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Vorwort

In diesem Heft finden Sie neben den Buchbesprechungen die Ausarbeitungen von zwei
Plenarvortrigen von DMV Jahrestagungen. Herr Leugering hat 2000 in Dresden vor-
getragen und Frau Nebe in diesem Jahr in Halle.

Die Befragung der Leser des Jahresberichts im 2. Quartal hat einige interessante An-
regungen gebracht. Das Interesse der Leser richtet sich in etwa gleichgewichtig auf
Ubersichtsartikel, historische Beitrige und Buchbesprechungen. Eine deutliche Anzahl
der Leser wiinscht sich mehr Beitrige aus den verschiedenen Bereichen der angewand-
ten Mathematik. Allerdings wurden auch Wiinsche nach mehr didaktischen Arbeiten
sowie algebraischer Geometrie und Zahlentheorie geduBert.

Das DMV-Prisidium hat iiber die Ausrichtung des Jahresberichts beraten und einige
MaBnahmen eingeleitet. Ab 2003 soll das Herausgebergremium vergroBert werden, um
die Breite der Mathematik besser abzudecken. Um einen breiten Leserkreis zu errei-
chen, sollen die Autoren gebeten werden, insbesondere die Einleitung wirklich all-
gemeinverstindlich zu halten und die Relevanz des Beitrags in einem groBeren Kontext
darzustellen.

Weitere Anregungen wiirden die Herausgeber natiirlich begriiBen.

A. Krieg
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Domain decomposition
in optimal control
problems for distributed
parameter systems

J. E. Lagnese and G. Leugering

Abstract

» Keywords and Phrases: Domain decomposition, optimal control
= AMS subject classification: 49J20, 49M 27, 49M 20, 35120, 58J45

In this survey article we consider methods of domain decomposition for static and more
importantly for dynamic partial differential equations on complicated domains, like
graph-type or heterogenous domains, which are subjected to controls. In this context
one is either interested in solving the corresponding optimality conditions, or in estab-
lishing gradient or even higher order informations. Therefore, one is lead to coupled ‘di-
rect’ and ‘adjoint’ equations. Instead of just using domain decomposition methods as a
convenient computational tool for solving the system equations, we consider mainly
methods that can be applied to the corresponding optimality systems. Moreover, we
emphazise that methods from optimal control theory of partial differential equations
are important in developping domain decomposition methods by the way of ‘virtual
controls’. We also point out that decomposition schemes with optimized transmission
properties are very useful in the context of real-time large-scale optimal control pro-
blems. For that reason, we believe that the material presented here is of general interest,
and, therefore, we kept the presentation in a general context.

Eingegangen: 8. 8.2002

J. E. Lagnese, Department of Mathematics Georgetown University, DMV
Washington DC 20057, USA, lagnese@math.georgetown.edu ~JAHRESBERICHT
G. Leugering, Technische Universitit Darmstadt, Fachbereich Mathematik, —__ DERDMV

SchloBgartenstr. 7, 64289 Darmstadt, leugering@mathematik.tu-darmstadt.de  © B. G. Teubner 2002
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1 Introduction

When dealing with complex systems, either just for the purpose of simulation or in or-
der to compute optimal controls together with the optimized dynamics, one is forced to
look for some sort of model reduction and decomposition. This is particularily true in
the context of real-time control of such systems and even more so for systems involving
partial differential equations on network-like domains. Problems on graphs and more
general on multiply-linked domains occur in many applications. In particular, problems
of transport of gas in a complex network of pipelines, transport of electric power in net-
works of transmission lines, transport of water and sediments in sewer-systems or irri-
gation networks (See [7] and the references therein), the transport of solutes in roots
and structured soil, blood flow in the artery system, the flow of currents in the neuronal
system, the transmission of vibrations in flexible elastic multi-link structures and much
more. In all of these applications one is interested in one way or another to control phy-
sical quantities in order to achieve a desired state of the system under consideration.
Each of the problems mentioned above have a typical real-time character, namely the
transport velocity, according to which the time which a signal needs to travel from the
source to the controlled ‘node’ can be estimated, to the effect that the control action can
be based on a hierarchy of models and optimal control problems.

In this survey paper we want to focus on some general concept of model and control
reduction, namely on (dynamic) domain decomposition. The methods to be discussed
are very general but still fairly easy to understand. We will not, however, give detailed
proofs of the more complex results but rather be more explicit on the simple ones. We
consider methods of domain decomposition of optimal control problems for partial dif-
ferential equations important because they are inherently parallel and reduce the global
‘heterogenous’ problem on a complex domain into local simpler ones for which stan-
dard (real-time capable) software is available. Another aspect of this article is to empha-
zise the relevance of optimal control theory also in the development of domain decom-
position algorithms for the purpose of numerical simulations. We therefore concentrate
on such algorithms that can be obtained by optimization techniques.

We present the domain decomposition methods and the corresponding convergence
analysis on the infinite dimensional level and establish a posteriori estimates which are
independent of a particular discretization. We thereby underline the flexibility of the
methods. On the other side, the numerical discretization and the implementation of the
algorithms, also as preconditioners, are not discussed in this paper. We, nevertheless,
provide some numerical evidence.

2 Introductory material on Domain decomposition methods
for one-dimensional problems
2.1 Unbounded domains

This section should serve as a first self-contained motivation for dynamic domain de-
composition methods. The presentation is highly selective and does not attempt to ac-
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f J.E. Lagnese, G. Leugering: Domain decomposition in systemal control J

count for the vast literature in this area. See the monograph of Quarteroni and Valli [27]
for an excellent general reference on domain decomposition methods for partial differ-
ential equations. We begin our discussion with two very simple one-dimensional (1-d)
partial differential equations, namely the wave equation and the diffusion advection re-
action equation. These two models are representative of many problems in applied
mathematics.

Define
Li(u) := thy — Ctins =f in R x [0, 00)
Ly(u) := t; — vixx + aux +bu=f in R x [0, c0),

To fix ideas, we consider the simplest problem possible, namely, an unbounded interval
where we do not have to account for boundary conditions. Our goal is to decompose
the real line into half-lines at points x = 0 and x = L such that the interval [0, L] is a re-
gion of overlap, i.e. R= 2, U} = (=00, L] U [0,00), with {2y N 2, = [0,L]. We con-
sider the partial differential equations on each half-line and exchange information on
the overlapping interval, or on its boundary.

The following simple overlapping domain decomposition algorithm is a variant of
the classical alternating additive Schwarz algorithm and has been reconsidered in the
form below by Gander, Halpern and Nataf [5] (see also [4]):

Algorithm 1.

Li(v**Y) =f in (—o0,L] x(0,7)
vl =wk on x=1L,(0,T)

Liw ) =f in [0,00) x(0,7T)
wktl = yk on x=0,(0,T)

We note that the style in which the algorithms in this paper are presented is conceptual.
We, therefore, suppress the display of necessary but obvious initializations. It is remark-
able that, in the case of the wave equation on the real line, this algorithm terminates in
finite ‘time’:

Theorem 2. Fori = 1, Algorithm I terminates for k > 1t.

