
those spaces will be a progress in the study of the boundary of the set of Riemannian
manifolds with K > k. The following recent references give an idea of how active the
research on this topic is. (Grove, 1992) extends some results of I.A, in (Shiohama &
Tanaka, 1992) cut-loci and distance spheres are studied, in (Yamaguchi, 1992) the
collapsing structure result of 1.C is generalized; various types of results generalizing
those in I can be found in (Petersen, 1996), for example the bound for Betti numbers
(see 1.B.2) of nonnegatively curved manifolds (see the references therein).

In (Cheeger & Colding, 1997a), (Cheeger & Colding, 1997b) and (Cheeger
& Colding, 1998) many of the above results are generalized to “limit spaces with a
Ricci curvature bounded from below”. These spaces occur of course as limit spaces,
in the Gromov-Hausdorff space, of Riemannian manifolds with the same Ricci
condition.

+

In the opposite direction to the above one can look for a large, but not too
large, class of spaces generalizing Riemannian manifolds of negative curvature. A
helpful notion is that of Ayperbolic spaces, which where introduced and studied in
(Gromov, 1987a) (not to be confounded with hyperbolic space forms, which are
only a very very special case). This is a game where the interesting case is when the
“curvature” is bounded from above. To get an idea of the spirit of the game see
I.B.4. After the publication of the founding paper (Gromov, 1987a) the topic devel-
oped into an entire world of its own. We just mention some references: (Gromov,
1993) and the books (Ghys & de la Harpe, 1990) and (Bridson & Haefliger, 1998).

<+

Here the analogous condition to that of Alexandrov spaces with a curva-
ture bounded from below, but this time involving an upper bound on the curvature,
is the CAT(k) condition. Say that we work in simply connected spaces. The
CAT(0) condition requires that one has, for every triple of points, the triangle in-
equality discovered by Cartan and rediscovered by Preissmann(see 0.B and C). For
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CAT(k) it is the same condition but the comparison is no longer performed with
respect to Euclidean spaces but with respect to hyperbolic spaces of curvature k.
The acronym CAT stands for Cartan, Alexandrov, Toponogov. One of the difficul-
ties in hyperbolic spaces is that they can have branch points, they can even be
graphs. Think also of a one-sheet hyperboloid converging toward the total cone
and look at the origin. Conversely, one sheet of the two-sheet hyperboloid asso-
ciated with the same asymptotic cone will converge to a conical point (of positive
curvature), a nice Alexandrov space.

Examples are to be found among the PL-manifolds (piecewise linear, i.e.
Euclidean). For PL-surfaces the CAT(0) condition is what you expect: at every ver-
tex the sum of the angles of the triangles meeting there has to be larger than or
equal to 27. For higher dimensions it is not all that easy to state this condition in
explicit terms. The general CAT(k) condition goes the reverse way to the Alexan-
drov case. It was mentioned above how difficult it is to understand what happens
to the curvature and to various formulas, see also (Bourdon, 1996).

<+

Other recent newcomers in the generalization of Riemannian geometry are
the Carnot-Caratheodory metric spaces. Regarding them one can say in a caricatur-
al sense that singularities occur at every point and are very strong. They are the
subject of the book (Bellaiche & Risler, 1996). More precisely one is given at every
point m in some manifold M“ some vector subspace ¥'(m) of the tangent space
T.»M of a constant dimension k£ < d. One endows those subspaces with a Euclidean
structure. The metric is then defined as follows: the distance d(m,n) between two
points, which is the infimum of the lengths of all curves whose speed vector at every
one of its points ¢ should always belong to V(g). Hence the other name for this
topic: sub-Riemannian geometry. This distance can be infinite but it is always finite
when the distribution V(.) is wild enough, that is to say “completely non-integr-
able”, in some sense the complete opposite of the foliation case. Carnot-Caratheod-
ory spaces are basic to control theory since in this setting only special paths are per-
mitted due to various restrictions imposed by practical situations. In street traffic,
the geodesics are what you have to do to park and unpark in a narrow slot. See the
recent (El Alaoui, Gauthier & Kupka, 1996) and the introductory text (Pelletier &
Valére Bouche, 1992). For the naive reader or a naive PDE person (Bryant & Hsu,
1993) is extremely informative.

