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1 Introduction

Let X be a smooth projective connected variety over field k of characteristic zero, and K = k(X) be
its function field. It is known (see e.g. [6]) that there is a natural inclusion of Br X in Br(K) and this
inclusion identifies Br X with unramified Brauer group Br,,(K|k). Below we shall write Br X instead
of Brp,(K|k) keeping in mind this identification.

The group Br X is of great importance for many problems. It is enough to mention the problems
of rationality of varieties, the problem of Brauer-Manin obstructions to various Hasse principles and,
finally, the classical problem of the description of finite-dimensional division algebras over function fields.
(see [6],[10], [11].)

In this paper we are interested in the problem of description of Br X for a smooth geometrically
connected projective curves over local fields, more precisely, for finite extensions k of €,. The classical
class field theory gives us a complete description of Brauer group Br(k) of k (and also of finite dimensional
central division algebras over k). But if k£(X) is a function field of smooth geometrically connected
projective variety over k, the situation is much more complicated. In spite of many results obtained in
connection with the developing of multidimensional class field theory ([8],[9]), unfortunately, we do not
have a complete description as in the classical situation even in case of curves X (a ”complete” description
means here a presentation of each element of Br(k(X)) by the corresponding central division algebra over
k(X), in other words, it means a description of all central division algebras over k(X)). Traditions of
local-to-global principle prescribe us before the investigation of a global situation to describe all local
ones. In case of curves X over k this requires to investigate the groups Br(k,(X,)) for all v, where k, is
a completion of k at absolute value v on k and X, = X Xy, k,. By Tsen’s theorem Br(k,(X,)) is trivial
in case of complex v and its structure is well-known for real v according to results in [1], [2], [3] and [7].

Thus, in this situation the case of non-Archimedean v is the main unknown one. In the following, by
a local field we shall understand a finite extension of the field of p-adic numbers @Q,. Let now X be a
smooth geometrically connected projective curve over a local field k. Then it follows from [4] that there
exists the exact sequence

0 — BrX — Br(k(X)) % [ x(Gr) % x(G) — 0.

Here G denotes the Galois group of the separable closure of k, Gp = Gal((kp)s|kp), kp is the residue
field at P € X and x(Gp), x(G) are the groups of continuous characters of Gp and G respectively
(for definitions of ¢ and 1 see [4]). In view of this sequence the group Im ¢ is known, so the group
Br X is of main interest for the description of Br(k(X)). The structure of Br X is well-known in case
of curves of genus zero, but even in case of elliptic curves the complete structure of Br X is unknown.
More generally, one can consider a smooth connected projective model X of an affine curve defined by
the equation y? = f(x), where f(z) is a polynomial with coefficients in k without multiple roots and one
can ask for the structure of Br X. One of the aims of our paper is to answer some questions related to
this. Since Br X is an abelian periodic group, the main problem of its description is to find the m-torsion
part of it as an abstract abelian group for any m. Among the groups ,,Br X the group »Br X is of
particular importance, because its elements are represented by central division algebras with involutions,
and this group is, according to the result of Merkurjev [12], related to the theory of quadratic forms by
the isomorphism Br(k(z)) = I?/I®, where I is the fundamental ideal of Witt ring of k(X). Another



important problem is to find an explicit presentation of all elements of ,,Br X (or at least to find such
presentation for generators of ,,Br X) by central division algebras.

Of course, solutions of these two problems strongly depend on the curve X. Both problems have
trivial solutions in case of curves of genus zero. For genus one curves one has more complicated situation.
If X is an elliptic curves both these problems were solved completely in [13] for non-dyadic fields k. There
are also a few preliminary results in case of dyadic fields and in case of principal homogeneous spaces
which will be published elsewhere. For hyperelliptic curves only the case of non-dyadic local curves with
good reduction is considered (see [14]).

Our main object of consideration is the group »Br X for X being a smooth projective model of
the affine curve defined by the equation y*> = f(z), where f(z) is a polynomial of the fifth degree with
coefficients in k£ without multiple roots. The presentation of generators of 2Br X by quaternion algebras
depends on the irreducible factors of f(z) over k. We will consider all possible decomposition cases of
f(z) step by step. The main result is the complete list of quaternion algebras representing generators of
the group oBr X.

2 Splitting type (1,1,1,1,1).

Preliminary results. Let k be a local field of characteristic 0 with residue field k. Let 7 € k denote a
prime element, and let Oy, Oj, 7Oy, be its valuation ring, the group of units and the maximal ideal of the
valuation ring. For u € Oj, let @ denote its class modulo 7O. We will consider also a hyperelliptic curve
C defined over k by the equation y* = f(z), where f(x) € Og[z] is a monic polynomial without multiple
roots and deg f = 5. Let us assume also that f(z) = [[;%, fi(z), fi(z) € Og[z] are monic irreducible
polynomials. In what follows let a be a fixed unit of k¥ which is not a square in k, g(z) will denote the
reduction of a polynomial g(x) € Ox[z]. For a,b € k* we write a ~ b if a and b belong to the same class
modulo (k*)2.
In our further considerations we will need the following lemmas.

Lemma 1
| 2B’I" C| = 2m7

particularly, in this section
| :Br C| = 32.

For the proof see theorem 1 and §4 in [14].

Lemma 2 Let g(x) € k[z] be a monic divisor of f(z), g(x) € k and let either n be odd or deg g(z) be
even. Then for any a € k* the quaternion algebra

(5)

is unramified and not isomorphic to the scalar algebra

<Z(’co)é) ‘

The proof is similar to the proof of lemma 7 in [14].

Lemma 3 Let g(x) € O[z] be a monic divisor of f(x). If g & k[z]? and f(x)/g(x) & k[z]?, then the

quaternion algebra
7, 9(z)
k(C)

is non-trivial.

For the proof see [14], proposition 4.



Lemma 4 Let g(z) € Og[z] be a monic divisor of f(z). If the quaternion algebra

is non-trivial one, then the algebra

s also non-trivial.

Proof. If A ~ 1, then k(x)(1/f(x)) is a splitting field for the algebra

o (589),

therefore this field is isomorphic to a maximal subfield of Ag. Then

f=cla+e5g—ciag, € € k(z).

If e; = pi/qi, pi € klz], q; € k[z] let s; = contrp; — contrq;. We have

P py’ Py’

—_— 281 1 282 2 _ 233 3

=" —sa+n=5g - 1" —5ag,
q1 a> a3

where p; and ¢} are primitive polynomials. If h is the greatest common divisor of g1, g2, g3 and h is
primitive polynomial, then

283

R f = n**t pfa + n2 p3g — 2% pufag (%)

and all the polynomials p;, h are primitive. In particular, p;, h € Og[z]. By comparing the 7-contents of
both sides of the previous equality we obtain that all s; cannot be positive. If all of them are equal to 0,
then we have
f=&a+&7-&ag

and A ~ 1. If 5;, = min; <;<3{s;} < 0, then after comparing the m-contents of both sides of (*) we
obtain that there exists jo # 4o such that s;; = sj,. If s1 = s2 < s3, then after taking the reduction
pia+ g = 0. If s; = s3 < sg, then 2a — jiZag = 0. If s» = s3 < s1, then 2§ — g2ag = 0. Finally,
let s; = sy = 83, S0 fi2& + 13§ — fi2ag = 0. In all these cases we have that there exists § € A such that
Nrd(#) = 0 and this is a contradiction with A £ 1.

Lemma 5 Let V be o variety defined over a finite field F;. Then for any integral positive number N
there exists an integral positive ng such that for any n > ng the subset V() of all Fyn -rational points
of V' consists of more then N elements.

Proof is straightforward in view of the Lang-Weil theorem.

Lemma 6 Let K be an algebraically closed field and f(z),g(z) € K[z]. Then the system
{ y> = f()
2* = g(2)
defines a variety V in P3(K) if and only if f(z) & K[z]?, g(z) ¢ K[z]* and f(z)g(z) & K[z]>.

Proof. It is sufficient to prove that the K-algebra K[V] = K|[z,y,2]/(y?> — f(z),2% — g(z)) has no zero
divisors. Let us consider the 4-dimensional commutative algebra A over the field K(z) with the basis
1,4, j, k and with the multiplication rule i2 = £, 2 = g,ij = ji = k. The associativity of the multiplication
of the basis elements is evident. Let us consider the map

¢: K[V] — A, ¢([P($,y,z)]) =p(:c,z',j), pe K[:c,y,z].



Because of ¢((y? — f(x),22 —g(z))) = 0, ¢ is correctly defined. Furthermore, ¢ is a ring homomorphism.
Let us show that ¢ is an embedding. Indeed, let p € K[z,y,2]. We have p(z,y,2) = po(z) + p1(2)y +
p2(2)z + ps(@)yz + q(x,y,2)(y* — f(x)) + r(z,y,2)(2* — g(z)). Then ¢([p]) = po + p1i + p2j + psk. I
#([p]) = 0, then po = p1 = p» = p3 = 0 and p € (y* — f(x),2%2 — g(x)), so [p] = 0. Since K[V] € A
it is enough to prove that A has no zero divisors. Let I = {a € A,ab = 0 for some b € A,b # 0} and
a€l,a#0. If a=ap+ aii+ azj+ azk, then

ala + Bk) = (aao + Basfg) + (aar + Ba2g)i + (aas + Bar f)j + (aas + Pag)k € I.

ait=a1f+ api +asfj+ak € 1.
aj = asg + azgi + apj + ar k € I.
ak = a3 fg + axgi + a1 fj + aok € I.

Since a # 0, then we have that among of a; there exists a non-zero coefficient. Then after replacement of a
by ai, aj, or ak if it is necessary we can assume that ag # 0. If ag # 0 let us replace a by o' = a(a + Sk),
where 8 = —aas/ag. After the replacement we have a's = 0. If a'o = 0, then a2 = a2fg. Hence
fg € K|z]? and we have a contradiction. Thus a’g # 0 and one can assume from the very beginning
that a = 1 4+ a1i + azj. If ab = 0,b € I, then in view of the previous arguments we can suppose that

b=1+ x1i + z2j. Therefore,

(14 ari+ a25)(1 + z1i + 22§) = (1 + @121 f + a22g) + (a1 + 1)i + (a2 + 22)j + (a2z1 + ar122)k = 0,

SO
1 = —a,
T2 = —ag,
ajas = 0,

aif +a3g =1.
If a1 = 0, then g € K[z]? and if az = 0, then f € K[z]?>. The lemma is proved.

The reduction theorem. From now on we will assume that f(z) € k[z] completely splits over k. Let
k(C) be the function field of C. If f is of odd degree, we may assume without loss of generality that
f(z) € Oglz] and f(z) is monic. We also may assume that f(z) = z(z — 7°u)g(z), where 0 < e < 1,
u € Of, and g(z) € Oylz].

Proof: By a linear transformation we obtain that f(z) is divisible by x, hence

n—2

f(z) = 2(z — 7'u) H (x — 7*uy),

i=1
where 0 <1 < ki < ky, and u, u1,...,u, € Of. Let | =2m + ¢ with £ € {0,1} and 2 = 7*™2'. Then
n—2

yz — 7r10mx/(aj/ _ 7r5u) H (x/ _ 7rki_2mui),
i=1
and the transformation y = y'7%™ will lead us to the equation of the desired type.
Let now f be of degree 5. The aim of this section is to prove that by means of some special transfor-

mation of variables we may restrict our consideration to some special forms of f(z). More precisely, we
prove the

Theorem 1 Let f(x) be as above, such that, in addition f(z) has multiple roots over k (bad reduction).
Then f(x) can be transformed by an appropriate transformation x — x +m, where m € w0y, into one of
the following forms.
I. f(z) = 2(z — 7u)(z — 7wy (z — 7%2us) (2 — T3 us3),

where u,u; € Of, 1 < ki < ko < k3. If k; =1, then u; # u.

If ki =kj, i # j, then u; # u;.



I'. f(z) = z(z — mu)(z — 7%1uy) (z — 7% (ug + 7%0))(z — 73 u3),

where 1 < ki < k3, u,v,u1,u3 € Of and s > 0.
I',. f(z) = z(z — mu)(z — T(u + 7)) (z — 72us) (z — T*3u3),

where 1 < ky < k3, 1 < k3, u,v,u2,u3 € OF.

Isz = 1, then @ 75 Us, ka2 = kg, then Us ;é us, and s > 0.
II. f(2) = z(z — 7% uy) (2 — 72 us) (2 — %3 us3)(z +e),

where 1 < ky < ko < ks, uj,e € Of, and if k; = kj, i # j, then 4; # u;.
Ir'. f(z) = z(z — 7wy (@ — 7% (ug + 7)) (@ — 7% u3)(z + €),

where 1 < k1 < k3, u;,v € Of, s > 0.
III. f(z) = z(z — 7" up) (@ — 7%2us) (z + e) (z + e — 7lv),

where 1 < k1 < ko, us,e € O, 1 >0, and if ki = ko, then U1 # Go.
IV. f(z) = z(z — 7%y (z — 782 uy) (2 + 1) (z + e3),

where 1 < ky < ko, u;,e; € O;:, €1 # ea, and if k1 = ko, then u1 # uo.
V. f(z) = o(z — 7%101)(z + u)( + u — 7%20,) (z + €),

where ki,k2 > 1, u,e,v; € OF, U # &.
VI. f(z) = z(z — m*u)(z + e1)(z + €2)(z + e3),

where k > 1, u,e; € O, & # € ifi #j.
The proof of the theorem is based on the following lemmas.

Lemma 7 Let f(z) = x°. Then by an appropriate transformation x — = + n,n € w0y, the polynomial
f(x) can be transformed to one of the forms I, I.,1I.,.

Proof. Assume that f(x) cannot be transformed to the form I. Then by an appropriate transformation
it can be transformed to a polynomial of the form

o(z — mu)(z — 7 u) (@ — 72up) (z — 7ug) (k%)

where u,u; € Oy, 0 < ky < ko < k3 > 1, all elements 4; such that k; = k3 are pairwise unequal and in
case k1 = ko =1 @y # us. Indeed, by above considerations

(@) = z(z — mv)(z — 70 (x — 720, (& — 7F3v3),

where v,v; € Oy and 0 < k; < ko < k3. If k3 = 1, then the change of variables & — x + 7v3 transforms
f(z) to the polynomial

z(x —7m(v —v3))(z —7(v1 — v3))(z — (V2 — v3))(x — w(—v3)).

By assumption this polynomial is not of the form I, so at least one of the elements v — v, v1 — v3, v — v3
is zero and this means that for the transformed polynomial after renumeration the exponent ks is greater
than 1. Thus we may assume from the beginning that ks > 1.

Let now ky = k3. Then the transformation z —  + 7*3v3 leads us to the polynomial

z(x — (v — 7 o)) (2 — 781 (v — 7P Rg)) (2 — 78 (—ws)) (2 — 72 (v — v3)).
If ki # ks, then this polynomial is of the form (xx). If k; = k3, then we have the polynomial
z(x — (v — 7F o)) (@ — 783 (v — v3))(z — 73 (—w3))(z — 7*2 (vg — v3)).

If 91 — U3 # Uy — U3, then this polynomial is also of the form (xx). If v; — 93 = U2 — 3 = 0 then we
have either the above case k1 # ko = ks or case k; < k2 < k3 and in the last case our polynomial is



again of the form (xx). Thus 3 — U3 = Uy — U3 # 0. In this case it is enough to use the transformation
x +— = + 7% (v; —v3). Hence in all possible cases f(z) can be transformed to a polynomial of the form
(xx). Thus we have: in case k1 = k2 = 1 f(z) can be transformed to

z(z — mu)(z — 7(u + 7)) (x — Tug) (z — 2 u3), (1)

§>0, ks > 1, u,u;,v € O, U # Us.
In case ks > 1, ky =1 f(x) can be transformed to

z(x — mu)(z — 7(u + 7°0)) (z — 72 uy) (z — 7" ug), (2)
(if ko = k3, U2 75 us, § > 0).
The remaining case is
z(z — mu)(z — 7 up) (x — 7% (ug + 7°0)) (x — 7 us), (3)

where 1 < k; < k3, s > 0. Combining together cases 1 and 2 we will obtain case of the form I., and
case 3 is the case of the form I}.

Lemma 8 f(z) = z*(z + &), where € # 0. Then by an appropriate transformation x — x +m, m € 7O,
f(x) can be transformed to one of forms II,I1'.

Proof. Let
() = x(x — 7wy (x — 7%2uy) (x — 72 us) (z + €),

where u;,e € Of and 0 < ky < ky < ks.

Firstly, let k3 = 1 and all @; be pairwise unequal. Then f(x) is of the form II. Otherwise there exist
i # 7 such that u; # u; but @; = ;. Then the transformation x — = + 7u; leads us to the case where
ks > 1. Let now k3 > 1. Then there are the following possibilities for &y, k2, k3.

(i) k1 =k =1,

(i) 1=k < ko,

(iii) 1< ky = ko = ks,
(iv) 1< k1 < ko,

(V) 1 <ky =ky<ks.

Let us consider all possibilities step by step.

In case i) if @y # 12, then f(z) is of the form II. Otherwise after the transformation z — z + mu; we
will have a polynomial of the form I1'.

In case ii) if ko = k3 and 2y = 23, then the transformation z +— 2 + 7*3u3 leads us to a polynomial
of the form II. In case ii) if ko # ks or ko = ks but @2 # a3, then f(z) is of the form I1.

In case iii) if u; (1 = 1,2, 3) are pairwise unequal, then f(z) is of the form II. Otherwise, without loss
of generality let us suppose #; = #@3. Then the transformation x +— z + 7¥3u3 leads us to the polynomial

z(x — 7 (—us3))(x — 7% (uy — u3))(z — 7% (uy — u3))(z + e + 73 u3).

This polynomial either is of the form IT or can be transformed to one of cases iv), v).

In case iv) if either ko # ks or ko = ks but 4y # us f(x) is of the form II. Otherwise, the
transformation  — z + 7*3u3 leads us to case iv) where ko # k3.

In case v) it is clear that f(xz) is either of the form IT or II'.

Lemma 9 By means of an appropriate transformation x — x +m, m € w0y f(x) can be transformed
to a polynomial of the form:



III. z(z — 7%uy) (2 — 7%2us) (z + €) (z + e — 7lv),
where u;,e € OF, 1 >0, 1 <k <k
and if kl = kg, then U1 75 Uo
(case f(z) = z%(z + €)%, e #£0).
IV. z(x — 7%y (z — 7%2uy) (z + e1) (z + €3),
where Ui, €; € OZ, €1 75 &y, 1< k1 <k and ’tf k= k2, then 4 75 Us
(case f(z) = 2°(z +&1)(z + &), & #0, &1 # &)
V. 2(z — %) (z 4+ u)(z + u — 72 0) (2 + ),
where u,e,v; € OF, ki,ka > 1, G # &
(case f(z) = z*(z + u)?(x +€), eu # 0, u # €).
VI. z(x — 7Fu)(z + e1)(z + e2)(z + e3),
where u,e; € OF, & # € ifi #j
(case f(z) = 2°(z + &1)(z + &2)(z + &), ereses 0, & # €; if i # j).
Proof. Let f(x) = 2°(z + €)2. If either ky # ko or k; = ky but @1 # us, then f(z) is of the form IIT.
Otherwise the transformation = — 2 + 7*2uy leads us to case k; # ko, so we have transformed f(z) to
the form I11.
Let f(x) = 2°(z + &,)(x + &2). Then similarly to the previous case either f(z) is of the form ITT or
one may use the transformation z — z + 7*2u,.
The two last splitting cases of f(z) are obvious. B
Now our theorem follows from lemmas 7-9 because all possible cases of splitting of f(x) are considered.
It follows from the theorem that in the case of bad reduction of C given by equation y? = f(z) to

describe quaternion generation of 3Br C we may restrict our attention to f(z) given by forms I-VI, I!,
I.,, II'. For the further considerations we will need the following list of subcases.

The cases of consideration.
I. f(z) = z(x — mu)(z — 7"1uy) (x — 7*2us) (z — 7Th2u3),
where u,u; € Oy, 1 < k; <ky <ks. If k; =1, then 4; # u.
If kz = kj, i 75 j, then U; ;é ﬂj.
I1. kl = k2(2)
I2. I2'. k‘l 5_/-' k2(2), kl = k3(2)
.[2". k‘l 7_é k2(2), kl 7_é k3(2), k‘z # k3, —UuuUiu ~ 1.
I13. kl .-,_r_/-' k2(2), k‘l ;7_(-' k3(2) and either k2 = k3 or —uui1usg 76 1.
Il. f(z) = z(z — 7u)(x — 7%y (z — 781 (uy + 7%0)) (2 — T3 ug),
where u,v,u; € O, 1 <k < ks and s > 0.
Il,. f(z) = z(z — 7u)(z — 7(u + 7%0))(z — TF2us) (x — 7*3u3),
where u,v,u; € O5, 1 <ky < ks, 1 <ksands>0.
If k; = 1, then @ # a9, and if ks = k3, then us # us.
I 1. ky = 1(2).
I.,2. ky = 0(2) and either k3 = 1(2) or (k3 = 0(2) but ks # k3 and —uy ~ 1).
I..3. ka = k3 = 0(2) and either ko = k3 or —us £ 1.
II. f(x) = z(x — 7huy) (& — 7F2ug) (z — 7h3u3)(z + €),
where u;,e € Of, 1 < ki <ky < ks, if k; =k;, i # j, then u; # ;.



IIl. e~ 1.
IT11. ky 2 ks(2).
II1,2. Either k1 = k2(2), k1 #Z k3(2) or k1 = ka = k3(2) but ke # ks and ujuz ~ 1.
I11,3. k1 = ko = k3(2) and either ks = k3 or ujus # 1.
I12. e # 1.
I12,1. k # k2(2).
I112,2. ky = k2(2), k1 Z k3(2) or ky = ko = k3(2) but ks # k3 and uyus #£ 1.
112,3. k1 = ko = k3(2) and either ks = k3 or ujus ~ 1.
Ir'. f(z) = o(z — 7uy)(z — 7% (ug + 7°0)) (z — 72 u3)(z + e),
where u;,e,v € O, 1 <k <ks,s>0.
II'l. e~ 1.
I72,1. e £ 1, ki # k3(2).
II'2,2. ¢ £ 1, ki = ks3(2).
III. f(z) = z(x — 7)) (z — 7%2us) (2 + ) (z + e — 7hv),
where u;,e,v € O, 1 <k < ks, ! >0 and if k; = ks, then @y # a».

IIT1. —e £ 1, ky 2 0(2).
III2. —e~1, ky 2 0(2).
I1I3. —e # 1 and either (k1 = 0(2), k2 Z 0(2)) or
(k1 = k2 =0(2) and k1 < ko, —u1 ~ 1).
IIT4. —e ~ 1 and either (k; = 0(2), k2 Z 0(2)) or
(k1 = k2 =0(2) and ky < ka, —ug ~ 1).
I115. —e # 1, ki = ko = 0(2) and either ky = ky or —uy # 1.
I116. —e ~ 1, k1 = ko = 0(2) and either k; = ko or —uy # 1.
IV. f(z) = o(z — m1u1) (z — 7*2us2) (z + e1)(z + €2),
where u;,e; € O, €1 # €, 1 < ki < ky, and if k1 = kp, then 4; # 4.
IV1. ki = ke = 0(2) and either k; = ko or —ejequq # 1.
IV2. The other cases.
V. f(z) = z(z — 7w (z + u) (@ + u — 7F2u2)(z + €),
where u,e,v; € Oy, U # &, ki,ky > 0.
VieeAl e—u#1l.
V2.etl, e—un~1.
V3. e~1, e—usl.
Vd. e~1, e—u~1.

VI. f(z) = o(z — m*u)(z + e1)(z + e2)(z + e3),
where u,e; € Oy, & # € if ¢ # j.
VI1. €1€2€3 76 1.
VI2. €1€2€3 ~ 1.



Presentation by quaternion algebras.

Theorem 2 Let C be given by the equation y?> = f(x), where f(z) is of form I. Then the class of (7, )
and the classes of the following quaternion algebras generate oBr C.

I1. {(a,1;)}, where l; is a monic linear divisor of f(z).
I2. (a,2), (a,x — ), (@, —7*1u), (T,2).
13. (a, ), (o, — ), (7, —7*3u3), (7,).

Proof. By lemma 1 the order of 3Br C is 32, so to prove the theorem it is enough to prove that in each
case I1,12,13 the classes of the corresponding algebras generate the subgroup H of 2Br C of order 16
such that [(7,0)] & H.

Observe firstly that in order to prove that some algebra is non-trivial it is enough to prove that some
of its completions is non-trivial. We have

(0, %)z qu ~ (,mu) £ 1,
(@, — T U) g ~ (@, 70 — TFw;) ~ (a,m) £ 1 (0 =1,2,3),

(a,z — mu)y ~ (a,mu) £ 1.

Let now {3,j,t,m,n} = {1,2,3,4,5}. Then (a,l;l;l;l;xl,) ~ 1, so that («,l;l;lily) ~ (o,1,) # 1 and
(a,liljl) ~ (a,liyly). Tt follows from the above consideration that to prove that the order of the group
H is 16 it is enough to prove that all the algebras (a,[;l;) are non-trivial. If I; = 2 — 7u, then

(a, (@ — mu)lj)g—mu ~ (& lilmln)gmmu ~ (a, ) 2 1.

Let us consider the remaining cases, where [;,l; # = — wu.

(a, z(x — ﬂklul))w,wklm ~ (a, (z —7u)(z — 7rk2u2)(:c - 7r'“3u3))z,,rk1u1 ~ (a,7r2k1+1) & 1.

(a,z(x — 73u3)), rgy, ~ (@, 7R TR ~ (o, ) £ 1.

(a, (z — ™ u1) (@ — 7*2u2)) ki, ~ (@ T ug (T 0y — mu) (7* 1wy — 75 u3)) ~ (@, m) # 1.

(a, ( — 7" 1) (@ — 7% u3)) k1, ~ (@, 7 ug (T uy — ) (% ug — 7202)) ~ (@, ) # 1.
(o, z(z — T212)),_phay, ~ (e, HR2F) ~ (o, ) £ 1.

(a, (z — 7F2us) (x — 79 u3)) ko, ~ (@, TF2us (720 — Tu) (%20 — T1uy)) ~ (@, ) # 1.
To finish the consideration of case Il one needs to observe that by the lemma, 2 all the algebras from the
list in case I1 are unramified and non-isomorphic to (7, a).
In case I2 let H be the subgroup of »Br C generated by the classes of algebras («,z), (a,z —
nu), (a,z —7*1uy), (m,2). All these algebras are unramified over k(C). Let us prove that H is of order
16. Just by the same way as in the previous case one can prove that the algebras (a,z — wu), (o, z(z —

7)), (a,2), (a,z—7%u), (a,z(z—7"wy)), (o, z(z—7u)), (o, (z —mu)(z—7*1u;)) are non-trivial.

To prove that [(a, 7)], [(a,  — 7u)], [(a,  — 7F1u1)] generate a group of order 8 one needs only to prove
that (o, z(z — mu)(z — 71uy)) ~ (a, (z — 7*2us)(z — Th3u3)) £ 1.

In case I2' we have (a, (z — m2us)(z — 75 u3)),_rhay, ~ (@, 7R TFsHL) £ 1,

In case I2" ks +1 < k3 and (o, (z—m*2us) (z—7¥3u3)) , _ ko t1 ~ (@, (wh2 L —gk2yy) (k21 —ghsyz)) ~
(a,m) £ 1 since f(mk2tl) ~ —ghrtketloyg 4y ~ —uujus ~ 1.

To prove that (m,z) # 1 let us consider a curve (—1)*2quu,x? — i 2 = y? defined over the residue
field k of k. This curve has a smooth point (&, b) such that @,b € k(@), where k(@) is an extension of k of
some prime odd degree. Then for the unramified extension N over k with residue field k(a) there is a lift



(a,b) € N2 of (&,b) to a point of a curve (—1)*quuiz® — uuus = y2. Set w = (—1)*2aa? and 0 = 7*2w.
It is easy to see that f(8) ~ (—1)*2auuia® — uujus ~ 1. Then it follows that

<’“(”“"W7;($))>H i (N( f?e’);o(x—m) - (WNE;,_;l_)kg)w) ~ (N?T%) #1.

Hence (w,z) # 1. Since the algebra

k(Va)(z,/ f(z))
belongs again to case I2 (with constant field k(1/a), then k(y/a)(v/f(x)) does not split the algebra (7, z)
but it splits all the algebras (a, z), (o, z—7u), (@, —7m*1uy), so it follows that elements [(a, z)], [(a, z—
7u)], [(a, x — 7F1u1)] and [(7, z)] generate a group H of order 16. In view of lemma 2 [(7, )] € H. This
finishes the consideration of case I2.
In case I3 one can prove similar to case I2 that [(a, )], [(a,  — mu)] generate a group of order 4. As
to the non-triviality of (m,z) one can prove this just in the same way as in the previous case if ky < k.
If ko = k3 consider the curve over k defined by the equation

(—1)*>aad, (a:2 - ﬂ) <x2 - %) =y’

a

Then there exists an extension k(a@)|k of odd prime degree with a smooth point (@, b) such that b € k(a).
Let (a,b) € N? be a lifted point on the curve defined by the equation

(—1)*2quu, (m2 - m) <x2 - %) =y

[0}

where N|k is the unramified extension with residue field k(@), w = (—=1)*2@a®. Set § = 7*2w. Then
f(0) ~ w(w — uz)(w — uz)uu; ~ 1 and consequently

T, T w, 0 T,
(M% f@»)ka (N(fw»w—eJ QWx—w)*L
Thus (m,z) # 1.