Proof. As the proof is very simple we reproduce it here. Since we are interested in the
error, we let f = 0 and the initial data be equal to = 0. We apply the Laplace transform
L to Ly (1) = 0 and obtain:

§RH (x, 5) = WH(L, s) exp(i"—;—”)
W (x, 5) = 9(0, ) exp(~ )
Thus,
#1(0,5) = 94710, ) exp(— 25,
N

=:p

JB 104. Band (2002), Heft 3 93
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and hence,
7(0,5) = p9°(0,5),  WH(L,s5) = pFiO(L, 5).
But
exp(~ 2% = £(5, )
¢ ¢
implying

v (0,1) = 0(0, ¢ — 2KLy.
¢ o
As seen from the proof, the finite speed of propagation, peculiar to the wave equation,
is responsible for finite-time-termination. Accordingly, for the diffusion-advection pro-
blem one obtains ([5]):

Theorem 3. For i = 2, Algorithm 1 converges superlinearly.

Proof. Again, the proof is simple and instructive. Therefore we sketch the argument
given in [5]. We again apply the Laplace transform to L,(u) = 0 and obtain by similar

2
arguments as above together with p := exp(— 3@ L)
P = 09°(0,9),

and similarily for w? (L, s). This time, however, the inverse transform gives

(0, 1) = /OZKX(ZI%, t—7) exp(—(Z—Izj +B)(1 = )0, T)dr

where
2

=% _x
K(X, t) - 2ﬁ[3/2 eXp( 4t)

Apparently, this implies the error-estimate:

kL )
VT

A similar analysis holds for w?. We obtain super-linear convergence. O

2
1l (07) < max(l, exp(b ~ )T erfe

We remark that we obtain a convergence rate which depends on the size of the overlap.
Remark 4. Fori = 1,2,if L — 0 we loose convergence. =

In order to restore convergence or even finite termination, we need to introduce more
exchange of information accross the interface. The first and simplest idea to approach
this problem is to introduce Robin-type conditions instead of Dirichlet (Neumann) con-
ditions. This can also be achieved with overlapping domains as follows.

94 JB 104. Band (2002), Heft 3



[ J.E. Lagnese, G. Leugering: Domain decomposition in systemal control

Algorithm 5. (DDM with/without overlap)
Ly¥h=f in  (-oo,L]x(0,7)
v L AR+ 1) =whk+ A (wk)  on x=L,(0,T)
Liw*)y=f in  [0,00) x (0,T)
whHl 4 A, (Wi =vE+ A4,00%)  on x=10,(0,T)
Here A, and A, are either constants or local-in-time operators, as e.g. a time derivative,
or convolution operators.

Remark 6. —For L = 0and A,(u) = Au, X € R this is a nonoverlapping Robin-type-
Algorithm. See the next section.
—For A, ,,(#) := A * u (convolution in time), see Gander, Halpern and Nataf [5]. O

The following results on finite termination ([5]) for transmission operators
A, w(u) = Ay, * ureflects the fact that the corresponding transmission conditions realize
exact absorbing (transparent) boundary conditions on each half line:

Theorem 7. Fori=1, A, =18, A, = —18, Algorithm 2 terminates in 2 steps.

Proof. One applies the Laplace transform and obtains after some elementary calcu-
lus

E+ () (= 2+ M(s)
E+AME(=5+ ()

A similar expression is derived for w%*!. The obvious choice

A
@) Al = -Ms) = -2

(1) v*0,s) = exp(—ZEL)f)k_l(O,s)

leads to two-step-termination. O

Remark 8. It is important to note that the finite-termination property of Theorem 2
does not depend on the size of the overlap. Note, however, that due to the infiniteness
of the domain, the ‘optimal’ transmission operators are local operators in time. m]

As to be expected, this finite-termination property will not hold in general for diffu-
sion- advection- reaction equations, unless we are able to implement non-local bound-
ary operators.

Remark 9. i) Fori=2and A,, according to

Xow(s) = —;—V:t:,;;\/az +4v(s +b),

Algorithm 5 terminates after 2 steps.

ii) For i = 1,2 finite termination is independent of L.
iil) For i = 2, the optimal interface-conditions are nonlocal.
iv) We may approximate the non-local transmission conditions by local operators:

A =—ai\/a2+4ub(i 1 8)
" 2v Va +avb | o
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2.2 Bounded domains

We now consider the interval [— L, L] with interface at x = 0. For the sake of simplicity,
we consider a non-overlapping version of the domain decomposition Algortihm 2.
While in the 1-d situation it is always possible to consider the entire real axis by applying
completely transparent boundary conditions, the question as to whether finite termina-
tion is achievable in the case of more general boundary conditions, or what kind of ap-
proximations are useful in this context is still not completely understood. Using argu-
ments similar to those of [5] we can state the following remark.

Remark 10. i) For i =1 and 4,, according to X‘,,w(s) = *%coth(¢L), Algorithm 5
terminates after 2 steps.
ii) The ‘optimal’ conditions are non-local (even for i = 1).
iii) Consider local approximations:

. 1 L
Au(s) = (7 + @sz + 0(s%))

transformation back into the time-domain yields:
1 L
wkt1(0,1) + zwk“ 0,1) + ﬁwﬁ“ 0,0 =...
Note that this adds a mass at the interface. Transmission conditions of this sort will be
presented in a monograph by Lagnese and Leugering[16]. O

To complete the picture, we ask: what happens if one works with an absorbing
boundary condition at one end? (equivalent to a semi-infinite domain). Using similar
arguments, it turns out that in this case we can derive ‘optimal’ transmission conditions
which are local: once again, one takes impedance transmission conditions. For a numer-
ical realization of this method see Figure 1 where two strings are connected at x = 0 and
two initial displacements on each string cause interacting waves. The Figure 2 clearly re-
veals that essentially no reflection occurs at the interface. The missmatch at the interface
is shown in Figure 3. See also Hundhammer [12].
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Figure 1. Interacting waves: serial connection

2.3 Semi-discretization

As we have seen, the convergence or termination analysis of Algorithm 5 is done in the
frequnecy domain. Indeed, we are dealing with elliptic problems parametrized by the
Laplace variable. Now, after time discretization of our equations we also obtain ‘ellip-
tic’ problems to deal with. Hence, it appears natural to consider applying the nonover-
lapping version of Algorithm 5 to that situation.