+

I have been keeping back Finsler geometry for the middle of this section.
This is not historically correct. As is very well explained in (Spivak, 1970), where
Riemann’s dissertation is analyzed, Riemann in fact generalized Euclidean geome-
try by introducing Finsler manifolds. These are differentiable manifolds M where
some Banach structure g(m) (i.e. a convex body symmetric around the origin of
T,,(M)) is given at every point m. With this, lengths and hence a metric can be de-
fined as well. Moreover Riemann wrote this prophetic sentence: “we will now stick
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to the case of ellipsoids (quadratic forms) because, if not, the computations would
become very complicated”. One can also relax the symmetry condition, see for ex-
ample the Katok type examples mentioned in V.A.

There are only few geometrical objects as natural as Finsler manifolds, they
arise for instance in any kind of “Mechanics” as soon as the energy is no longer
quadratic. However the destiny of Finsler geometry was different from that of Rie-
mannian geometry. It is clear that I am biased regarding this subject but I think
that, up until very recently, there were very few strong typically Finsler results
which were not already Riemannian. And one can also say, of course only when it
makes sense, that there were few results that were true in Riemannian geometry but
not in Finsler geometry. Up to very recently we knew two such results: those by
Leon Green and by Burago-Ivanov in V.B. One counterexample appeared in (Buse-
mann, 1955), where non-flat Finsler tori without conjugate points were con-
structed. The other one is to be found in (Skorniakov, 1955), where it is proved that
any system of curves on RP? satisfying the axioms of projective geometry (and
some obviously needed reasonable smoothness) is that of the geodesics of some
Finsler (non-Riemannian in general, thanks to Desargues’ theorem) structure.
Green’s theorem figures in V.B and in TOP. 4. An interesting text is (Vérovic,
1996) where it is proved that the result of (Besson, Courtois & Gallot, 1995a)
(quoted in 1.B.4, III and V) can be either true or false for Finsler manifolds. The
inconclusive answer “yes or no” is due to the fact that Finsler manifolds can be as-
signed different notions of measure in their unit bundle. Conversely, most of the
results in the “filling paper” (Gromov, 1983a) are in fact valid for the Finsler case.

Here is a personal comment. Finsler spaces look more general than Rieman-
nian metrics. They are so in some sense. But in another sense they are more specia-
lized. In an affine (finite dimensional) real vector space a (symmetric) convex body
has priviliged directions (points), e.g. those where the affine curvature is critical, etc.
Conversely, an ellipsoid is infinitesimally isotropic, all the directions (the points) are
equivalent. This is for us one reason for the importance of Riemannian geometry.

There are of course many places where one can find information on Finsler
manifolds, which are experiencing a strong revival at present. A recent reference is
(Bao, 1995). The note (Foulon, 1997) is a perfect quick introduction to the modern
point of view, see the formula at the end of V. We mention the fact that Finsler
manifolds have a curvature, but what is implied by constancy of this curvature is
not clear today without any extra assumptions. The result of the aforementioned
note is again a rigidity result for compact negative curvature manifolds. The posi-
tive case remains mysterious, but (Bryant, 1996) throws some light on it. (Alvarez,
Gelfand & Smirnov, 1997) characterizes Finsler metrics for which the geodesics are
the straight lines (Hilbert’s fourth problem), see also (Shen, 1998).

<+

Riemannian foliations also form a topic of their own, as do totally geodesic
foliations of Riemannian manifolds: relevant books are (Tondeur, 1988) and (God-
billon, 1991). For the relation to scalar curvature see Chapter 1% of (Gromov,
1996) and see also in (Connes, 1994) a new way of viewing foliations.
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Lorentzian manifolds are completely similar, at least at the start, to Rieman-
nian ones. They are 4-dimensional manifolds that have everywhere a definite quad-
ratic form, but one of signature (+,+,+, —). More generally pseudo-Riemannian
geometry is of arbitrary dimension and has nondegenerate quadratic forms of any
signature. At the beginning they have many things in common, but this is definitely
misleading at long range, as was remarked by the physicist C. N. Yang with the
help of a beautiful picture: (Yang, 1980). The picture can also be seen on page 11 of
(Besse, 1987). The golden triangle is the main point that both objects have in com-
mon. Then questions and results diverge. Lorentzian “geometry” derives its in-
spiration mainly from General Relativity. Books on Lorentzian geometry are
(Beem & Ehrlich, 1981), (Hawking & Ellis, 1973), (Misner, Thorne & Wheeler,
1973), (O’Neill, 1983) and (Sachs & Wu, 1977). A special mention should be given
to (d’Ambra, 1988) (see also (d’Ambra & Gromov, 1991)), where it is proved that
the isometry group of a compact and simply connected Lorentzian manifold is itself
compact (presently analyticity is needed but this looks only technical), for more see
(Adams & Stuck, 1997). For surfaces (Weinstein, 1996) studied a Lorentzian con-
formal concept which is analogous to that of Riemann surfaces as opposed to that
of Riemannian surfaces. (Christodoulou & Kleinerman, 1993) is of Riemannian
flavor, see the expository paper (Bourguignon, 1990/91). Recently pseudo-Rieman-
nian geometry has appeared in various contexts, see for example (Benoist, Fou-
lon & Labourie, 1992) and (Kiihnel & Rademacher, 1995).

