CORRESPONDENCES BETWEEN VALUED DIVISION
ALGEBRAS AND GRADED DIVISION ALGEBRAS

Y.-S. HwaNGg! AND A. R. WADSWORTH?

ABSTRACT. If D is a tame central division algebra over a Henselian valued field F', then the valuation
on D yields an associated graded ring GD which is a graded division ring and is also central and
graded simple over GF'. After proving some properties of graded central simple algebras over a graded
field (including a cohomological characterization of its graded Brauer group), it is proved that the
map [D] — [GD]g4 yields an index-preserving isomorphism from the tame part of the Brauer group
of F' to the graded Brauer group of GF. This isomorphism is shown to be functorial with respect to
field extensions and corestrictions, and using this it is shown that there is a correspondence between
F-subalgebras of D (with center tame over F) and graded GF-subalgebras of GD.

INTRODUCTION

If D is a division ring finite-dimensional over its center F', and the field F' has a Henselian
valuation v, then v is known to extend uniquely to a valuation on D. The features associated
with the valuation on D, especially the residue division algebra D and the value group I'p carry
much information about the structure of D, and often can be used to settle questions such as
decomposability, and which fields can be subfields of D. However, D and I'p do not determine D,

and there are many subtleties in the way they interact.

Associated to the valuation on D there is a filtration of D by the principal fractional ideals of

the valuation ring, which allows one to build an associated graded ring GD = @ GD,, where
v€l'p

GDy = D and the grade group of GD is precisely the value group I'p of D. Furthermore, GD
is a graded division ring, i.e., its homogeneous elements are all units. In addition, as shown in
[Bs], the total ordering on I'p allows one to define a valuation on GD which extends to the ring of
quotients QGD of GD, which is a division algebra. The valued division algebra QQGD is usually
not isomorphic to D, not even after Henselization, but we will see that their structures are closely
related. The very presence of a valuation on QG D suggests that not so much is lost in the passage
from D to its graded ring GD, even though GD appears to have a much simpler structure than D.
We will show, in fact, that if D is tame then it is completely determined by G D, and its subalgebra
structure is faithfully mirrored in that of GD.

Specifically, let TBr(F') denote the tame part of the Brauer group of the Henselian field F', and
let GBr(GF') denote the graded Brauer group of the graded field GF' determined by the valuation
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on F. We will show in Th. 5.3 that the map [D] — [GD], gives a Schur-index-preserving group
isomorphism TBr(F) — GBr(GF'), which (see Cor. 5.7 and Th. 6.1) is functorial with respect to
scalar extensions and corestrictions. The index-preserving and functorial properties allow us to
deduce (see Th. 5.9) that if K is a tame valued field extension of F', and D and A are tame division
algebras with center F', then K (resp. A) embeds in D iff GK (resp. GA) embeds in GD.

These results show that much of what is known about tame valued division algebras can be
carried over readily to graded division algebras finite-dimensional over their centers, when the
grade group is torsion-free. Beyond that, it lays the foundation for proving theorems about valued
division algebras by first proving corresponding results in the relatively easier setting of graded
division algebras. This approach has previously been applied successfully for wildly ramified valued
division algebras by Tignol in [T].

This paper is organized as follows: Before considering connections between valued and graded
division algebras, we develop the graded theory in the first three sections. In §1 we recall basic
properties of graded division algebras and graded central simple algebras (GCSA’s) over a graded
field with torsion-free grade group, and point out the analogues of Wedderburn’s theorem and the
double centralizer theorem. We also prove a version of the Skolem-Noether theorem for GCSA’s,
which is somewhat delicate. In §2 we prove properties for graded division algebras which are
analogous to known properties of tame valued division algebras. This is used in §3 to prove a
cohomological characterization of the graded Brauer group GBr(R) of a graded field R. In §4,
we show how to get back and forth between tame valued division algebras and graded division
algebras. If we start with a graded field R with totally ordered grade group I'g, then GHR =, R
(graded isomorphism) canonically, where GHR is the graded field obtained from the valuation on
the Henselian field HR obtained from the valuation on the quotient field of R determined by the
grading on R. But, if we start with a Henselian valued field F', and take the Henselization HGF' of
the quotient field of the graded field GF' (with respect to the valuation determined by the grading
on GF), where GF is built from the valuation on F', then usually HGF 2 F. (These fields need not
even have the same characteristic.) Nonetheless, we prove in Th. 4.4 that TBr(HGF') = TBr(F').
In §5 we prove the isomorphism TBr(F) = GBr(GF') mentioned above, and the correspondences
between tame subalgebras and graded subalgebras. Finally, the compatibility with the corestriction

is given in §6.