We use Newmark’s scheme as in Raviart-Thomas [28] for the wave equation:
w= w;(-, mbt),
M= wj, (-, mét),
Wit = w4 Sz 4 62 (B + G = B)W i),
2 =2 S1e(yw i+ (L= Wiy
(with 3 = %,7 = % we enjoy conservation of energy) This time-stepping procedure leads
to the elliptic problem (followed by an update of the velocity z mtly:

m+1 2 2., m+l
wit — 6t ﬁciwivxx

1
(3) =W:"+6t2:n+6t26',2(-2——ﬂ)w:1xx =f:n
We have to add the continuity and transmission conditions, say, at the interface x = 0

@) wit(0) = w5t (0), witH(0) =wii(0)

1,x
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Figure 2. Interacting waves: serial connection
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Figure 3. Iteration history: dynamic problem
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0.6 T T T T T T T T T
—— DDM
04 1. lteration — exact solution
0.2+ 1
c 1 1 L 1 L 1 1 1 Il
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 04 0.6 0.8 1
0.6 T T T T T T T T T
0.4l 2. Iteration |
0.2 4
G 1 1 1 1 1 1 1 | 1
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0.6 + T T T T T T T T
0.4k 3. lteration ]
0.2+ 4
0 1 1 1 1 1 1 - 1 |
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Figure 4. Two-step convergence in the static case: numerical | exact solution

Thus, for each time step we have to solve an elliptic problem on a serially connected do-
main. Therefore, at each time step with step size 6¢ and

Mz = 61‘2,3 5:25 )

Algortihm 5 applied to (3), (4) terminates after 2 steps. At a given time step this beha-
viour is again realized numerically in Figure 4.

——coth(

As we have seen Robin-type iterations are motivated from the point of view of optimal
transmission of information across the interface. In particular classical Robin-condi-
tions typically correspond to Oth order approximations of such optimal conditions. In
general, therefore, one can not expect finite termination. Nevertheless, these iterations
are powerful.

3 Nonoverlapping domain decompositions of the Robin type

3.1 The basic algorithm of P. L. Lions

We now proceed to consider higher dimensional situations. In particular, we consider a
domain as shown in Figure 5. As we will later concentrate on nonoverlapping decompo-
sition methods for optimal control problems, we confine ourselves to the nonoverlap-
ping case also in the uncontrolled case. As we have emphazised above, optimal interface
conditions are strongly related to transparent boundary conditions. That is to say, in-
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formation should not be reflected when crossing the interface. Even in the one-dimen-
sional situation it has been shown above that this requirement is too strong in general
on bounded domains, if one insists on local operators acting on the interface. The pro-
blem of optimal interface conditions for domain decomposition methods has been thor-
oughly discussed by Nataf and coauthors in various recent papers [4], [5]. These meth-
ods have, however, not yet been put into the perspective of optimization. For the sake
of simplicity, we proceed to discuss a more elementary procedure given by P.L.Lions
[22].

Figure 5. Splitting of the domain

We have the following natural decomposition.
=210, 0NHL=0,I= Q]ﬂﬁz
To fix ideas, we consider the Poisson equation on 2.
—Au=f in 0
u=0 on an

Obviously this problem can be solved locally on each subdomain §2; as long as continu-
ity of displacements and Neumann-traces are guaranteed. This turns out to be equiva-

lent to the condition:

1o} 15} ..
—U; P= — — Y iylI,] = 1,2
aVij u; + Bu; 61/1, uj + ﬂuj L

As in the preceeding sections, the idea is to iterate such a transmission condition. How-
ever, as to be anticipated, finite termination will not be generic in higher dimensions (if
at all possible). The following prototype-algorithm is due to P.L. Lions [22]:

Algorithm 11. Given the data at iteration level #, solve successiveley:
—Aul=f  in
u™ =0 on A\ T

a ,, n+l n+l _ 8 ,,n no;oi__
37,-;”" + BulT = aujiuj+ﬁuj,z,j-—1,2 on r.

The variational formulation of this iteration is given by.
a,-(w;’“, l'f),) —+ S,'(BW;H—l, W,) = Si()\;’, W,) + (f;, l’f/‘j), VW, cv;
X =2Bw - X i=1,2 on T,
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where we use the standard notation a(w, W) := [, AVwWVW + cwivdx, A4 being a sym-
metric and positive definite matrix and ¢ a non-negative constant, a;(v, w) is a(v, w) re-
stricted to functions on §2; and s;(v,w) := [ V| n,-W‘ ﬂid7‘ H}(£2) is the standard Sobolev
space with Dirchlet conditions along the boundary, and V; := H H2).

This is a socalled Robin-type method. See Quarteroni and Valli [27] as general refer-
ence. Interestingly enough, R. Glowinski and P. Le Tallec provided a very natural inter-
pretation of this algorithm as a special Uzawa-type algorithm applied to an augmented
Lagrangian formulation.

3.2 An augmented Lagrangian approach
We define

1
£n ) =35 [ 1w = wifd
+37 [Outm =+ Gl = P

and consider the following saddle-point iteration:
Algorithm 12. 0.) Let ¢"~!, \" be given
1.) solve for w”: 8,L(w",q" 1, A") =0

n n+% n n n—1
2)update N: X\, 2= X +a(wlp—q"")
1
3.) solve for ¢": 9,L(w",q", l)\"’LE) =0
1 1
4) update " X = N2 +a(wllr —q")

See [9] for a proof of convergence. Once the Lagrange-variable is removed using
steps 1. to 4. the Algorithm 12 is seen to be exactly the same as the original one due to
P.L. Lions. Even though no convergence rates seem to be known in the general case, nu-
merical experiments clearly reveal linear convergence.

We note that, strictly speaking, the decomposition method of this section follows
from an augmented Lagrangian approach only in the static case. In case of, say, hyper-
bolic problems, which are relevant in structural control, one has to resort to transmis-
sion conditions involving the velocity or even accelerations. Active research is currently
devoted to this approach (also for overlapping domains, see Gander [3]). Nevertheless,
the Robin-type algorithm serves as a first example of a domain decomposition method
which can be said to be based on optimization. In fact, the realization of the continuity
of traces along the dividing interface can be interpreted as the result of an optimal con-
trol. As such controls are not physical controls to be applied to the system, they have
been termed ‘virtual control’ by J.L. Lions.
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3.3 A posteriori estimates

The convergence results established so far guarantee convergence but they do not offer
reasonable stopping criteria. Moreover, the question how the parameters of the algo-
rithms have to be chosen in order to obtain fast convergence is not answered comple-
tely. Otto and Lube [26] have obtained ‘a posteriori’ estimates for the algorithm of this
section at least for the two-domain case. We are going to sketch their arguments for the
sake of selfconsistency.

(5) a(u,v)=L(v),Vve H)(2) =V

which is equivalent to

2 2
6) Y aw,v)=>" Liv), v e Hp (), i=1,2.
i=1 i

i=1
| We may extend, if necessary, the L?(I") pairling si(+,-) to the duality pairing between
1 1
Hy (D) = {v];:ve H(R)} ¢ HA(I) and H(I)" = H2(I'), and denote this by
{,*)r- Thus, the Robin-method can be rewritten as
aiu ™ vi) + (Bt v,

7
( ) = L,«(v,) -+ ()\]n, v,'>1-v on Vi = H}wl(gj),

@) N0 =B+ B o) — (X @)y, Vo € W
It is well-known that tr; : V; - L*(I') is continuous and that there is a continuous ex-
tension of #r;! from W := HEO(F) to V. Moreover, W is continuously embedded into
L*(I'). We may, thus, express elements v; € V; by v; = tr;1o where ¢ € W. Hence, (7)
reads as

ai(ui ™ o7 o) + (Bl o) = Liltr7' 0) + (X )y V0 € W
We consider the errors
O) ef=ul—uw, =X -,
where A \; satisfy (8) for n and without n, respectively. We consider 3; € L>($2).