<+

Infinite-dimensional Riemannian geometry is still very young. The book
(Lang, 1972) was the first to treat Riemannian geometry systematically in an infi-
nite dimensional setting. Then appeared (Klingenberg, 1982) and recently the sec-
ond edition (Lang, 1996) and the reader can consult these books. See also (Bourba-
ki, 1969), (Gil-Medrano & Michor, 1991) and Chapter 3% of (Gromov, 1998). We
will mention only a few aspects.

The first one is to use suitable embeddings of Riemannian manifolds in the
standard Hilbert space. This can be done for example by using suitably normalized
eigenfunctions of the Laplacian, see (Besson, Courtois & Gallot, 1991) and (Bé-
rard, Besson & Gallot, 1997) for the setting and applications to finiteness results.

One can also embed any Riemannian manifold M in the Banach space of
the continuous functions C°(M) by the “trivial” map made up of the various dis-
tance functions, namely m — d(m,.). This childishly simple map turned out to be
basic to the systolic inequality of (Gromov, 1983a), see TOP. 1.E.

The second most natural desire is to define a notion of infinite-dimensional
Riemannian manifolds by starting with some infinite-dimensional differentiable
manifold M (whatever it means) and endowing every tangent space 7,,M with
some Hilbertian structure. This seems easy. In our view, it is in fact difficult, at
least today, for the following reason: for a simple Hilbertian structure one gets in
general non-complete metric spaces. With more complicated ones (typically in the
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Sobolev range) one has completeness but then the geodesics seem to have no good
and/or useful geometrical properties, their equation is too complicated, see (Ebin,
1970) and (Ebin, 1972). The text (Gil-Medrano & Michor, 1991) addresses the
question of constructing a manifold with the set of all Riemannian metrics on a
given manifold.

In Appendix 2 of (Arnold, 1978) the group of diffeomorphisms of a mani-
fold is given an (infinite-dimensional) Riemannian structure which is proved to be
always of negative curvature.

Path-space Riemannian geometry is very important, but many things con-
cerning it are only conjectural, since a solid framework is still missing. For example
for more on this in the context of positive Ricci curvature see (Stolz, 1996). There is
also the informative paper (Stroock, 1996).

+

Finally special attention should be given to (Connes, 1995-6): this is the be-
ginning of a complete program designed to put most (if not all) geometries into a
very general framework. The framework is that of algebras of operators and is
called “noncommutative geometry”. In this framework, according to various suita-
ble additional axioms one can recover almost any kind of geometry, including of
course Riemannian ones. The next step in the program will be to generalize every
concept one could wish, e.g. curvature. For the metric itself, this has been done and
we saw in TOP. 6.B that one can compute the distance with the help of spinors. See
also I11.C for the Hilbert functional in this context.