81 GRADED DIVISION ALGEBRAS AND GRADED CENTRAL SIMPLE ALGEBRAS

We begin by setting up notation and recalling some results about graded division algebras and
graded central simple algebras. Except for the graded Skolem-Noether theorem, Prop. 1.6, most
of what we say in this section can be found in the literature somewhere (see especially [Bs], [CvO],

[NvO]), though not always in the generality we need.
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Let A = @@ A, be a graded ring. This means for us that A is an associative ring with 1,
Y€ET
I' is an abelian group, each A, is a subgroup of the additive group of A, and A, - A5 C A, for

all v,0 € I'. Because we are interested in the graded rings associated to valuation rings, we will

assume throughout that T' is torsion-free. We set
F'y={yeTl|A,#(0)}, thegrade setof A4,

and

A" = |J A,, the set of homogeneous elements of A.
v€T A

For a € A", a # 0, we write deg(a) = v ifa € A,. Each c € A is uniquely expressibleasc= Y. ¢,
7€l A
with each ¢y € A,. The c, are called the homogeneous components of c. Let A* denote the group

of units of A. A subring S of A is a graded subring if S = @ (SN A,) (iff for each s € S,
v€ET A
all the homogeneous components of s lie in S). Note that if S is a graded subring of A, then its

centralizer C4(S) is also a graded subring of A. In particular, the center of A, Z(A) = Ca(A)
is a graded subring of A. A (left, right, or two-sided) ideal I of A is said to be homogeneous if

I= @ (INnA,) (iff I is generated as a left or ... ideal of A by homogeneous elements). Suppose
v€l A

B = @ B, is another graded ring, and suppose there is a torsion-free group A containing I' and
yer

I as subgroups. A graded ring homomorphism f: A — B is a ring homomorphism such that

f(As) C Bs for all § € A. (It is understood that A = @@ As, where A5 = (0) for 6 € A — T'y4;
dEA
likewise for B.) If, further, f is bijective, then f is a graded isomorphism, and we write A =, B.

We frequently abbreviate “graded” by gr. The graded ring A is said to be graded simple if |A| > 1
(i.e., 14 # 04) and the only homogeneous two-sided ideals of A are A and (0).

A graded left A-module M is a left A-module with a direct sum decomposition as abelian

groups M = @ M., where I'' is some torsion-free abelian group containing I', such that A, - M; C
yer

M,ys5, for all y € Ty, § € I'. Then T'yy, M h  and graded submodules are defined just as above
for rings. We can make M into a graded A-module in other ways by shifting the grading: For any
v € I, the y-shift of M, denoted s., (M) is defined by

sy(M) = M as an A-module, and s,(M)s = M5, foralld eI’

So, T's_ vy = —y+Tn- Now, let N = N, be another graded left A-module, such that there is
,Yel"ll
a torsion-free abelian group A containing IV and I'" as subgroups. A graded A-module homomor-

phism f: M — N is an A-module homomorphism such that f(Ms) C N;s for all § € A. There is
the corresponding notion of graded isomorphism, and when there is one between M and N we write
M =, N. Let GHoma (M, N) denote the group of graded A-module homomorphisms from M to
N, so GHoma (M, N) is a subgroup of the group Homy4 (M, N) of all A-module homomorphisms
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from M to N. For each § € A, we have a subgroup of Homy (M, N) of é-shifted homomorphisms
HomA(M, N),s = {f € HomA(M, N) | f(M,y) - N’y+6 for all v,4 € A}

Of course, Homa (M, N)s = GHoma (M, s5(N)) = GHoma(s—s(M), N). Clearly, @ Homa(M,N);
seA
is subgroup of Hom4 (M, N); if M is a finitely-generated A-module, then

HOmA(M,N) = @ HOmA(M,N)5
dEA
(cf. [NvO, Lemma I1.6.1, p. 26]). Indeed, for f € Homa(M,N), § € A, define fs € Homa(M,N);

by, for m = ) m, withm, € M,, setting fs(m) = ) (f(me—s))e- When M is finitely-generated,
YEA eEA
all but finitely many fs = 0, and f = )_ f5. In particular, for any finitely-generated graded left

3
A-module M, Ends(M) = Homy(M,M) is a graded ring. When A acts on M on the left, we
view End4 (M) as acting on M on the right; so M is a graded A-End4 (M )-bimodule.