Theorem 13. Let u be a solution of (5) and uf’“ be solutions of (7), (8), for i =1, 2.
Let the errors e?, 1, i = 1,2 be given as in (9). Then we have the a posteriori estimate

(10) fle My, + lleslly, < C(Buf —u |y,
where C(3) is a computable number depending on B3, the geometry of the domain, and the
norms of the corresponding trace maps.

Remark 14. 1) Note that the error estimate is not symmetric with respect to the do-
mains. But this assymetry can easily be removed by starting at domain 2 and then com-
bining the estimates.
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ii) The estimate (10) allows one to optimize the error bound C(83) with respect to the
transmission coefficients 3; appearing in the Robin-data. Of course, the choice is ruled
by proper approximations of transparent interface conditions discussed at the begin-
ning.

iii) We have obtained similar estimates for more general partitions of 2. The arguments
are more subtle then, as the local problems no longer need to be coercive.

4 Virtual controls

Let us introduce the classical variational formulation of an elliptic problem:
a(w, W) = (f, W) Ywe vV,
We then consider the following local problems using additional ‘boundary-terms’ (A;’s):
ai(wi, ;) = (fi i) +5:(Xi, wi) Vb € Vi
This time the continuity of traces is considered as a virtual control problem, i.e. we intro-
duce controls along the interface I'; connecting the domain §2; with {2; (where we con-
sider now more general decompositions with the obvious notation), and try to ‘steer’
the differences of the traces involved at I'; to zero. This idea can be applied to overlap-
ping and non-overlapping situations. This concept can be seen as a relaxation of the
continuity condition. A method that uses a Lagrangian relaxation has been recently in-
troduced by J.L. Lions and O. Pironneau [25], [24]. We confine ourselves with the de-

scription of a penalty approach, which is also contained in the papers just cited and also
in [10].

4.1 Apenalty approach

This approach attempts to satisfy continuity of traces by the way of quadratic penaltiza-
tion. The method is rather general and applies to dynamic problems. For the sake of
simplicity we again refer to the Poisson problem:
(1) ai(wi, ) = (fiy ) + si((=1) g, ) Vivi € Vi,
This variational formulation corresponds to the strong problem

—Aw; =f; in f},

(12) wW; = 0 on 92N 8-Qi,

L =(=D)""g on T

81/[ ! ( ) g

Obviously, continuity of Neumann-traces is guaranteed by construction (the same g ap-
pears in both transmission conditions). Now, g is interpreted as a virtual control which
is supposed to minimize the mismatch at the interface I'. This can be achieved by mini-
mizing the following cost functional.

1
(13) J(9):=1 [ o —wfay+8 [ |sPay
r r
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Thus the problem is restated as an optimal control problem:
inf J(g)
(14) subject to (12) or (11)

We derive the optimality conditions associated with the optimal control problem (14).
We use the strong formulation.

—Aw;=f in &
—Ap;=0 in £
wi=p;=0 on 82NN
(15) P _1)it!
a 1) (p1 — p2)

01/,‘ = ﬂ
19] i
P = (=1 (w1 — wy)

Note that (15) is still a coupled system of elliptic equations. In order to obtain a domain
decomposition method, we perform a gradient step as follows.

Algorithm 15 (Gunzburger et al.). 1.) compute w? by:
-Aw! =f, in 2,
wi=0 on 02N a0
iw'} _ (_l)i+l
ov; ! B
2.) compute the adjoint variable p;” by:
—Ap? =0, in 1,
pi =0 on 0R2NA

(9 n i n n
a_wpi = (—I)H(Wl —w3) on I

g on T

3.) update the gradient:
g =(1-a)g" +%(p'1' -p), ae(0,1).

This algorithm is forwardly decoupled, as the state equation (denoted as the forward
problem) is solved independently of the adjoint state, while the adjoint state equation
(denoted as the backward problem) is solved using the acutal values of the forward
states. Thus, the forward problems can be solved in parallel. Once the solutions are all
available, the backward problems can also be solved in parallel. After completion of all
local solves, the gradients are updated according to the damped update formula 3.).
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4,2 Stars

Up to now we have considered domain decomposition procedures for problems with a
‘serial’ joint, i.e. the subdomains meet in pairs at a common curve (face) or a point. We
now proceed to develop such domain decomposition procedures for networked domains.
Because of space limitations, we confine ourselves with 1-d-networks. The problem with
higher dimensional PDEs on networked domains is related to regularity. Even if we
have nicely smooth and convex subdomains, the connected super-domain lacks these
properties in general, and, therefore, we have to deal with singularities. This is a delicate
matter and goes beyond the scope of this presentation. We will, therefore, exclusively
deal here with 1-d-partial differential equations on graphs, and later we will focus on
transmission problems for wave equations in higher dimensions. In fact in this section,
to make things as simple as possible, we first treat the case of a star with three branches.

We, thus, consider three strings on domains ; i.e. [L, 0], respectively, connected at
x = 0. To fix ideas, we first discuss the static situation as we did in the previous sections.

Wixx =f; in (0,L)
~ wi(0) = w2(0) = w3(0)
wi, X(O) + wa, X(O) + w3, x(O) =0
wi(L) =wy(L) =w3(L) =0
We consider the following multiple node decoupling according to the Robin-type itera-
tion.

x=L

X=l

g x=L

Figure 6. The star
Robin-type decomposition

Algorithm 16. 0.) given w’, Vi

i
1.) compute the solution w?*! of the 1-d equation

witl=fi on (0,L), wI*'(L)=0
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according to the interface conditions:

Wi (0) + Bwit (0) = Xy

- ﬂ<§2 wy(0) - w;'m)) -3 (Z Wy (0) = v x(o>)
J J

In fact, the update can easily be reformulated such that no derivatives appear on the
right hand side. For a numerical realization of the method see Figure 7 for the solutions
and Figure 8 for the observed convergence rates. See Hundhammer [12].

Penalty-type decomposition. In oder to set up the problem for the penalty approach we
introduce virtual controls g;, i = 1,2, 3 at the junction at x = 0.

1. lteration 2. lieration

3. heration 5. heration

04

Figure 7. Star: convergence of the Robin-method
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Figure 8. Observed linear convergence for the star

i

2
infJ(w, g) := % {Z(%Z w;(0) — Wi(O)) +5Z&2}
J i

(16) subject to
—wi xx =fi in (0,L)

1
Wi(L) = 0, Wj’x(O) =§Zg} — &
J

One derives the following optimality system.