10. Submanifolds

Among other motivations, Riemannian geometry came into existence when
one was trying to generalize the geometry of surfaces in R>. There is no reason not
to consider the geometry of submanifolds inside a given Riemannian manifold. Be-
cause Euclidean geometry is hereditary for subspaces, it follows that Riemannian
geometry is also hereditary for submanifolds (but of course the metric is not the in-
duced one in the rough metric sense), this is one more reason why Riemannian geo-
metry is important. We do not know of any systematic survey of this topic, even in
the special and much studied case of submanifolds of Euclidean spaces. A few
books give the general equations for a submanifold of any codimension in a Rie-
mannian manifold (the so-called Gauss and Codazzi-Mainardi equations), among
them Chapter VII of (Kobayashi & Nomizu, 1963-1969), Chapter XX (see Section
20.14.8) of (Dieudonné, 1972) and Chapter 7 of (Spivak, 1970) present the founda-
tions of the theory of submanifolds in a Riemannian manifold. But there is a huge
number of local and global results. Recent surveys are (Terng, 1990), (Terng &
Thorbergsson, 1995), (Dillen & Verstraelen, 1992), (Palais & Terng, 1988), see also
(Willmore, 1993). In particular isoparametric hypersurfaces deserve a special men-
tion as they relate different topics to each other. The founding text is (Cartan,
1939), for isoparametric submanifolds in an infinite dimensional setting see
(Heintze & Liu, 1997).
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The naive geometer will ask what constitutes a generalization of affine (Eu-
clidean) and/or projective subspaces in Riemannian geometry. The basic remark is
that a general Riemannian manifold admits no submanifold which is stable under
geodesy (i.e. local geodesics in it are geodesics in the ambient one and this is cer-
tainly not the case in general). Such submanifolds are called totally geodesic. Excep-
tions are extremely few and among them are the symmetric spaces of rank > 2, see
I1.C. We saw in 1.B.4 how the fact of having “flats” is very powerful in some in-
stances, see among others (Samiou, 1997). An extreme case occupied people at the
beginning of the century: the axiom of free mobility. Matters were completely clar-
ified by Elie Cartan in (Cartan, 1928a) (one can also consult the second edition
(Cartan, 1946-1951)), where he proved that only space forms of constant curvature
satisfy this axiom.

A most naive problem is the following: what is the convex envelope of k
points in a Riemannian manifold of dimension d > 3? Even for three points and
d > 3 the question is completely open (except when the curvature is constant). A
natural example to look at would be CP?, because it is symmetric but not of con-
stant curvature. The only text we know of that adresses the question is (Bowditch,
1994).

A. The case of surfaces in R®

Surfaces in R? were the main object of differential geometers in the preced-
ing century, the bible was (Darboux, 1887, 1889, 1894, 1896) or (Darboux, 1972).
Many things were put into a modern setting in (Spivak, 1970), a survey is (Burago
and Zalgaller, 1992). Even for compact surfaces the subject enjoyed many results in
our half of the century. A famous recently still open problem is Willmore’s conjec-
ture, see (Willmore, 1993).

In 1955 Alexandrov proved that embedded surfaces with constant mean
curvature have to be round spheres, and he proved this for any topological type.
For the simply connected cases (topological spheres) this was Hopf’s “old” result
(Hopf, 1951). Besides the book by Burago-Zalgaller, one could consult (Hopf,
1983) and (do Carmo, 1976). These surfaces are physically the soap-bubbles and
Hopf proved that they are really round spheres. The problem left open concerned
the possibility of immersions, which are impossible for the topological type of a
sphere. An important event was (Wente, 1986), where immersed tori of constant
mean curvature were constructed. This started a field of research which is still not
finished, see (Pinkall & Sterling, 1989). A recent point of view is illustrated in
(Kamberov, 1997), where spinors enter into the picture.

In higher dimensions, Alexandrov’s theorem is still valid for embedded hy-
persurfaces: only round spheres have a constant mean curvature. But for immer-
sions matters are radically different: there are many non-spherical immersed topo-
logical spheres S%~! of constant mean curvature in R?: see (Eells & Rato, 1993) for
references; the topic is directly related to harmonic maps.

An old result of Hilbert’s says that there is no immersed (an embedding is
not even needed for the conclusion) surface isometric to the hyperbolic plane. This
means constant Gauss curvature and completeness. This might explain why hyper-
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bolic geometry could not be discovered in R®. This result was generalized in the
50’s by Efimov in a profound paper, see (Klotz Milnor, 1972) and (Burago & Zal-
galler, 1992): there is no immersion in R® of a complete surface of curvature
K < a < 0. But there is still a deep (naive) problem: is there any complete surface
of negative curvature that stays in a bounded region of R*? Some people call the
preceding question “Hadamard’s conjecture” because Hadamard took the non-ex-
istence for granted. An analogous conjecture, that by Calabi-Yau, was that there
cannot exist a complete minimal surface that stays in a bounded region. In (Nadir-
ashvili, 1996) both conjectures are smashed — one constructs a surface living in a
bounded region which is at the same minimal and of negative curvature. The tool
consists in applying Weierstrass’ formulas for minimal surfaces.