Now, let M = @ M, be a graded right A-module and N = @ N, a graded left A-module,
,),el'v ,.yel'\l/
with IV, T” C A for some torsion-free-abelian group A. Then, M ® 4 N has a natural grading as

Z(A)-module given by
(M®aN)s = {Zml ®n; | m; € M, n; € N, deg(m;) + deg(n;) = 5}, d € A.
i

One can see that this gives a grading on M ®4 N by observing that the corresponding grading
on M ®4, N is clearly well-defined, and the grading on M ®4, N is inherited by M ®4 N =
(M ®4, N)/J, since the subgroup J of M ®4, N is generated by the homogeneous elements
{ma®n—-—m®an|me M"ne N ac A"}

For example, suppose F' is a graded free right A-module of finite rank, i.e., F' is graded right
A-module which is free as an A-module with a finite base {b1,...,b,} C F". Let &; = deg(b;) €
I'rp. Of course, Ends(F) =2 M,(A) (n x n matrices over A) if we ignore the grading, and by
convention End4(F') acts on F' on the left. In this isomorphism the ij-matrix unit E;; € M, (A)
corresponds to the map e;; € Enda(F), defined by e;;(b;) = b; and e;;(by) = 0, for k # j. Clearly,
eij € Enda(F)s,—s,- So, when we take the grading into account, we find that

Enda(F) =, M,(A)(d), ford=(61,...,0n), (1.1)

where M, (A)(d) means n x n matrices over A but with the degree of the ij-entry shifted by ¢; — 4,
ie.,
So,—5, (A) ... 85,-6,(A)
M@= - - ]| (1.2)
s5,-6,(A) ... ss,-5,(A)
So, the ij-entry of M, (A)(d) is s5;-5,(A) (as ss5;—6,(A)s;—s5; = Ao). Thus, the e-component of
M, (A)(d) consists of matrices with ij-entry in A, 45, s,-
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For future reference, we point out a few elementary properties of these shifted graded matrix

rings. Let A be any graded ring. Then,

(i) If # € S, is any permutation, then
M, (A)(01, ... ,0n) =g My(A)(Or(1)s---»0nm))- (1.3)
(i) If y1,...,7 € T4, with v; = deg(a;) for some unit a; € A*, then
My, (A)(01,-- ., 0n) =g Mn(A)(01 + 715+, 00 + ) (1.4)
(iii) If A is commutative, and d = (01,...,0,), € = (€1,...,&m), then

M, (A)(d) @4 Mm(A)(e) =g Mmn(A)(f), (1.5)

where f = {0; +¢; | 1 <i<mn, 1 <j <m}. (The order of the terms is immaterial, in view of
(1.3).)

For, My (A)(d1,...,0n) =y Enda(F), where F' is a graded free graded right A-module with
homogeneous base by, ...,b, with deg(b;) = ;. Since by(1),...,br(n) is also a homogeneous base
of F, we also have My, (A)(dr(1),---,0r(n)) =g Enda(F), yielding (1.3). Likewise, if a; is a homo-
geneous unit of A with deg(a;) = v;, then bjay,...,bya, is another homogeneous base of F', with
deg(bja;) = §; +7i. So, My (A)(01+71,.-.,0n +Vn) =g Enda(F'), proving (1.4). Now, assuming A
is commutative, let F’ be another graded free A-module, with base c1, ..., ¢, with deg(c;) = ;.
Then, F ® 4 F' is a free graded A-module with base {b; ® c;}, where deg(b; ® c¢;) = d; + ;. So

M, (A)(d) ®a Mm(A)(e) =2y Enda(F) ® 4 Enda(F') 2y Enda(F @4 F') 2y Mynn(A)(f),

showing (1.5).