—Wi xx =f; —Dixx = 0 in (Oa L)
W,‘(L) = 0, p,(L) =0

11
17)  wix(0) =5 (g > pi(0) ‘Pi(o))
J
1
pix(0) = 52 w;(0) — wi(0).
J
This system is still coupled and has to be decoupled by the way of a gradient step as fol-

lows:
Algorithm 17. 1.) Compute the solutions of the direct problems

n n 1
W =S WHL) =0, W1 (0) =3 g &
J

2.) compute the solutions of the adjoint problem
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n 1 n
Pl =0, PIL) =0, pIL(0) =13 wI(0) ~ wi(0).
J
3.) update the gradient
+1 _ n,afl

g =(l-a)+% <§IZP7(O) —p:'(0)>
It is obvious that even though the penalty approach is conceptually very attractive, it
leads to double the effort when compared with the Robin-type algorithm. In the non-
linear context, however, the numerical load is on the nonlinear solution method (e.g.
the Newton method) for the forward problem, while the adjoint problem is genuinely
linear. Moreover, adjoint information can be obtained using automatic differentia-
tion.

4.3 General networks

Here we consider general networks in the plane as shown in Figure 9.

Figure 9. A general graph

Indeed, we can equally well consider graphs in arbitrary dimensions. The following
notation is obvious. G = (V,E) (graph),V = {v,|J € J} (vertices), E = {e,|i € 7}
(edges), Z:={1,...,n}, J={1,...,m}, T7 = {i € Ile; is incidentat vi}, dy =T 7]
(edge degree), V=VMu VS, J:=JMug5, ds=1,dy>1, J5=J°u gV, M=
multiple , S= simple, D= Dirichlet, N= Neumann ¢;; = 1, if e; ends at vy, = -1 if ¢;
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starts there, x;; = §;if ey =1,=0if ey = -1, w: G x (0,T) — R%=! (displacement),
w; = w|, local displacement on edge i, wi(x;7, t)=w;(vs, 1)=w;(vs) (nodal values).

The network model. Let us, for the sake of simplicity, consider a scalar model, i.e. the
displacement of the individual strings is considered out of the plane. The more general
situation can be handled equally well.

Wiy — C,zwi,xx +ywi =fi, inQ;
(state equation on edge e;)
wi(vp) =0, De JP {i} =Ip,on (0,T),
(Dirichlet boundary conditions at simple nodes)
Aenwi x(vn) + awi(vv) = gn,
N e JV {i} =Zy,on(0,T)
(18) (absorbing b.c.’s at controlled Neumann nodes)
wivar) = wi(vm), M€ T i,j € Ip,on(0,T),
(continuity conditions at multiple nodes)
> euwix(vir) =0, M € Ja,0n(0,7),
i€l
(balance of forces at multiple nodes(Kirchhoff law))
wi(-, 0) = wio, wii(-,0) = v;0, onf}
(initial conditions)

Wellposedness

Theorem 18. Assume that:
a.) fi € L'(0, T; L*(0, 41)),
b.) gv € L*0,T),N € JV,
C') {(W,’O, vi())}jez’ EVXH= X,

where

V= {W € H,*EIHI(O,EII)‘W;(VD) =0,v; € VD,i e€lp
wivar) = wi(va), M € TM,i,j € Ty}
H = Iier L2(0, ;).

Then the string system on the graph G has a unique solution such that

i) (w,w) € C(0,T;X)

i) wix,wi, € L2(0,T),YieZ;,JeJ". 0
For a proof see Lagnese and Leugering [16].

The domain decomposition for graph problems. We now present the general domain de-

composition procedure for the wave equation on a graph. It is surprising that for the in-
finite dimensional system ( that is before a possible space and/or time discretization) no
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convergence proof seems to be available without assuming some damping in the simple
boundary conditions. As a matter of curiosity, it will turn out to be possible to use the
domain decomposition method designed for the control problem to be discussed below
also as a tool for the ‘forward simulation’, simply by suppressing the effect of the con-
trols. We return to this point in due course.

Algorithm 19. (graph decomposition for stabilized systems)
Given all data at level k, solve for w**1:

K+l 20 kel K+l _ p
it T CiWixe TYiw;y =Ji,
k+1 k+1 _
enwiy (vw) + oy (vw) = gn,
k+1 _
wi (VD) =0

w5 (var) + Buw 5 (vr) = Ny,

)‘f'cM = Bum (d_z_ Z w_:fl(vM) - W{‘C,z(vM)>

w

M Ty

- <a2— Z ejijl“.x(vM) - fiMWi, xk(vM))

M icT oy
w{'H—l('aO) = w,-o,wfffl(-,()) = Vio

Theorem 20. If G is a rooted tree with all Neumann nodes satisfying the conditions of
the Algorithm 19 and if T is sufficiently large, then we have w — x-convergence of the so-
lutions in L>(0, T; H! x L?) to the global solution. O

For a proof of this theorem see Lagnese and Leugering [16]. For a theorey of domain
decompostion for hyperbolic problems on graphs see Leugering [20] and Lagnese[14]
and for transmission problems for wave equations see Lagnese and Leugering [21].

Up to this point we have treated the problem of ‘forward’ simulation. We have
thereby amply demonstrated that ‘virtual’ optimal control theory provides a useful tool
for domain decomposition algorithms. We now embark on ‘effective’ optimal control
problems.

5 Domain decomposition for optimal control problems
5.1 The elliptic model problem

In order to fix ideas let us begin with an elliptic optimal control problem which has been
considered by Benamou [1] and and Despres[2]
mingey [, |w(u) — wal® + v|ul*dx
(19) —Aw=f+u in 2
w=0 on 3

where U is closed convex, U C L*(02), 2 C R”, f € L*(02). There is a unique solution to
(19). The optimality system is given by:
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—Aw=f+u in 2
—Ap=w—wy in{2
w=0=p ond{?
[o(p+vu)(v—udx >0, YweU

(20)

The derivation of (20) follows standard procedures. In particular, if U = L? then u is gi-
ven by the adjoint state p in the following typical form:
u=-1
P

Thus the optimality system is a coupled elliptic problem. The coupling occurs at two po-
sitions. It appears in the adjoint equation for p and the first order optimality condition
which states that the gradient of the cost functional in (19) vanishes. In order to obtain
a reasonable decompostion procedure of (20) Benamou and Despres developed the fol-
lowing embedding into a Helmholtz problem with complex coefficient k € C as follows:

—Az+kz=g in Q2
(21) z=0 on 9

z € H (1;,C)
and observe that for

i i i
— _ k = —— —_ —_—
z=w+ 7 D, 7 g=f 7 Wq
(21) is equivalent to (19). Hence, a convergent domain decomposition of (21) will result

in such an algorithm for (19). This observation leads one to suggest a Robin-type algo-
rithm.

Algorithm 21 (Benamou, Despres). Given data A7, ui; at level n, compute the solu-
tions w1, p**! of the local problems

) —wit p Lpntl = fiin 0,
n+l _ w;l-H — Wig in Qi

—p’
(23) witl=0=p"' on 802N
together with

5(3_’]w:}+1 +BP?+1 — )‘Z

i = Bt = i
where forn > 1

= —3—fj—iw]'-’ + 6p}
(24)

n

= 9 pn_ n
uij - Bvﬁp] ﬂW]
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It should be noted that the model problem (19) is indeed very special in that the distribu-
ted control acts on the entire domain. This is necessary in order to transform the optim-
ality system (20) into the complex form (21). The problem has been chosen just for the
purpose of motivation for the class of domain decomposition techniques which result
from various choices of the parameters involved. The methods can then be extended to
more general distributed control problems and, more importantly, to boundary control
problems. See [16].