Let N be an extension of k as above for a curve defined by the equation wu; ((—1)*2az? — uy) = y2.
Then such a curve has a point (a, b) over N. In case ko < k3 for § = 7%2(—1)*2qa? we have f(6) ~ 1 and

T, T —mrug 7,0 T,
(km,fm»>%ﬂ (N(fwmw—®> (Nm—w)*L

In case ks = k3 one need to consider instead of the latter curve, a curve defined by the equation

y? = (=D)*2auuy (—1)*2a2? — u2)(=1)*2ax? — us)

and proceed by analogy as in case ks < k3.

One can prove in a similar way that (m,z(z — 7*u3)) # 1. If ks < ks consider a curve y? =
a(z? + ua/(uu1))(x? + (u2 — u3)/(uu1)) and in case k2 = k3 a curve y?> = ax® — uz and proceed by
analogy as in the previous cases.

To finish the consideration of case I3 let us prove that groups ([(a,z)], [(a,z — mu)]) and
([(z, )], [(m,z — 7*3u3)]) have trivial intersection.

Since the extension of k by \/a leaves us either in case 12 or in case I3, the algebra (m,z) does not
split by k(v/a)(z,/f(z)) and consequently [(m,z)] & ([(a, )], [(a, 2 — 7u)]). The transformation z —
z + ¥ u3 leaves us again either in case I2 or in case I3, so that [(7,z — 7% u3)] & ([(a, 2)], [(a, z —7u)]).
Let us consider the algebra (m,z(x — 7*2u3)). If k» = k3, then the extension of constants by /& shows
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us that [(7,z(z — 7%u3))] € {[(a,2)], [(a,z — 7u)]). Let now ko # k3. Comparing completions of
(m,z(x — 7*2u3)) and (o, — Tu):

(m,x(x — 7Tk3’ul3))z_ﬂ.k2u2 ~ (m, w2 uy (2 uy — 7% u3)) ~ 1,

(Oé,CL' - ”Tu)z—wk?ug ~ (aaﬂlmu? - WU) ~ (a,7r) # 1,

so one can see that (m,z(x — 7*3u3)) and (a, 2 — mu) are non-isomorphic. Comparing completions of
(m,z(x —m*3u3)) and (o, ) in 2 —7u one can see that these algebras are also non-isomorphic. And finally
we have for i € {1,2}, k; = 0(2) that

(a,m(m - 7ru))z—ﬂ"“iu; ~ (a:’]rkﬁ_l) 7(‘ 1 and (W,Z’(:E - ’/Tksufﬁ'))z—wki u; ~ (’/T, (Wkiui)z) ~ 1.

Hence (o, z(z — 7u)) # (7, z(x — 7*3u3)). This completes the proof.
In cases I and I, we have

Theorem 3 Let C be given by the equation y?> = f(x), where f(x) is of form I'. Then the class of (7, c)
and the classes of the following quaternion algebras generate Br C.

I.. {(a,1;)}, where l; is a monic linear divisor of f.

I 1. {(a,1;)}, where l; is a monic linear divisor of f.
I2. (o,2), (0,2 —mu), (@, —m'), (m,2), v =u+7°v.
3. (a,z), (a,z —mu), (7, — 7 u3), (7,z).

Proof. Similarly to case I one can prove that (a,l;) % 1 for a monic linear divisor I; of f(z). In case I
if [; =  — mu and i # j we have similarly to case I (a,[;l;) # 1. Furthermore,

(a,z(x — mu1)), ~ (o, 7 TR (@, (2 — 7 u1))y_pray, ~ (@, T3,
One of the algebras (o, 7%1+*%3) and (a, 7¥1+#3+1) is non-trivial, therefore (o, z(z — 7% u1)) £ 1. Similarly
one can prove that (a, z(z — 7% (u1 + 7°v))) £ 1. We have also

(@, 2(z — 1™u3))e ~ (@, 71 H1) 2 1

and

(a7 (iI? - ﬂ-klul)(m - Wklull))w—wklul ~ (Oé,.%‘(.’E - wu)(m - 7rk3u3))m—7r’“1u1 7(' L
k1

For the algebra (a, (x — 7F1uy)(z — 7*3u3)) we have

(aa (iL‘ - 7Tklul)(m - 7Tkgu3)).’zv77r’“1u1 ~ (Ot,.?}(.’]? - Wklull)(w - Wu)):cfw’“l ur ™ (a7778+1)7

k3

(@, (z = 7" ur)(z =7 U3))g - phraf ™~ (o, w2k F8) ~ (

a, 7).
One of the algebras (a,7*), (o, 7**1) is non-trivial, so that (a, (z — 7*'uy)(z — 7*3u3)) £ 1.

In a similar way one proves that (a,(z — 7% u})(z — 7% u3)) # 1. Now by analogy to case I we
complete the proof.

Let us consider case I.,. We have

(a, (x — 7u) (@ — 7u"))g—ru ~ (o, z(x — T2up) (& — T u3))y_ru ~ (a, %) £ 1.
We have also (a, z(x — 7u)) £ 1, since
(a,2(x — 7)) p—ru ~ (o, 711) and (o, (2 — 7)) g ru ~ (o, 7°).

Similarly (o, z(z — wu')) #£ 1.
Consider now the algebra (a, (z — mu)(z — 7*2us)). We have (o, (z — 7u)(z — 7*2us)) # 1, since
(o, (z — mu) (@ — 72 u2)) g—ru ~ (o, 711 and (e, (x — mu)(x — 7%2us)) g—rur ~ (@, 7°).
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Similarly (o, (z — 7u')(z — 7*2us)) £ 1.
Furthermore, (o, (z — mu)(z — 7*2u3)) £ 1, since

(o, (z — mu) (@ — 7 u3))g—ru ~ (o, 711 and (o, (x — mu) (@ — 73 u3))g—mu ~ (@, 7°).

Similarly (o, (z — 7u')(z — 7% u3)) £ 1.

We have also (o, z(x — 7%2us)) # 1, since

k2 k3

(o, 2(2 = 7™ u2))y _qban, ~ (0, (& = 7u)(z — 7u') (& = T5U3))y_rhau, ~ (a, 7*)

and ks is odd.
Then
(a,z(z — 7rk3u3))z ~ (a, (z — mu)(z — 7u')(z — 7rk2uz))$ ~ (a, 7rk2)

and ks is odd.
Finally, (o, (x — 7%2us)(z — mF2u3)) # 1, since

(o, (z — T2u2) (& — T u3)) y ko, ~ (@, 2(T — Tu) (@ — TU')) 4 phay, ~ (@, 72) 2 1.
It is clear from the above considerations that similarly to case I one can complete the proof in case I.,.

Let us consider the next case. We can conclude that the group ([(e, z)], [(a, 2 — 7u)], [(a, z — 7u')])
is of order 8 in case I}, 2 and ([(a, )], [(a,z — 7u)]) is of order 4 in case I,3. The non-triviality of the
algebra (7, z) in both cases can be established by considerations similar to the ones in the proof of the
theorem 2. As to the algebra (7, z — 7*2u3) in case I.,3 one can use the replacement 2’ = z — 7*3u3 and
reduces this case to the case of the algebra (7, ). The non-triviality of the algebra (m, z(x — 7*u3)) in
case I.,3 can be obtained by using arguments similar to the ones in case I. To complete the proof in
case I.,2 let us observe that the extension of constants by +/a does not split (7, x) but splits any algebra
of the form (a, g(z)).

To complete the proof of the theorem in case I},3 we need to prove that the groups ([(a, )], [(a,z —
7u)]) and ([(,z)], [(7,z — 7*3u3)]) have a trivial intersection. But in case I.,3, ks = k3 the extension
of constants by +/a leaves us in case I, 3 and this completes the proof in case ks = k3. If we are
in case I}, 3, k2 # ks then the similar extension of constants leads us to case I.,2 so that [(7,z)] &
([(a, )], [(at,x — 7u)]). After the replacement 2’ = x — 7*3u3 we are left again in the case I%,3, then
[(m, 2 —7*3u3)] & {[(a, 7)], [(@,z—mu)]). The proof of the fact that [(r, z(z —7*u3))] € ([(a, )], [(e,z—
mu)]) is just the same as the corresponding part of the proof of the theorem 2. This completes the proof
of the theorem.

In case I we have

Theorem 4 Let C be given by the equation y> = f(x), where f(x) is of form II1. Then the class of (7, c)
and the classes of the following algebras generate Br C'.

a,z), (a,z — " uy), (o, — 72uy), (7,z).

T,z — ),

112,3. (m,z — 71wy, (7,2 — 7%2uy), (7, z — 7*3us), ().

Proof. Observe first of all that in case IT (a,z +e) ~ 1 for any e € Oj, and (7, z + e) ¢ 1 if and only if
e € O; \ (07)?. Indeed, one needs only to prove that for any irreducible polynomial p(z) € k[z] we have
(o, + €)p(z) ~ 1, and for any irreducible p(x) we have (7,2 + €),(,) ~ 1 if e € (Of)? but there exists
p(z) such that (7,2 + ),y # 1if e & (05)*.

Assume firstly that 6 is a root of p(z). Then

(aa T+ e)p(z) ~ (05,6 + e) ~ (OL, 0(6 - Wklul)(e - WkZU?)(H - 77-19311/3))
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and if § ¢ 7Oy, then (o, + €)p(z) ~ (@, 0*) ~ 1. Let 6 € 7O, then

(@, +e)p) ~ (,0 +e) ~ (a,e) ~ 1.
Assume that e € (O})?, then similar arguments show that (m,z +e) ~ 1. In case e ¢ (O})? we have
(7(,:11' +e)z ~ (71',6) 7 1.

Consider case IT1. Let lo = x, l; = z — wFiu;, j = 1,2,3. Since f(z)/l;(z), l;(z) & k[z]?, j =
0,1,2,3, then by lemma 3 (m,l;) # 1. Furthermore,

< TS ) ()

Since in case II1 e ~ 1 we have

( a,zx ) <07, x) 41

k@) +e)/, \k) '

Hence ~

(_ a,zx ] ) 41
k(z)(Vz +€)

and in view of lemma 4 («a,1;) # 1, (i = 0,1,2,3). Thus all the algebras listed in cases IT1,1, 11,2, I11,3
are non-trivial. Since (a,z + e) ~ 1, then (a,lolils) ~ (a,l3) # 1 and hence in order to prove that
([(e,10)], [(a,11)], [(@,l2)]) is a group of order 8 it is enough to prove that (a,loli) # 1, (a,lols) #

1, (a,l1l2) # 1. We have
(aaloll)z—n’“2u2 (a 7rk27rk1) ~ (aa"r) #*1,

(aalolQ)m—wk2u2 ~ (aal1l3)z—7rkZU,2 (Oé ﬂ—kl 7rk2) ’7(' 1, (aalllQ) (a 7rk1 ’/Tkz) 7(' L

It is clear that the extension of constants by /& leaves us in case II1 and this implies that [(7,z)] &
([(a,10)], [(a,11)], [(,12)]), so that case IT1,1 is considered
In case IT1,2 let us show firstly that (a,x(x — 7% uy)) £ 1 and (m,z(z — 7%1uy)) £ 1. If ks # k3(2)
we have
(@, 2(z — 7" u1))y ~ (@, (& = 7 u2) (2 — 7 uz)); ~ (a, m*2Hhe) £ 1.

If ks = k3(2), then

f(7rk2+1) ~ ﬂ,kz—i-l( k1 )( ko ) ko+1

—m ug ) (— 2 ue ~uiug ~ 1

and this implies

(a, z(x — 7Tk1u1))z_ﬂ.lc2+1 ~ (a,wk1+k2+1) #1,

so that (o, z(z — 7*1uy)) £ 1.

To prove (m,z(z — 7F1u1)) # 1 let us find a polynomial p(z) such that (m,z(x — 7%1u1)), # 1. Let
p(x) be a minimal polynomial of element § = 72w, where w is a unit from the algebraic closure of k.
Then

F(0) ~ w*3w(—m*ruy ) (—*2ug) 7 (w — uz) ~ wusw(w — us).

Assume now that k(w)|k is an unramified prime odd degree extension (or its degree is 1). Then

k1 T, (_1)k1+k3+1u1w
(m,2(z — 7" 1)) p(a) ~ (k(w)(w — 8)Jurusw(w — u3)>

And if ujusw(w — uz) ~ 1 and (—1)MF*s+ly 0w ~ o then (m,z(z — 7™1u1)) ) # 1. To find such w let
us consider a curve over k given by the equation y? = @1 Gaz? + (1)1 53 G034,

There exists a finite odd degree extension of k, where our curve has a smooth point (@, l~)) which can

be lifted to a point (a,b) on the curve y? = ujusz? + (—1)*¥+*30u5uz3a. And we will be done if put w =

—1)krtkatly, aa?. Tt follows immediately from the above considerations that ([(a, z)], [(a, 2 — 7*1uy)])

and {[(m,z)], [(m,2 — m™F1u4)]) are groups of order 4. Since the extension of constants by /& leaves us
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in case II1,2 these two groups have the trivial intersection and this completes the consideration of case
1I1,2.

In case IT1,3 in order to prove that {[(7,z)], [(m,x — 7*1uy)] [(7,x — 7*2u2)]) is a group of order 8
in view of (7, z(z — 7% uy)(z — 7*2uz)) ~ (m,x — 7F2u3) £ 1 it is enough to establish that the algebras
(m,x(x — m™1wy)), (m,z(z — 7*2uy)), (7, (z — 7%1uy)(z — 7*2us)) are non-trivial. If ks < k3, then the
non-triviality of the first algebra can be checked similar to the previous case. Let now ks = k3 and assume
that w is a unit from the algebraic closure of k with the above mentioned properties, § = 7*3w, and p(x)

is the minimal polynomial of §. Then we have f() ~ w(7** ~*1w — u;)(w — uz)(w — u3) and

7w, w(wr

ks —k1 — uy) )
k(w)(z — 0)(v/w(rh—Frw — up) (w — us) (w — u3))

(m,x(x — Wklul))p(w) ~ (

and if
{ w(rks k1w —uy) ~ o
(w —u2)(w —us) ~ e,
then (m, z(x — 71 u1))p(o) # 1.
Assume that k; < ks, then one can take w = —auja®, where (a,b) is a point on a curve y? =
a(z® +uz/(au1))(z® + uz/(aur)).
If k1 = k2 = ks, then we have a system

w(w—u1) ~a
{

(w—u2)(w—u3z) ~a

The existence of w in this case can be established by inspection of points on the curve defined by the
following system in view of lemmas 5 and 6.

{ %
e
If ko # k3, then the non-triviality of the algebra (,z(z — 7%2u3)) can be checked by analogy as in the
previous cases.

Let ky = k3 and k; < ko. If as above § = wr*?, then we have f(6) ~ mksw(—mF1uy)m®s (w—ug) ks (w—
uz) ~ —wuy (w — us2)(w — uz) and for minimal polynomial p(x) of 8 over k

(7]—71'('77 - 7rk2u2))p(w) ~ (k’lru:)?up(;z _fqzz)))) )

The non-triviality of the algebra (m, z(z — 72u2)),(,) will be follow from the existence of solution of the

system
{ w(w — uz) ~ a

—uy(w —ug) ~

2(x — 1)
x — i2)(w — u3).

I
Q1 Qi

and k(w)|k is of odd prime degree or its degree is 1. The existence of such w as usual can be deduced by
the inspection of points of the reduced curve.
Let us show that (, (z — 7% uy ) (@ — 7*2u2)) # 1. If ko # k3, then

(7, (x — 7wy (x — 7%2u9))p ~ (m, 71 TR20u u0) ~ (T, urus) o 1.

Let ko = k3 and k1 < k3 (if k1 = k2, then one can prove everything as in one of the previous cases since
(7, (xz — Py (@ — 7*2u)) ~ (7, 2(z — T2 uz))).
By analogy with the above considerations one can find a unit w such that k(w)|k is of odd prime

degree and such that
{ w(w —u3z) ~ a

—ui(w —u2) ~ a.

Then for the minimal polynomial p(z) of § = 7¥sw we have (r, (z — 7™ u1)(z — 7%2u3)) ) # 1, so that

(7, (x — 1y ) (@ — 7*2uy)) is also non-trivial.

14



Thus ([(7, z)], [(7,z—7*u1)], [(7,2 —7*2u2)]) is a group of order 8. Since the extension of constants
by /7 leaves us in case II1,3, we conclude that [(a,z)] does not belong to this group and the proof of
case II1 is finished.

In case I12 the algebras (m,z), (7,2 — 7%iu;), (7,z(z +e)) and (7, (z + e)(x — 7¥iu;)) are non-trivial
by the lemma 3.

Let us consider case I12,1. There exists ¢ € {1,2} such that k; is odd. Then we have

(aax)zfﬂkiui 7(' 17 (O[ T — ﬂ—ksu:f)wfwkiui 76 17

(o, z(x — 73 u3))s ~ (a, (x + €)(x — 7 ur) (@ — 73 u3)), ~ (m,7F1HF2) £ 1,

so that ([(a,)], [(a,z — 7*3u3)]) is of order 4. From the above considerations it follows that
([(w, )], [(7,z + €)]) is also of order 4. After the extension of constants to k(y/a) we have case IT1,1, so

that
(7r z) @ k(va)(z,\/ (= 76 1 and
(m,z(z +¢€) ® Nz, @) ~ (m,2) @ k(Va)(z,/ f(z)) # 1

and therefore [(m,z)], [(7,z(z + e))] Q’ (e, )], [(,z — 7rk3U3)]). To complete the inspection of case
I12,1 we need only to prove that [(m,z + €)] € ([(a, 2)], [(o, z — 7*3u3)]).
Let k; is even, j € {1,2}. Then

Q/-\ Nt

(m,x + e)gc_ﬂkjuj ~ (me) # 1, (a,a:)ac_wkjuj ~ (Ot,ﬂ'kju_j) ~1,

(o, — ¥z ~ 1, (o, 2(x — 7*3us ~1,

k.
):c T Ju ))x—w Juj

and case I12,1 is considered.

In case I12,1 in order to see that the group ([(m,z — 7*'u;)], [(7,z + €)], [(7,z)]) has order 8 it is
enough to prove that (7, z(z — ¥ u;)(z +e)) # 1 and (7, z(z — 7*1u1)) # 1. This follows from the above
considerations. But the extension of constants by 1/« leads us to case I11,2 and we saw that in this case
(m,x+e) ~ 1, (m,z(x — 7%u;)) # 1 and therefore (7, 2(z — 7% uy)(x + €)) #£ 1 over k(C).

Let us prove now that (a,z) # 1. If ky # k3(2) and k; (i € {2,3}) is odd, then (a,),_ ki, ~
(a, %) £ 1 therefore without loss of generality we can assume ki, ko, k3 to be even (ks < k3). Then

f(ﬂ'k2+1) ~ ﬂ.kg—i-l( 7Tk1’u,1)(—7i'k2u2)7'rk2+1

a, wktt @,
(@, T)p_grat1 ~ (k(.%’ — mh2H+1)( f(7Tk2+1))) - (m) AL

To complete the consideration of case I12,2 we need to prove that [(a,z)] & {[(7,z — 7*1uy)], [(m,2 +
o), [(r,2))-

First of all (a,z) # (m,z) because the extension of constants by /a leads us to case II1,2, where
(m,z) # 1. Furthermore, the same extension of constants shows that (a,z) # (7, z(z + €)) since in case
I11,2 we have (m,z + €) ~ 1. By the same way we have

(@,2) # (1,2 —=7*w), (a,2) 2 (7, (z — 7"u1)(z +e)),

(o, z) o (m,2(x — 7)) and (o, z) # (7, z(x + e)(z — 7% uy)).

Consider the algebra (7,2 + e). If among of ki, k2, ks there exists an even k;, then (@, ), ki, ~ 1,
but (m,z + €),_ ki, ~ (m,€) # 1. Let now all k; be odd. Then in view of k2 + 1 < k3 we have
fak )y ~ wjuse ~ 1 and (o, )y photr ~ (o, 721 ~ 1, (71,2 4 €)y_pkat1 ~ (m,e) # 1 and again
(o, z) # (m,x + €e). This completes the consideration of case 112,2.

Consider case I12,3. Let lo = z, I; = x — n%u; (j = 1,2,3). Let us observe that all algebras listed
in I12,3 are non- tr1v1a1 because of lemma 3, so to prove that the group generated by them is of order 16
it is enough to check that all of them are pairwise non-isomorphic.

e ~ujuse ~1 and
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First of all it is true for (w,l;(x + €)) because of lemma 3. For the algebra (m,lol3) if ko # k3 we have
(m,lol3)y ~ (m,uruze) # 1. If ko = k3, k1 < ko one can find a unit w such that k(w)|k is of odd prime

degree and
{ w(w — u3z) ~ a

—ure(w — us) ~ a.

Then for the minimal polynomial p(z) of 7*w over k one has (m,lol3)p(z) # 1. In case ky = ky = k3 one
can use a unit w such that
{ w(w —u3) ~ a

(w—u)(w —u2) ~ a.

Then again (m,lol3)p(z) # 1. Similar arguments prove that (m,lol1) and (7,lol2) are non-trivial in case
k2 < k3. Indeed, in first case one can use a unit w such that

w~ —UuU
w— Uz ~ —UuUs

and in the second one such a unit that

W~ —UsX
W — Uz ~ —Ui.

Then in both cases for the minimal polynomial p(z) of m*3w over k one has (m,lol1)pz) # 1 and
(m,lol2)p(z) # 1. Let now k2 = k3. Then in the case of the algebra (m,lol1) we need to use a unit
w7
{ W~ —Qauq
(W —uz)(w —uz) ~ 1,
if k1 < k9 and
{ w(w —uy) ~ a
(w —u2)(w —uz) ~ 1,
if k; = ko = k3. In the case of algebra (m,lgl2) one can work similarly.

Consider algebras (m,1113), (m,12l3), (m,11l2). After replacing ' = z — 72 u3 we are again in case
I112,3 and with new notations algebras (m,l1l3), (m,l2l3) look like algebras (m,Ijl}), (m,ljl}), where
lh=2"andl=1;+ w*3us. But the last algebras are non-trivial in view of the above arguments. In case
ko2 = ks for the algebra (m,l1l2) one can renumber ly,ls,15 as follows: I = I3, I} = I3, I} = I3, so that
(m,l1l2) = (m,111%) and the last algebra is non-trivial. Finally, let k1 < k3. Then

(7T7l1l2)m—7r"’1u1 ~ (m,lols(z + e))z‘—wklul ~ (m,e) # 1.

The theorem is proved.
If f(z) is of the form IT' we have the following statement.

Theorem 5 Let C be given by the equation y*> = f(x), where f(z) is of form II'. Then the class of
(m,a) and the classes of the following algebras generate »Br C.

Ir't. (o,z), (0,2 — 7)), (1,2 — 781wy), (7,2).

I1'2,1. (a,2), (7,2 — 7*1uy), (7, ), (T, +e€).
I1'2,2. (m,x — %), (m,2 — 7Fd), (7,2 +e), (7,2), v} = uy + 7.

Proof. As in the proof of theorem 4 one can easy prove that (a,z +e) # 1 for any e € O} and
(m,z +e) # 1if and only if e € O} \ (Of)?. Similarly to this proof one can check that the algebras
(m,x), (m,2 — 7*'u), (m,2 — 7*1u)), (7,2 — 7*u3) are non-trivial.

If e ~ 1, then one has as in the proof of theorem 4 that the algebras (a,z — 7*'u1), (a,z) are
non-trivial. Hence all algebras (except (a, ) in case I1'2,1) listed in case II' are non-trivial.

Consider case II'l. First of all observe that («,loly) # 1. Indeed, if k; # k3(2), then

(;lol)s ~ (@, (& = 71 u)ls( + €))o ~ (@, m*1HH) £ 1.
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If k1 = k3(2), then since f(7*1*1) ~ e ~ 1 we have

(e, lol1) g mrai+1 ~ (LQ 4 1.

k<$ _ 7Tk1+1
As to the algebra (m,lgl;) one can find a unit w generating an odd degree extension over k such that

{ w~ (=)*au;

w—v~(=1)°au;.
Let 6 = 7% (uy 4+ m*w), p = Irrp(w)r(6). Then
FO) ~ 7Fruy (mFruy + 7w — b)) (7R g 4+ ot — Ry — M) ~w(w —v) ~ 1

and
(m,lolh)p ~ (m, m°wur) ~ (m, (-1)’uqw) ~ (7, ) # 1.

Thus groups {[(«, lo)], [(a,11)]) and ([(7,1o)], [(m,1)]) are of order 4. And since the extension of constants
by +/a leaves us in case II'l we have that these two groups have trivial intersection, so case II'l is
considered.

Now we are in case IT'2. The extension of k by /a leads us to case II'1 and splits the algebra
(m,z + €), hence the group {[(m,lo)], [(7,11)], [(7,z + €)]) is of order 8.

Now if i € {1,3} and k; is odd, then (a, Z),_ ki, ~ (o, %) % 1 and therefore (a,z) # 1. To complete
the consideration of case IT7'2,1 we need only to prove that [(a,z)] & ([(7, )], [(7, )], [(m,z + €)]).
The extension of constants by \/a shows us that [(a,z)] & ([(7,l0)], [(7,11)]} and (a,z) # (m,lo(z +
e)), (a,xz) # (m,li(z +€)) and (o, x) # (m,loli(z + €)). Furthermore, for even k; € {ka,ks} (o, 2)i; ~ 1
and (m,z +e);; # 1,0 (a,z) # (m,z +¢€). Case [I'2,1 is done.

Consider case II'2.2. In this case it is enough to prove that all listed algebras with the algebra
(m,x — wF3u3) are pairwise non-isomorphic. Furthermore, (m,1;(z +€)) # 1 and (7,1} (z + €)) # 1 as was
noted before. We also have

(7T7l0l3)w ~ (ﬂ-allli(m + e))w ~ (71',6) 76 1,

so that (m,lol3) # 1. One can also prove similarly to the previous case that (m,loly) # 1 and (7, lol}) # 1.
To prove that (m,1113) # 1 (similarly (7,ljl3) # 1) it is enough to observe that after replacement 2’ =
x — 7*3ug3 our algebra looks like (m,lol1), where lg = 2’ and I; = l; + 7**u3. Finally,

(Trﬂlllll)ll ~ (Wal0l3($ + 8))11 ~ (7";8) 76 1.

The theorem is proved.
In case where f(z) is of the form II] we have

Theorem 6 Let C be given by the equation y?> = f(x), where f(x) is of form III. Then the class of
(m,0a) and the classes of the following algebras generate Br C.

III. (a,z), (o, — TF2us), (T2 +e), (1,2 +e— 7).
II12. (o, ), (o, — m*2uy), (7,2 +e), (a,z +e).
III3. (a,x), (7, ), (T2 +e), (7,7 +e—mlv).

II14. (o, ), (7, x), (7,z +e), (o, +¢€).

III5. (m,z), (m,2 — 7*2us), (m,z +e), (7,7 +e—nlv).
II16. (m,z), (7,2 — 7*2uy), (m,x +e), (o, +e).
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Proof. Let Gy = {[(w,z+¢)], [(m,z+€')]), where e = e —7lv. Let us prove that in cases ITT1,II13,III5
G1 is of order 4. Indeed, in these cases (m,z +¢€) # 1 and (m,z + €') # 1 according to lemma 3.
Furthermore,

(m,(z +e)(z 4+ €))pre ~ (M, z(x — 7 u)) (x — T%2us)) pye ~ (7, —€) # 1.

Now let G2 = ([(m,z + €)], [(a,z + €)]), then in cases [II2,I114,I1I6 G2 is also of order 4. Indeed,
(a,z+e) # 1bylemma 4 and (7, z+e€) #£ 1 by lemma 3. And (o, z+e€) # (m, z+e) since k(v/a)(z, v/ f(z))
does not split (7,2 + €).

In cases ITT1,1112 let G3 = ([(a, z)], [(@,z — 72 uy)]). Then G3 is of order 4. Indeed,

(a7$)w—7rk1u1 ~ (a77rkl) 7(' 1, ( T — ﬂ—kzuz)z—wklu1 ~ (O[,ﬂ') 7(' 1,

(o, z(x — 72u2))y ~ (@, (x — 7 ur)(z + ) (z + €))s ~ (a, =7 usee’) £ 1.

In cases IT13,1114 let G4 = ([(o,x)], [(m,2)]) and let us show that G4 is of order 4. For the algebra
(a, z) we have: if ko is odd, then

(0 ) g—hagy ~ (@, T2us) £ 1.

If ko is even, then

frbr ) ~ gkt (kg kit oy ~ 1

and

(O &)y _ghr41 ~ (L) £ 1.

ke(z — mhit1y

As for the algebra (m,z), one can find a unit w such that k(w)|k is an unramified odd prime degree

extension and
w~
w—uy ~ 1.

In view of f(m*'w) ~ w — u; we have

where p(x) is a minimal polynomial of 7%1w over k. Now since k(y/a)(z, v/ f(x)) does not split (7, z), we
have (7, z) # (a, z).

Finally, let G5 = ([(m,z)], [(7,z — 7*2uy)]) in cases ITT5 and II1I6. We prove that G is of order 4.
To prove that (m, ) is non-trivial it is enough to repeat previous arguments with the last w. Similarly,
with the same w in case k1 < k2 we have

( T — 7TkZUQ)a: k1w © (7T7m)m—7r’“1w 76 1.
If k1 = ko let w satisfies the following property

w—us ~a
w(w —u1) ~ a.