A graded ring E = @ E, is called a graded division ring if every nonzero homogeneous
Y€l E
element of F is a unit, and 1g # 0g. Note that the grade set I'g is actually a group. Further,

since 'p is torsion-free, it follows that E has no zero divisors and E* = E" — {0}. (This is
easy to see by recalling that the torsion-free abelian group I'r can be given a total ordering
compatible with the group operation. Thus, if a # 0, a = a, + terms of higher degree and b # 0,
b = bs; + terms of higher degree, then ab = a,bs; + terms of higher degree, so ab # 0.) Also, Ey
must be a division ring, and for each v € I'g, the group E, is a one-dimensional left and right
vector space over Fy. Note further that every graded left (resp. right) E-module M is a graded
free E-module (cf. [By, Th. 3, p. 29]). For, it is easy to check that a maximal homogeneous E-
linearly independent subset of M is actually a base. We call M a graded vector space over E, and
write dimg (M) for the rank of M as a graded free E-module. (This is well-defined, since one can
apply the usual exchange argument to see that any two homogeneous bases of M have the same
cardinality.) Note that if N is a graded submodule of M, then

dimp(N) + dimp(M/N) = dimg(M). (1.6)
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Consequently, if dimg(M) < co and N is a proper submodule of M, then dimg(N) < dimg(M).
Let S be a graded subring of E such that S is also a graded division ring, and let [E : S] = dimg(E)
(left dimension) and likewise [Ey : So] = dimg, Ey (left dimension). Note the easy but fundamental
formula (cf. [Ba, p. 4278])

[E:S]=[Ey:So]-|ITe:Tg| (1.7)

This holds since if {a;} is a base of Ey as left So-vector space and if {b;} C E* — {0} is chosen so
that {deg(b;)} is a set of coset representatives for I's in I'g, then {a;b;} is a homogeneous base of

FE as a left S-vector space.

A commutative graded division ring is called a graded field. For example, if L is any field and
I is any torsion-free abelian group, then the group ring R = L[I'] is a graded field with Ry = L and
I'r =T. In fact, I" is a free abelian group, then every graded field S with I's = I' is a group ring
(cf. [HW, Prop. 1.1]). However, there do exist graded fields which are not group rings (cf. [HW,
Ex. 1.2]).

Let R be a graded field. A graded R-algebra A is graded ring which is an R-algebra such that
the associated ring homomorphism ¢: R — Z(A) is a gr-homomorphism. This ¢ is necessarily
injective (assuming 1 # 0 in A), as R is a graded field. We have A is an Ry-algebra. Also, while
I" 4 need not be a group, it is a union of cosets of the group I'g in some ambient torsion-free abelian
group I'V. We write

|T4 : C'r| = the number of cosets of I'p in 'y

and
[A: R] = dimg(A).

It is easy to check that
[A:R] >[Ao: Ry)-|Ta:Tgl, (1.8)

but equality often does not hold (see Prop. 1.4 below).
For our graded field R, let Agr be the divisible hull of the torsion-free abelian group I'gr, so

Ar = Q®z ',

and fix some Q-vector space A’ containing A with dimg(A’/AR) = co. Then (1.8) shows that if
A is any finite dimensional graded R-algebra, then I' 4 is I'g-isomorphic to a subset of A’. Indeed,
if T4 is a group (which occurs, e.g., whenever A is a graded division algebra) then, as I'4 is
torsion-free and I'y /T'g is torsion by (1.8), there is a unique group homomorphism I'y — Apg
which restricts to the identity on I'gr. So we will assume henceforth that all graded R-algebras A
satisfy 'y C A/.
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Note that if A and B are graded R-algebras, then A ® g B is also a graded R-algebra. If A’ is
a graded R-subalgebra of A and B’ a graded R-subalgebra of B, then it is easy to check that

CA®RB(AI ®RB’)=CA(A’) Rr CB(BI). (1.9)

A graded algebra A over a graded field R is said to be a graded central simple algebra (GCSA)
over R if A is a simple graded ring, [A : R] < oo, and Z(A) = R. There is a theory of GCSA’s
over a graded field analogous to the theory of central simple algebras (CSA’s) over a field, and we

recall some basic properties here.

Proposition 1.1. Let A be a GCSA over a graded field R, and let B be any graded R-algebra. If
I is a homogeneous ideal of AQgr B, then I = A®pg J, where J = 1IN B, and J is a homogeneous
ideal of B. Hence, if B is graded simple, then A ® g B is a GCSA over Z(B).