5.2 The 1-d dynamic network problem

We provide the generalization of this algorithm to 1-d network problems. To this end
we consider the problem net (with a; = 0) subject to the minimization of the cost:

T
ming 3 [ vl # 5 5{IT) = 20+ I 7) — 2l

We dispense with deriving the corresponding global optimality system (see the next sec-
tion for a similar problem) but rahter give the iterative procedure which decomposes
that optimality system into local systems. We note that in the time-dependent problem
we replace the constants in the Robin-conditions by velocity traces.

Algorithm 22. Given all data Ny i € L*(0, T) at level n, compute the solutions
wi*! p™* of the local problems

(wit! —c2witl = £

it —clpril =0,

wit (vp) = pi*!(vp) = 0

enw i (vn) +p 7 () = 0,evp It (vw) = 0
wi(0)"™ = wio,  WwIH(0) = wy,

PITHT) = k(wi (T) = wi),  pIE(T) = —k(wi™(T) = wyo)

(25)

together with
(26) {ﬁ’w?f?“rﬂpz,“ =X,

1
ewply = Bwit =
where, forn > 1
2 2
(27) { /\:‘fl = ﬁ(d_ijeIJpj"l,t —P?,r) - (EZ/EIJ €i-/wj"l,x - eifw?,x

/J“Z/ = _IB(%ZJEI] wjn',t - w?,:) - (%Z]’el‘/ 6inj,'1,.x - Ein;r,x)

Figure 10 provides an example of Algorithm 22 applied to a grid of elastic strings.
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1=0.000 lly(t)li_=0.1951 1=50.000 Ity(t)ti_=0.0479

Figure 10. A grid of elastic strings: i.) initial conditions t = 0s, ii.) uncontrolled t = 50s,
iii. ) controlled t = 10s, iv.) controlled t = 50s.

A posteriori estimates. A posteriori estimates for static optimal control problems can be
obtained along the lines provided in the case of simulation without control. A posteriori
estimates for the dynamic problems are much more involved ([19]). See the next section.

6 Domain decomposition of optimal control problem for wave equations

In this section we are going to describe in some more detail the applications of the Ro-
bin-type nonoverlapping domain decomposition algorithm to wave equations in higher
dimensions. We will first of all give the set-up of the problem and wellposedness consid-
erations. Then we describe a new time-domain decomposition method based on the
same principles. We then indicate the domain decomposition in space. See Lagnese and
Leugering [17],[18],[16].

6.1 Setting of the problem

Let £ be a bounded domain in IRY with piecewise smooth Lipschitz boundary. Consider
the final value optimal control problem (where x > 0)
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. 1 2 K 2 ow 2
o)t A3 U S0 = o+ 102 T) 1))

subject to
2 .
‘??—IZ—W—V~(AVW)+CW=FIH Q:=02x(0,7)

(29) Frtafi=Fons:=002x(0,T)

W(O) = Wy, %—';’(0) ="V in £2.
In (29), 4 = (ay) is a symmetric, uniformly positive definite d x d matrix with L>(2)
elements, ¢ € L*(£2) with ¢(x) >0 ae., and a € L®(812) with a(x) > ap >0 ae.
Further, v denotes the exterior pointing unit normal to I" and ow/Ovy :=v-(AVw).
We shall assume that
(30) ¢(x) > 0 on a set of positive measure in 2.

If
wo € HY(), vy € L*()
FeL'(0,T; %), felL¥%)
then (29) has a unique solution with regularity

(w,%—‘;’) € C([0, T}; H'(2) x [2(2)), %%]2 € IX(%)

and the linear mapping from the data to ((w,%%),%|,) is continuous in the indicated
spaces. The problem (28), (29) is therefore well posed if (zo,21) € H'(£2) x L(2).
Further, the unique optimal control is given by

(31) Jopt = “PL\;

where p is the solution of the backwards running adjoint system

P V. (4Vp)+ep=0inQ

(32) 5?% —adp=0on X
p(T) =k(GH(T) ~21), Z(T)=—wAMW(T) - z)

where A is the canonical isomorphism of H!(f2) onto its dual space (H'(02))".
(Throughout we shall identify L?(£2) with its dual space, so that
H'(2) — L*(2) — (H'(£2))".) The symbol d, in (32) represents the bounded linear op-
erator d, : L*(0, T; L*(012)) — (H'(0, T; L*(812)))* defined by

(33) (dih, )y = — /2 h%d}:, Vg € H'(0,T; L2(892)),

where (., -) ;- denotes the duality pairing in the (H'(0, T; L*(812)))*, H'(0, T;L*(812))
duality. The system (32) has a unique solution, defined by transposition, with regularity

(. 35) € CO.THIXD) x (H'@))), pl, € L2(5).
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The optimality system for the optimal control problem (28), (29) consists of (29) and
(32) with f given by (31).
Let us set

V.=H'(Q), H:=Ln)

with the standard norm on H. Because of assumption (30), we may norm V by

1/2
(34) [l = { / (AV¢'V¢+C|¢|2)dx}

which is equivalent to the standard H'(2) norm. In the cost functional (28), the H'(2)
norm is to be understood as given by (34). Thus the canonical isomorphism A satisfies
lA|l -+ = ll¢ll, for all ¢ € V. In the next two sections we are going to decompose the
global optimality system (29), (32), (31) both with respect to the time and the space vari-
ables. We will use a Robin-type condition for the first and an impedance-Robin-type
iteration for the latter decomposition. We begin with a decomposition with respect to
the time variable. Again, there are various methods in order to relax the continuity of
the states and the velocities across time-boundaries. On can apply a proper penaltiza-
tion as in J.L.Lions [23] or an augmented Lagrangian approach as in Heinken-
schloss [11]. In these two methods the system is advanced from initial data at each time
boundary and can be viewed as some shooting method. We, however, decompose the
optimality system directly and obtain a scheme that transports information from both
direction, which is in accordance with the fact, that the corresponding adjoint equations
are running backwards in time.

6.2 Time-domain decomposition.

We decompose the time-span (0,7) into K+ 1 subintervals Iy := (T, Tie41)s
k=0,---,K, where

(35) 0=T()<T1<T2<"'<TK<TK+1=T,
and introduce locally defined functions by setting a subscript: wy = w| Lo Pk = Pl 1, ©te.
We proceed to decompose the optimality system (29), (32), (31) into K + 1 subsystems

respectively defined on Iy, k = 0, - - -, K, which are coupled through the time-wise trans-
mission conditions

Wi Tes1) = Wit (Tiea1)s

0
Qg;i(TkH) = Mg‘“ (Tk+1),
(36) !

Pi(Tres1) = Prs1(Tes1),

0, 0,
—gtE(Tk“) - Igc;l (Tit1), k=0,...,K—1.