Then (7,2 — 7*2us), 51, # 1. For the algebra (7, z(x — 7%2u5)) in case k; # ko we have
(m,x(x — 72uy)), ~ (7, (x — 7wy (z + €)(z + €))z ~ (7, —u1) # 1.
If k1 = ko one can find a unit w with the property

{ w(w — u2) ~ «

wW— Uy ~ Q.

Then (7, z(x — 7%2us)),_ k1, # 1. Thus G5 is of order 4.
To complete the proof of the theorem it remains to show that all the following groups are trivial
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1. G1NGs in case I111,
2. GoNG3 in case 1112,
G1 NGy in case 1113,
G2 NGy in case 11714,
G1 NGy in case 1115,

S o ke W

G2 NGy in case I116.

In case I1I6 the extension of constants by /7 leaves us in this case, so that [(a,z)] € G5 and [(a,z) ®
(m,z + e)] € Gs. Let g(z) € {z,z — 7*2us, z(x — 7*2us). Then (7, g(z)(z + €)) # 1 in view of g(z)(z +
é), f(z)/(g(z)(z + &)) & k[z]? and by lemma 3. This implies G N G5 is trivial.

In case I114 since the extension of constants by \/a leaves us in case 174, then in order to prove that
G2N Gy is trivial it is enough to check that (a,z(z+¢€)) # 1 and (7, z(z+e)) # 1. But (a,z(z+e)) # 1,
since (@, z(x + €)) # 1 and (7, z(z + e)) # 1, since z(x + &), f/(z(z + &)) & k[z]>.

In case I1I2 since the extension of constants by 1/« leaves us in this case, we have [(m, z+e€)], [(Ta, 2+
e)] € G3. And it remains to show that [(a,z + e)] € G3. But for any g € {z,z — 7*2uq, z(z — 7*2us)}
(a, g(z +€)) # 1 since (&, g(z + €)) # 1.

In case III1 the extension of constants by y/a leads us to case IT12, since [(m,xz +e€)] € G5. The same
is true for [(m,z + €')]. Now it remains to prove that [(7, (z + €)(z + €'))] & G3. We have

(0, 2) g rra, ~ (@ — TU2),_pr1y, £ 1 but (m,(z +€)(T +€))y_nriy, ~ (m,e€’) ~ 1.
Furthermore,
(o, 2(x — T2 u2))y ~ (o, (x — 7™ ur)(z + e)(x + €'))s ~ (a, =7 usee’) £ 1

and (m, (z +e)(z + €'))y ~ (m,ee') ~ 1. Thus [(7,(z + e)(z + €'))] € Gs.

In case I113 the extension of constants by /a leads us to case IT74. So this extension does not split
the algebras (m,z + €), (7,2 + €'). Let us show that (a,z) £ (7, (z + €)(z + €')). In case ks is odd we
have

(7T7 ("E + e)(m + e,))sz’wug ~ 1 and (a,‘r)‘Tfﬂ'kng 76 L.

In case ks is even
(m,(x+e)(x+e€)),_m+1 ~1and (a,7),_x+1 £ L.

Thus [(a, z)] & G1. We have
(m,z) # (7,2 +e) and (m,2) £ (1,2 +¢€),

since z(z + &), f(x)/(x(z + €)) & k[z]?. Let w be a unit such that (7,2),_, 5, # 1, then (7, (z +e€)(z +
€'))g—nk1 ~ 1. This implies [(m,z)] € G1. The remaining possibility is [(ra, z)] € G;. Observe firstly
that (o, x),_. k14 # 1, hence (ra,z) #£ (7, (z + e)(x + €')). Furthermore, if (ra,z) ~ (7,x + €), then
(a,z) ~ (m,z(z + €)). But k(v/a)(z,\/f(z)) splits (a,z) and does not split (7, z(z + €)). Similarly
(ra,z) # (7,2 +€'), so G1 NGy is trivial.

Now pass to remaining case I1I5. If g € {x,z — m2us, z(z — 7*2us)}, then (m,g(z +¢€) # 1 by
lemma 3. Thus [(7,z + €)] € G5. Similarly [(7,z + €')] € G5. Let (m,g) ~ (7, (z + e)(z + €')). On the
other hand, if w is a unit such that (m,z),_, %1, 7 1, then since (7, (z + €)(z + €')),_ #1, ~ 1 we have
g # z. In the same way one can prove that g # x — 7*2uy. Finally, if g = z(z — 7*2uy), then in case
k1 = ko for a unit w such that (m,x(x — 7%2us)),_ k1, # 1 we have (7, (z + e)(x + €')), k14 ~ 1 and
in case k1 # ka (m,(z +e)(x +€))s ~ 1, (m,z(x — 72us)); # 1. Thus [(7, (z +€)(z +¢'))] & G4. The
theorem is proved.

In case where f(z) is of the form IV we have the following statement.

Theorem 7 Let C be given by the equation y*> = f(x), where f(z) is of form IV. Then the class of
(m,0) and the classes of the following algebras generate Br C.
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IV1. (m2), (1,2 — T*2uy), (7,2 +e1), (T, 2 +e2).
V2. (m,z), (m,z +e1), (m,2 + e2), (a,2).

&2, 2(@+ 1), 3(0+85), (@+81) (04 6), f(@)/2, (@)@ +21), (@) (@ +2), £(2)(@(z+21), () (@(z+
€)), f(@)/((z + &1)(z + &)) & k[z]?> and by lemma 3 (m,z) # 1, (m,z +e1) # 1, (m,2 + e3) #£ 1,
(m,z(z+e1)) £ 1, (m,z(x +e2)) # 1, (7,(x + e1)(x +e2)) # 1, s0 G is of order 8.

If one of the k; is odd, we have (a, )m whiu, A1 Ik = k2 =0(2), k1 < ko and —ujeres € (k*)?,
then k1 < k1 +1 < k2 and (o, 2),_,#+1 2 1, since f(7F1H1) ~ —ujejes. Thus in case IV2 (a,z) # 1.
Since the extension of constants by v/a leaves us in case IV, we conclude that [(a,2)] ¢ G.

Consider case IV 1. If ky # k2, we have

Proof. Observe that G = {[(w, )] [(m,z + e1)], [(m,z + e2)], ) is of order 8. First of all z,x + &,2 +
€2),
2

(m,x(x — 72up))p ~ (1, (z — 7 uy) (z + €1) (@ + €2))r ~ (7, —ureres) # 1.

If k1 = ko let w be a unit such that k(w)|k is an unramified prime degree extension and

{ ww —uz) ~ a

w — Uy ~ oejea.

Then (7, z(x — 72us)), k2, # 1. This implies (7, 2) # (7,2 — 7%2us). By lemma 3 the algebra (m,2 —
7*2u5) is also non-isomorphic to (m,z +ey), (7, +€2), (7, z(x +€2)), (T, 2(x + €2)), (7, 2(x + €1) (z + €2)).
Finally, let k; # k2. Then

( (IL' - 7rk2u2)(x + 61)(3} + ez))z—w"’lw (71' .’II(LC - ﬂ-klul))w—w"’lw 76 1
if w is a unit with the above properties and

w ~ Qeré
w — Uy ~ ejeés.

In case k1 = k2 we only need to change the latter conditions by

{ w(w —ug) ~a

w — Uy ~ Q0ejes.

In any case (m,z — m*2uy) # (m,(z + e1)(z + e2)). This implies [(m,z — 7*2u,)] ¢ G and completes the
proof of the theorem.
If f(z) is of the form V we have

Theorem 8 Let C be given by the equation y? = f(x), where f(x) is of form V. Then the class of (7, )
and the classes of the following algebras generate Br C.

V1. (m,2), (m,2 — 7*vy), (7,2 +u), (7,2 +u — 7*20y).
V2. (mx), (1,0 —m*v), (7,2 +u), (o, + u).

V3. (m,z), (a,z), (m,z +u), (7,2 +u—7*20s).

V4. (m,2), (o, ), (1,2 +u), (a,z+ u).

Proof. Let l1,12,13,14,15 be the different linear monic divisors of f(z). If I; # z + e we have by lemma 3 in
view of l;, f(z)/l; € k[z]? that (m,1;) # 1. By the same reason (m,l;l;) # 1 if l; # ;. Let now e # 1, then
(m,2(z — 71 01)) y g ki +2 £ 1, since f(—avym¥172) ~ ae ~ 1. Thusife £ 1, then (7, z(x— 7" vl)) # 1.
The change of variables 2’ = z + u leads us to the equation

y? =2/ (2" — 7*2uy) (2’ — u)(z' —u—7F ) (2" + (e — u))
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and We have (7, (z +u)(z+u—7*2v5)) = (7, 2" (z' — 7*205)), so by the previous arguments (7, (z +u)(x +
u — 7*20,)) £ 1. Observe also that if e ~ 1, then

a,x fa.= 1
<k(x, f(a:)))w (Hm)) #
It follows by lemma 4 that in case e ~ 1 (o, x) % 1. Similarly if e — u ~ 1, then (o, + u) £ 1.

Now, to complete the consideration of case VI we need only to prove that (m,1;l;l,) # 1, where [;,1;,1,
are not equal to each other and to = + e and (7, z(z — 7*1vy ) (z + v)(z 4+ u — 7*20,)) £ 1if e £ 1. But the
last statement is equivalent to (7,2 + €) % 1 which is valid in view of (7,z + €); 7 1. As to the previous
one, we have l;[;l,, f(z)/(l;l;l,;) & k[z]?, so lemma 3 works.

In case V2 it is enough to observe that by above arguments the group {[(7, z)], [(7,z—7*1v1)], [(7, 2+
u)]) is of order 8 and the field k(y/7)(z, /f(z)) does not split the algebra (o, z + u).

Case V3 can be considered by analogy with case V2.

We saw that the group ([(m, )], [(7,z + u)]) is of order 4. To prove that ([(a, )], [(a,z + w)]) is also
of order 4 we need to check that («,z(x +u)) # 1. But this is true in view of lemma 4 since

a, z(z + ) (a,x)%l
k(z,f@) ), \Kkz)
Finally, since the extension of constants by /o leaves us in case V4 the groups {[(m, )], [(, 2+ u)]) and

([(a, )], [(e,z + u)]) have the trivial intersection. The theorem is proved.
In case where f(z) is of the form VI we have

Theorem 9 Let C be given by the equation y> = f(x), where f(x) is of form VI. Then the class of
(m,0) and the classes of the following algebras generate Br C.

VI1. {(m, i) }i, li is a monic linear divisor of f.
VI2. {(m,1;)}s, l; is a monic linear divisor of f, l; # x — wFu and (o, ).

Proof. In case VI1 it is enough to check that for any monic linear divisor of f(z) (m,l;) # 1 and
(m,lil;) # 1if ¢ # j. We have that (m,l;) # 1 by lemma 3. By the same reason (m,l;l;) # 1 if
Lil; 75 z(z — 7Fu). If il = 2(z — 7*u), then (m,z(x — 7)), ~ (T, er1e0e3) # 1.

In case V2 arguments similar to the previous ones shows that the group H generated by [(m,[;)],
where I; runs through the set of all monic linear divisors not equal to z — 7*u is of order 8. To complete
the consideration of the case let us show that (o, z) # 1. If k is odd we have (a, z), ., 7 1, if not, then
(a,2)g_r # 1, since f(m) ~ w(m — 7*u)eieses ~ ejeses ~ 1. Finally, the extension of constants by /a
leaves us in case V12, so all non-trivial algebras from H are non-trivial after this extension but it is not
the case for (a, z). The theorem is proved.

3 Splitting type (1,1,1,2).
This section is devoted to case deg fi = deg f» = deg f3 = 1,deg f4 = 2 and the reduction is bad.

Preliminary results. The evident list of all cases under consideration according to the reduction type
of f(z) is as follows.

I. f(z) = (2% — 7*u)(z — e1)(z — e2)(z — e3),
™ U7él, u,eieO,’;, k>0, éi;ééjifi;éj.
II. f(z) = (22 — 7*u)(z — e)(z — ') (z — e1),
mhu L 1, uye,e’ier € 0F, k>0, e=¢€ # é.
III. f(z) = (22 — 7*u)(z — e1)(z — e2) (2 — e3),
UEOZ, k>0, ﬂ'kU';L]., é1 =eéy=¢é3 #£0.
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IV. f(z) = (2% + az + b)z(z — 7Fu)(z + e),
u,e € O}, k >0, 22 + @z + b is irreducible over k.

V. f(z) = (2% + az + b)x(z — 7F1u1) (z — 7*2us),
u; € O;, 0< Kk < kg, and if k1 = kg, then 4 # Us,
x2 + az + b is irreducible over k.

VI. f(z) = (2% — 7%u)(z — 7™0)(z + e1)(z + e2),
ﬂ-ku 76 17 k7m > 07 u,v,e; € OZ; € 76 €.

VII. f(z) = (22 — 7*u)(z — 7™0)(z + €)(z + €'),
mhu £ 1, k,m,0 >0, u,v,e € Of, e=¢.

VIII. f(z) = (2 — 7*u)(x — 7™ v;)(z — 7™20:) (z + €),
mu 1, 0< mi <ma, k>0, u,v;,e € O}

IX. f(z) = (2% — 7hu)(z — ™10 (@ — 7™20y) (z — T™3v3),
mhu £ 1, 0< mi <mas <mg, k>0, u,v; € Of.

Let us prove firstly some preliminary results.

Lemma 10
| QB’I‘ Cl =16.

Lemma 11 let u € Oy, is a unit such that u £ 1, then

i) for any w € O} w £ /u~1ink(vu) iff w> —u~1ink,

i) for any local field k there exists w € O} such that w*> —u # 1,

ii1) for any v € O} there exists w € O} such that v> —w € O} and v? —w # 1.

Proof. i) follows from the surjectivity on units of the norm homomorphism Ny 4 and for ii) and iii)
see [13], lemma 1.

Lemma 12 Let g(z) € k[z] be a monic polynomial, and let either n be odd or deg g(x) be even. Then
for any b € k(C)* the quaternion algebra
(b, g(-’E))
k(C)

T,
k() )
To check this fact it is enough to observe that

(Caer ) ~1ema (Fay) _#v

Lemma 13 Let K be an algebraically closed field and f(z),g(x), h(z) € K[z]. Then the system

{ (z),

(z),
(z)

defines a variety V in P*(K) if and only if all polynomials f(x), g(z), h(x), f(z)g(z), f(x)h(z), g(z)h(z)

and f(x)g(x)h(x) are not in K|[x]?.

is not isomorphic to the scalar algebra

|I
<

||
)
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Proof. Consider the homomorphism

¢: Klz,y,2,t] — K(z,v/f(z), Vg(z), Vh(z))

z—x, y—=/f(x), 2 \g(x), t = /h(z).
Then the ideal I = (y2 — f(z),22 — g(2),t2 — h(z)) C Ker¢. Let F = Fy(z) + Fi(2)y + Fr(z)z +
F3( )t + Fy(x )yz+F5( Yyt + Fg(z)2t + G(z,y, 2,t) € Ker ¢, where G(z,y,z,t) € I. So ¢(F) = Fo(z) +
)W + Fa(z)\/g9 + F3(z Wh + F4( )\/_+ F5(x)v/fh + Fs(z)v/gh = 0. Let us check that the
extensmn K(x \/f .V 9(2), /h(z) is of degree 8. Indeed, K(z)(1/f(z))|K(z) is of degree 2.

If \/g(x) € K(z)(v/f(2)), then g9(z ) ( ) +b(x)* f(a ) + 20(2)b()/ f(x), where a(x), b(z) € K(2).
So a(m)b(az) = 0 and either g(z) = a(z)? or g(z) = b(z)%f(z). And this is impossible in view of

g(z) € K[z]? and f(z)g(z) & K[;zc]2 Hence K(x \/— \/— |K ) is of degree 4. Let now \/h(z) €
K(x)(v/f(x),v/9(x)), i.e. /h(z) = ao(z) + a1(2)/ f(x) + az(x)\/9(z) + as(x)/f(x)g(x). We have

h=(ad+alf+a3g+aifg) + 2(a0a1 +azazg)Vf + 2(a0a2 + aras f)\/9 + 2(aoas + araz)V/fg. Therefore

{ apay + azazg =0,

defined by the rule

apaz + azazf =0,
apas + ajas = 0.

We have h(z) ¢ K(z)(/f(x)g(x)), so that one of a1, az, say, a1 is not equal to 0. Then
az = —aoag/cu,
ao(a3g — aj) =0,
a3(a’%f - a’(2]) = 07
Furthermore, a3g — a} # 0, since a; # 0 and g(z) ¢ K[z]®2. Then ap = as = a3 = 0 and \/h(z) €
K(z)(y/f(z)). This contradiction proves that the extension
2)(Vf (@), V9(x), Vh(z))|K (z)

is of degree 8. The evident basis of this extension is 1, \/f(z), \/9(z), /Mz), \/f()g(z), \/f(z)h(z)
Va(@)h(z), \/f(z) , 80 Fi(z) = 0 for any ¢ and Ker ¢ = I. Then I is prime and V is a variety.

Lemma 14 Let f(z ) (x —wku)g(x), g(z) € O[] without multiple roots, g(z) & k[z]?, u € OF, k > 0,
7*u £ 1 and E = g(0) € Of. Then the following algebra is nontrivial, unramified and not isomorphic to
the scalar algebra (m,a).

1. (—7Eu,z) if k =1 (mod?2).
2. (a,x — 7*/?w) if k = 0(mod2) and E ~ 1, where w € Of, w* —u # 1.
3. (m,x® — w*u) if k = 0(mod2) and E # 1.

Proof. o Bu.
rse = (givrmm)

so this algebra is unramified. Let K be an unramified odd degree extension of & such that there exists a
unit 7 € O with the property 7 ¢ 1, g(7) ~ 1 and p(x) = Irrk|(7). Such K exists in view of lemma 6
from the previous section. Then

—nEu, T
(_”Eu’x)”N<K<p>< g(r))> <K<p>)7“

The unit w in 2) exists in view of lemma 11. We have

a,T—T

k/2,,
2 — 720\ (/(TFw? — F)E) )

/2
a,x — P, kg, ~
( )o—mk/ (k(
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~ (e 11@35235)) ~

w) is unramified. Furthermore,

so the algebra (o, z — 7/?

o o, Y7 VT
(a,x W)gs g (k(%)<m3 — (/@23 = wku)E)> (k(\%_f)(:ﬁ — 7T)> # 1.

2

Lemma 2 provides the algebra (7, z? — 7%u) to be unramified. Moreover,

(1,2% = 70 sz <k<w - w:/;zjwm) ~ () 1

To complete the proof it is enough to check that all algebras are not isomorphic to the scalar algebra,
and this is true in view of lemma 12.
Presentation by algebras.

Theorem 10 Let f be as in cases I or I1. Then the group Br C is generated by the class of the algebra
(m,0a) and classes of the following algebras.

o Casel.
1. (ereresum, ), (m,x —e1), (T, — e2), if k = 1(mod?2).
2. (a,x — 7*?w), (m,z —e,), (m,x —e3), if k = 0(mod2), —ejeses ~ 1.
3.

(m, 22 — 7*u), (m,z —e1), (7, —e2), if k = 0(mod?2), —ejezes # 1.

o Case II.
1. (eqyum,z), (m,x —e), (m,x —¢€'), if k = 1(mod2), e —e1 # 1.
2. (eyum,z), (m,z —e), (a,x —e), if k =1(mod2), e —e; ~ 1.
3. (a,z —7*?w), (m,x —e), (m,xz —€'), if k=0(mod2), —e; ~ 1, e — ey o 1.
4. (a,z —7*?w), (m,2 —e), (a,z —e), if k=0(mod?2), —e; ~ 1, e —e; ~ 1.
5. (m,x? — k), (m,x —e), (m,x —€'), if k =0(mod2), —e; £ 1, e—e & 1.
6. (m,2? — *u), (m,x—e), (a,z —e), if k=0(mod2), —e; £ 1, e—e; ~ 1,

where w € Of, w? —u £ 1.

Proof. In case I all algebras (7, — e;) and (, (x — €;)(x —¢€;)),% # j are unramified and not isomorphic
to (m,) in view of lemma 2. They are nontrivial by lemma 3.

In case IT let us prove that if e —e; 5 1, then the algebras (7,2 —e¢), (m,z—¢€') and (7, (z —e)(z —¢€'))
are unramified, nontrivial and not isomorphic to (7,a). If e — e; ~ 1, then the same is true for the
algebras (m,z — e), (a,z —e) and (ma,z — €). Indeed, if e —e; # 1, then (7w, (x —e)(x —€'))y_e ~
(7, (2% — m*u)(z — €1))z—e ~ (T,e — 1) £ 1. Let now e — e; ~ 1, then

=0~ (e * -

and in view of lemma 4 (a,z — e) # 1. Finally, after the replacement v = wa of prime element we have
(ra,z —€) = (v,z —e) # 1.

Because of the polynomial f in cases I and I satisfies the conditions of lemma 12 it is enough to
prove that algebra from this lemma, is not isomorphic to the algebras already considered in the current
proof.
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Consider firstly case I. If kK = 1 (mod 2), then one can find such w;, w2 and ws from O3 (K as above)
that w; ~ 1, w; —e; £ 1, (w; —e1)(w; — e2)(w; —e3) ~ 1. Indeed, for example, in case ¢ = 1 it is enough
to solve the following system

wy; = .'E2,

y? = a(z? —e;)

22 = a(z? — ey)(z? — e3),
and lemma 6 works. Let p; = Irrg | (w;). Then for any i we have (—wEu,z),, ~ 1, (7,2 —¢€;),, # 1 and
(m, (@ — e1)(@ — €2))ps 7 1.

If E = —ejeses ~ 1, then the algebra (o, 2 — 7%/2w) splits by the extension of constants by /a but
this is not true for the algebras (7, — ¢;) and (7, (x — e1)(z — e2)).

Let k = 0(mod2), —erezes # 1, then (m,22 — wfu) £ (m,2 — €;), (7, (z — e1)(z — e2)) in view of
lemma 3.

Consider now case II. The extension by y/a does not split (—wEu, z), therefore (—mEu, z) # (o, z—e).
Let w € OF such that w ~ 1, w—e o 1 and (w —e)(w —e')(w —e1) ~w —e1 ~ 1, p = Irrg(w).
Then (—mEu,z), ~ 1 and (7,2 — €)p # 1. Changing the prime element v = 7a one can check that
(—7Eu,z) # (ra,x — e). In the same way we have (—wEu,x) # (w,x — €'). Let us show finally that
(—=mEBu,x) # (m,(x —e)(x —¢)). If ¢ = Irrg(w), where w # 1, @ # € and w — e; ~ 1, then
(—mEu,x)y # 1, (m,(x —e)(x —€'))g ~ (m, (w —€)?) ~ 1.

Let now k = 0 (mod2), E ~ —e; ~ 1. We have (a, z—7"/2w) # (m,z—e), (7,2—€'), (7, (x—e)(x—€')),
since the extension of constants by /7 does not split the first algebra but splits the others. After this
extension (ma, z —e) ~ (a, z —e). It only remains to check that (o, z — 7*/?w) £ (a,z —e) if e —e; ~ 1.
It is true since (a, z — 7*/2w)gs_ # 1, but (o, (z — €)(z — €'))gs_r ~ 1.

Finally, let k& = 0(mod2), —e; # 1. We have (m, (22 — 7*u)(z — €)), (7, (2% — 7*u)(z — €)) £ 1.
Moreover, (7, (22 — 7*u)(z —e)(z —€'))g_e ~ (m,e —e1) # 1 if e —e; o 1. The extension of constants by
/T does not split (o, z — e), so that (m,2% — 7%u) £ (a,z —€). After the same extension (ra,z —e) ~
(a,z —e€) # 1,50 (ma,x — €) o (m, 2% — 7*u). The theorem is proved.

Without loss of generality one can assume that in case II] f(z) = (22 — 7*u)(z —e1)(z — e2) (z — e3),
where e; =€, e = e + ¥ uy, e3 = e + TF2uy, €,u; € OF, 0 < ki < ko and if ky = ko, then 4 # Go.

Theorem 11 Let f be as in case I1I. Then the group oBr C is generated by the class of the algebra
(m,a) and the classes of the following algebras.
1. (€U7F,.CL'), ((17.’11' - 61)7 ((17.’11' - 62)’
if k=1(mod?2), k1 =1(mod2).
2. (GUTF,.T), (Oé,.’l} - 61)7 (Tl',ﬂ} - 61),
if k=1(mod2), k1 = 0(mod2) and either ke =1 (mod2) or k1 < k2, —ug ~ 1.
3. (CU’IT,.’L'), (7T,£L' - 61)7 (7T,.Z' - 62):
if k=1(mod?2), k1 = ko = 0(mod2) and either ky = ky or —up # 1.
4' (O[,.Z' - 7rk/2w)7 (Oé,$ - 61)7 (Oé,$ - 62))
if k=0(mod2), —e ~ 1, k1 =1 (mod?2).
5. (OL,.’L‘ - 7Tk/2w)7 (Oz,ZU - el)a (71',.’13' - 61),
if k=0(mod2), —e ~ 1, ky = 0(mod?2) and either ky = 1 (mod2) or
k1 < kz, —up ~ 1.
6. (Cl,.’L' - 7rk/2w), (7T,Z' - 61)7 (7T,.Z' - 62):
if k=0(mod2), —e~1, ki = ks =0(mod2) and either ki = ko or —uy £ 1.

7. (7T7$2 - ﬂ-ku)7 (OL,IL' - 61)7 (OL,IL' - 62)7

if k=0(mod2), —e # 1, ky =1 (mod2).
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8. (777'7:2 - ﬂ-ku)a (Ot,IL' - 61)7 (7'[',213 - 61)7
if k=0(mod2), —e £ 1, k1 =0(mod?2) and either ks =1 (mod2) or
k1 < k’z, —uyp ~ 1.
9. (m,2® — m*u), (7,x —e1), (T, —e2),
if k=0(mod2), —e £ 1, k1 = ko = 0(mod2) and either ky = ky or —ug # 1,

where w € Of, w? —u £ 1.
Let us prove firstly

Lemma 15 In case II1 the following algebras are unramified, nontrivial and not isomorphic to (7, ).
1. (a,x —e1), (@, —e2), (a,(x —e1)(x — e2)), if k1 =1 (mod?2).

2. (a,z —ey), (m,z —e1), (amxz —e1), if k1 = 0(mod2) and either ks = 1(mod2) or (ks =
0(mod?2), k1 < ke and —uy ~ 1).

3. (m,x—e1), (m,x—e2), (m,(x—e1)(x—e2)), if k1 = ka = 0(mod2) and either k1 < k2 and —uy ~ 1
or k1 = k».

Proof of the lemma. In 1 we have: (a,z —e1)z—e, # 1, (@, —€2)z—e; # 1, (o, (x —€1)(T — €2))g—ey ~

(a0, — €3)g—eq # 1.
2. Let § = e + n**w. Then f(f) ~ w — u;y. If w satisfies the condition

{w1761,

w—1uy ~1,

then (7, —e1), # 1 and (7a,z —e;), # 1, where p = Irrg (0). Furthermore, in case k; = 1 (mod2)
we have (0,7 — e1)z—e; # 1 and (, & — €1)y_e_prit1 ~ (@, 78 FL) £ 1 since f(e + 7k +1) ~ —uy ~ 1,
otherwise.

Finally, consider subcase 3. Let 6; = e + 7" w;, i = 1,2,3. Then f(8;) ~ w;(w; — u1)(w; — us),
provided k1 = ko. If w; satisfies the conditions

’UJ17L].,
’UJQ—Ulf;él,
UJ3—U2741,

(w1 —up) (w1 —ug) # 1,
wz(w2 - Uz) ’7‘ 1,
wsz(ws — u3) # 1,

then f(6;) ~ 1 and (m,2 — €;),, # 1, where p; = Irrgx(0;). Moreover, (7, (z — e;)(z — €;))p, ~
(m, (2% — 7*u)(z — &1))p, ~ (7,2 — €1)p, # 1, where {i,5,1} = {1,2,3}.

Let now k1 < ko are even and —uq £ 1. Let 6 be as in 2. Then (m,z —e1), # 1 and (m, (z — e1)(z —
e2))p # 1, where p is as above. We have also (m,z — €2)y—e; ~ (7, —u1) # 1. The lemma is proved.

Now to prove the theorem it is enough to check that the algebra from lemma 12 is not isomorphic to
all algebras from lemma 14 in the corresponding subcases.

Let firstly & = 1 (mod2). The extension of constants by /a leaves us in case 1 of lemma 12, and
in cases 1 and 2 of lemma 13, therefore the algebra (eur,z) does not split by this extension. On the
other hand, all algebras from case 1 of lemma 14 split by it. And in case 2 of this lemma one only
need to prove that (eurm,z) # (7, — e1) and (eurm,x) # (wra,z — e1). But if w,6 and p are as in the
proof of this case, then after the extension indicated above (euw,z), ~ (m,e) ~ 1. On the other hand,
(ra,z —e1)p ~ (m,x—e1)p % 1.

Let us take a unit € O} with the usual properties satisfying the condition 7 # &, n 41, n—e ~ 1.
Then f(n) ~n—e ~ 1 and (eun,x), # 1, where ¢ = Irrg|(n). We have also (7,2 — e;); ~ 1 and
(m,(x —e1)(x — e2))q ~ 1. Thus case k =1 (mod2) is considered.