Some questions which are still open concern the isometric non-trivial defor-
mations of surfaces in R®. First globally: all non-deformation results are for convex
surfaces and non-congruence examples are C*-surfaces. Locally it looks obvious
that any piece of a surface can be deformed (with a lot of parameters: take a tennis
ball with some piece removed). In fact the question is unbelievably hard, we refer
to the survey in (Burago & Zalgaller, 1992). We mention here that there are exam-
ples of pointed surfaces which cannot be deformed no matter how small the neigh-
borhood of the point is. See also Bleecker’s result at the end of TOP. 2.

A special mention should be given to the case of zero mean curvature,
namely the minimal surfaces (Plateau’s problem). This old topic has undergone
some tremendous developments. There are many good surveys and even entire
books on the topic. The most recent one is (Dierkes, Hildebrandt, Kiister & Wohl-
rab, 1992), others are (Nitsche, 1996), (Jost, 1991), (Struwe, 1988) and (Osserman,
1996); see also GMT in C below and in 0.F.

B. Higher dimensions

An important remark, which is not very well known despite being classical,
is in order. Topic A is important not only for historical reasons but because of the
following. When d > 4 take in R? some hypersurface which is generic. Then it is
easy to see that the sectional curvature (hence the isometry type) determines the sec-
ond fundamental form. Classically this implies congruence (this is a purely local
statement). The proof works in the following way: in a basis which diagonalizes the
second fundamental form, the Gauss equations imply that, for the sectional curva-
ture, one has K (e;, e;) = n;7;, where the 7); are the principal curvatures (this is exactly
the generalization of the theorema egregium in 0.A). And now, if one knows the
three products ab, bc and ca, then one knows a, b, ¢ as long as none is zero. So in the
generic case the metric of a hypersurface automatically also determines its second
fundamental form. The generalized Gauss-Codazzi equations show that the metric
and the second fundamental form together completely determine the embedding
(see any of the books quoted at the beginning of this section). So in some sense there
is no “congruence versus isometry problem” left. Of course the above philosophy
applies also to hypersurfaces in general Riemannian manifolds M? as soon as
d > 4. One can find the above remark back on page 237 of (Killing, 1885) and in
(Thomas, 1935), or see page 42 of Volume II of (Kobayashi & Nomizu, 1963-1969).
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Matters are completely different when d = 3, the Gauss curvature (hence
the isometry type) yields only the product of the two principal curvatures. Then
there is plenty of space for a fascinating game, not finished as just seen above. Let
us look for example at rigidity: two compact strictly convex hypersurfaces which
are abstractly isometric are congruent (deduced by a global isometry of the whole
RY). For d > 3 it follows from the above remark, but when d = 3 the result remains
true, but the proof is much more sophisticated and is due to Cohn-Vossen and Her-
glotz: for references and more see (Berger & Gostiaux, 1988), Section 11.4 and/or
(Klingenberg, 1978b), 6.2.8.

Having realized this, many topics still remain in this field, especially global
questions — we already mentioned some of them above. Integral geometry is very
interesting, but works only (with one exception to come) in Euclidean spaces and
space forms. See the surveys (Schneider & Wieacker, 1993), (Langevin, 1997) and
add the classic (Santalo, 1976), in particular Chern’s kinematic formula. In general
Riemannian manifolds integral geometry also works but only for hypersurfaces
and geodesics starting from them. It is basic to Croke’s local isoembolic inequality
of TOP. 1.C and the isoperimetric inequality for nonpositive curvature manifolds
in TOP. 1.A: see (Croke, 1980) and (Croke, 1984).

C. Geometric measure theory and pseudo-holomorphic curves

Submanifolds enjoying various strong geometric properties are basic in
some instances. Two seem to be important today. First the dramatic appearance of
GMT (geometric measure theory, see 0.F) with its harvest of results provided Rie-
mannian geometers with almost all the existence theorems they could dream of
when forgetting about minimal (or constant mean curvature) objects. This was used
above, in Schoen-Yau’s aproach for positive scalar curvature in 1.B.3 and for the
isoperimetric profile in TOP. 1.B. GMT is an extremely hard subject, in the found-
ing book (Federer, 1969) as well as in many other articles on the subject it is very
hard to thread one’s way through in a reasonable time. Our advice is to read first
(Morgan 1988), then (Simon, 1983).

The second tool appeared in the pioneer paper (Gromov, 1985). A recent
survey in book form is (Audin & Lafontaine, 1994). Although those pseudo-holo-
morphic curves are mainly used in symplectic geometry, one meets them in Rie-
mannian geometry, see for example the article of Labourie in the aforementioned
book and (Gromov, 1992a).
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