Of course, in Prop 1.1 we are identifying B with its gr-isomorphic copy RQr B in AQgr B. This
proposition can be proved analogously to the ungraded result. One can first show the special case:
if I'N B = (0), then I = (0). The general result follows by applying the special case to B’ = B/J
(after noting that J is homogeneous, so B'/J is graded); since A g B’ =, (A ®r B)/(AQr J)
and (I/(A®grJ))NB' = (INB)/J=(0), we obtain I/(A®g J) = (0), as desired. Formula (1.9)
shows Z(A®r B) = Z(A) ®r Z(B) =4 Z(B).

Corollary 1.2 (cf. [Ba, Prop. 5.1]). Let A be an algebra over a graded field R. Then, A is a
GCSA over R iff A is both an Azumaya algebra over R and also a graded R-algebra.

PROOF. Suppose A is a GCSA over R. Then, A is a free R-module of finite rank, and the graded
R-algebra homomorphism A ® g A°? — Endg(A) is injective, since the domain is graded simple by
Prop. 1.1, and surjective by dimension count (using (1.6)). Hence, by [DI, Th. 3.4, p. 52], A is an
Azumaya algebra over R. Conversely, suppose A is an Azumaya algebra over R such that A is also
a graded R-algebra. We identify R with its gr-isomorphic copy in A. Since A is Azumaya over R,
by [DI, Prop. 21, p. 47; Cor. 3.7, p. 54], A is a finitely-generated R-module, so [A : R] < oo, and
Z(A) = R, and every ideal I of A has the form I = A(I N R). If I is a homogeneous ideal of A4,
then I N R is a homogeneous ideal of R. Hence, A is graded simple since R is graded simple. O

A graded central division algebra (GCDA) over a graded field R is a GCSA E over R such
that F is also a graded division ring. Observe that the usual matrix calculations show that for any
GCDA FE over R, any n, and any d = (§1,...,0,), 6; € A’, we have M,,(E)(§) is a GCSA over R.
Our next proposition is the graded Wedderburn theorem, which says that all GCSA’s over R have

this form.
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Proposition 1.3. Let A be a GCSA over a graded field R. Then,

(a) There is a GCDA E over R such that A =, M, (F)(d) for some d = (61, ... ,6,). Moreover,
if A=y My (E')(d") for some GCDA E' over R, thenn’ =n and E' =, E.

(b) Every graded left (or right) A-module is a direct sum of graded simple A-modules.

(c) If L is a minimal nonzero homogeneous left ideal of A and N is a graded simple A-module,
then N =, s5(L) i.e., N is the §-shift of L for some ¢. Hence,

dimgr(N) =n[E : R] = [A: R]/n. (1.10)

This can be proved analogously to the usual Wedderburn theorem. Here is a sketch. Take
a minimal nonzero homogeneous left ideal L of A (which exists as [A : R] < 00), and let E =
End4(L). Since L is a graded simple A-module (i.e., it has no nonzero proper graded A-submodule),
the graded Schur’s Lemma shows that E is a graded division ring, and [E : R] < [Endgr(L) : R] < 0.
Let by,... ,b, be a homogeneous base of L as a graded free right F-module,so L = b1 E®... Db, E.
Then, Endg(L) 24 M,(E)(d), where d = (deg(b1), ... ,deg(b,)), as noted in (1.1) above. Rieffel’s
proof of Wedderburn’s Theorem ([Ri], or see [L, Th. 5, p. 449]) can be applied here to see that the
graded R-algebra homomorphism A — Endg(L) (a + left multiplication by a) is an isomorphism,
so A2, Endg(L) 2, M,(E)(d). If N is any graded simple left A-module, there is a b € N* — {0}
with L - b # (0). Then the A-module homomorphism A: L — N, £ — £ - b is an isomorphism
since im(\) and ker()\) are graded submodules. Since X shifts degrees by deg(b), we have N =,
S_deg(v)(L)- This yields (c) and also the uniqueness part of (a). For, if A =, M,/ (E')(d’) and L'
is the set of first columns of elements of M, (E’)(d’), then L' is a graded simple left M, (E")(d')-
module with endomorphism ring E’. Since L’ is graded simple when viewed as an A-module,
L' =, s5(L), for some 6, so E = Enda(s;(L)) =, Enda(L') =, E'; then n' = n by dimension
count. Finally, for (b), since A is a sum of simple graded left A-modules (corresponding to the
columns of M, (E)(d)), every graded left A-module M is a sum M = )  N; where the N; are
graded simple submodules of M. The usual argument shows that M is a direct sum of some subset
of {N;}.