If k is even and —e ~ 1, then for any A € {m,a,ma} (A, 2 —€;)es_n ~ (A, —€) ~1, (A, (x —e1)(z —
€1))zs_n ~ 1, but (o, — 7%/ 2w) s, £ 1.
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Finally, let k be even, —e # 1, then (7,22 — 7%u),_ +/2, # 1 and (@, T — €;),_ /24 ~ 1, (o, (x —
e1)(x — €2))y_nks2y ~ 1. If p; are the points from the proof of lemma 14 in which the corresponding
algebras are nontrivial, then (7, z? — 7%u),, ~ 1 and we are done.

Let us pass to the next two cases.

Theorem 12 Let f be as in cases IV or V. Then the group -Br C is generated by the classes of the
algebras (m,a), (7,z? + ax + b), and classes of the following algebras.

o CaseIV.

1. (m,z), (m, 2 — 7*u), if be £ 1.
2. (m,z), (a,x), if be ~ 1.

1. (a,2), (a,z — %), if b =1 (mod?2).
2. (a,x), (m,x), if k1 = 0(mod?2) and either ke = 1 (mod2) or k1 < k2 and —buy ~ 1.
3. (m,z), (m,x — 7*1uy), if ky = ke = 0(mod2) and either ky = ky or —buy # 1.

Proof. In case IV (m,z) # 1, (7,2 — 7*u) # 1 by lemma 3. For the same reason (m,z) ¢ 1in V.2, V.3
and (m,x — 7*1u;) # 1in V.3. In IV if be # 1, then for w € O} we have f(m*w) ~ aw(w — €) and
(m,z(x — Wku))ITTKlk(,rkw) ~ (m,w(w — €)) # 1, provided w(w — e) #£ 1. If be ~ 1, then

a,x a,x
(k(é))z (k(x)) #L
so (a, ) # 1. Replacing » = ma one can check that (ra,z) £ 1.

In case V if ki = 1(mod?2), then (@, @), t1,, # 1 and (@, 2 — 7F1u;), # 1. Moreover, (a,z(z —
ﬂ'klul))zfﬂ'klul ~ (Oé, (:L,2 +az + b)(flf - 7.‘-Imuz))wfﬂ’“lul ~ (aab(ul - 7rk2 klu ) kl) 7(/ 1.

Now we are in subcase V.2. If ky = 1(mod?2), then (a,),_, ks, # 1. In case k; = 0(mod2) we
have f(7*1*1) ~ —bu; ~ 1 and (a,z),_,++1 % 1. Replacing the prime element one can check that
(am,z) £ 1.

Consider the last subcase in V. We have f(m*'w) ~ bw(w — uy)(w — 7*27*1yy) and (7, 2(z —
T 1)) rrge (a1 w) ~ (T, w(w —u1)) o 1, provided that

{ Z}((w —u) £ 1,

w — 77’“2”“1u2) A 1.

It remains to prove that the algebra (m,z2 + azx + b) is nontrivial and not isomorphic to the algebras
listed above. In case IV we have (7,22 +az+b) £ 1, (7, z(z2 +ax+Db)) # 1, (7, (x—7*u)(2® +az+b)) £ 1
by lemma 3. In IV.1 (7, z(x — 7*u)(2? 4+ az + b)) # 1 by the same reason. The extension of constants
by /7 leaves us in case IV.2, so that (m, 2% + az 4+ b) £ (o, z). After this extension we also have that
(ra,x) ~ (a,z) £ (7,2? + az + b).

Finally, let us compare the algebra (7r z? + ar + b) with the others in case V. First of all, (r,z* +
az +b) £ 1 and (7, (2? + az + b)x(x — 71u;)) £ 1 by a.nalogy with TV. After the extension of constants
by +/a we are not in the same case because the polynomial 2 4+ ax + b splits after this extension. But
the algebra (m,z2 + ax + b) is still nontrivial in view of lemma 3. So this algebra is not isomorphic
to (a, ), (a,z — m*1u;) and (a,z(z — 7*1uy)). To complete the proof one only need to check that
(7,22 + ax + b) is not isomorphic to (,z), (Ta,z) in V.2 and (7, ), (7,2 — 7*1u;)) in V.3. In V.2 we
have f(m*1w) ~ b(w —u1), where w is as above. Let p = Irrg (7 w). Then (m, ), ~ (7a,z), ~ (T, w),
(m,2? + az + b), ~ (m,b). If we require

b(w —uq) ~ 1,
bw £ 1,

then (7, z), ~ (ra, ), # (7,22 + az + b),.
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Consider subcase V.3. Let k; = ko. To prove that (7,22 + ax +b) # (7, z), (7, — 7*1u;) we need to

solve the systems
bw1 76 1, and b(U)Q - ul) 76 1,
(wl - ul)(wl — U2) 711 1 ’11}2(11)2 — u2) 74 1.

By the same way one can prove (m,z? + ax + b) # (w,z), provided k; < k2. Finally, in this case
(m, (@2 + az + b)(z — 7 uy)) e ~ (m, —buy) £ 1.

Theorem 13 Let f be as in cases VI or VII. Then the group oBr C is generated by the classes of the
algebra (m, @), and classes of the following algebras.

o Case VI. (m,x +e1), (m,z + e3).
e Case VII. (m,x +e) and (a,x +¢e) if —e~ 1, (m,z+¢€') if —e £ 1.

and
1. (o, 2% — 7*u) if m > k/2, k =1 (mod?2).
2. (m,2® — wFu) if m > k/2, k = 0(mod4).
3. (nE,x —m*2w) if m > k/2, k = 2 (mod 4).
4. (muveres,z) if m < k/2, k =1(mod2), m =0 (mod?2).
5. (mE,z —7*?w) if m < k/2, k = 0(mod2), m = 1 (mod?2).
6. (a,z—7™) if m< k/2, k=m =1 (mod2), uveres ~ 1.
7. (ayx) if m < k/2, k=m =1 (mod2), uvejes 2 1.
8. (m,z? —mku) if m < k/2, k =m =0 (mod2), —vejes £ 1.
9. (a,x — 7"/ ?w) if m < k/2, k=m = 0(mod?2), —vejey ~ 1,

where w € Of, w? —u # 1, E is chosen such that f(@*?w) ~ 7E, and in case VII the units e; and es
must be omitted in all algebras and conditions listed above.

Proof. The algebras (m,2 + e1), (7, & + e2), (7, (x + e1)(x + e2)) are nontrivial in case VI. The same is
true for the algebras (m,z + e) and (7,z + €') in case VII. In the last case we also have

provided —e ~ 1. Moreover, then the extension by 1/a does not split (7, z + €), so (ra,z +e) # 1. If
—e 1, then (7, (z + €)(z + €))pre ~ (7, (22 — 7Fu) (2 — 7™0))gye ~ (7, —€) % 1.

Let us consider now the remaining algebra simultaneously in both cases.
1. (o, 2% — 78 u)y_ymy o 1. Furthermore, (o, 2?2 — 7Fu) £ (7,2 + €;), (m, (x + e1)(z + €1)) in case VI
since the last two algebras do not split after the extension by y/a. For the same reason (o, z? — 7Fu) #
(7r,$+e), (m,z+¢€'), and (ra,x+e€) in case VII. We have also (a, &+ €)z_nmy ~ 1, so that (a,z+e) #
(a, 2% — *u) and (7, (x + €)(z + €'))g_rmy ~ (T, e€') ~ 1, so that (a,2? — 7Fu) £ (7, (z + €)(z + €')).
2. Let w € O} such that

w? —u &1, b _ [ e1e2in VI,
a(w —vrm=k/2) 41, VICET 1 in VI

Then f(n*/?w) ~ 1 and (m,2* — 7*u), £ 1, where p = Irrg(7"/?w). Let now wy € Ok such that

wg —u~1,
a(wo —va™k/2) ~ 1,
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Then f(r*/?w) ~ 1 and (m,2? — 7*u),, ~ 1, where py = Irrgp(7*/?wg). In case e; ~ 1 we have

(m,2? —7ku), £ (m,x+e;), and if e; £ 1, then (7,22 —7Fu),, # (7,7 +e€i)p,- In any case (m,22 —mhu) #
(m,z+e;). By the same way one can check that (7, 2% —7*u) £ (7, (x+e1)(z+e2)), (T, 2+e€), (7, z+¢€')
and (7, (x + e)(z + €')). Finally, (7,22 — 7*u) # (ra,x +e), (a,z + e) since two last algebras do not
split by /7.

3.

) ™, W — \/a
(08 =00, (i ) 41

To finish the consideration of this subcase it is enough to observe that the completion in z
any other algebra from the list.

4. f(0) ~ muve; ey, so the algebra (muve;ez,z) is unramified. Let w be from O% and q = Irrg (7™ w).
Then f(m™w) ~ ejea(w —v) in VI or w — v in VII. Furthermore, (muveies, z)q ~ (Tuveies,w). If we
require w % 1 and erez2(w — v) ~ 1, then (muveies, z)q % 1. Similarly, if we; # 1 and erez(w —v) ~ 1,
then (muveies, )y # (7,z + e;)q. By analogy we can prove that (ruve;ies, ) is not isomorphic to the
remaining algebras.

5. This case can be considered similarly to case 3.

6. f(0) ~ uveres (or uv in VII) ~ 1. Therefore (o, 2 — ™)y ~ (o, 7™) # 1. The extension by /a does
not split the algebras (7,x +¢;), (m,z+e), (m,z+¢€'), (7, (z +e1)(x +e2)), (ma,z +e). So it is sufficient
to check that (a,z — 7™v) £ (a,z + e), (m, (z + e)(xz + €')). But this is true in view of (a,z +€), ~ 1
and (m, (z +e)(z +€')), ~ 1.

7. The algebra (a,z) is unramified since f(0) ~ a. (@, Z)g—gmy ~ (@, 7™v) # 1. In case VI the
extension by y/a does not split the algebras (7,2 + €;), (7, (z + e1)(x + e2)) since this extension leaves
us in case VI. The same holds for the algebras (m,z +€), (ra,z + €) and (7, z + €'). Indeed, after this
extension (ma,x +e€) ~ (m,z + ¢e) # 1 since we are in VIT again. And (7, z + ¢') is also nontrivial after
the extension because of the units e and e’ are symmetrical. Finally, (o, + €)y_7my ~ (a,€) ~ 1 and
(m(z+e)(@+e))gmmy ~ 1.

8. f(r*/?w) ~ —vejea(w? —u) ~ 1, provided w? —u £ 1. Thus (7, 2% — 7Fu),_ x/2, # 1. The algebras
(m, (2% — 7*u)(z + €;)), (7, (2® —7 u)(:c +e)), (m, (a: —mhu)(z +¢')), (7, (22 — fu)(z + e1)(x + e2)) are
nontrivial by lemma 3. We only need to prove (7,22 — 7Fu) # (7, (z + e)(z + €')), (a,z + ), (ma, T + e).
But two last algebras do not split after the extension by /7 because this extension leaves us in case
VII,—e ~ 1. Finally, (7, (z + €)(z + €'))y_rhr2q ~ 1.

9. f(x*/?w) ~ a, so the algebra (a,z — n*/?w) is unramified. Let ¢ = Irry gm (7™ /7). Then

f(r™Ym) ~ —vejea ~ 1. Hence
kg o (2 VT
(o, w)gq (k(\3/—)(q)) # 1.

Since the extension by /7 leaves us in the current subcase, in order to complete the proof one only need
to check that (a, z — 7%/?w) £ (a,z + €). But this holds since (a,z +€), ~ (o, €) ~ 1.

2wk splits

Theorem 14 Let f be as in case VIII. Then the group Br C is generated by the classes of the algebra
(m,a), and the classes of the following algebras (I; = x — T™iv;).

o (m,ly), (m,z+e)ifestl.
o (m,11), (a,ly) ife~1.

and
1. (a,2% — 7hu) if k/2 < mi, e ~ 1, k = 1(mod?2).
2. (m,x? — 7*u) if k/2 < my, e~ 1, k=0(mod2) and —1 ~ 1.
3. (a,z —m*?w) if k/2 < my, e~1, k=0 (mod2) and —1 # 1.
4. (mx® —7*u) ifk/2< my1, e 1, k=0(mod2) and —1 #£ 1.
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aly) ifk/2< my, e 1, k=0(mod2) and —1 ~ 1.
a,ly) if k/2 < my, e 1, k=1 (mod?2).
7,22 — wfu) if k/2 = my and either my < ma or vy # Ua.

5
6
7.
8. (m,x% — wFu) if k/2 =m1 = ma, 01 = Uy and e(v? —u) £ 1.
9

a,ly) ifk/2=my =my, 0y =0y and e £ 1, 03 —u £ 1.

10. (,z —7*?w) if k/2=m) =ms, 01 =02 and e ~ 1, v} —u ~ 1.

11. (o, 2% — 7fu) if my < k/2 < ma, k=1 (mod?2).

13. (nE,z — 7*?w) if my < k/2 < ma, k=0 (mod2) and my + k/2 =1 (mod2).

14. (nE,x — 7*?w) if ma < k/2, m1 +ma =1 (mod?2), k = 0 (mod?2).

15. (o, 2% — 7*u) if ma < k/2, m1 +ma2 = 1 (mod2), k =1 (mod?2) and —evivou ~ 1.

16. (o, ) if ma < k/2, my +m2 =1 (mod2), k =1 (mod2) and —evivau £ 1.

17. (nF,x) if ma < k/2, my +my = 0(mod2), k = 1(mod?2), where F € Oy, nF ~ f(0).

18.

(
(
(
(
(
(
(
12. (m,2% — %) if m1 < k/2 < ma, k = 0(mod?2) and my + k/2 = 0 (mod2).
(
(
(
(
(
(m,2? — 7ku) if ma < k/2, m1 + ma = 0(mod?2), k = 0(mod2), eviva # 1.
(

19. (o, x — 72w) if ma < k/2, my +ma = 0(mod?2), k =0 (mod?2), evivs ~ 1,

where w € OF, w? —u # 1 and E is chosen such that f(7*/?w) ~ 7E.

Proof. In view of lemma 3 the algebras (,1;) and (,1; (x+e€)) are nontrivial. Furthermore, (7,z+e);, %
1, provided e £ 1. After the extension by /a we have (wa,l1) ~ (m,11) # 1. Finally, f(¥/7) ~ e, so in

case e ~ 1 Ir
a, Jm
(a7l1)$3—ﬂ' ~ (k(%)(:ﬁ —71')) ’/‘ 1

Consider now the third generator.

1. The algebra (a,2? — 7¥u) is nontrivial since (a,z? — 7*u);, # 1. (a,z
other hand (a,l1),5_» # 1, therefore these algebras are not isomorphic. The algebra (a, 2% — 7
isomorphic to (m,11), (7a,l;) because the extension by /a does not split two last algebras.

2. (m,z? — 7fu);, ~ (7,—u) # 1. By lemma 3 (m,2? — 7*u) # (m,11). Since after the extension by /7
one has (ra,l1) ~ (a, 1) # 1, it follows that (7, 2% — 7*u) is not isomorphic to these algebras.

3. Because of f(7%/?w) ~ a the algebra (o, x —7*/?w)) is unramified. Moreover, (a, z —7%/?w)) s _ # 1.
Let g = Irry g/, (m°), where s = k/2 + 1/3. Then f(n®) ~ 1, therefore

, o, (Ym)k? a, (Ym)°
o=t~ (gt ) =0 e~ (i)

so (e, z — m/%w), # (a,11),. To complete the consideration of this subcase it is enough to observe that

after the extension by /7 we have (7T,l1) ~ 1o (a,x — 7*?w) and (re,ly) ~ (a,ly) # (a,z — 7*/?w).

4. f(x*w)) ~ e(w —u) ~1and (7,22 —7*u), ,i/2, # 1. By lemma 3 (7,22 —7*u) « (7,11), (7,1 (z+
e)). Finally, (7,22 — w*u);, ~ 1 & (m,2 + €.

5. Let

2 — 7ku)s_, ~ 1, on the

ku) is not

- 1, if k = 0(mod4),
] 2, if k=2 (mod4),

q = Irry( gymy i (w*/272/3). Then f(mk/2+/3) ~ 1 and

(a,l1)g ~ (ak(:%zq; 3) (fé%)
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The algebra (o, ;) is not isomorphic to the remaining algebras since the extension by /7 leaves us in
the current subcase and therefore it does not split this algebra.

6. Since the extension by \/a leaves us in case VIII, the algebras (m,l;) and (m,l;(z + €)) do not
split by this extension, so they are not isomorphic to (a,l1). Furthermore, if m; < ma or 77 # 0,
then (a,l1);, ~ (a,7™) and (a,l1);, ~ (o, (@ — 7*u)la(z + €));, ~ (a,7™11). One of these two
algebras is nontrivial. Thus (a,l1) # 1. Let now m; = mp and v = vy + 7°7, s > 0,7 € O;. Then
(a,l1), ~ (a,7™ %) and (a,ly);, ~ (a,7™F5+t1), so that the algebra («,l;) is nontrivial again. It
remains to check that (a,l1) # (7,2 +€). But (7,z +€);, £ 1 and (7,z + €);, £ 1. On the other hand,
among the algebras (a,l;);, and (a,l1);, a trivial one exists.

7. f(@*Pw) ~ (w? — u)(w — vy)(w — var™2~™1). If we require

{wz—u%l,

(W —v1)(w —vem™27M) £ 1,

w € Ok, W # 01,02, p= Irrg i, (7*/?w), then f(7*/?w) ~ 1 and (7, 2% — 7¥u), £ 1. As we already had
seen above, (m,z% — w*u) £ (7,11, (7,11 (z + €)) by lemma 3. If

wi—u~1,
(’11)0 - ’111)(’11)0 - ’l]27‘l’m2_m1) ~ 1,

wo € O, Wo # ¥1,02, po = Irre(m*/?wp), then f(m*/?wy) ~ 1 and (m,2? — 7*u),, ~ 1. But
(m,2 + €)p, ~ (m,e) # 1, provided e o 1. Thus in case e # 1 we are done. Case e ~ 1 can be considered
by analogy with subcase 2.

8. Lete # 1, v?2 —u ~ 1. There exists w € O} such that w?> —u #£ 1. So (m,2% — whu),_ k/2, ~
(m,w® —u) £ 1 since f(r*?w) ~ (w? —u)e ~ 1. If e ~ 1, v? —u £ 1, then (7,22 — 7FuU)y_gm1y, ~
(m,v? —u) # 1. Let us check that the algebra (7,2 — 7%u) is not isomorphic to the other ones. If e £ 1,
then (7,22 — 7Fu) £ (m,11), (7,11 (z + €)) as above. We also have (7,22 — 7%u), zmiy, ~ (T,03 —u) ~ 1
and (7,2 + €)g_gmiy, ~ (m,€) £ 1. Let now e ~ 1. Then one can argue as in subcase 2.

9. Let
[ 1, if k=0(mod4),
] 2, if k=2 (mod4),

6 = k2 (v + (I/7)F), q = Irri )k (0)- Then f(6) ~ (vi —u)e ~ 1 and

(o, @R
() ( /@) >7”'

(a,ly) # (m,ly), (m,x + €), (m, 11 (x + €)) since the extension by /7 leaves us in the current subcase and
therefore it does not split the algebra (o, ;).

10. The algebra (a,z — n*/?w) is unramified. f(¥/7) ~ e ~ 1 s0 (a,x — 7/ 2w),s_, # 1. After
the extension by /7 we are in the current subcase again, therefore it is enough only to prove that
(a,z — 7*?w) # (a,l;). To check this fact assume 6y = 7*/%(vy + ¥/7), qo = Irry gk (00). Then
f(6) ~ 1 and

e @R (P
(@0 e (k(\%_f)(%) )ad(“”’” o (k(%xqo))'

11. (o, 2% — 7*u), ~ (a,7%) £ 1. If e ~ 1, then y/a does not split (7,11) and (wa,l;) so that these
algebras are not isomorphic to (a, 22 — 7*u). Moreover, (o, 22 — 7%u),3_ # (0, 11)z3_5. Let € # 1. Then
we have (a, 22 — 7*Fu) £ (7,1y), (m, 11 (z + e)). Finally, (o, 22 — 7%u);, ~ 1, but (7,2 +e);, # 1.
12. Let w € O} such that

{ w? —u g,

—vie(w — var™2~k/2) £ 1,

then f(m*/2w) ~ 1 and (7, 2% = 7fu) 1y, (7%/2w) # 1. If € £ 1, then (7, 2% —wFu) o (m, 1), (7, L (z+e)).
We also have (7,22 — 7%u);, ~ 1 and (7,2 +e);, # 1. If e ~ 1, then the extension by /7 leaves us in
subcase 12, so we can argue as in subcase 2.
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13. The algebra (7E,z — 7*/2w) is unramified by the choice of E.

7B, w2 (\/u — w) ) N

mE,x — 2 22—y ™
( ) (k(\/ﬂ)@?"’ — mhu)(y/m(a? — whu))

On the other hand,

(7r7ll)z2—7r’“u ~ ( . _777;1’1)1 s ) ~1
k(vu)(y/m(a? — whu))

The same is true for the algebras (7, z + e), (w,l1(z + €)), (a,l1) and (7wa,ly).

14. This case is totally similar to the previous one.

15. f(0) ~ 1, so (a, 2% — 7*u), ~ (a,7*) # 1. The extension by /a does not split (7,11), (7a,ly),
(m,11(z +¢€)) in the corresponding cases, therefore (a, 22 — m*u) is not isomorphic to them. If e ~ 1, then
(a,11)gs_x # (a, 2% — 7*u)s_ . Finally, if e £ 1, then (7,2 + €);, # (o, 22 — 7Fu);,.

16. f(0) ~ —eviva2u ~ a. Thus the algebra («,z) is unramified. We have also

a, Vrku
- (k(\/ﬁ)(aﬁ k) (v/—a(? —7r’“u))> -

(aa 'Z.)Ez—ﬂ'ku

~ ( @, v ) £ 1.
k(vmu){y/—a(z? — mhu))

As it was already noticed, the other algebras are trivial after completion at 22 — 7%u.
17. The algebra (Fm,z) is unramified by the choice of F'. Let n € O%, K be as above,n £# 1, n+e~ 1,

and r = Irrg(n). Then
Fr,n

F ~ 1

( 7T7$)T' <K<7‘) ) 76 Y
since f(n) ~n+e ~ 1. On the other hand, (a,l1)q ~ (,n) ~ L and (m,z+e)q ~ (7, n+e€) ~ 1. Let firstly
my1 < Mg or U1 # Us. Then for w € O}, W # 1,02 we have f(7™w) ~ —e(w — vg)(v1 —wr™>~™). Let
p = Irrg (7™ w). Then (m,h), ~ (m,(=1)™ 1 (v; — wr™ ™)) and (Fr,z), ~ (7, (—F)™w). We
require

k

—e(w —vy)(vy —wr™2 ™) ~ 1,
—Fm2 (v —wr™2 ™) £ 1.

Then (m,l1), # (F'm,x),. Similarly one can check (wa,ly) # (Fm,z) and (m, 11 (z+e)) # (Fr,z). Consider
now the case mi; = ma, va = v1 + 7", > 0, € Of. Suppose w € Ok, W # fi, s = Irrgp(7™2(v1 +
n"w)). Then f(7™2(vy + 7"w)) ~ ew(w — u), (7,11)s ~ (7, (=1)™*"w) and (Fr,z)s ~ (7, (=F)™vy).
If we require

ew(w —p) ~ 1,

(=D)"F™oyw £ 1,

then (m,l1)s # (F'w,x)s. For the remaining algebras the arguments are similar.

18. fw € Of, w? —u ¢ 1, then (m,2% — 7%u),_,1/2, # 1 in view of f(7F/2w) ~ evive(w? — u) ~ 1.
Let n and r be from the previous case, then (m,l1), # 1, (m,li(z +€))r # 1 and (mwa,ly), # 1, but
(m,2? — wFu), ~ 1. The extension by /7 leaves us in the current case, so it does not split (a,l1),
provided e ~ 1, but it splits (7,22 — 7%u). Finally, (7,z + e);, # (7, 2% — 7¥u);, if e £ 1.

19. f(x*/2w) ~ eviva(w? — u) ~ @, hence the algebra (o, z — 7%/?w) is unramified. If

_ | 1, if ma = 0(mod?2),
€= 2, if may = 1(mod 2),
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then f(r™2+/3) ~ evivy ~ 1. Assume p = Irry g/ (7™2¢/3). Then

2 a, (%)m2+5
(o =)y ~ (ST ) 1

Since the extension by /7 leaves us in case 19, it does not split the algebra (a,z — 7*/2w). Hence
(a,z — 7°2w) £ (m,11), (m,z +e€), (m,li(z + e)). Since after this extension (wa,li) ~ (a,ly), it is
enough to show that (a,z — 7%/2w) # (a,h), provided e ~ 1. Let po = Irry gmx(n™2+1/3). Then
f(xm211/3) ~ 1 as above and

I 1 ikl BN (R

Because of m; = m» (mod2) we have (o, — 7%/2w),, # (a,11)p, and the theorem is proved.
Without loss of generality one can assume that in case IX either 0 < k < 4 and k/2 < my (case
IX1)ormy =1, k> 2 (case IX.2). Let I; = x — whiv;, i = 1,2,3.

Theorem 15 Let f be as in case IX.1 and as soon as m; = my = ms, then U3 # U;, i = 1,2. Then the
group oBr C is generated by the class of the algebra (m,a) and the classes of the following algebras.

1. (a,w2 _Wku): (aall); (aal2); Zf

k=1(mod2), m; =0(mod?2).
2. (7TE7pw)7 (a7l1)7 (a7l2)1 Zf

k=0(mod2), m3 =1(mod2).
(WEapw): (Oé,lz), (7T,l2), Zf
k=m1 =0(mod2), mi < ma, uvy ~ 1.
4' (OL,.’L‘Q _Wku): (a7l2); (7T7l2); 'Lf
=my = 1(mod?2), m; < my, uvy ~ 1.

(mod?2), and if my < ms, then uvy #£ 1.
a) (a7$2 _’”ku)’ (W:ll)f (aall)’
if m1 =ma, U1 =02 and £ = —u(vy — vz3wT™3 ") ~ 1.

b) (a,z? — 7*u), (m,11), (m,12), otherwise.
6. k=mq1 =0(mod2), and if mi < ma, then uvy #£ 1.

a) (ﬂ-EapuJ; (ﬂ-all): (a7l1)7
z'fml = Mo, U1 = V2 and§~ 1.
b) (’”Eapw)’ (7T,l1), (7T,l2), otherwise,

where w € O satisfies the following conditions. If my > 1, then w € Of, w?> —u # 1, E = aw, and
Pw=x—7w. If my =1, then

e If1< my, then
w? —u g,
w(w —vy) ~ 1.

o If 1 =my < mg, then

(wz —u)(w —vp)w £ 1,

{ (w? —u)(w —v)w #£ 1,
(w? —u)(w — v1)(w —v2) £ 1.

33



o If 1 =my = mg, then

(w? —u)(w —v1)(w —v2) # 1,

(w? —u)(w —v1)(w —vs) # 1,

(w® —u)(w — va)(w —v3) #£ 1
(

for a suitable unramified odd degree extension K|k, py = Irr )
such that f(mw) ~wEq in K.

nw), E = Ngx(Eo), and Eg € Oj is

It is convenient to divide the proof into several parts. We assume in the following lemmas that all
conditions of the above theorem are satisfied.

Lemma 16 Ifk = 1 (mod?2), then the algebra (o, x> — w*u) is unramified and nontrivial. Otherwise, the
same is true for the algebra (vE,py), where w and p, are from the above theorem.

We have (a,2? — 7*fu);, ~ (a,7*) #£ 1, since k < 2my;, i = 1,2,3. If k = 2, m; > 1, then f(mw) ~
mw(w? —u) ~ 7F and the algebra (7E,z — 7w) is unramified. (7FE,z — 7w);, ~ (maw, —mw) # 1. Let
now k =2, my = 1. Then

flrw) ~ m(w? —u)(w —vy)(w — 727 Ly) (w — 7™ o).

Let w # 91 and if m; = 1, then @ # ©;. Then f(rw) ~ wEy, Ep € O}, where

(w? —u)(w —vy), if 1 < ma,
Ey =< (w?—u)(w—v1)(w—v)w, if 1 =ms < ma,
(w? —u)(w —v1)(w — v2)(w —v3), if 1 =mz =ms.

We have

e~ (et et ) =

since E = Ng(Eo) ~ Ep in K. So the algebra (7E,p,) is unramified. Let us require (7E,py);; #
1,4=1,2,3. Then
(WEapw)li ~ (WJNKM(EO(U) - v’i))):

(ﬂ-E:pw)lz ~ (7T7NK\k(E0(w - ’Ulﬂ-mi_l)))a 1=2,3,

and these algebras are nontrivial iff Eg(w — v1) # 1 and Eo(w — v;) # 1, provided m; = 1 or Eqw #£ 1,
provided m; > 1, ¢ = 2,3. It just gives the conditions on w from the theorem. These conditions can
always be satisfied by lemma 6. The lemma is proved.

Lemma 17 If k # my (mod2), then the classes of the algebras (w,a), (a,l1), (a,l2) together with the
class of the algebra from lemma 16 give all generators of -BrC.

Proof. Let firstly k/2 < my. Then (a,lh);, ~ (a,(z? — 7*u)lals);, ~ (a, 7™y (7™0vy)) ~
(a, wla(m™1v1)) and (a,l1);, ~ (a,la(m™vy)). Thus exactly one of the algebras (a,l1);, and (a,l1),
is nontrivial. Since the algebra from lemma 16 is nontrivial at Iy, I, the algebra (a,l;) is not isomorphic
to it. Let now k =2, my = 1. Then (o, l1)i, ~ (a, wla(7™1v1)) # (o, 11)1, again.