The transmission conditions (36) are then uncoupled by an iteration in # as follows:
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Algorithm 23. Given data pf , |, uf, +10 Mkk—1> M4 Aat iteration level n, solve
successively

32wn+l

(37) —atlﬁ—_v' (AVWZH)-FCWZH =F;
n+l
gtkz —V'(AVPZ+I)+CPZ+1=0 in Qk :=.Q>(Ik
( +1 1
. + a—k—awn+ +pmtl =

38 Ov 4 ot k
( ) 6pn+l

s —odppt =0 on Dy =002 x

( i 0wn+1
wot(0) = wy, —L—(0) =,
ownti
(39) an+1(T) = fi(——K—wa’ (TK+1) — 21)
6p"+1 .
£ (T) =~k A(WH(T) —z) in 0

( owh+!

‘Jat-(TkH) - fBPZH(TkH) = ll'z,kﬂ

6p”+1

=5 Tix) + BAW (Toeys) = 07 4.,
awnt!

— 4 (T) = Bpi(T) =
apn+1 ;

(=5 (T) + BAW(Ti) =,

(40) <

K-1 : L .
where {(4 1,170 141) oo and {(1 _1smR k_1) Yoz, are given arbitrarily in H x V*,
and, forn > 1

owh
(1 1 = KL (T ) — Bp 2 (Tesr)

ap?
Nhirr = 82 (Tirs) + BAWE, (Tirs)
aw’
Mise—1 = — =872 (Tk) — Bpi—1"(Tk)

ap”
(Nkk-1 = =57 (Tk) + BAw;_(Ti)

(41)

fork=1,.,.K—1and 8> 0.

In Iy or Ik the first or the second half of (40) and (41) are valid, respectively. It is readily
seen that, upon convergence, (40) and (41) reduced to (36) i.e., (40) and (41) are consis-
tent with (36). If

116 JB 104. Band (2002), Heft 3



l J.E. Lagnese, G. Leugering: Domain decomposition in systemal control J

(Hz,k+l’nz,k+l)€Hx V*? k:077K'—1

(42) n n .
(“k,k—l’nk,k—l) eHxV* k=1,....K

are given, then for each index k = 0,.. .., K the system (37) - (39), (40) is well posed since
it is itself an optimality system concentrated on the interval /i (see below). The solution
has regularity

6W"+] awn+l
WZH’"akT) € C(Ii;V x H), al; |k € L*(Z),
apn+l
z“,—a’ft—) € C(li; Hx V*), pl|gkeL*(Zy)

By observing that the conditions (42) propagate with n, it follows that the iterative pro-
cedure (37) — (39), (40), (41) is well defined provided the starting data {(uﬁﬁ k10
9 k1) &0 and {(“g,k'lvnz,k—l)}llc;l are given in H x V*.

The decoupled system (37) — (39), (40) corresponds, in fact, to an optimality system
concentrated on the time-interval I. We omit the superscript n + 1 for the time being
and focus first on the internal intervals I,k =1,..., K — 1.

Define the following cost functional on Ij:

n 1
Jk(fkagk,k—l)hk,k—l)?z‘z‘ /Eklfklzdl“dt

1 1, n
+ﬁ{||ﬂwk(7k+1) - A 177k,k+1”%/

0 n
(43) +ll b;wk(Tk) = M k41 ||i1 + |18k, k-1 ||§1 + |, k-1 “%/*}'
We then investigate the following optimal control problem on Z.

inf Jr ~
felA(D) 2 (frr 8k k=1, 8k, k+1)
(8k k1> hac k-1 )EH X V*

subject to

(44) a;—’%’i—v-(AVwk)+cwk = Fy in O,

g,% + aa—gf* = fr on Xy,
wi(Te) =5 A7 (o1 + hig-r) in V),

\ %Wk(Tk) = —(uZ,k_l + gk, k-1) in H.

We conclude that the iterative decoupling procedure for & = 1,..., K — 1 according to
(40) — (39) produces the optimality system corresponding to the optimal control pro-
blem (44). The interpretation of (44) is as follows. One introduces artificial controls
(“virtual controls” (see Lions [23] and Gervasio, Lions and Quarteroni [6])) which serve
to match the initial and final conditions in terms of the iteration history, while optimiz-
ing also with respect to the “real control” f;.
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We proceed to consider the boundary intervals I and Ix. On Iy we define the cost
functional.

The optimal control problem on the boundary interval I, is given by (44) with i = 0,
initial conditions replaced by w(0) = (,0,% Wo(0) =+, and go 1, ho _; dropped.

The optimal control problem to be discussed on the final interval I x 1s the following.
With

n 1 k
Jx(fx, hi k-1,8K. k-1) =5 / |fK|2d2+§{”WK(TK+1)—20”%/
Ik

0 1
(45) +G; (Tew) = 211} +3 B0k k-1l + i o1}

we consider

( inf Jx(fx,hk k-1,8x.k-1) subject to
K8k K-1-hK K1

Pk V- (AVwk) + owg = Fi in O
(46) g—tf-i—agw,( = fx on Xy,

wi(Tk) =5 A7 (0% x_, +hx k1) in V,

a .
_g—rK(TK) = _(.UJ’;(YK_I + gk k-1)in H.

The optimality system for (46) is examined in the same way as above.

In conclusion, the decoupled systems (37) — (41), k =0, ..., K, are decoupled sys-
tems of optimality conditions associated with the optimal control problems (44) on I,
k=1,...,K — 1, the one obtained from (44) on the left boundary interval Iy, and (46)
on I, respectively.

This iterative decoupling procedure is completely parallel and is reminiscent of a Ja-
cobi-iteration. A GauB-Seidel variant of the iteration would consist in solving from
k =0 to k = K and using the most recent transmission values at the corresponding left
end Ty of the interval [y = (T}, Ty41). Moreover, the usage of the ‘virtual controls’ is re-
miniscent of a shooting method. For further information, we ask the reader to consult
the following papers by the authors. [20], [21], [16], [17] [18]1[19][14).

6.3 A posteriori error estimates

With the same notation as in the last subsection, we introduce the local errors
ﬁ)’]:H :wz+l — Wy, p2+1 =P2+1 - k.
The local errors satisfy the iterative system (37) — (41) with homogeneous data

Fr=0, wy=vw=2z=2z =0.
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We now define the error at the nth iteration, e”, by

opy

e = 0r<nka?§<“ "o ot HL°° (Ug;V' > H) di—o<k<1(”(‘pk7 ot )“L“(’k?H"V*)
K Bwk ka
+kz_%/ [ a | Talov 2al ]dz'

We also define, for ¢ € I,

en(r) = ||(wk(t )] P /k'/ (’