For any GCSA A over R, we define the Schur index of A, ind(A), analogously to the ungraded
case: We have A = M,,(E)(d) for a GCDA E over R; set

ind(A) = +/[E : R], a positive integer.

The graded Wedderburn theorem yields a description of I'y and of Ay for a GCSA. Let
A = M, (E)(d) where E is a GCDA over R and d = (61,...,0,),0; € A'. Let e1+T'g,...,ex+ g
be the distinct cosets of I'g of the form §; + 'y, 1 < ¢ < n, and for each €, let r, be the number
of i with ¢§; = ¢y (modT'g).
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Proposition 1.4. Let E be a graded division algebra, and let A = M,,(E)(d), ford = (61,... ,0,)-
Then,
(a) T4 = U U((S —0;)+T'g.
i=1j=1
(b) Ao =2 My, (Ep) X ... x M, (Ey), with the r; as defined above. In particular, Ay is simple
iffk=1iffTy =Tg.

PROOF. (a) is immediate from the description of the grading on M, (E)(d) (see (1.2)). For (b), ob-
serve that by (1.3) and (1.4) above, A =, M, (F)(e), wheree = (€1,...,61,62,...,62,-..,Ek,---,Ek)
with each €, occurring r, times. In M, (E)(e)o there is a contribution of Ey in the ij-entry when
the same ¢4 appears in the i-th and the j-th position in e. This accounts for all of M,,(E)(e), since
0¢ep—em+Tg when £ # m. Thus, Ay = M,(E)(e)o & M, (Ep) X ... x M, (Ep). O

The double centralizer theorem is also available in the graded context:

Proposition 1.5. Let A be a GCSA over a graded field R and let B be a graded simple graded
R-subalgebra of A. Set C = C4(B). Then,

(a) C is a graded simple R-subalgebra of A with Z(C) = Z(B), and C4(C) = B.

(b) [C:R]-[B:R]=[A:R)].

(c) B®z(p)C =y Ca(Z(B)). In particular, if Z(B) = R, then B®g C =, A.

This is proved analogously to the ungraded version. We give a sketch. Let L be a minimal
homogeneous left ideal of A, and let E = Enda (L), so E is a GCDA over R and A =, Endg(L) as
we saw in the discussion of Prop. 1.3. Let T = B°? ® g E, which is a GCSA over Z(B) by Prop. 1.1,
and view L as a graded right T-module. Now, Endy (L) C Endg(L) =, A, and A acts faithfully on
L. Hence Endr(L) is gr-isomorphic to the set of elements of A acting on L compatibly with the
B-action, i.e., Endp(L) =2, C4(B) = C. Let N be a minimal homogeneous right ideal of T', and let
U = Endr(N), which is a GCDA over Z(T'). Then L 2, s5, (N)®...®ss,(N) as graded T-modules
by Prop. 1.3(b) and (c). Hence, C =, Endr(L) =24 Endr(ss,(N) ® ... ® s5,(N)) =4 M(U)(d),
where d = (01, ...,0%), so C is graded simple with Z(C) & (U) =) ( ) =4 Z(B). The formula
n (b) follows from [C : R] = k?[U : R], dimg(L) = k dimR( ), [T ] [B: R] [E : R], together
with (by (1.10)) [A : R] - [E : R] = dimg(L)? and [T : Z(B)] - [U : Z(B)] = dimz(p)(N)?. Then
C4(C) = B, since C4(C) D B and (b) shows [Ca(C): R] =[B: R]. The graded homomorphism
B®zB)C — Ca(Z(B)) given by b®c + bc is injective as its domain is graded simple by Prop. 1.1,

and surjective by dimension count.

There is a partial graded analogue to the Skolem-Noether theorem theorem. One would prefer
to be able to conjugate a GCSA by a homogeneous unit, since then the grading is preserved. We

will see that this is possible in some significant cases, but not always.
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Proposition 1.6. Let A be a GCSA over a graded field R, let B and B’ be graded simple R-
subalgebras of A, and let C = C4(B), Z = Z(B), and C' = C4(B'), Z' = Z(B'). Suppose there
is a graded R-algebra isomorphism «.: B — B'. Then,

(a) There is a € A* such that a(b) = aba™?! for all b € B.