Consider the algebras (a,l») and (a,l1l2). We have

(a:l2)l1 ~ (aalQ(Wmlvl))a (a:l2)lz ~ (aawk+m2l2(7‘—mlvl))a (a7l2)13 ~ (a’,/.rmz)j

(a7l1l2)l2 ~ (Oé, ('7"2 - Wku)lfﬁ')lz ~ (aawk—i—mz): (a7l1l2)l3 ~ (aaﬂml—i_mz)'

Hence (a,lila)i, # (a,lila);,. This means that (a,lils) # 1 and (a,l1l2) is not isomorphic to the
algebra from lemma 16. Moreover, if m; = ms (mod2), then (a,l2);, ~ (o, wla (7™ v1)) # (a,la);, and
(a,12)1, ~ (a,la(m™v1)) ~ (a,m™1) & (a,la);, otherwise, since in this case m; < mo. The lemma is
proved.

Lemma 18 If k = my (mod2), mi < ma, uvy ~ 1, then the classes of the algebras (7, ), (a,l2), (7,12)
together with the class of the algebra from lemma 16 give all generators of 2Br C.

34



Proof. Let e € {1,2}, 7 € Of, § = 7™ (¢/7)°7, and p = Irry gm) (0). Then f(6) ~ mF+™uy; ~ 1.
Assume A € {m,a,ma}. Then

and for any A we are always able to find ¢ and 7 such that (A4,l5), # 1. Let now compare the algebras
(A,15) with the algebra from lemma 16. Assume that ¢ and 7 are such that (A4,l;), ~ 1. In view of
k/2 < mi+¢/3 and k/2 < ms we have that the algebra from lemma 16 is nontrivial at p because it is
nontrivial at I5. This completes the proof of the lemma.

Lemma 19 Let k = my (mod?2) and if m1 < ma, then uvy £ 1. Then the classes of the algebras (7, ),
(m,11), the class of the algebra from lemma 16 and the class of the following algebra give all generators
of oBrC.

o (m,ly), if my < my or Uy # Va.
o (m,l2), if my =my, 01 =Ty and  # 1.
o (a,l1), if mi =my, 0y =7z and £ ~ 1.

Proof. In this case k/2 < mq. If mi < ma, then (m,01);, ~ (m,—7*u) and (m,11);, ~ (7, —7™ 1) ~
(m, —m*v1). Since uvy # 1 we have that among the algebras (m,1;);, and (m,11), there is just one trivial
algebra. So (m,l1) # 1 and (m,l1) is not isomorphic to the algebra from lemma 16. Let now m; = my
and p; € OF. Then f(7™ ;) ~ —u(p; —v1)(ps — v2)(us — vsw™~™). If p; = Irrgp(n™ p;), then
(m,l1)p; ~ (m,(=1)™(p; —v1)). One can find K, pg, and po such that f(7™1puq) ~ f(7™ pa) ~ 1 and
(m,l1)p, # 1, (m,l1)p, ~ 1. Since the algebra from lemma 16 is not trivial at p» we have again that
(m,l1) # 1 and (m,1;) is not isomorphic to this algebra.

Let us describe the last generator. Consider firstly the case my < ma. Then f(7™'u;) ~ —u(p; —v1).
If p; and p; are such that —u(u; —v1) ~ 1, 1 =1,2,3,4, (=1)™puy ~ 1, (=1)™py £ 1, pug # —u, and
pa ~ —u, then (ﬂ-al?)m ~ (777 (_I)M1p’) ~1, (77712)1)2 76 1, (ﬂ-alll?)ps ~ (71',#3(#3 - Ul)) ~ (777 _uﬂ/3) 76 1
and (m,l1la)p, ~ 1. Thus (m,l2) # 1, (m,l2) # (m,1l1), (m,12) is not isomorphic to the algebra from
lemma 16 and (7,11l2) is not.

Let m; = mo. Then (m,l3) # 1 and (7,12) is not isomorphic to the algebra from lemma 16 in view
of the symmetry for the algebras (m,l1) and (m,l3). Let 91 # ¥2. Then one can find py, ua such that
fr™pu) ~1,i=1,2and (u1 —v1)(1 —v2) % 1, (2 —v1) (2 —v2) ~ 1. This means that (7,11l2)p, # 1
and (W,lllz)pz ~ 1.

Let now vz = vy + 77, ¢ = Irrgp (7™ (v1 + 7°n)), 1 € Ok. Then f(7™ (vy +7°n)) ~ En(n — 7). If
& # 1, then we require n(n — 7) £ 1. In this case f(7™(v1 + 7°n)) ~ 1, (7,l1l2)y ~ (m,n(n — 7)) £ 1.
Moreover, (m,1l1l2)1, ~ (7, (7™3 "™y — vy ) (7™~ ™y3 — vy)) ~ 1.

Finally, let £ ~ 1. After the replacement of prime element ¥ = 7wa one can check that the algebra
(ra,l1) is nontrivial and not isomorphic to the algebra from lemma 16. To complete the proof it is
sufficient to show that the same is true for the algebra (a,ly). If §; = 7™ (v + (Y)Y, i = 1,2,
ti = Ity y/m)k(0i), then f(0;) ~ € ~ 1, and

(o, l)e; ~ (%) .

So among the algebras (a,l1):,, ¢ = 1,2 there is exactly one nontrivial algebra. Since the algebra from
lemma 16 is nontrivial at ¢; and t5, the lemma is proved.

Now the proof of the theorem follows immediately from lemmas 16-19.
Let us consider the remaining subcase of case IX.1. In this subcase one can assume that f(z) =
(2% — m*u)(z — ™) (z — 7™v1) (T — T™3), v = v + 7T, 7 € 0F, i =1,2,0 < 81 < 83 and if 51 = s9,

then 7y # 7. Let l =z — 7™, l; = x — #™v;, and

é._{ uTy, 1fk)/2< mi,

1 (u—v?)7, otherwise.
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Theorem 16 Let f be as in case IX.1, m; = mo = mg, U7 = U2 = U3. Then the group -BrC is
generated by the class of the algebra (7, ) and the classes of the following algebras.

o A= (a,2% —7Fu), if k =1 (mod?2).
e A= (nE,z —mw), if k=2,

where w € O, w? —u # 1,

o aw,if m > 1,
] alw=-v),ifm=1,

and
1. (a7l)) (aall); Zf
k+m+s; =1(mod?2).
2. (m,l), (m,ly), if
k+m+ s =0(mod2), s; = sa.
3. (m,), (m,1a), if
E+m+ s =0(mod?2), s; < 82, E# 1.
4. (m,1), (a,1), if
kE+m+s1 =0(mod2), s1 < 82, &~ 1,
Proof. If k is odd, then (a, 22 —7*u); # 1 and (o, 2% —7ku), £ 1, i = 1 2. Let k = 2. Then f(rw) ~ 7E
and the algebra A is unramified. We also have (7E,z — mw); ~ (7r w? —u) # 1. By the same argument
(rE,z — ww);, # 1. So A is nontrivial at [,11,l> in any case.
Observe that (Ck,l)l ~ (aaﬂk+51+52)a (a:l)ll ~ (aawm_'_h)a (aal)lz ~ (a:’”m_’_”)a (aall)l ~ (aawm_‘_ﬁ)a
(a,1));, ~ (o, 7%), (o, 11)1, ~ (,7™F31). Let k +m + s; = 1(mod?2). Then among the algebras (a,1);
and (a, ), there exists exactly one nontrivial algebra, so that (a,l) # 1 and (a,1) # A. The same is true

for the algebras (a,l1);, and (a, 1), Finally, (a,ll1); ~ (o, 7*17%211) and (a, 1l1);, ~ (o, 751F52).
Let now k +m + s, = 0(mod?2), 0; = 7™ (v + w*11;), 0 € O, pi = Irrg | (0;),

5={ —u, if k/2 < m,
v

2 _ u, otherwise.
Then

£(6:) ~ S(mi — ), if 81 < 82,
’ dni(ns — 11)(n; — m2) otherwise.

Let us require f( i) ~ 1, then (m,1)p, ~ (m,(=1)*n;). One can check that A,, # 1. There exist m1,72
such that (=1)%n; £ 1 ( ) 72 ~ 1. Then (m, l),,1 # 1 and (m,1)p, # Ap,. Consider the case s1 = ss.
We have (m,l1)p, ~ (7 ( 1)*(n; — m1)). One can always find an element 7; such that

{5

{ (=1)*(n2 —m) # 1,
S(=1)*n2(n2 — 1) # 1
s

{

— T 1,
T EL = i £ ()
Let now k+m + s; = 0(mod2), s1 < s2, & # 1. Consider the algebra (w,l3). If v' = v + 7527, then
f(z) = (2% — 7hu)(z — 7™") (z — 7™ (V' + 7%17]))(z — 7 (V' + 7°27h)). So (m,12) = (m,1") # 1, A since

o —n) ~ 1,
Ve —m) ~1 (m,14)py # Ap, -

= (Wall)m 7(’ 1.

— T ]_7
?7(724— 7'21 ~1 ad (Wall)m 7 Ap, ® (W’ll)p“
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we are in the case k +m + s; = 0 (mod2) again. Furthermore, (m,1l5);, ~ (m, (™ +%17)2) ~ 1, therefore
(m,ll3) # A. We have also (7, 1ll2); ~ (7,&) #£ 1.

Finally, let k +m + s1 = 0(mod2), sy < sz, & ~ L. If 6; = 7™ (v + 7 (7)), @ = Irry gy i (63),
i=1,2, then f(f) ~& ~1 and

o, (Ao
@0~ (“aigm ) At

Thus (a,1) # 1, A. To finish the proof one only need to check that (wa,l) # 1, A. But it is evident after
the replacing the prime element by v = am.

Theorem 17 Let f be as in case I1X.2 Then the group Br C is generated by the class of the algebra
(m,a) and the classes of the following algebras.

1. k/2 < mg. Two generators are (a,l1), (a,l2). The third one is

a) (mlz) if k =1(mod?2),
b) (7E,z — 7*/?w) otherwise.

2. ma < k2 <mg3. Two generators are (a,l1), (a,l2). The third one is

a) (a,22 — 7*u) if k = 1(mod?2),
b) (m,13) if k = 0(mod2), me + k/2 =1 (mod?2),
c) (nE,x — 7*/?w) if k = 0 (mod?2), my + k/2 = 0 (mod?2),
3. mg < k/2 and if ma = ms = 1,then 03 # U1, U3 # U2. Two generators are (a,l1), (a,l2). The
third one is
a) (7E,x — 7*/?w) if my + m3 = k = 0(mod?2),
b) (a,z — 7*/%w) if my + m3 =1 (mod?2), k = 0 (mod2) and —vivyvs ~ 1,
c) (m,z? — 7fu) if ma + m3 = 1(mod?2), k = 0(mod2) and —vivovz # 1,
d) (a,z? — 7*u) if my +m3z = 0(mod?2), k= 1(mod?2) and uvivavs ~ 1,
) (f(0),x), otherwise.

®

4. may=m3=1< k/2,v; =v1+7%T;, i =2,3, 53 < s3 and if s; = sa, then T # T3. Two generators

are

a) (a,l1), (0,l2) if 53 = 0(mod?2),

b) (71' ll), (7T lg) ifSQ = 83 = 1(mod2),

c) (m,ly), (a,ly) if s =1(mod2), sy < s3 and —72 ~ 1,
d) (m,ly), (m,13) if s2 =1(mod2), sy < s3 and —72 # 1.

The third one is
a) (a,2? — 7*u), if k = 1(mod?2), uv, ~ 1,

B) (a,z), if k =1(mod2), uvy # 1,
v) (rE,x — 7*/?w), if k = 0 (mod?2),

where w € OF, w?> —u £ 1, and E € O can be found from the condition f(r*/?w) ~ 7E.
k k

Proof.
1. We have (a,l1);, ~ (a,—mv1) # 1, (a,lz);, ~ (a,mv1) # 1 and (a,li1l);, ~ (o, (22 — 7TFu)ls);, ~
(a, (v )%mvy) # 1.
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Assume firstly £ = 1(mod2). Suppose ¢ € {1,2}, € = ma(mod2), § = a(Ym)>™*~° and p =
Irry oy (@) Then 3k/2 < vy a7 (0) < 3ma. Let uvr ~ 1. Then we have f(6) ~ uvy ~ 1. Thus

“@””Q&%%)”(ﬁ%ﬁD*L

So (m,ly) o 1. If now wwy is arbitrary, then after the extension by /a we are still in subcase 1.a and
uvy ~ 1, therefore the algebra (m,l3) is nontrivial again and it does not split by 1/a. Hence (m,ls) #
(Ot, l1)7 (O[, l2)7 (Oé, lll2)'

Let now k = 0 (mod2). We have

(TE, 2 — /2w 2y ~ (%) A1

Since (@, 1;)p2_nkqy ~ 1 and (o, l1l2)z2_ 1y ~ 1, we are done.

2. (a,l)1s £ 1, (a,l1l2);, # 1. I my > 1, then (a,lz);, # 1. If me = 1, then (a,l2);, # 1. Let us find
the last algebra. Consider the case k = 1(mod?2). (a,z% — 7Fu);, £ 1. We have also (a,2? — 7*u);, ~
1, (a,l1l1);, # 1. Ifeither my > 1 or By # 0s, then (a, 1), # (o, 22 —7*u)y, and (a,lz);, # (o, 22 —7*u)y,.

Let ms = 1 and ©; = 2. Suppose § = 7/7. Then f(f) ~ viv2 ~ 1. So

(aall)z377r4 ~ ( = _7”:17]_4>) 7(' ]-a (aﬂl2)$37ﬂ'4 7(’ 1

k() (a?

but
(a, 2% — 7*u)ys_pa ~ (@, 6%) ~ 1.

Let now k = 0 (mod2) and my + k/2 = 0(mod 2). Then

) W,w_\/a
B =P~ (e ) A1

To complete the consideration of subcase 2.c it is enough to observe that all other algebras split at
z? — mhu.

Finally, if my 4+ k/2 = 1 (mod2), then f(7*/%w;) ~ vivs(w? —u)(w — ™3 ~*/203), where w; € O% and
w; # U3, provided mz = k/2. For p; = IrrK|k(7rk/2w,-) we have (7,13),, ~ (7, (=1)F/2(w — 7™3=k/243)).
Let us require

(=D*2(wy — sk 2ug) £ 1, [ (1% (wy — 7™k 203) ~ 1,
(=1)* v 09 (w? —u) £ 1, (=1)* 2009 (w5 —u) ~ 1.

Then (m,l3)p, # 1, (m,13)p, ~ 1. Furthermore, the algebras (m,1),, and (m,l1),, are either both trivial
or both nontrivial. The same is true for the algebras (m,l2)p,, (7,12)p, and for the algebras (w,1l2)p,,
(m,1112)p,. So (m,13) is not isomorphic to (m,1;) and (7, 11l2).
3. We have (a,l1)1, # 1, (a,12)i; # 1 and (o, l1l);, # 1. If ma + mg and k are even, then one can argue
as in subcase 2.c.

Let my 4+ m3 = 1 (mod?2), k = 0 (mod?2) and —vyvyv3 ~ 1. Then f(7*/?w) ~ —vivov3(w? —u) ~ a,
so the algebra (a, z — 7F/?w) is unramified. Then f(;) ~ 82 ~ 1 and

(a, & — 7 /2w),, ~ (#ﬁ&;l)) ’

therefore there is just one nontrivial algebra among (a,z — %/ 2w)p;, @ = 1,2. In since the algebras
(a,11)py» (,11),, are either simultaneously trivial or simultaneously nontrivial, we have (e, z — 7*/2w)
(a,11). By analogy (a,z — 7%/2w) # (a,15), (a, 1115).

Let now —vivavz £ 1. We have f(7*/?w) ~ —vivsvz(w? — u) ~ 1 and (7,22 — 78u),_ k/2y ~
(m,w? —u) # 1. For any i (7,22 — 7wFu);, ~ 1. On the other hand, (a,l1)i; # 1, (a,l1l2)1, # 1 and either
(a,l2)i, #1or (ayl2), # 1.

2

38



The case of even k is done. Let k be odd. Then f(0) ~ uvjvovsn™2+™s_ If we are in subcase 3.d, then
f(0) ~ 1 and (o, 22 — w*u), o 1. Moreover, (o, 22 — w%u) # (a,1;), (o, 1112) as in the previous subcase.
Finally, in 3.e the algebra (f(0),z) is unramified. Assume firstly that mas + m3 = 0(mod2), so

f(0) ~a, Vu
(0, )2k ~ (k(\/ﬁ_U)(—,oz(m2 - Wku))> A

On the other hand,

(@, 11) g2 gy ~ (k(\/w—u)(_ja_(mzl_ ﬂku))

Let now mo +m3 = 1(mod2). To finish the consideration of case 3 it is sufficient to prove that the
algebra (muvivavs, z) does not split after the extension by y/a. This extension leaves us in subcase 3.e,
so we can assume that —1 ~u ~v; ~ 1. If 0 = 7™ /mw and p = Irry gz, (0), then

o~ (stg7) *

) ~ 1 and (a,lQ)wZ_ﬂ.ku ~ (a,lllz)w2_7rku ~ 1.

since f(0) ~ —vivaug ~ 1.
4. Consider case sa = 0(mod2). We have (a,l1);, ~ (a,7°2%) £ 1, (a,la);, ~ (a,7%2F) £ 1, and
(a,l112), ~ (o, l3(2x? — TFu))y, ~ (o, w8211) £ 1.

If 52 = s3 = 1(mod2), let 0; = w(v1 +7°2;), p; € O, pi = Irrg | (0i), then f(0;) ~ pi (s —72) (s —

TB)7
(7T7l1)pi ~ (7‘-7—”2> 3 (ﬂ-al?)pi ~ <M> s
K(\/f(0:)){pi) K(/f(0:)){pi)

(m.1da),, ~ <M> ,
" K(\/f(0:))(ps)

{Nl’%’]—a {Mz—Tz%l, {Mz(u3—T2)741,
(= 72)(ur —7m3) # 1, | palpe—T73) #1, | ps—T13#1,

then (’Ir,ll)pl 241, (7T,l2)p2 # 1, and (W,lllz)ps A4 1.
Let 51 be odd, 81 < sy and 0 = w(vy + 7%2p), u € Ok, p = Irrg(0), then f(0) ~ p — 7,

(ﬂ-’ll)P ~ (ﬂ-nu')' If
{ potl,

n—T2 7(' 1,
then (m,11), # 1. Suppose n = 7(v1 + 752 Y7), ¢ = Irrk(xs/@r))‘k) (). In this case f(n) ~ —7» and

provided —73 ~ 1. After replacing the prime element v = ma we have —75 = —Taa~*2~! ~ 1, therefore we
are in the same subcase, hence (wa,li) = (v,l1) # 1. Let now —72 o 1. The replacement v] = vy + 7%373
leaves us in the current subcase, so (m,l3) ~ (m,1}) # 1. (m,l1l3);, ~ (7,12)1, ~ (7, —T2) # 1.

So, two generators are found. To find the third one we can argue just by the same way as in subcase
3. To complete the proof it remains only to show that the third generator does not belong to the group
generated by the first two ones. This is true for the algebra from «), because it is trivial everywhere in
this proof, where the algebras from the group, generated by algebras a)—d) are nontrivial. Finally, the
algebras from 3 and ) are nontrivial at £2 — 7¥u, but the algebras from a)-d) are trivial there. The
theorem is proved.

If we require
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4 Splitting type (1,2,2).

This section is devoted to case deg fi = deg f» = 2, deg f3 = 1 and the reduction is bad.
The evident list of all cases under consideration according to the reduction type of f(z) is following
(f(z) = (@® = 7*u)((x —a)? = &) (z —¢), k>0, u € O}, a,d,e € Ok, whu,d £ 1).

I.k=0,a€ My, §€0}, a=24.

II. k>0,6 €05, ec 0.

ITT. k>0, 6 € Oy, e € M.

IV. k>0,0 € My, a€ 05, e€ O;, a# e, k<v(d).
V.k>0,0€ M, acOj, e € M.

VI. k>0, 0 € My, a€ My, ec Oj, k<uv(9).
VII. k>0, § € My, a € My, e € My, k <v(d).

Lemma 20

| :Br C| = 8.

Theorem 18 Let f be as in case I. Then the group Br C is generated by the classes of the algebras
(m,a), (1,22 — u) and the class of the following algebra.

1. (m,x —e), if either e € O}, €> —u ¢ 1 ore € My, -1~ 1.
2. (a(z? — u),z — w), otherwise,
where w € Of, w? —u # 1.
Remark 1 The algebra (a(z? —u),z — w) does not split by any quadratic extension of scalars.
Proof of the theorem. The algebra (m,z% — u) is nontrivial by lemma 3. We have also
(T, —€)g2_y ~ (k(\/ﬂ)(a;;r—, u)? ;(m2 = u))) , D ek

The last algebra is nontrivial iff /u — e # 1 in k(y/u). And this is true if either e € O, e? —u £ 1 or
e € My, —1 ~ 1. The algebra (7, (z? — u)(x — €)) is nontrivial by lemma 3 again.

Consider now the algebra A = (a(x? —u), z—w). It is unramified because A, _,, ~ (a(w?—u),z—w) ~
L. Let 6 = (1 + /m)y/u and p = Irry gz )i (0). Then f(0) ~ \/u —e ~ 1, provided we are in subcase

2. So
e (o) ~ ()

On the other hand,
(m,2% —u), ~ (7 ~ 1.
Pk, u)(p)
The theorem is proved.

Theorem 19 Let f be as in cases II or III. Then the group oBr C is generated by the class of the
algebra (7, @) and the classes of the following algebras.

e Case I. The first algebra is (w,x — e) and the second one is
1. (eum,x), if k =1 (mod2).
2. (m, 2% — w*u), if k = 0(mod?2) and ef #£ 1.
3. (o, x — 7*/%w), if k =0 (mod?2) and ef ~ 1.
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e Case Il (e =1™wv).

~

(7 — ™), (7,22 — 7Fu), if m < k/2, m,k = 0(mod2) and either v £ 1 or m = k/2.
. (mx— ™), (g, — 7% 2w), if m < k/2, m, k=0 (mod2), &v ~ 1 and m < k/2.
(m,(z — a)? = 6), (aym,x — 7*/?w), if m < k/2, k =0 (mod?2), m = 1 (mod2),

v, ifm<k/2,
"= v—w, if m=k/2.

Lo

m
T, T —T),

( ), (a,2? — 7hu), if m < k/2, m,k =1 (mod2), —€uv ~ 1.
(myz — ™), (a,z), if m < k/2, m,k =1(mod?2), —Euv # 1.
(m,z — ™), (=€uvm, z), if m < k/2, k =1 (mod2), m =0 (mod2).
(myx — ™), (,z? — 7Fu), if m > k/2, k = 1 (mod2).

(m, 2 — ™), (7,22 — 7*u), if m > k/2, k = 0 (mod4).

(m,(z — a)? = 6), (=éwam,x — 7*/?w), if m > k/2, k = 2 (mod4).

© % RS T

where w € Oy, w? —u # 1 and
= 0, if a € My,
T | §—a?, otherwise.

Proof. In IT and III (w,z —e) % 1 by lemma 3.
In I1.1 we have f(0) ~ —e&um, so the algebra (—efun,z) is unramified. Let 7 € O% such that K|k is an
unramified odd degree extension and the following conditions hold:

T4 1,
T—en~1,
(r—a)?=d0~1.

Such K and 7 exist in view of lemmas 5 and 6. Let p = Irrg (7). Then f(7) ~ 1. Thus

(7,2 — €)p ~ (%@_)e) ~1 and (—efur,z), ~ ( @)) 4 1.

Consider subcase I1.2. We have f(wn*/?) ~ ef(w? —u) ~ 1, so (7,22 — 7%u),_ i/2, o 1. Finally,
(m,x —e) # (7,22 — 7*u) by lemma, 3.

If we are in 1.3, then f(wm*/?) ~ a, so that the algebra (o, z —wr*/?) is unramified. Let ¢ € {1,2}, € =
k/2 (mod?2), 8 = n*/>~1({/m)° and p = Irry gy k(0)- Then f(6) ~ el ~ 1 and

oz — wik/2) ~ a, w21 (Yr)®
(e, o ( T ) )7“

To prove (m,x —€) # (a, z —wx*/?) it is enough to observe that the extension by /7 leaves us in subcase
I1.3, hence this extension does not split the algebra (a, z — wr*/?).

In IIT the algebras (7,z — 7™v) and (m, (xr — a)? — §) are nontrivial.

IIT.1. Since f(m*/?w) ~ &v ~ 1, provided m < k/2, then (m,2% — 7%u),  4/2, # 1. Let now k/2 =m

Then we require

7 —u~a,

v—T~ak,
7 € O, K|k is unramified of odd degree, then f(r*/27) ~ 1 and (7, 2* —7*u) 1., (rk/2,) % 1. Furthermore,
(m,2% — 7hu) ® (7,2 — 7™) ~ (7, (x —a)? = §) £ 1.

II1.2. f(7*/?w) ~ a, so that (o, 2 — 7%/?w) is unramified. Now we can argue as in II.3.
II1.3. In view of f(7*/?w) ~ &n(w? — u)7 the algebra A = (én(w? — u)w, x — 7*/?w) is unramified.

Ay ~ ( ™, W= Vu ) £ 1, (D € k).

k(Vu)(z? — mhu) (/D (2? — whu))
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On the other hand,

T, _é.
k(Vu)(e? — mhu)(\/D(a? - 7?’“?0))

II1.4. We have f(0) ~ —&uv. Thus (a,z? — 7%u), # 1. Moreover, although the extension by /a leads
us to case (1,1,1,2), it does not split the algebra (7,2 — 7™v). Therefore (a, 2% — 7*u) £ (7,2 — 7™v).
II1.5. f(0) ~ a, so the algebra (o, z) is unramified. (o, z)y—rm, 7% 1. The further arguments are similar
to the previous subcase.

II1.6. The algebra A = (—&uvm,x) is unramified. Let § = n™7, 7 € Ok, p = Irrg (). Then
f(0) ~ & —7) and Ap ~ (7, 7). If we require

{ oS~

~ 1.

(7T7 (.Z‘ - a)2 - 6)z2—7r’“u ~ (

then A, o 1. And if we require
{ T 76 _67
f(’l) - T) ~ ]-7
then A, # (m,z — 7™v), since in this case (7,2 — 7™v), ~ (7, ).
II17. (, 2% — *u), _nm, # 1. Moreover, the extension by y/a does not split the algebra (7, z — 7™v).
IT1.8. We have f(n*/21) ~ —{7(72 —u). If 72 —u #£ 1 and —£7 £ 1, then (m, 22 — 7%u) 1 (ir2,) # 1.
IIT.9. f(7*/?w) ~ —&wam, so the algebra A = (—éwan, x — 7%/?w) is unramified. Finally,

T, Ww— \/ﬂ
<’Wﬂ)@ﬂ — ) (D - ﬂku))) A1

Aga_rhy ~

but

2 ik _£
(m, (& — a)” = 6)g2_ghy ~ (k(\/ﬂ)(ﬂv2 — mhu)(D(z? — Wk“))> ~

The theorem is proved.

Theorem 20 Let f be as in case IV. f(z) = (z —e)(z? — 7*u)((x — v)? — ™), e,u,v,v € O}, ¥ #
%, 0 < k <m. Then the group -Br C is generated by the classes of the algebra (7,a) and the classes of
the following algebras. The first algebra is

1. (m,z—e), if k=0(mod2), —e £ 1.

2. (a,z —7*%w), if k =0 (mod?2), —e ~ 1.

3. (wue,x), if k =1(mod2).

The second one is

a. (m,(z —v)?2 —7™y), if m=0(mod2), v—e £ 1.
b. (a,z —v—7"27), if m =0 (mod2), v —e ~ 1.
c. (m(e —v)y,z —v), if m=1(mod?2),
where w,T7 € OF, w? —u £ 1, 72 —y £ 1.

Proof. If k = 0 (mod2), then f(7*/2w) ~ —ea. In case 1 we have f(7*/2w) ~ 1 and (7, z—€) y_ rr/2, ~
(m,—e) # 1. In addition let us consider the algebra (7, z2 —7*u). It is also nontrivial at this place. Indeed,
(m,2% — mhu) k2 ~ (T, 0% —u) £ 1.

In case 2 f(7*/?w) ~ a and the algebra (o, z — 7%/?w) is unramified. Now one can prove (a,z —
7%/2w) £ 1 by analogy with the theorem 19, subcase II.3.
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Let now k = 1(mod2), u € O}, K be as above and

b~ aue,
U — [~ ou.

Assume 0 = /7hp € K(\/mp) and g = Irr( /zp)x(0). Then f(6) ~ e(u — p)m ~ ep(u — p) ~ 1 and

(e, 2)q ~ (KE%&)Z)) ~ (Ilé(m@)) #1

After replacing ' =  — v we have

f@) = (@ = (e =)&)’ = 7" (@' = (-v))* = 7*w).

The above arguments gives that the algebras from items a, b, ¢ are unramified and nontrivial. (Because
nowhere in this arguments we used that k/2 < m.) To finish the proof it is enough only to check, that
these algebras are not isomorphic to the algebras from items 1,2, 3 in the corresponding subcases.

l.a. We have (7,2 — €) ® (7, (x — v)? — m™y) ~ (7,22 — 7¥u) £ 1.