- op}, 2 Tht1 2
e [CAORI0)] [ / /a 2alpt dodt,

oW},

Ovy

w1
a

2
)a’adt

o+l
et = B2 llek + ek ||L°°(1k)7
the latter being a measure of the sum of the errors at successive iterates.
In analogy with Theorem 13 above, we wish to estimate e” and e™"*! in terms of
mismatch of the nth iterates wf, p%, or of successive n th and (n + 1) st iterates, across

the break points {¢t = Tx4; : K =0,..., K — 1}. To this end we introduce the quantities

ow? ow}
E i (Tirt) = [|WE(Tirr) = wi s (Tean). 5 (Tiern) = =55 (T [
o’ 9
Hl(PETien) = i (T, e (D) = ZhL (1 ) 2

nn u " 8wn a n+1
€ it (Ten) = (Wi (Tea) = Wkill(TkH),Ttk(TkH) 5 L (Tk+l))l|ny

oph ) n+1
+“(pZ(Tk+l)“p’Zill(Tk+1)a%(Tk+l)‘ pat (Tes) |3

The following a posteriori estimates were established in [19].
Theorem 24. There is an explicitly computable constant C, depending only on 8, K
and the input data to the global and local optimal control problems, such that
K-1

(47) e" < C{ZEZ,HI(THI)}”Z
k=0

and

K-
@) en <203 (ERT (To) + €57 k(T )}
k=0
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In addition to 8 and K, the constant C depends on the input data to the global op-
timality system, that is, on || F|| o1y 1000, v0) 1y s 1205 20) 1 s ™! [l L (52)» and
k, and on the input data to the local optimality systems, that is, on

ICR s 7 ks e a0 (i oMy Ml prspsn k=0, K — 1.

6.4 Space-domain decomposition
For simplicity we consider only two subdomains {2;, £2, with interface I', as in Section
3, and we set

Qi=102;x(0,T), Z;=(002\I')x (0,T), Z™=7rx(0,T).

The global optimality system (29), (32), (31) may be localized to the subdomains Q; pro-
vided continuity of displacements

(49) wi=w;, p;=p;onZ™
and the jump conditions

Ow; ow;  Op; Op; i
50 YW 77T i th
( ) 81/,4[. aI/Aj ’ BVAi 61/Aj on

are enforced, where

6W,‘

—Lt:=v; - (A;Vw;

a]/A’ I ( 1 I))
v; denoting the exterior pointing unit normal vector to 82;. It turns out that (49), (50)
are equivalent to

ow; ow; o _% % .
(51) a,/Al_+ﬁ 5 TPi= aij+ﬂ 5 TP

op; _ owi __ Opi . ow;
(52) BTA,- — Bdp; + vd, o 81//1]- Bdip; + vd; Y

where 3 and v are nonzero constants. Condition (51) holds in the L?(Z™) sense and
(52) in the (H'(0, T; L*(I")))" sense. These conditions are then uncoupled through in
iteration as described in Algorithm 25 below.

Set H; := L?({2;) with the standard norm, and V; := H'(£2;) with ¥; normed by
1/2

1

I9lly, = [ [ 490 v6-+ aloPyax

Note that || - || v, is a norm only if it is assumed that ¢;(x) > 0 on a set in {2; of positive
measure. Let A; denote the canonical isomorphism of V; onto its dual space V}.
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Algorithm 25. Given data A}, uf at iteration level n, solve successively

s

b= V- (A VW) +ew T = F
(53)

32 n+l . )

==V (AVpiT) +apit =0in O

6 n+1 aw n+ 1

6"A + o —— a, +pf'+ =0
(54)

ap"‘+l n+1

oy aidipit =0on X

ow n+1 n+ wtl _ \n

BI/A + ﬁ + TP i )‘j
(55)

apiH-I 6w'.’+1 " ot )

L a,,A "ﬁdtP, ’Yd;—{;,—"———uj onXmt j£j=1,2
6w'.‘+l
‘V?+1(0) = Woi, -'(fl)l_(o) = Yoi
kY n+l

(56) n+1(T) — k( valt _ Z“)

B .

i ( T) = —kA;(w?(T) — zo7) ind%;

where X, p) € L2(Z™) are arbitrary, 1 = d,p) and, forn > 1,
» ow} owj " n op} 8d 4 owj
;= BA,+B L+ap), W= —871— ipj +vd: a

The problem (53) — (56) is well posed since it is itself the optimality system for the lo-
cal optimal control problem

mf{ / RS+ 1y / (7 + 12 + o)z

,g]

+ 5] (wi(T), 25(T)) - (Zonz”)llzyixﬂ,}

subject to

2 w’ — V- (4;Vw) + ¢iw; = F; in Q;

aw, . ]
(8) auy; + 3, i — f; on X

;2 + 8% =\ 4 g; on £

wi0) = woi, i (0) = v; in 12,
where the controls f; € L(¥;) and g; € L*(Z™), and pf! € L*(2™) is a function such
that uf = d,p}. Indeed, this optimal control problem has the same structure as the glo-
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bal optimal control problem. Therefore, for the problem (57), (58) there is a unique op-
timal trajectory w*! with corresponding optimal controls given by

_ n+1 _ n+l)
i= =P IE,-’ & = —P; |);mt’

where p "*! is the solution of

621)'-'+l
o~V (AP 4 ept =0in @
opt! +1
—oidip?™ =0on X

81/Al.
o n+l1 awr_H-l .
;V—I,;i - ﬂdlp?-ﬂ = —vd, alt +ﬂj"' on L™

. 6wn+l .
PiNT) = K( o (T) —21i) € H;
8pr}+l

1

5 (1) = =k Awi™(T) = z0) € V7.

It would be natural, of course, to introduce relaxation into the iteration step (55).
When 3 and v are positive constants, it may be proved that Algorithm 25, with and
without rexalation, is convergent to the solution of the global optimality system.

Remark 26. Calculation of the adjoint variable p™*! may be simplified by obser-
ving that this quantity may be expressed in terms of a more regular variable ¢7+!
through the relations

ntl aq;H—l (9p'~1+1

pro - B g,
where ¢7*! is the solution of

Pqrt! .
L~V (4 + g = 0in 0,

o7t ogrt!

i oy, =0on 5,

61{41. @ ot on &

Og"t! ) n+l1 Ownt! .
by "o = g tejon

1

g7t (T) = k(wITN(T) - z01)
aq7+1 ow 1

T) = n(2U

ot (T) = w( ot
where p! € L?(Z™) is arbitrary and, for n > 1,

(T) = z14),
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n

oq” oq7% ow’
p; = .

_ S _ __J
81/,,]. ﬂat "o

It is also possible to obtain a posteriori estimates analogous to Theorems 13 and 24
above for the error in the approximation in terms of the mismatch of the time and nor-
mal derivatives of the nth iterates, or of successive iterates, across the interface it
The constant factor C that appears in the estimates depends on (3, y, the starting values
)\JQ, o for the local iteration process, and the time and normal derivatives of the solu-
tion of the global optimality system on the interface £™. We do not, unfortunately,
have estimates of these traces in terms of the input data to the global optimal control
problem. We omit further discussion of this point. Details may be found in [16].

Acknowledgement. The authors are indebted to R. Hundhammer for the numerical re-
sults. More numerical simulations which involve multy-bay trusses and other networks
of uncontrolled and controlled 1-d and 2-d wave equations can be found in his
thesis [12], where the inherent parallelism of the algorithms is used for the numerical si-
mulations on a PC cluster.
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