2.b. If A is the algebra from 2 and A’ is the one from b, then A4, ¢ 1 and A}, ~ (a, —v) ~ 1, where p is
constructed by analogy with the proof of theorem 19, subcase I7.3..

1.b, 2.a. In view of symmetry one need to consider only one case, say, 2.a. In this case for p as above
AP # 1, but (7, (z — U)z - ﬂ-m’Y)P ~ (71-57}2) ~ 1.

3.a. (rue,z)4 # 1, but (7, (z —v)? —7™7), ~ 1.

3.b. Ap ~ (a,—v) ~ 1.

3.c. Finally, we have

(nle vy = v)g ~ (W(Ief(_\/z;)_l)zq;v) - (T(fi(_x/if)_Z)kq;U) ~h

and this completes the proof.

Theorem 21 Let f be as in case V. f(z) = (z—v)? —7™y)(z —7"0) (2% —7Fu) v,v.5,u € Of, m,r, k>
0, 7™, 7*u £ 1. Then the group oBr C is generated by the classes of the algebra (m,a) and the classes
of the following algebras.

The first algebra is

i) (7, (z —v)?2 —7™y), if m = 0(mod2), v # 1.

i) (o, z —v —7™%w), if m =0(mod?2), v ~ 1.

iii) (—vym,z —v), if m =1 (mod2).

The second one is

a. (a,z—7"d), ifk/2<r, k=1(mod?2).

b. (m,z —7"d), if k/2 <r, k=0 (mod4).

c. (1(r? —w)m,x— %271, if k/2 <7, k=2 (mod4).

d. (wou,z), if k/2 > r, k=1(mod2), r =0 (mod?2).

. (myxz —7"d), if k=0(mod2), r =0 (mod?2) and either k/2 =1 or k/2>r, —0 # 1.
(,z —7*/27), if k = 0(mod2), r = 0(mod2), k/2 > r and —6 ~ 1.

g. (bam,x — %21, if k =0 (mod?2), r = 1(mod?2), k/2 >,

| =0, ifk/2> T,
£= T—6—a? ifk/2=r.

®

™
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h. (a,z —7"9), if k =1(mod2), r =1(mod?2), k/2 > r and du ~ 1.
k. (a,z), if k= 1(mod?2), r =1(mod2), k/2>1 and du # 1,
where w,T7 € OF, w? —y £ 1, 72 —u £ 1.

Proof.

i f(r™ 2w +v) ~v(w? —u) ~ 1, 50 (7, (x —v)% = T"Y), Y pmsze P 1.

ii. f(a™?w 4+ v) ~ v(w? —u) ~ a, so the algebra (a,z — v — 7™/%w) is unramified. We have also
f(v+ ¥m) ~ 1, therefore

(v, —v— Wm/zw)(w_v)s_ﬂ. ~ (

o,
) (@~ ) —w>) #1

iii. f(v) ~ —vym, (—vym,z — v) is unramified. As usual, let x € O} satisfy the conditions

{ X ~ —avy,
X =7~ —ay.

Let 6 = v+ /7™X, ¢ = ITTk( /ax) 1(0)- Then f(0) ~ xv(x —7) ~ 1, hence

(o= (YT 2

a. (&, 8 = 1"8)g—nrs ~ (a, (z —v)* = 7™y)(2? — *u)g_rrs) ~ (@, —7*u) 2 1.
b. We have f(ur*/2) ~ —pu(u? —u) for some p € O%. Thus (w1, — 7"6) 1,y (umir2) ~ (m, 1) # 1, provided

{ZfﬁfL

c. f(a*/?1) ~ rax. Furthermore,

(ram, @ — /27) 42 ny ~ ( - (\;_L’)&;_‘/EMQ A1

d. Let v € O}, satisfy the conditions
{ v ~ adu,

V—u~ —aqu,

and t = Irrg sy (VT*v). Then f(Vahv) ~ —0v(v —u) ~ 1, so that

véu , /v
Kwﬂ—uxt)) #1

e. If k/2 =r, then f(7*/2)) ~ (A — §)(A\2 — u) for some X € Oj}. Moreover, if s = Ir g, (7¥/2)), then

(mdu, ) ~ (

(m,z—7"6)g ~ m A9
7 TOA\EWVO =) —u)s) )

If we require
A= #1,
{ A2 —u 1,
then (m,z — 7"d)s £ 1.
Let now k/2 > r. We have f(*/21) ~ —3(7% —u) ~ 1. So, (7,2 — 7"8),_ /2, ~ (m,—8) # 1.
f. f(@*/21) ~ —§(1% — u) ~ a and the algebra (o, — 7*/27) is unramified. To prove (o, z — 7*/27) £ 1
one can follow the proof of theorem 19, subcase I1.3.
g. By analogy with subcase ¢ we have ((am,x — 7*/27) 2 kg o 1.
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h. f(0) ~ 7**t7§u ~ 1, therefore (a,z — 7"8), # 1.
k. f(0) ~ 7*+7"Su ~ a, hence the algebra (a,z) is unramified. Finally, (o, z),_r5 7 1.

Now, to complete the proof one only need to check that the algebra from )—i4¢) is not isomorphic to
the algebra from a)-k). Note, that in all subcases a)—k) the nontriviality of the corresponding algebra is
showed by the completion of this algebra at the place with prime element [ € k[z] such that I = Irr(6), 0 €
My,,,. Thus, in ) and ii) we have (7, (z—v)?> —7™7); ~ (7,v?) ~ 1 and (o, z—v—7™/2w); ~ (@, —v) ~ 1.
The nontriviality of the algebra (—vym, ) from 44 is proved by the completion at ¢ = IrTr( /my)k(0),
6 = v+ /m™x. Any algebra from a)—k) completed in g can be obtained from some algebra over k by
extending of scalars. So it is trivial at ¢, since the extension k(,/mx) splits any algebra over k. The
theorem is proved.

Consider the next case.

Theorem 22 Let f be as in case VI. f(z) = (z — e)(z? — 7Fu)((z — 7™v)? — 7"6), u,v,8,e € Of, 0 <
m,0 <k <r, whu, 7”5 £ 1. Then the group »Br C is generated by the class of the algebra (m,a) and the
classes of the following algebras.

Let if k,r = 1(mod?2), then 2m < k, and if k = r = 0 (mod 2), 2m > k, then @ # 6. Then the first
algebra is

i. (wE,x), if k =1(mod2).

ii. (m,2® — 7*u), if k = 0 (mod?2) and —e £ 1.

iii. (o, — 7*%w), if k = 0 (mod?2), either k <r or k =r > 2m, and —e ~ 1.
iv. (a,IrrK‘k(wk/zﬁ)), if k=0(mod2), k=r <2m, —e ~ 1, where 8 € O} and

) B2 -5, ifk<2m,
(8 “)X{ (B-v)? -6, ifk=2m.
The second one is
a. (nF,z —7n™v), if r = 1 (mod?2).
b. (m, (z — 7™v)? — 7"68) if r = 0 (mod 2) and

e k=1 and either k < 2m or —e # 1,

e 2m<k<r and —e#1,

e 2m=k<r and —e(v? —u) £ 1,

o k<rk<2m,k=0(mod2), and ue # 1.
c. (a,z —7™v —7"/27) if r = 0(mod?2) and

o k=r>2m, —e~1,

e 2m < k<rand —e~1,

e 2m=k<r and —e(v? —u) ~ 1,

e k<r,k<2m, k=0(mod2), and ue ~ 1.

d. (ueNgx(v* — 8)m, Irrgpp (m™v + a?4)), if r = 0(mod2), k < r,k < 2m and k = 1 (mod?2), where
v € O%, K|k is of odd degree and unramified,

1 , if 2m <,
V=84 v =6 , if2m=r,
-0, if2m >

Otherwise we have
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1. (m,2% — 7*u), (a(2® — 7*u), 7%/ (x — 7%/%w)), if k =r = 0 (mod2), 2m > k, 4 =34.

2. The first algebra: (eun,x), the second one: either (o, x> — w*u), provided —ued ~ 1, or (a,x — 7™v)
otherwise, if k,r = 1(mod2), k <2m <.

3. The first algebra: either (o, 2% — w*u), provided —ued ~ 1, or (a,x) otherwise, the second one:
(rue,z — %), k/2 < s<r/2,if k,r =1 (mod2), k<r < 2m.

4. The first algebra from 3, and (z, —7wu(z? — 7*u)), if k = r = 1 (mod?2), k < 2m.

where E,F,w,tau € O} can be found from the conditions f(0) ~ nE, f(z™v) ~ 7F, w® —u # 1,
72 -8 £ 1.

Remark 2 The algebra (a(z? — w*u), 7%/%(x — 7%/2w)) from 1. does not split by any quadratic extension
of scalars.

Proof of the theorem.
i. If p € O, then
kL) ~ —e(p—uw)(p—29) ,ifk=r<2m,
fvt) { —ep(p — u) , otherwise.

Let t = Irrg(mm) ik (V75 ). If Ep# 1in K and f(\/7*p) ~ 1in K, then

. _( Br, VTR
(rE, o). (K(mxw)?”'

The conditions on K and p always can be satisfied, provided that in case k = r < 2m we have 4 # 4.
ii. We have
—e(&% —u), ifk<rork=r>2m,
f(ﬂ-k/zé-) ~ _€(§2 - u)(§2 - 5)7 ifk=r< 2m7
—e(2 —u)((E—v)? -46), ifk=r=2m.

Thus if k < 7 or k = r > 2m, then (m,2? — 7%u),_,4/2, # 1. Let now k = r < 2m. Then (m,2% —
WkU)ITT.Klk(ﬂ.kmg) # 1, provided €2 —u £ 1 and €2 -6~ 1if k < 2m, (6 —v)?> =6 ~ 1if k = 2m.

iii. To prove (a,z — 7%/27) £ 1 one can follow the proof of theorem 19, subcase I1.3.

iv. From the conditions on § we have the algebra to be unramified. The nontriviality can be proved as
in 4i1.

a. Similarly as in subcase i for t = Irrg( mp)k(0), = 7™v + /7" we can find K and p such that
(wF,z — 7™v); £ 1. Indeed,

—epu(p —9), if 2m < k,
f(0) ~ uep(p — 8), if 2m,r > k,
—eu(p—8)(v? —u), ifk=2m<r,

and the conditions f(f) ~ 1 and Fu +# 1 can be satisfied in some unramified extension K|k of odd degree.
b,c. By replacing 2’ = z — 7™v case k = r is reduced to 47 and 47i. Furthermore,

1, if 2m < k,
f(@™v +7"%7) ~ —ear x v2—wu, if2m=4k,
—urk,  if 2m < k.

So, in b the algebra (7, (z — 7™v)? = 7"8),_ myqpr/2, is NONtrivial, and the algebra from ¢ is unramified.
The nontriviality of the last algebra can be checked by analogy with the proof of theorem 19, subcase I1.3.
Indeed, this algebra is nontrivial at Irry gm(0), where 6 = 7™v + 77/2°1(Y7)%, € € {1,2}, e =
r/2 (mod 2).

d. We have f(r™v + n"/2y) ~ uer(y? — §). Since K|k is of odd degree 4> — § ~ Nk (v* — 6) in K, so
that the algebra A = (ueNg | (v* — 8)m, Irr g, (7™ v +77/2%)) is unramified. Let u € O%,, K'|k is of odd
degree and unramified such that

{ o ue(y® = 4),

p—u b —u(y® = 9).
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Let t = Irrgr( /rpy e (V7F ). Then f(y/m*p) ~ —ep(p — u) ~ 1 and
ue(v* = O, [lyearp(Vmin—nmv — /%) N ( a, il ) 1
KK'(/mp)(t) KK'(/mp)(t) '

Let us check now that the algebra A from i — v is not isomorphic to the algebra B from a)—d).
Let firstly k£ and r be odd. Then 2m < k, A = (vE, ), and A; ~ 1. On the other hand,

nF, —7rmv> o1
K (/mp)(t)

At®KN<

By ~ (nF,x —7n™v)y ~ (

Let now k be odd, r be even. We have

2m,,2
(Ki) ifom <k,

By~ (m,(x — 7™0)* =77 8); ~ ( (VTR)(®) -

S

T, TN
K(/am) )

In ¢ we have B = (a,z — n™v — 7"/?8) and 2m < k. So

) , otherwise

a, —m™v
Bi~ | —f—r | ~1
t (K(x/—th))
Finally, if case d takes place, then 2m > k and

- ue(y? — &), \/mkp _( ouep, TR\
Beo K ( KK (/am() ) (KK’(wr_u)(t)) b

since from the proof of 7) we have auep ~ 1.
Conversely, let k be even and r be odd. From the proof of a) By # 1, t = Irrk mpi(0), 6 =

7™y + /7" . On the other hand, if A = (7,2% — 7*u), then
2m,2 _ .k
Atw<7r,7r v 7ru>~1
K (/mp)(t)

in view of min{2m,r} < min{r,m +r/2}. For A = (a,z — 7*/%w)

(MR )

provided that if k¥ = 2m, then @ # o.

Finally, let ¥ and 7 be even. The extension by /7 leaves us in case VI. Moreover, if the algebra
(o, z — */2w) is nontrivial (subcase ii)), then it does not split by this extension, since we are still in ).
The same is true for the algebras from iv) and c). So it is enough to prove that in 4),b) (7,2 —e) £ 1,
and in iii), ¢) (o, & — 7/2w) £ (a,z — 7™v — 7"/27). Case iv),c) is impossible.

In 4i),b) we have (m,z — €)p(zt/2¢) ~ (m,—€) # 1. Consider now iii),c). Then —e ~ 1. If k = r,
then k& > 2m. For # from the proof of i) satisfying the conditions § = =*/2-1(¥m)*, ¢ € {1,2},
e =m + k/2(mod2) we have (¢ = ITry( yz),(0))

(a,z — 7*2w), ~ (%) and (o, 2 — 70 = 7"/*1)g ~ (%> ’

so Aq # By.
Let now k£ < r. Case 2m < k is similar to the previous one. In case 2m = k consider § = 7#™v +
72N (Ym)%, e € {1,2}, e = k/2 + /2 (mod2). Then

s (e (R my oty o (2 DM
(o, 7 — 7/2w), ~ (W) and (a,z — ™0 — 7"/27) ~ (W)
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Finally, in case 2m > k let 8 = 7*/?(¢/x). We have

sy (@ (R N GO Wik
(a7 — 7/ 2w), ~ (W) and (a,z — ™0 — 7"/27) ) ~ (W)

Consider now cases 1-4 step by step.
1. There exists a € Of such that a® —4u £ 1. If p= Irrk(\/wk(wk/z(a +1/u)), then

since f(7*/2(a + /u)) ~ —e(a® + 2ay/u)?® ~ 1 in k(v/u). So, (m, 2> — w*u), # 1.

Furthermore, (a(z? — w*u), 7%/2 (x — 7%/2w)) , _ r/2y ~ (a(w2 —u), ’“/2( 7*/2w)) ~ 1, so that this
algebra is unramified. Let us prove the nontriviality. Suppose 8 = (1 4+ /7)7*/2\/u € k(y/u, ¢/7) and
q = Irr(6). Then 62 — 7%y ~ (6 — 7™v)? — 7k ~ 7 in k(\/u). Therefore f(6) ~ 1 and

o ok /2 12 Ju — 7/ 2
(a($2 _ﬂku),ﬂk/Q(,’]}—ﬂ'k/2w))q ~ ( (( (+\/_\/_\/)_)< )\/_ )> -

~ (i) *

Thus y/a does not split the algebra. To check that /7 (and y/ma) does not split it, one only need to
observe that this extension leaves us in subcase VI.1.

2. The first algebra is unramified and nontrivial by analogy with subcase i). We have f(7™v) ~ —ued.
If —ued ~ 1, then (a, 2% — 7%u),_rm, # 1. Otherwise, the algebra (o, — 7™v) is unramified. Moreover,
(0 ) g2_ghqy ~ (@, 4/mu) # 1. Finally, the extension by 1/« leaves us in subcase V1.2, therefore it does
not split the first algebra.

3. If £(0) ~ —ued ~ 1, then (o, 22 —7*u), £ 1. If —ued £ 1, then (, x) is unramified and (c, 2),2_ kg ~

(a,+/Tu) # 1. Let o= (8 — \a) Y, where 32 —a £ 1, q—Irrk(\/—,\/;”k(H) Then f(#) ~ 1 and

OGO
k(ve, ¥/m){q)
4. (z,—mu(2® — 7*u)), ~ (z,7* 1 u?) ~ 1, so the second algebra B is unramified. To prove that B is

nontrivial let us do it for the algebra B’ = B® k(C)(y/a). If § = n*/?y € K(\/7p), p € O%, K is of odd
degree and unramified over k(y/a), then f(0) ~ (1 — u)(u — d) and

(rue,z — w¥)g ~ (

5 N( N )
11O ™\ K (mp) (V@) Irr(9))

Anyway, we can find such K and pthat p —u~pu—06 £ 1, 4 # fi, § # fi. Then BITT(O) # 1. Case VI is
considered.
It is convenient to divide the last case into several parts.

Lemma 21 Let case VII take place, i.e.
f(@) = (& — 7€) (@® — 7 u) (& — 7™v)* — 7"5),

where e,u,v,8 € O, s,k,m,r > 0, wfu, 77§ % 1,k < r. Then the following subcases do not intersect
and cover case VII.

VIL. s=1,k>1andif m =1, then v # e.
VII[. s=1,k>1,m=1, and v = &.
VIL. s>2, k>4, m=1.
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VI3, 1<k<3andk < 2s.

Proof. If s > 1, m > 1, and k > 3, then one can use replacement z = z'72, y = y'n®.

Theorem 23 Let f be as in case VII,. Then the group »Br C is generated by the class of the algebra
(m,a) and the classes of the following algebras.

Let if k = 1(mod?2), then 2m < k, and if k = r = 0(mod?2), 2m > k, then @ # 6. Then the first
algebra is

i. (—maNg(e— 7*/2=1r) p), if k= 0 (mod?2),

where T € O% such that K|k is of odd degree and unramified, p = ITTK‘k(Wk/ZT) and T satisfies the
conditions: (12 —u) £ 1, ¢(1) ~ 1,

22 -6, ifk=r and2m >,
(x —v)2 =94, if k=7r=2m.

1, ifk<ror2m<r,
¢(z) =

ii. (o, 2% — 7*u), if k =1 (mod?2) and uel) ~ 1, where

1, if 2m <,
e v2 -4, if2m=r,
-0, if2m >, r is even.
iii. (o, ), if k=1 (mod?2) and ueyp £ 1.
The second one is
a. (=7(u® = §)x()Npj(e —vn™ ™ — pm™/?71), q), if r = 0 (mod2),

where 1 € O} such that L|k is of odd degree and unramified, ¢ = IrrL|k(7rmv+7r”/2/,¢) and p satisfies
the condition: (u? — &) # 1 if k is even, and (u® — 8)x(n) # 1, otherwise,

1, if 2m < k,
v —u, if2m=k<r,
x(z) = —u, if 2m >k, k <,

22 —u ,if2m>k=r,

(x4+v)? —u, ifk=r=2m.

b. (a,(z — 7™)% — 7"8), if r =1 (mod?2) and 6(e — 7™ Lv)x(u) ~ 1.
c. (a,z — ™), if r =1 (mod?2) and 5(e — 7™ 1v)x(n) # 1.

Otherwise we have

1. The first algebra is from ii) or iii), and the second one is (—mued,z — ™), if k,r = 1(mod2),
k<2m<r.
2. The first algebra is (—mwued, x), the second one is either (a,z? — w*u), provided ue ~ 1 or (a,x —

7k +0/2) " provided ue £ 1, if k,r =1 (mod2), k < r < 2m.

3. If k=1(mod?2), r =0 (mod?2), and 2m > k, then the first algebra is from ii) or iii), and the second
one is
- (7, (x — m™w)% — w"3) in the following cases:
1. 2m < r and ue # 1.
2.2m=r,uet1l, andv? -4 ~ 1.
3. 2m>r,ue 1, and —1 £ 1.
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- (m,t) in cases
1.2m=r,ue ~1, and v?> — § # 1.
2.2m>r,ue~1,and -1 ~1,
where t = IrrK(m)‘k(\/%), K is as above, w € O} \ (0%)?, and —e(w —u) # 1 in K.
- (a, Irrgp (7™ v + 7/2N)) in cases
1.2m<r,ue~1. v2—§£1.
2.2m >r, ue £ —1,
where X € O%, and \* —§ # 1 in case 2m < r, A2 —§ ~ —1 in case 2m > r. Note that if
2m < r, then one can suppose K =k, and if 2m > r, then this is true as soon as k # K.

- (a,Irrk (7™n)) if 2m =1 and ue ~ v? — §, where n € O, ue((n —v)? —J) # 1.
4. (—m(e—7"2w), z—7*?w), (a(x? —7*u), 7% (x —7*2w)), w2 —u £ 1, if k = r = 0 (mod 2), 2m > k,

a=06 and if k=2, thene®> —u ~ 1.

5. (m,x —me), (m,2°> —7*u), ifk=r=2,m>1,a=25 and > —u £ 1.

6. If k=7 =1(mod2), 2m > k, then the first algebra is (z, —mu(x® — 7%u)) and the second one is
- (—7ued, x), if 4 # 6.

- (a,2? — 7*u), if a = § and either —ue ~ 1 or 2m =k + 1.
- (It mayk(0)), 0 = Vrku(l + /mu), if 4 = 8, —ue £ 1, and 2m > k + 1.
k

Remark 3 The algebra (a(z? — w*u), 7%/ (x — 7%/?w)) from 4 does not split by any quadratic extension
of scalars.

Proof of the theorem.

7). In view of f(7*/?7) ~ —wa(e — 7%/27) in K the algebra is unramified. We also have (—=maNg (e —
w2 71T), oo ~ (—=maN (e — 7*/>711), T, (we — 7*/?77)) (=maN (e — w*/>~'7), wN (e — Wk/Q ) # 1.
ii), ). f(0) ~ uew, so in iii) the algebra (o, z) is unramified. Moreover, in i) we have (a, 22 —7*u), # 1
and in 47) (@, T)y—re # 1.

a). f(m™v +7"?p) ~ —m(e — 7™ty — 77271 ) (u? — §)x(p), so the algebra is unramified. If k is even,
then

T, k2 fu — 7™y — 7T/2
(=max(p) N k(e — o™t — WT/Z_IN),CI)anku ~ (k‘(\/l;)}%fv? — 7\7/’:u)( T = ﬂ:u)))> .

The latter algebra is nontrivial if and only if x(u) is not a square in L. We also have (—m(u? —
8)X(u)Npjk(e = vr™t =721 ) @)y e ~ (=7 (1® = 8)x (W) N (e — vr™ 1 — a2 1) T, (me — 7™ v —
a2 pN)) ~ (m, (42 = 8)x (1)), and this algebra is nontrivial iff (u? — §)x(u) is not a square in L. Anyway,
the algebra from a) is nontrivial.
b), ¢). We have f(7™v) ~ §(e — *2v)x (1) and (o, — 7™v); _re % 1.

Let us check now that the algebra from ), %), 4i%) is not isomorphic to the algebra from a),b),¢) in
the corresponding subcases.
1). Let firstly k,7 = 1(mod2). We have (a,22 — 7 u)y_rgmy ~ 1 & (o, (2 — T™0)% — 778)g_gmy.
Furthermore,

(a7$)z277r"’u ~ ( < \/ﬂ-_u > 76 17
k(vmu)(z?2 — w*u) (/D (z2 — 7ku))

but

a, —m"u

k() (2% — mhu)(v/D(@® 7rku))> ~ b

(a, — T™0) g2 _phy ~ (
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Similarly one can check that (a, (x — 7™v)2 — 778),2_ %, ~ 1. Finally, we obtain
(0,2 = T™0) (g—gmy)2_grs ~ (@, VT6) # 1, and (a,z” — wku)(w_,rmv)z_,,r(; ~ 1.

2). k =0(mod?2), r = 1(mod2). Then the algebra from i is nontrivial at z — e, but (o, (x — 7™v)? —
776)z—me ~ 1. Moreover,
k/2—1

(_ﬂ-aNKlk(e -m T)7p)(m—7rm'u)2—7r’“6 ~

—6aN (e — 7*/2=11) | T, (7™ + VATd — wh/217)
E(Vmd){(z — 7m0)2 — 178) (1/C((x — 7™)2 = 773)) )

One can choose 7 such that if 2m = k, then 7 # . For this 7 the latter algebra is trivial in view of

v (m™v — 7*/277) < r/2. On the other hand, (a,z — T™V) (g —gmv)2—ars P 1.

3). k=1(mod2), r =0 (mod?2). The algebra from a) is nontrivial at & — e, but (a,2? — 7¥u) is trivial

at this place. We also have (a, )2k, # 1 and

1_ r/2-1

(_WQNle(e —or™" ”)7 q)w2—7rku ~

(—au(e —vr™ Y T, (Vrku — ™o — 7TT/2/I/\)> N
K(/ra) (@ — rhu) (VD (@ — rFu)

—au(e —vr™ 1) | —r™v o1
k(vmu){x? — wFu)(v/D(x? — 7Fu)) '
4). k,r = 0(mod2). We have

(_ﬂ'aNK\k(e - ﬂ-k/z_l)ap)x2—7r’“u ~ ( i HJ(TU — \/ﬂ) ) .

k(Va)(z® — mhu)(v/ C(a? — mhu))

This algebra is nontrivial since 72 —u # 1 in K. So the algebra from 4) is nontrivial either at  — e or at
22 — ¥u. But the algebra from a) is nontrivial at one of these places, and trivial at the other. Therefore,
these algebras are not isomorphic.

Consider the remaining cases.

1. Let w be a unit from a sufficiently large unramified extension K of odd degree over k, such that

{ w A —ued,

w—u~ —e,

and t = It g /mm) i (VT*w). Then f(Vrkw) ~ —e(w —u) ~ 1 and

m —wued , /Tw
(—mued, x — 7v)y ~ (W) # 1.

To finish the proof of this subcase it is enough to check that the extension of scalars by 1/a does not split
algebra (—mued, z — 7™v). Indeed, this extension leaves us in subcase VII.7.
2. All algebras are unramified. Since f(7(*t1)/2) ~ ue we obtain (2? — 7Fu), . +1)/2 # 1. Furthermore,

(2 —aFHD/2y 5 o~ ( @, v & 1.

k(v/mu){x? — whu)(/D(x? — wku))>

The nontriviality of the algebra (—mued, z) can be checked similarly as in the previous subcase. Finally,
the extension by /& leaves us in the same subcase, so it does not split the latter algebra.

3. The nontriviality of algebras from i) and 4ii) was already shown. Let firstly 2m < r. Then f(7™v +
7"2\) ~ ue(\? = 0), so if ue ~ 1, A2 —§ # 1, then (a, Irr(7™v + 77/2§)) is unramified. In this case the
first algebra is (o, x~7*u), it is trivial at & — we, but (a, Irr(7™v + 77/26)) p—re # 1.
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If ue # 1, then f(r™v+n"/2X) ~ 1, provided A2 —§ + 1. Therefore (m, (z—7)2=7"8) [y (xmypar/2n) #
1. The first algebra is (o, ), (@, Z)z_xe # 1. On the other hand, (7, (z — 7%)2 — 770)4_re ~ 1.

Let now 2m = r. We have f(7™n) ~ ue((n — v)? — §), so algebra (a, Irr(7™n)) is unramified. It is
nontrivial at z — we. Since ue(v? — §) ~ 1, the first algebra is trivial at z — me.

If ue £ 1,02 =4 ~ 1, then (7, (z —7™v)? — 7"6) rrr(xmy) # 1. In this case the first algebra is nontrivial
at © — me, and this is not true for the second one.

Suppose ue ~ 1 and v2 — § £ 1. We have f(Vn*w) ~ —e(w — u) ~ a in K(y/7w). So

w,t
(m,t)e ~ (W) ) ~1,
and algebra (m,t) is unramified. It is not isomorphic to (a,z) at © — me. It is easy to check that
f(7rm71/3) ~ ue ~ 1. Hence (ﬂ—’t)I”"k(%nk(ﬂ'm_l/s) ~ (Ym,w) # 1.
Finally, let 2m > r. One can consider this case by analogy to the previous ones.

4. We have f(7*/?w) ~ —m(e — 7% 2w) and a((7*/?w)? — 7%u) ~ 1, so the both algebras are unramified.
(—m(e — 7% 2), & — 7%/ 2w) 42 _ray ~ (m,w — \/u) #£ 1. Let us check that the second algebra is nontrivial,
not isomorphic to the first one, and does not split by any quadratic extension of the scalars. To prove
this it is sufficient to show that

B = (a(e? — n*u), m/2(5 — 7/°w)) @) K/, VA)(C) £ 1.
Assume v = /7, § = v*\/u(1 +v). Then f(#) ~ 1 in view of § = u + v?u,1 > 0 and if k = 2, then
e —y/u # 1. Thus
v, w—+u )
By_g ~ £ 1.
’ (k(ﬁ, Va)(z — )

5. In this case (m,z — 7€) 2_r2y ~ (T, e — J/u) £ 1 and (7,22 — 72u)y_re ~ (7,2 —u) o 1. Moreover,
(myx — me)g(m, 2% — 72u)) g e ~ (M, (x — T™0)2 — 770y re ~ (m,€2 —8) &£ 1.

6. We have (z, —mu(z?—7*u)), ~ (z, 7T u?) ~ 1, therefore the algebra (2, —mu(x? —7*u)) is unramified.
Let K, w, and t be as in subcase 1, but

{ vew(w — §) # 1,
—u(w —u) # 1.

Then f(Vrkw) ~ —ew(w — u)(w — §) ~ 1 and

(z, —mu(x? — 7¥u)); ~ (\/ﬁ’ —u(w — u)) # 1.

K(vruw(t))
Consider the second algebra. For @ # & one always can find w and K such that
—uedw £ 1,
—ew(w —u)(w — §) ~ 1.

Then f(V7*w) ~ 1 and (—7ued, z); ~ (—uedw,/7Tw) 7 1. So the second algebra is nontrivial. We also
can find such K, w, and ¢ that

w ~ —ued,
w—u % —u,
w— 4§ A —4.

For such w the first algebra is nontrivial at ¢ and the second one is trivial at .

Let now % = 6 and 6, = V7Fu(l + \/7uw). Then f(6,) ~ —ew(uw — 7™~ F+D/2) (if 2m = k + 1 let
4w # 0). In case 2m > k + 1 we have f(6,) ~ —ue ~ 1 for any w, and otherwise we can find w such
that f(6.) ~ 1. Thus for ¢ = Irr g /ze) k (Ow)

(o, 2% — 7Fu), ~ (M> # 1.

K(vmw){q)
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Let w =48, 2m > k+ 1, and —ue ¢ 1. Then for § = 8,,, K = k,w = 1 we find f(§) ~ —ue ~ a and
the algebra («, ¢) is unramified.

(00 kN<a4¢ﬁ_—¢ﬁa1+wmm¢ﬁﬂ+¢ﬁa1—wm»>%L

k(vmu)(y/D(z? — whu))

Both algebras (o, z?> — 7Fu) and (a, q) are not isomorphic to the first algebra from the list. Indeed, the
extension by 4/« leaves us in the current case and subcase. So it does not split the first algebra.
The theorem is proved.

Theorem 24 Let f be as in case VII], i.e.
f@) = (& —mv(l +7'1) (@2 — 7*u)((x — 7v)2 —7"6), 1<k <r, 7fu,7"8 £ 1.

Then the group oBr C is generated by the class of the algebra (m,a) and the classes of the following
algebras.
The first algebra A is

i. (mEw),z —7*?w), if k =0 (mod?2),
ii . (o, 22 —7*u), if k =1 (mod2) and uv ~ 1,
iii (o, ), if k=1(mod2) and uv #£ 1,

where w € O, w? —u £ 1, and

3 —v, ifk>2, Loifr>2,
E(w)—a{ w—wv, ifk=2. }{ (w—v)2 -6, ifr=2. }

The second algebra B is
a . (a,z—mv),

if r =1(mod2), 1l =0(mod2), Tvd€ # 1, where

e [ 1 ik>2,
Tl VP —uifk=2.

b . (o, (z — )% — 7"5),

if r =1(mod2), l =0(mod?2), Tvd€ ~ 1.
c . (mvdT€,x — ),

ifr,l =1(mod2), 21+ 2 <r.

d . (malNg(n(v)¢(7);p),
if either r,1 = 0(mod2), 2l +2 <r, or r = 2 (mod4), 2l +2 > r, where

1, if k> 2, —vT if204+2<r,
nz)=4 V?—-uifk=2<r, (@) = z—or, if2A+2=r,
(x+v)2 -0, ifk=r=2, z, if20+2 >,

v € O, K|k is of odd degree and unramified, p = Irrg;(mv +72y), 2 =8 o 1, and if r = 2,
then (y+v)? —u ~ 1.

e . (m,(z—7mv)?—7"d),
if r=0(mod2), 1l =1(mod2), and either 2l +2 =1 or 2l + 2 < r and —71v€ #£ 1.
f. (a,0—mv—7n"p),

ifr =0(mod2), 1l =1(mod2), 2l +2 <r, and —7v€ ~ 1, where p € Of and p? — & £ 1.
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g . (m,(z —m)? —7"d),

if r =0(mod4), 2l +2 > r.
h . (a,(z — mv)% — ")),

ifr,l =1(mod2), 2l +2 > r.

Note that in d) if r > 2, then one can assume K =k, p=x —7v — /2y,
Proof.
i). We have f(7*/?w) ~ mE(w), so A is unramified.

Agcz_ﬂkuN( ™, W= VU )741.
k(vu)(z? — mku) (/D (z? — mhu))

ii),iii). Then f(0) ~ uv, so (o, x> — 7*u), # 1in case uv ~ 1, and (a, x) is unramified otherwise. Finally,

(@, 2)g> iy # 1.

It easy to check that f(mv) ~ n"t+1ryd¢ and for even r and arbitrary u € O% f(n¥ + 7"/%p) ~

(u? = )n(p)C(pymmin{iHtr/2},
a. We have B(;_ry)2_nrs # 1 and

() (g—mv)2—1ms ~ (ﬁ) ~1,

(a, % — 7"U) (g—ro)2—rs ~ (W) ~1,

(7TE(’UJ),IE - 7rk/2w)(zf7rv)277r"6 ~ (

so A+ B.

b. f (77:1)) ~ 1, therefore B, ., # 1. On the other hand, (o, 2> — 7*u), ., ~ 1. For the remaining A we
have A,2 1k, # 1, but Bya_ ik, ~ (@ (7r,u) ) ~ 1.

c. Let 0 =7v+ \/7TT)\ Then f(6) ~ —vrEA\ — &) in k(V7N). Birr(g) ~ (VOTEN, V7). The conditions
—vTENMA — 0) ~ 1 and vdTEX # 1 can be satisfied in a sufficiently large unramified extension of odd
degree of k. Thus B # 1. We have also (, &) 1rr(9) ~ (@, 70) ~ 1, (a,2% — %) 1.p(9) ~ (@, (0)?) ~ 1,
and (mE(w)) rr(g) ~ AE(w), 70 — 7%/?w) ~ 1. So A £ B.

d. B is unramified since f(wv + 7"/%7) ~ an(y)¢(y)n.

™ ? Ha’(fya' - \/S)
B(o—rvy2—ams ~ < k(\/gx ) ) # 1

The algebras (a, ), (o, 2% — 7Fu) split by v/J, so they are not isomorphic to B. Finally, (7E(w),2 —
T2W) (4 gpy2grs ~ (m, 70 — 78/2w + 77/2V/5). If 7 > 2, then the latter algebra is trivial, and A # B
again. Let k = r = 2. Then A,2_,2, # 1 and By2_p2, ~ (m,[[, (77 + v — Vu)) ~ 1 in view of
(y+v)2—u~1lin K.
e. In e) and f) we have

20N (2 (2 —our, f2l4+2 <7,
flmo +7"Zp) ~ (0" = S)npCp ~ (u 5)6{ p—ur, if2A+2=r.

If either 21 + 2 = r or —7v¢ # 1, then there exists u € O% such that u> — & # 1 and f(wv + 7"/?u) ~ 1.
For such p we have Brp,(nyinr/2p) ~ (m, 4% —8) o 1. Since r > 2142 > 4, then By ~ 1 and Byo_xy, ~ 1.
So B ¢ A.

©)
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f. In this case f(mv + 7"/%p) ~ @, so B is unramified. Let § = 7v(1 4+ 7¢+1/3) € k(IT), IT = {/7. Then
f(8) ~ —TvE(rHH8/3¢% — 776) ~ 1.

a, T3y — r/2y a, T34
Brrr(g) ~ A ~N\ Ty ) 7 L
(M) (Irr(6)) k(ID)(Irr(6))
Moreover, A ¢ B. Indeed, if k is even, then B,>_ &, ~ 1 since B splits by 1/u, and if k is odd, then
(a, 2% — ) 1p(g) ~ 1. Finally, for odd k (a,2),2_ kg # 1 and Bya_ gk, ~ (o, —7v) ~ 1.
g. Let pu € O} such that pu> —§ £ 1, un(p) # 1. Then f(rv + 7"/?p) ~ 1 and BITT(MHFT/ZH) £ 1.
But B, ~ 1,50 B # (a,2? — 7%u). The remaining algebra A is not trivial at 22 — 7Fu, but Bz x, ~

(m, (V7hu — mv)? — 778) ~ 1 since r > 2.
h. By rpintsy ~ (@@ 2027%) — 776 £ 1. We have also B, ~ (a,7%0?) ~ 1. If k is odd, then

B2k ~ (a, (V7ku — 7v)? — 77§) ~ 1 since r > 2. Finally, if k is even, then B,2_,x, ~ 1 in view of B

splits by +/u.
Consider the next case.

Theorem 25 Let f be as in case VIIs, i.e.
f(@) = (z = n°e)(z® — m*u)((x — mv)2 = 7"0), §>2,4<k<r, whu,a"0 1.

Then the group oBr C is generated by the class of the algebra (m,a) and the classes of the following
algebras.
If 2s < k, then the first algebra A is

. (o, ), if k,s =1 (mod2) and ue £ 1.
(a, 2% — 7*u), if k,s = 1 (mod2) and ue ~ 1.
(—mae,z — m*2w), if k = 0(mod2), s = 1(mod?2), where w € OF, w? —u # 1.
. (m, 2% —7ku), if k,s = 0 (mod?2) and —e £ 1.
(o, — 7%/ 2w), if k,s = 0 (mod?2) and —e ~ 1, w> —u £ 1.
(uermr,x), if k =1(mod?2), s = 0(mod2).
If 2s > k, then the first algebra A is
7 . (a,22 — 7*u), if k = 1 (mod?2).
8 . (at(w)m, x — 7 %w), if k = 2 (mod4), w? —u £ 1,

(=~ 2L S U

¢(z) = { 57—Z];;2Sif>,257= kaw # e.
9 . (m,2? —7*u), if k = 0 (mod4).
And the second algebra B is
a . (a,x—mv), if r = 1(mod2), —vd # 1.
b . (a,(z — m)% —7"d), if r =1 (mod2), —vé ~ 1.
¢ . (mav,x — v —a"2p), if r = 0 (mod?2), where p € OF, u> — 3 £ 1.

Proof. Let 25 < k. We have f(0) ~ uer®**, f(nv) ~ —vén™*!. If k is even and w? — u £ 1, then
f(@*2w) ~ —ean®. If r is even and p? — & £ 1, then f(wv + 77/ p) ~ vam.
1. (a, m)m ~e # 1.
2. (a,2? — hu), £ 1.
3. (—mae,x — /?w) y_rse o 1.
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4. (71',:1:2 - Wku)w_ﬂ.k:/Zw 76 1.

5. f(m*th) ~ —w%e ~ 1, 50 (@, ¢ — 7/?w) 41 ~ (o, w11 £ 1.
6. f(V/7Fy) ~ —ey(y —u) in k(,/77). So (uew,x)l.w(\/m) ~ (uey,/TY) # 1, provided v € O% satisfies
the condition v £ ue, v —u # —u.
Let now k < 2s. If k is even and w? — u o 1, then f(7*/?w) ~ 7*/2at(w).
(a, 22 — 7Fu)y qee £ 1.
(b(w)m, x — 7% 2w) o ay # 1.
. Let v € Of, v* —u # 1, and £(7) # 1. Then f(x*/?y) ~ 1 and (m, 22 — 7%u) 1y (b2 # 1.
(@, T = T)(3—rv)2—7s # 1. On the other hand, A(;_ry)2_grs ~ 1.
(a,(x — )2 — 1) y_ry # 1. A o B since B is trivial at all the places from 1-9, at which A is
nontrivial.
c. (mav,z — v — WT/ZM)(E_W,U)Q_ﬂ-rd ~ (m, u — /) # 1. On the other hand, Ag—rvy2—grs ~ 1.
The theorem is proved.

ISR

Let us pass to the last case.

Theorem 26 Let f be as in case VII3, i.e.
f(@) = (@® —7*u)(z —°e)((z — 7™)? — 7"),

where k € {1,2,3}, k < 25, k < r, 7*u, 70 # 1. Then the group Br C is generated by the class of the
algebra (7, ) and the classes of the following algebras.
The first algebra A is

i. (o, 2% — ), if k =1 (mod?2).
ii. (mE(w),z —mw), if k=2, where w? —u £ 1,

azx if r > 2,

ar(z? =6) ifr=2,m>1,a#4
z, ifr=2m>1lLa=24¢

az((z —v)2 =9), ifr=2,m=1.

E(z) =

1. If r < 2s, r < 2m, then the second algebra B is
a. (a, (z — m™v)?2 —77d), if r = 1 (mod?2).
b. (7, (z — 7™v)? —7"6), if r = 0(mod?2), k +7/2 = 0 (mod?2).

c. (nNge(S(w)), Irrg e (7™ + 7)), if r = 0(mod2), k+r/2 = 1(mod2), and if k = r =
2,m > 1, then @ # 0. Here pu € O}, K|k is of odd degree and unramified, p*> —§ +# 1. If
k =1r =2, then the additional condition on u s

pr—u~1, ifm>1,
(p+v)?2—u~1, ifm=1.

Note that if k = r = 2 does not hold, then one can assume K = k.
. —u, if k<,
S(:c)za{ ?-{—z];%?f;rr:’—r } 22 —wu, ifk=r <2m,
’ - (x+v)2 —wu, ifk=r=2m,
2. If k<2m < r, m < s, then the second algebra B is
a. (awém,x —1™v —7"2p), if m+k =1(mod2), r = 0(mod2), where u> — & # 1 and
—u, if 2m >k,
é‘_

v?2 —u, if 2m = k.
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=2

. (=0vém,z — ™), if m+ k=0 (mod?2), r =1(mod2).

. (o, (x — 7m™0)2 —7"8), if m+ k,r =1 (mod?2) and —dvé ~ 1.

. (o, —7™0), if m+ k,r =1(mod2) and —6v€ # 1.

. (m,(x — 7™)? = 776), if m + k,7 =0 (mod2), v€ = —uv # 1.

f. (a,x —7™v—a"/2u), if m+k,r=0(mod2), v€ = —uv ~ 1, > —§ £ 1.

a0

®

3. Let2s <r, s <m, and if s =m, then 0 # €. The second algebra B is

. (woYm,x —7™0), if k+ s =0(mod2), r =1 (mod?2).

(a,z —7™v), if k+ s,7 = 1(mod?2), Yud £ 1.

. (a,(x —7™v)2 —776), if k+ 5,7 = 1 (mod2), Yud ~ 1.

. (—muap(p),x — 70 — 7%p), if k+ s =1(mod2), r = 0 (mod?2), where > — 3§ # 1 and

oo

a6

—e, ifs<m, 2s <,
v—e, ifs=m, 25 <,
r—e, ifs<m, 2s=r,
T4+v—e, ifs=m, 2s=r,

P(z) =

if 2s <, then ¥(x) =1 does not depend on x.
e. (m,(x —7™v)2 —7"d), if k+ s,r =0 (mod2), 2s <7, —uh £ 1.
f. (a,x —a™v —a"/2u), if k+s,r =0 (mod2), 2s <r, —uth ~ 1, u?> — 6 £ 1.
g. (mx—n%e), if k+s,r=0(mod2), 2s=r.

4. If2m <k (i.e. m =1, k=3, s > 2), then the second algebra B is

a . (maw,z — v —7"2p), r =0(mod?2), p? —§ #£ 1.
b. (a,(z — )2 —7"68), r = 1 (mod2), —vé ~ 1.
c. (a,z —mv), r=1(mod2), —vd # 1.

5. Ifk<2m=2s<r, e=v(l+7l7), I >0, then the second algebra B is

a. (a,x —7™0), if k+m+1,r =1(mod2), —uvrd # 1.

(a, (z — 7™v)2 —7"8), if k+m+ 1,7 = 1(mod2), —uvtd ~ 1.

(7, (z —7™0)2 —7"8), if m+1 < r/2, k+m+1,r =0 (mod?2), and either m+1 < r/2, uvr #£ 1,
orm+1l=r/2

d. (a,z —7™v —7"?p), if m+1<r/2, k+m+1,r =0(mod2), and uvr ~1. p? —§ £ 1.

. (—ruword,x — ™), if m+1<r/2, k+m+1=0(mod2), r =1 (mod?2).

(7T (), x — ™0 —7""2p), if m+1<r/2, k+m+1=1(mod2), r = 0(mod2), where u> -3 # 1,
and

&

e

=0

| avru, ifm+1<r/2,
T(z) _{ —au(z —vT), ifm+1l=r/2.

g (—mupo,x — 7™ — 72, if m4+1>1)2, k+7/2=1(mod2), r = 0(mod?2).
h. (m, (z — 7™v)2 —7"68), if m+1>1r/2, k+7r/2,r = 0(mod?2).
j- (o, (x —7™0)2 —770), if m+1>7r/2,r=1(mod2), k+1+m =0(mod?2).

6. Ifk=r=2, m,s>2,u=24, then the second algebra B is

a. (m,z? — 7Fu), if =1 ~ 1.
b. (a(z? — 7*u),z — Tw), if —1 £ 1, where w? —u & 1.
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Proof.
i),ii). (o, 2% — mFu)y_rse o 1, provided k is odd. Otherwise we have f(7w) ~ T7E(w), so A is unramified.

Moreover,
T, w—u
E — ~ 4 1.
(Bl = moin-ovu~ (g TSR —ay)
l.a. By qse ~ (a,7") # 1. If k is odd, then (A® B) 2 ky ~ (X — 7€) g2_pky ~ (@, 4/Tu) # 1,50 A £ B.
Let k is even. Then B2+, ~ 1, and A # B again.
1.b. If r is even, then f(7™v + 7n"/2p) ~ w*+7/28(). In case 1.b) one can find K, 4 such that S(u) ~ 1
and p? — & o 1. Therefore By, (xmyyqrr2yy ~ (1,4 —8) o 1. For odd k Aye_niy ~ (@, /Tu) # 1, but
B,>_ .+, ~ 1. Let k be even. Then r/2 is even, so r > k and B,>__+, ~ 1. Anyway, A ## B.
l.c. We have B(y_zmy)2_nrs 7 1. On the other hand, for odd k A(y_zmy)2_zrs ~ 1. Let k is even. If
r > 2, then A(w,ﬂ.mvp,ﬁr& ~(m,—mw) ~1. Let k=r = 2.

7 L (7 + 7 1) = va))
Bz ( R ) ) L

Thus, A £ B.

It is easy to check that in 2) f(7™v) ~ —wm + k +rdév and for even r f(z™v + 77/%p) ~ (u? —
d)évm™ k. Moreover, E(w) ~ aw, since k < 7. So in 2) Ay_,se # 1 and A2 &, in case i) as well as in
case ii).

2.a. Let firstly m be even and k be odd. Then Bya_,x, ~ (v/7u,—aw) and By s ~ (m,—v). There is
exactly one nontrivial algebra among two last algebras. So B o 1 and A #4 B.

Let now m be odd and k be even. Then B, s, ~ (awénm, —mv) ~ (7, af). Furthermore, the algebra

B,>_ ., is nontrivial iff the algebra (7, &) is nontrivial over k. Thus, B # 1, A £ B again.

2.b. Assume 0 = 1™V +V7"A, A€ O), p= IrrK(m”k(O). We have f(0) ~ v€A(A —0) in K(V7).

B - (m —605)\)
! KW ) )’

One always can find K, X such that B, # 1. If k is odd, then A, ~ (o, 7) ~ 1 over K(v/7)\) and A # B.
Let k be even. A, ~ (e w,7™v + V7" A — mw) ~ 1.

2.c. By_pmy 70 1. In addition, By ;s ~ 1,80 A & B.

2.d. If k is odd and m is even, then B,z &, ~ (a,/7u) £ 1 and By_rse ~ (a,7™) ~ 1. Otherwise,
By_nse # 1 and Bya_ r, ~ 1.

2.e. Let u? — 3§ #£ 1, then f(n™v +7"/?p) ~ 1 and Birr(amognrrzg) # 1. Byogae # 1.

2.f. Assume Il = /7, 6 = 7™v + a™II, and p = Irrym) (). We have f(0) ~ 1, B, ~ (a,II7™),
B, nse ~ (a,m™). There is exactly one nontrivial algebra among the two last algebras. On the other
hand, A, rse # 1 and A, # 1. Indeed, if k is odd, then A, ~ (a,—7*u) and A4, ~ (ewr, —7w). So
B #1and B # A.

In 3) f(n™v) ~ 7kt H5u5y and f(n™v 4+ 77/2p) ~ —7Ftsup(p)(u? — 6), provided r is even. If k
is odd, then A > &, ~ (a,+/7u) # 1. If k is even, then A, ,s. ~ (Taw,—7w) # 1. Anyway, A is
nontrivial at two these places. On the other hand, A;_zmy)2_zrs ~ 1.

3.a. This case can be considered by analogy with 2.b).

3.b. We have B(,_rmy)2_rrs # 1 and Ag_zmy)2_grs ~ 1.

3.c. B # 1since By_;my # 1, and B ¢ A in view of By_zse ~ 1.

3.d. By_nmy)yz_ars ~ (1,1 —V/8) # 1, provided p?> —§ # 1. So B # 1, A.

3e. For > =6 £ 1 f(x™v+7"/%p) ~ 1 and By _pmy—grrzy # 1. By_gee ~ 1.

3.f. Let 0; = 7™v + 7°II¢ € k(IT), I = %, pi = Irryn(6;), i = 1,2. Then f(6;) ~ —mFury(x? 11 —
w"d) ~ —u ~ 1 and B, ~ (a,w°II*) over k(II). So there is exactly one nontrivial algebra among
B,;, i =1,2. On the other hand, A, % 1. Therefore, B 1, A.

3.8 Let ni =T, Vi € O;(a Vi ;é €, q; = ITT’K|k(ni): i=1,2. Then

(i —v)2 =4, if m =s.

f(m)~—u(%._e){ V=6, if m> s, }
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We require y1 — e o# v —e and f(n;) ~ 1,4 =1,2. Then By, ~ (m,(—1)*(v; —e)) and Ay, ~1,i=1,2.
Since there is exactly one nontrivial algebra among B,,, i = 1,2, B # 1, A.

In 4) we have f(mv) ~ —vdn™ ! and f(zv + 7"/%p) ~ v(u? — &), provided r is even. In this case
A= (a,2? —7m3u) and A,y oo £ 1, Aga_p3, 2 1.
4.a. By_pse ~ (oum,—mv) # 1, Bya_ 1k, ~ 1, so that B £ 1, A.
4.b. B # 1in view of By_,, # 1, and B £ A since B, _ s, ~ 1.
4.c. Finally, in this case By_,se # 1 and By2_ 3, ~ 1.

In 5) f(n™v) ~ —rk+tm+HTyyr§ and if r is even, then

ahtdmypr, if m+1<r/2,
f@™o+77%p) ~ (u2 = 8){ —mh iy —vr), it m+1=1r/2,
—rktr Py, it m 41> r)2.

We have also A, 7se £ 1 and Ao v, # 1.

5.a. B(z,wmv)z,ﬂ.rtg 76 1 and A(z,ﬂ.mv)z,ﬂr(; ~ 1.

5.b. By_ymy # 1, Bya iy ~ 1.

5.c. fm+1< r/2, then f(n™v + n"/?p) ~ 1, provided p?> — 6 # 1. Otherwise, f(zn™v + 7"/2u) ~
(u? — 8)(vr — p), and we always can find such K,p that f(7™v + 7"/2p) ~ 1 and p? — § # 1 again.
Anyway, Bryp(gmyqarrzpy 7 1. B # Ain view of Byz_ gk, ~ 1.

5.d. Let 0; = 7™v 4+ 7T p; = Irrp k(05), i = 1,2. Then f(6;) ~ uwvr ~ 1 and By, ~ (a, T ),
So there is exactly one nontrivial algebra among By, @ = 1,2. On the other hand, A,, 7 1. Therefore,
B A£1,A.

5.e. Let 6 = 7™v + V7" A € K(Vw)) and p = I'rr(8). Then f(0) ~ uvrtA(A — §) and

B~ <\/7r_/\, —/\uvT(S)
! KW )

One always can choose K and A such that By + 1. Furthermore, B 4 A since A, ~ 1.
5 f(x™v4+n"/2p) ~ 7T (p), so B is unramified. A(g—gmv)2—ars ~ 1, but Bg_gmyy2_grg ~ (m, u—/3) #
1.
5.g. B(w,ﬂ.mv)zfﬂ,r(; 76 1 and A(wiﬂ-mv)27ﬂ—7‘6 ~ 1.
5h. In view of f(x™v + 7"/%p) ~ —up(u® — §) we can find p such that f(7™v + 77/?p) ~ 1 and
(u? = 8) # 1. Then By, (pmyinrr2yy # 1. Moreover, Bya_ iy ~ 1.
5j. Bz_nse ~ (a, ") # 1. Finally, B # A since Ag2_ r, ~ 1.
6. A= (rw,x —7w), w? —u £ 1. So, Aga_ky # 1 and Ay pse ~ (mw,—7w) ~ 1. Let —1 ~ 1. Then
By _qse ~ (m,—u) £ 1. Thus, B £ 1, A. Let now —1 # 1. In this case By_ny ~ (a(w? —u),z — 7w) ~ 1,
so B is unramified. Finally, By se ~ (—uq, —7w) # 1.

The theorem is proved.

5 Splitting type (1,4).

This section is devoted to case deg f1 = 4, deg f» = 1 and the reduction is bad.
In our further considerations we will need lemmas from the previous sections.

Lemma 22 | ,BrC| = 4.

So it is enough to find one unramified and nontrivial algebra that is not isomorphic to scalar algebra
(m,a). This algebra is not isomorphic to (m, @) by lemma 12.

Lemma 23 By an appropriate replacing of the variable x the polynomial f can be reduced to the form
f(@) = g(z)(z — 7le), I > 0,e € O}, g is irreducible, and either
I. g(z) = (22 — u)? + m™vx + 74, or
II. g(z) = 2* + 7hua® + 7™vx + 7746,
where k,m,n >0, u,v,d € O, and in case I u & (OF)?.
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Proof. Since g(z) is irreducible, then by Hensel’s lemma we have only the following two possibilities
for g(z).
I. g(x) = (2 +p$+CI) p,q €k, p* —4q € k2,
II. g(z) = (x =7)*, v € k.

In the second case one can assume that v = 0, i.e. g(x) = z* + az® + b2® + cx + d, a,b,c,d € M.
Moreover, by replacing = — x — a/4 we can remove the monomial az®.

In the first case the same replacement gives (22 + pr + ¢)2 = z* + bx? + ez +d, so p = 0, b = 2g,
d = ¢*. Suppose b = —2u, @ = —q, then d = u® + A\, A € My, and g(z) = (2 — u)? + cz + A\. The lemma
is proved.

Theorem 27 Let the curve C' correspond to case I from lemma 23. Then the following algebra A is
nontrivial, unramified, and not isomorphic to the scalar one. (We define A = g(y/u) = 7™v\/u + 7" €

k(vu)).
1. v(A) =1(2), TAé(Vu) ~ 1 in k(\/u), where

z, if 1 >0,
5(””):{ if1=0.

x—e,

A= (7,2 —u).
2. v(A) =1(2), mAL(Vu) £ 1.
A= (a(z® —u),m(z - B)), BE€O), B2 —ustl.
3. v(A) =0(2), é(Vu) #£ 1 in k(Vu).
A= (m,z—7e).
4 0(A) =0(2), (/) ~ 1.
A = (ap(z),x — B), where p = Irry( ) (6), 0 = Vu(l + 7°w), w € Of = such that p+ dulw? €
Oiva \ Oiym)’s A=7"p.

Proof.
1. We have f(y/u) ~ A&(y/u), so A is unramified. Let K|k be unramified extension of odd degree and

1 € O} such that
{ €m) ~ 1,

n? —u Al
Then f(n) ~ &(n) ~ 1 and

2
T, N —u
AITTKlk(’?) ~ ( K() > 76 L.

2. We have A, g ~ (a?,7(z — B)) ~ 1 and

Ao ~< .TE2—U,’/T(,6—\/’17) )N].
T MV (VAL (2 - u) ’

since A§(vu) ~ m(8 — Vu) in k(v/u).

Thus, A is unramified. If n € O} satisfies the conditions

{E(n)~1,
772_UN1a

then £(n) ~ &(n) ~ 1 and

Alrrgu(m) ™ (a(n _;é)c’jr)(n — ﬂ)) ~ (a,T) # 1.
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3. Let u,s,6,p be from item 4 of this theorem. Then g(0) ~ u + 4u?w? £ 1, and f(6) ~ g(0)&(\/u) ~ 1.

So
s (i)~ (o)

4. In view of ap(f) ~ a(8 — Vu — 7°\/uw)(B + \/_+7rs\/—w ) ~ a(f? —u) ~ 1 we have A,_g ~ 1.
Furthermore, f(6) ~ pu + 4u?w? £ 1, therefore f(8) ~ 8 — \/u in k(y/u) and

4 ~< p, B—u >~1
P\ k() (VF©)(p)

Thus A is unramified. We prove its nontriviality. Assume that ( = Ju(1 + 1) € k(v/u, ), IT = /7.
Then f(¢) ~ (u2(2 + I)2I12 + 724 u)¢(v/u) ~ 1 and

AM(ﬁ,H)(C)N( (\(/Q H§< ﬂ)) ( ((26 )_<\/§)

since p(¢) ~ (€ = 0)(¢ = 07) ~ 2v/u(lly/u — w*wy/u) ~ II
The theorem is proved.
Let us pass to case II. It is convenient to introduce the following notations.

k mn 1 1 .
/4 -z —_ 44 k—2d, 42 m—3d n—4d d .
d= mln{2 3> 4}64 U3 , ht)=t"+m7 ut® + 7 vt+7 d € k(m)[t]
Then for a suitable unramified K|k of odd degree and w € O% we have

g(ntw) ~ 7*h(w) ~ h(w) € O (za)-

In addition, h(t) € k[t] is a monic polynomial which is of degree 4 and does not coincide with #4.

Theorem 28 Assume we are in case II, d < 1, and h(t) & k[t]>. Then the following algebra A is
unramified, nontrivial, and not isomorphic to the scalar one.

1. de€2Z, A= (m,z —nle).
2. del1+2Z, A= (m,Irrg(7%w)), w € O such that

{ i(él;)) 7; 11’7 where &(z) = { i’_i];d;fi -1

de2/3+Z, A= (m,z —7e).

- W

del/3+Z, A= (m,Irrg ym(m'w)), K and w are from 2.

o

del/4+ZU3/4+ Z, A= (a,z —7le).
6. de€1/2+ Z, A= (—nlrrg m(mw),ax), w € Of, h(w) # 1.

Proof. Since h(t) € k[t]? the equation y*> = ah(t), a € k* gives a variety in A”(Ek,). )

Therefore by Leng-Weil theorem for any N € IV there exists a sufficiently large extension K|k such
that |[V(K)| > N. So there exists @; € K, i = 1,2 such that h(d;) ~ 1, h(is) £ 1 in K. After lifting
K to K and ; to w; € Ok (K = K, #; = ;) we have h(w;) ~ 1, h(ws) # 1. If w is required to have
some additional property (for example, £(w) o 1), then one can consider a variety V in A%(k,)

{ = ah(t),
= a&(t) (lemma 6).
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1. Let K,w be as in item 2 of this theorem. Then f(7%w) ~ h(w)¢(w) ~ 1, so

™, §(w)
AIrr(wd'w) ~ (K(I’I"f‘(ﬂ'dw))) '/' 1.

2. f(rw) ~ h(w)é(w)m ~ m, so A is unramified. We have also

Azfﬂle ~ (ﬂ-a H (7Tl6 - dea)) ~ (ﬂ-aNK|k(§(w))) 76 L.

ceG(K|k)
3. f(mw) ~ wh(w) in K (7). Let w, h(w) # 1, then

4. f(m%w) ~ mwh(w) ~ 7 and A is unramified.

Aw—w’e ~ (77, H ("1:3 - Trgd(wg)g)):c—wle ~ (7Ta _WNK\k(w)) 76 1.
ceG(KIk)

5. In this case n = 1(2) and d = n/4 < min{k/2,m/3,1}. Let d < d' < min{k/2,m/3,1}, d" € Q such
that d' = p/q, p,q € N, (p,q) = 1, p,qg = 1(2). Under these assumptions f(7¢§) ~ 7w(P+79/7 ~ 1 in
k(n'/9). Therefore

1/q
dl Ot, ™

6. We have
Ay ~ (—7TH —m(w?)?, azx) ~ 1.

o

f(mw) ~ mlwh(w) ~ awr? in k(,/7), hence

—nIrr(rtw) , awn? >

A rr(mdw)
frrimiu) <K(ﬁ)(\/f(7rdw))<--->

Thus, A is unramified. It is nontrivial in view of f(7%/7) ~ 7%/7 — 7le ~ 1 in k(x'/7), so

Ar oo (—wH,,(w“” — 4 (w?)?), aw) N (k( -7, aﬁ)) L1,

k(ml /7Y (27 — 72) /) (@7 —

The theorem is proved.

Theorem 29 Let case IT take place and d > 1, h(t) &€ k[t]2. Then the following algebra A is unramified,
nontrivial, and not isomorphic to the scalar one.

0(2),de (1/3)Z, —e ~ 1.
A = (o, Irrg p (mw)), h(w) # 1.
(

1.1
2.1

0(2),de (1/3)Z, —e #£ 1.
A= (a,z? —7P), wherel < p/q < d, p,g € N, (p,q) =1, p,q =1(2).
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8.1=1(2),n=0(2),de (1/3)Z.
—aem, Irr g (ray (70w)), h(w) £ 1.

1. f(7%w) ~ h(w)(—7'e) ~ a, so A is unramified. f(7?/?) ~ —7te ~ 1. Then

e~ () ~ ()

2. f(xP/1) ~ —e, so A is unramified. Moreover, f(n%w) ~ —eh(w) ~ 1, so that
a, —aP
A dyg) ~ | 1.
Irr(mdw) (k‘(ﬂ'd)< ] )) 76

3. f(0) ~ —mde, i.e. A is unramified. Let 7 € O}, 7 # 1, 7 —e ~ 1. Then f(n't) ~ 7 —e ~ 1 and
AIT'T’(ﬂ'lT) ~ (_7T6677Tl7—) ~ (7T7T) 7(' 1.

4. f(0) ~ —de, so that A is unramified. If w satisfies h(w) # &, then f(m%w) ~ —eh(w) ~ 1. We have

a, mw

AI”K(ﬁ)|k(7rdw) ~ (W) ~ (a,vm) £ 1.

5. In this case f(m%w) ~ a and f(0) ~ 1. Then A is unramified and 4, ~ (o, —72%w) £ 1.

6. f(0) ~1, Ay ~ (o, —7!) £ 1

7. Ay, ~ (ay7l) 41

8. f(m%w) ~ —aem, i.e. A is unramified. A,_,1, ~ (—aemr,me) £ 1.

9. Let § = n@~1/2 /7w € K(y/mw). Since d € 1/2+ Z, then d < m/3, h(y/w) ~ w? +mh=2dyw 744§ =
hO(w), and f(8) ~ —h°(w)we. Note that in view of h(t) = h°(t?) we have h°(t) & k[t]2. So the condition

Lot
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can be satisfied in a suitable K. Under these conditions we have f(f) ~ 1 and

At ™ (_Wife<w¢vri_)l</.2..¢>ﬁ) ~ (M)

Thus, case h(t) € k[t]? is completely considered. Let us make the form of polynomial g(t) more
precise, provided h(t) € k[t]?. If z* + nk—2dyg? + rm-3dyg 4 gn—4d§ = (22 + azx + ()2, then a = 0,
am—3dy = O, 7k—2dy = 23, and 744§ = B2, 3 € k*. Then n = 2k, m > 3k/2,d = k/2 € (1/2)Z,
§=7+7r, u=—2v, 1,7 € O}, s > 0. So g(z) has the following form.

g(z) = (22 — k)2 + 1™z + w2k ter

Let A = g(y/mky) = 7?k+81 4 7muy/7ky € k(y/m*y). Note that one always can suppose v(A) =
min{2k+s,m+k/2}. Indeed, let v(A) > min{2k+s, m+k/2}. This means that k = 0(2),y = 8% € (0})?,
2k+s=m+k/2and 7+ 93 = 0. Then 7 — 93 # 0, and replacement 3 by —f3 gives us the required A.
Moreover, if k¥ = 0(2), then equality v(A) = 2m — k (or v(A)/2 — k = m — 3k/2) is impossible. Indeed,
then 2m — k <m +k/2, m < 3k/2.

From now on we will consider only such g(z) and A.

Theorem 30 Let d < I. Then the following algebra A is unramified, nontrivial, and not isomorphic to
the scalar one.

2. k=002),y=p0% A~ni8~mp, peO;.

A= (a,z —7le).

3.k=0(2),7=0, A~nif~1.

Let = m@8(1 + m"w), r = min{v(A)/2 — k,m — 3k/2}, w € O} such that d(w) € O% \ (O%)?,
where

b(z) = 49222 + p, if v(A)/2 —k < m — 3k/2
TV 49222 + 0B, if v(A)/2 — k> m — 3k/2,

A = WU(A)H, and p = Irrg (6).

Then A = (a, p).

4. k=0(2),y=p8% Ar?8 ~a, d=1(2).
A= (a,z—7B).

5. k=0(2),v=0% ArlB~a,d=0(2), f ~ 1.
A= (a,z — 7).

6. k=0(2),y=p% AniB8~a,d=0(2), 3 £ 1.

A = (a,Irry ym)(8")), where §' = 743(1 + /7).
=0(2), v =8, An?B ~mp, v(A) =1(2).
A= (//T/B/‘er - 7Td/6); A= WU(A)/‘L'

=0(2), y=p% Ar8 ~mp, v(A) =0(2).
A = (wBa,p), p is from item 3.

9. k=1(2), m+k/2<2k+s, y"v ~ 1.

A= (a,z —7le).
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10. k=1(2), m+k/2<2k+s, y™v # 1.

A= (a,z? — k).
11. k=1(2), m+k/2> 2k +s.
Let 0 = \/mky(1 + (/77)*w) € K(/m7), w € Ok such that v*(4v*T2w? + 1) € O% \ (O%)?,
¢ = Irri(ymm) i (6)-
Then A = (az,q(0)g(x)).
12. k=0(2), 741, v(A)=0(2),d=1(2), -1 ~1.
Let similarly as in item 30 = n? /y(1+7"w) € K(,/7), w € O;{(ﬁ) such that p(w) # 1 in K(,/7),
pP= ITTK(W)M(Q)
Then A = (m,p(z)).
13. k=0(2), 741, v(A)=0(2),d=1(2), -1 £ 1.
Let p be as in item 12, p € Of, p*> — v # 1.
Then A = (ap(z),z — lp).
0(2), 741, 0(A) =0(2), d=0(2), —1 £ 1.
ap(z),x — wu), p and p are as in 13.

2),v#41,v(A)=0(2),d=0(2), -1~ 1.

14. k
15. k

16. k 2), v 1, v(A)=1(2),d=0(2), p~ 7 ink(y7), A ="y

17. k 2), v 1L, v(A)=1(2),d=0(2), p# -
v),m(@— 7)), n € Of, n* —y £ L.
2,741, vA)=1(2),d=1(2), -1 ~1.
m,p(x)), p is as in item 12.

2), v 41, 0(A)=1(2),d=1(2), -1 £1.
ap(z),z — win), p is from item 12, n € OF, n®> — vy # L.

18. k

19. k

Proof.
1. f(ﬂ-dﬂ) ~ Aﬂ'dﬂ ~ ]-7 S0 Am—ﬂ'dﬂ ~ (ﬂ'aﬂ-dﬁ) 76 1

2. Ay_pag ~ (a,mIB) £ 1.

3. f( ) ( )H ~ 9(0) ~ 47T2k+27',y2w2(1+ﬂ_rw/2)2+7TU(A)M+7Tm+d+TUﬂw ~ 472w2 +7T2[(U(A)/2—k)—7‘]u+
(m— 3’“/2)_’"11&11 ~ ¢(w) ~ a. Thus A is unramified. Let 8’ = 7?3(1 + 1) € k(T1), T = ¥x, p' = Irr(9').
Then F(8") ~ g(8") ~ 4y? + g2l (A)/2=k)=1/3] ) p(m—=3k/2)=1/3 1 and

A (a » oeaun (@A + 1) — 7B(1 + 7"w”))
o~

W) )”Wm*L

4. f(mB) ~ a, so A is unramified. 4, .1, ~ (a,7¢8) # 1.
5. Let 0',p' be from item 3 of this proof. Then f(6') ~ 1 and Ay £ 1.

6. f(8') ~ g(0")(n?B —7te) ~ 1B ~ a, A is unramified. Let 8, p be as in 3. Then f(6) ~ ad(w) ~ 1 and
A, 1.
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f(m?B) ~ wuB, A is unramified. If n € O} satisfies the conditions n ~ 1,7 # 3, n — 8 # 1, then
) ~ iy ~ 1 and Appp(ran) ~ (78,0 — B) # 1.

m
F(8) ~ g(8)7¢B ~ nB¢(w), so A is unramified.

Apie ~ (maf, [ (a'e = 761+ 7"w))) ~ (e, =) # 1.

ocelG

9. f(\/mky) ~ Ay/mky ~ 4™ ~ 1 in k( /7). Therefore

N G =) L

10. f(\/7*y) ~ a, A is unramified. A,_ i, ~ (a, —7*7) #£ 1.

11. We have g(6) ~ v*(4v*+*?w? + 1) ~ a, then f(6) ~ af.
A is unramified. Indeed, A, ~ (az,q(0)?) ~ 1 and

4 N( afd, 4(0)q >~1.
T\ K (/m) (Vab)(q)

A # (m,a) in view of (m,a)y_nt. # 1, but A,_1, ~ (an'e, q(0)?) ~ 1. Finally,

since vk (g(0)) =1 (2).
12. f(6) ~ m\/79(0) ~ 7, A is unramified.

Aprie ~ (ﬂ-a H Wdﬁ(_ﬂdﬁ)) ~ (7Ta _7) # 1.

oc€G(K]|k)

13. p(riu) ~ [T, (1 — 7)1+ /7) ~ p?> —v ~ a, so that A, ra, ~ (@, 2 —7%p) ~ 1.
f(0) ~mg(8)y/7 ~ m(u — /%) in k(,/7). Then

4 ~< ap, w(p — /) >~1_
P\ K () (VF©)p)

Thus, A is unramified.

Awfw’e ~ (anﬁdﬁ(_ﬂdﬁ)a _ﬂ-dw) ~ (ﬂ-a _a7) # 1.

14. £(6) ~ g(6) ~ p—+/7, hence A is unramified. Let 8’ = 7%, /4(1+1II), I = ¢/m. Then f(#') = g(¢') ~ 1

and
[Loearmm (VT = ()7) + Iy = (wy/)n") , p— \ﬁ) ~
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15. f(6) ~ g(0)\/7 ~ 1, then

16. f(n%\/y) ~ wpy/7 ~ m, A is unramified. Let ¢ € Ok, (? =y #£ 1, ( ~ 1. Then f(7%() ~ g(7%() ~ 1
and

2 _
AIrr(wdC) ~ (ﬂ-}(c(—i)’y) 76 1.

17. Ay _pay ~ (02, 7(z — 7)) ~ 1.

A ( 2 —7hy, w(n— /) ) 1
T\ ) e — )

because f(n%/y) ~ mpu\ /¥ ~ m(n—\/7), i.e. A is unramified.

a,
A~ | —= ] #1.
(k(\/ 1/$)>
It remains to prove that A # (m,a). Choose ¢ as in 16. Then Ay, (rac) ~ (a(¢* =7),...) ~ 1. On the
other hand, (7, @) rpy(rac) # 1.

18. f(0) ~ m\/79(6) ~ m, A is unramified.

Az—nle ~ (7T7 H _Wd(ﬁ)a(l + WTU}G-)) ~ (71', _7) 76 1.
o EG(K(\/7)|k)

19. We have

Aggan~@—n"na [ = (WA +7"0%) ~ (@ — 7,00’ = 7)) ~ 1,
o€G(K(yA)IK)

f0) ~my/79(0) ~ m(n — /7) in k(/7). So
APN( p77_‘_d(\/,7_/,7) >~]_7

kN = 1))

i.e. A is unramified. To prove the theorem it is enough to check that A is nontrivial.

Az—w’e ~ (Ot H _Wd(ﬁ)a(l + ,n_r,wa), _de) ~ (_a’)’, _7”7) 7(' 1.
o EG(K(\/7)|k)

Theorem 31 Let d > 1 and if d =1, mFy = (7?8)% € k2, then b # &. Assume
| —e, ifd>1,
¢(=) _{ z—e, ifd=1.
Then the following algebra is unramified, nontrivial, and not isomorphic to the scalar one.

1. by = (r9B) ~ 1, 0(A) = 0(2), 1= 0(2), £(8) £ 1.
A= (m,x—7le).

2. why ~1,0(A)=0(2),1=0(2), £(B) ~ 1.

A = (a,p(x)), where p is defined in item 3 of the previous theorem.
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3. TFy ~ 1, 0v(A)=0(2), I =1(2).
A = (mag(B), p(x)).
4. why ~1,0(A)=1(2), 1 =1(2), p ~ &(B), where A = 7By,
Let Tl = /7, t € {1,2}, t =d(2), §' = m?8(1 — IltaP) € k(IT), p' = Irr(0").
Then A = (&(B),p' (z)).
5. mFy ~ 1, v(A) =1(2), [ =1(2), u # &(B).
A= (a,z — 7B).
6. Ty ~1,v(A)=1(2),1=0(2).
A= (mpé(B),z — p).
7. k=1(2), v(A) =0(2) in k(/77), —ey' ~ 1.
Let § = \/Thy(1 + (/7)) w) € K(\/m), w € O such that g(0) ~ o in K(\/77), p = Irr(0).
Then A = (o, p(z)).
8. k=1(2), v(A) =0(2) in k(y/77), —ey' # 1.
Let ' = \/mFy(1 + y77) € k(77), ¢ = Irr(6').
Then A = (o, q(z)).
9. k=1(2),v(A)=1(2).
A= (prnh=D/2g _gpry(z? — 7hy)), p = —eptTm(=1)/2
10. k=0(2), v# 1L, v(A)=0(2),1=1(2),1=d, £&(/7) # 1 in k(\/7).
Let § = 7%\ /(1 + 7"w), w € O /=, such that g(8) € Oy =) \ (Ok(7))? p = Irr(6).
Then A = (m,p(z).

11. k= 0(2), 7 £ 1, v(A) = 0(2), [=0(2), L = d, £(y/7) # 1 in k(\/7).
A= (m,x—7le).
12. k=0(2), v # 1, v(A) =0(2), £&(v/7) ~ 1 in k(\/7) (the last condition always holds if | < d).
A = (ap,n+(z — 7B)), where B € OF, %> —v # 1, p is from item 10.
13. k= 0(2), 7 41, o(A) = 1(2), 4 4 E(/) in k(Y.
A = (a(z? — 7hy), 7 HdH (z — 79B)), where B € OF, 8% — v # 1.
14 EZ0(2), 7 £ L o(A) 2 1(2), i~ €(7) in K(y), 1= 002).
A= (m, x® — k).

15, k= 0(2), 741 o(A) = 1(2), p~ E(y7) ~ 1, 1= 1(2).
Let I = Ym, §' = % /4(1 + 1Ip), n€ Ok m \ (O k(ﬁ))z,q:Irrk(H,ﬁ”k(G’).
Then A = (m,q(x)).

16. k=0(2), v £ 1, v(A) =1(2), u~E(/A) £ 1, 1= 1(2).

A= (m x—7le).
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Proof.
1. If 8, p are the same as in item 3 of the previous theorem, then g() ~ o and f(8) ~ ar'é(B) ~ 1, so

Ay ~ (1, E(8)) # 1.
2. f(0) ~ a, A is unramified. Let ' = 7?8(1 + IT%), Il = ¢/, t € {1,2}, t £ d(2), p' = Irreunu(6')-
Then f(6') ~ &(8) ~ 1 and

o, T [A30 + I) — 7181+ mwr)]\ (@, T
A ( *() () ) (k(ﬂ)@f))“

3. A is unramified because of f(0) ~ ma&(B). We have also

Ay e ~ (ma€(B), [[(n'e = 79B(1 + 7"w?))) ~ (mak(B), —7E(B)) # 1.
4. f(m18) ~ ATE(B) ~ 1, f(6") ~ 7&(B), so that A is unramified. If x® = 1,  is a primitive root, then

5
Ay gag ~ (n€(8), [[(n"8 — n?6(1 — W'x*af))) ~ (TE(B), ™)) # 1.
=0
5. f(7B) ~ a, A is unramified. A, i, ~ (a,7E(B)) # 1.
6. f(m?8) ~ 7ué(B). Find n € O} satisfying the following conditions
1 # B,
n—e~ 17

ntl,ifl<d,
n—B41,ifl=d

Then f(nr') ~ (n = e)g(nm') ~ 1 and Ay ~ (Tpg(B),n — 797'B) £ 1.
7,8. In these cases we have [ < d, d € 1/2+ Z.

£(6) ~ g(6)(~nle) ~ —er'a in K(,/77),

10" ~ g(0")(~7'e) ~ —ey' in K (/7).

If —ey! ~ 1, then A = (a,p) is nontrivial and p(#') ~ HaeG(K|k)(\/m(1 + gmy) — V(1 +
(VN W) VT + T7) + V(1 + (=1)7/(77)"w?)) ~ 2977, Le.

Let now —ey! % 1. Then A = (a,q) is unramified and ¢(f) ~ —2,/7. So A, # 1.
9. A, ~ (prk=V/2g (—77)?) ~ 1.

Ao N( —(z? —7*y), pyTy )
kE(v/my)(\/ F(V/TEy)) (22 — k)

Since v(A) = 1(2) in k(,/77), then 2k+5 < m+k/2 and A ~ 7™v\/7ky ~ 4™ HE=D/2y /7 in k(7).
So f(y/7*y) ~ p\/m7y in k(\/77) and A2+, ~ 1. Thus A is unramified. Furthermore,

4 (W : m"“‘””)
- k(1) )
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If I = 0(2), then choose 5 € O3, satisfying the conditions

n—e~ 17
n A py kD72,

Then f(n'n) ~ (prt=V/2y, —y(x2n? — wky)) ~ (m, ppy*~1/2), i.e. among the algebras Aoo, Az
there is exactly one nontrivial. Therefore A £ 1, (m, ).
Let now [ = 1(2). One can find n € O} such that

y—n~1,
n~ —e.

wln)

Then we have f(y/7*n) ~ —wle ~ —me ~ 1 in K(,/77) and

N R P Ll Ut VA W AR e
Al rr(/rm) < K(/mn)-.) ) (K ...))7”‘

On the other hand,
(ra) T, Q 1
T e (o) ~ \ K () (.- '

10,11. Since f(0) ~ 7'¢(\/7)9, 6 € Ok (%) \ (O;{(W))2, then in 10 A is unramified and in 11

Moreover, in the first case A, 1, ~ (7,€2 —7) # 1.

12. p(r¢B) ~ 3% — v ~ @, therefore A, a5 ~ 1. f(0) ~ g(0)&(y/7)n" ~ dn!, § # 1in k(\/7). Then

o (p, wl+d(wdﬁ—wdﬁ)> N ( p, (B8 —/7) ) w

K(y7)(V7'6)(p) K(y7)(v7'6)(p)
So, A is unramified. We have also

a 7.‘.l+d
Ay ~ — ) Awfwle ~ (aaﬂ'd)a
(k(\/ 1/37))

the latter equality because of p(mle) ~ 1. If I = 1(2), then exactly one among these algebras is nontrivial,
so A # 1, (m, ).
Let I = 0(2). Suppose 0 = 7%, /4(1 +1I), I = ¢w. Then f(0') ~ £&(,/7) ~ 1 and

p(@) ~ [[(@*vA(L+1D) = (V3) 7 (1 + 77w”)) ~ IL.

ag

We have II val
y P =Y
Alrrk(n,ﬁ)lk(al) ~ (W) 76 b

Note, that (7, ) is trivial at this place.
13. Ay g~ (?,...) ~ 1. f(n%/7) ~ a1 pé(\/7), then

4 N (mz — mhy, wlFdH (el — Wdﬁ)> 1
T\ R G F ) (@ — mke) ’
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i.e. A is unramified.

3

1, I<d
~ I+d+1 ~ )
Ao (aaﬂ- )a Azc—7rle (Oé{ e? — v, l=d } )

d+1>

If | = 1(2), then we have just one nontrivial algebra, therefore A # 1, (7, ). The same is true in case
1=0(2), () # 1, since then [ = d and € — v # 1. Let I = 0(2), £(,/7) ~ 1. For the 8’ from the
previous item we have

02 — 7ky , 7L — 73 211, 7H(I1(B — /7)
Atrracn s (( ) k(g,\ﬁ)((--) )> - ( k(H,ﬁx---)ﬁ ) o

14,15,16. f(x%\/7) ~ m' 1 p(7) ~ 7o I p ~ €(/7), | = 0(2) (case 14), then (m,2? — 7Fu) is
unramified. If p ~ §(,/7), I = 1(2), then f(y/7*y) ~ 1 and

g N m, (/) ~(x
(RS ﬁ(mz_ﬂw) (m, €(vA) # 1,

provided £(,/7) # 1 (case 16). In case 15 we have

2 2

a(wA) ~ [[" V7 = 73+ XTI (/3 + 7 (1 + X' Tn) ~ [T ~ o,

=0 i=0
where x® = 1, x is a primitive root. So

T, TN

i~ (e emy) # 1

To complete the proof one only need to check that A £ 1 in case 14 and A is nontrivial in 15. In these
cases f(6') ~ w'&(,/7). Then f(6') ~ 7 in 15 and A is unramified. If case 14 takes place and [ < d, then
(") ~ —e~1in k(y/7). Therefore

o ()~ (aiw)

Finally, let | = d. Assume ¢ € O} such that ( # €&, (—e~1,and (> =y # 1. Then f(7%) ~(—e~1
and Apyp o (rag) ~ (1,¢2 =) # 1.

Theorem 32 Letd =1, 7Fy = (7938)? € k?, and e = B+ 7", n > 0, § € O;.

Let firstly v(A) = 0(2) and § = m*B(1+7"w), w € Of such that p(w) € O \ (0%)*, p = Irrk 1 (6),
r = min{v(A)/2 — k,m — 3k/2} (see theorem 30, item 3). Then the following algebra A is unramified,
nontrivial, and not isomorphic to the scalar one.

1. r<n,r+d=1(2). A= (aNgx(x(w))m,p(z)), where

| Bz, if r <n,
x(m)—{ Bx =46, ifr =n.

(%)} =~ (2] [\
=
\Y
S
S
+
SH
|
—
)
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Let now v(A) = 1(2), A = 7). Then the following algebra A is unramified, nontrivial, and not
isomorphic to the scalar one.

6. n+d=1(2), —ud £ 1. A= (a,z —73).
7.n+d=1(2), —ud ~1. A= (a,z —nle).
8. n+d=0(2),n<r. A= (—pém,z—mp).
9. n+d=0(2),n>r. A= (—mpa,z —7B(1 + n"w)), where w € O} such that § — fw £ 1. (If there
is no such w in k, then A = (—wpa, Irrg (72 6(1 + 7"w))), w € Ok )
Proof. Let v(A) = 0(2). Then

d+r i
d T _d n ~ ™ OtX(’lU), if r <mn,
f0) ~ a(®*B(l + 7"w) — 7 (B + ©"9)) { g if ¢ >,
x(w) ~ Ng|g(x(w)) in K.
So, in cases 1,3,5 the algebra A is unramified.
In4 f(d) ~ —ad ~ 1, then

A, ~ (7r , TB(1 + m"w) — 7B + 7"6)

~ (7, —m"td .
fas ) ~ (=) 1
In 2 f(0) ~ ax(w). System
{ p(w) # 1,
x(w) # 1

is always solvable in a sufficiently large extension K|k. For such w and p we have

Ay ~ (m,mB(1 + 77w) — 7B + 7"6)) ~ <7r, X(w)) 21

K{p)
In 1,3
_ d+rN <
d\ o d _ ~ 0 K|k(X(w))7T_"7
p(n%e) ~ H (78 — " Bw?) { 74§ =n.
c€G(K k)
Then in

1. Azfﬂ'de ~ (aNK|k(X(w))7r7 _WNK|k(X(w))) 76 1.

2. A, e, ~ (—moa,md) £ 1. Thus, for case v(A) = 0(2) it is enough to check that in 5 A £ 1. To
do this, assume §' = 7I8(1 +1II*) € k(I), II = ¢/x, t € {1,2}, ¢t # d(2), p' = Irrgan(6'). Then
f(0") ~g(0') ~ 1 and

p@) ~ [ @B +1") — a1 +7"w’)) ~ 7 BT
oG (K|k)

So, "

Consider now case v(A) = 1(2). We have f(7?8) ~ —n¥A) ur®t7 35 ~ —pdnd+n+1 therefore in 6 A
is unramified and in 7 f(7¢8) ~ 1, Ay _pag ~ (a, 7™*") £ 1. Furthermore, in 6 A is nontrivial. Indeed,
then A,_ a4, ~ (o, 77™) £ 1.

In 8 f(7?B8) ~ —pdr@*"+l and A is unramified. Let r = min{v(A)/2 — k,m — 3k/2} € (1/2)Z,
0 = 78(1 + (—auén) w) € K((—apudm)™), w € Ok ((—apsmyry» P = Irr g ((—ausmyr) k(0). Then

g(e) ~ 4’72(—(1/1/5)27"1112 +7rv(A)—2k—2rM + 7rm—3k/2—2rvﬁw(_aué'7r)r,
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1) ~ 9(6)(-5 + pu(-apsny ) ~ ~g { 1170

Moreover,

4 N( —pdm , 7 B(—apdn)” )
"\ K ((—apsm)r)(/F(0))(p)

(i)

One always can find K, w such that f(0) ~ 1 and w (—a)T (ud)?B3. Then we have A, # 1.
Consider r € 1/2 + Z. In this case

4 N( a, \/—apdT )
"\ K (V=apdm)(\/(0))(p)

In addition, f(0) ~ —6(4v?*(—aud)?*"w? + p). So, A, # 1, provided f(8) ~ 1

9. Since v(A) = min{2k + s,m + k/2}, then v(A) < m + n + k/2. Suppose 0y = 7?3(1 + 7"w).
9(60) ~ V227" w + w2w?)? + av(A)=2k 4 pm=3k/24ny 8y In view of v(A) — 2k < m — 3k/2 +n and
v(A)—2k < 2n (the latter inequality holds because of v(A)/2—k < r < n) we have g(6g) ~ wu. Therefore
f(8o) ~ wu(Bw — &) and A is unramified. Finally, A, 4, ~ (—7pa,d — fw) £ 1.

The theorem is proved.

If r € Z, then
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