(b) The a of part (a) can be chosen to be homogeneous iff there is a gr-isomorphismy: C — C'

such that vy|z = a|z.
(c) If Cy is a division ring, then the a of part (a) can be chosen to be homogeneous.

In particular, every graded R-algebra automorphism of A is given by conjugation by a homogeneous
unit of A.

PROOF. The proof of part (a) is analogous to the ungraded theorem (cf. [R, pp. 103-104]): Let
L, E, T, N be as in the proof above of the double centralizer theorem, so 7' = B @ E°°. We
make L into a graded left T-module in two ways, first by (b ® €°?) - £ = ble, and second by
(b®e°P)-£ = a(b) £e. Write L' for L with the second T-module action, while L unadorned denotes
L with the first T-action. By Prop. 1.3, L =, s5,(N)®...®s;,(N) and L' =, 5., (N)®...®s.,, (N)
as graded T-modules, and m = n by dimension count. Since each ss(N) = N as T-modules when
we ignore the grading, we have L' 2 L as ungraded T-modules. The ungraded argument as in [R]
then shows there is a € A* with

ab = a(b)a (1.11)

for all b € B. Thus, a(b) = aba™!, for all b € B, proving part (a). We proceed to the proof
of (c). Let ¢ = a™', and let a = Y a, and ¢ = Y ¢; be the homogeneous decompositions of a
and c. Because « is a graded homomorphism, for each b € B", formula (1.11) yields by comparing

homogeneous components

ayb = a(b)a,, (1.12)

for each a,. Hence, (1.12) holds for all b € B. Likewise, since bc = ca(b) for all b € B, we find
that bcs = csa(b) for all cs. These equations show csa, € C for all a, and ¢;. So, the equation

1 =ca =YY csa, has all its summands in C". Therefore, there must be a nonzero summand
d
csay € Co. When Cq is a division ring, csa, € C§, so ay € A*. Then (1.12) shows a(b) = aba;*

for all b € B, proving (c).

1 is also homo-

For part (b), observe first that if the a of part (a) is homogeneous, then o~
geneous, so conjugation by a is a graded automorphism of A. Since this map sends B to B’, it
also sends C to C’. Hence, we can take 7 to be the restriction to C of conjugation by a. Con-
versely, suppose there is v: C — C' as in (b). Let Y = C4(Z) and Y’ = C4(Z’). Then, as
Y = BC 24 B ®z C by Prop. 1.5(c), we obtain a graded R-algebra isomorphism §: Y — Y’ as
the composition

Y2, Be,CIB ®,C =,V
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Now, Y is graded simple and C4(Y') = Z by Prop. 1.5, and Z is a graded field. Therefore, we may
apply parts (a) and (c) with Y, replacing B, a, to see that there is a homogeneous unit ¢’ € A
such that B(y) = a'ya’~! for all y € Y. Since 8|p = «, we can use a’ for the a of part (a) for B, a,

as desired.

The final assertion of the proposition follows by taking B = A (so C = R) and invoking (a)
and (c) (or (b)). O

Remark 1.7. Note that for the C of Prop. 1.6, Cy is a division ring iff C' is a division ring, by
Prop. 1.4(b).

Example 1.8. Let R be a graded field with T'gr = Z. Let A = My(R)(0,0, %, %), B, =C, =
M>(R)(0, %), and Co = M>(R)(0,0). Then, by (1.5), (1.3), (1.4) above,

B, ®rC1 =y A=, B; Qg Cs.

Let B be the copy of B; in A given by the first graded isomorphism, and B’ the copy of B; in A
given by the second. Then C4(B) =, C; by (1.9), and Ca(B’) =2, Cy. However, Cy %, Cs, e.g.
since I'c, = 1Z while I'c, = Z. Thus, Prop. 1.6(a) and (b) show that although B’ is obtainable
from B by conjugating by some a € A*, there is no homogeneous such a. Furthermore, a graded

R-isomorphism B — B’ cannot be extended to a graded R-automorphism of A.

82 VALUATION-LIKE PROPERTIES OF GRADED DIVISION ALGEBRAS

Let R= €& R, be a graded field (with I' torsion-free, as we are always assuming), and let
Y€l R
FE be a GCDA over R. In this section we will describe some properties of £ which are analogous

to known properties for tame division algebras over a Henselian valued field. We will use them in

§3 in proving a cohomological characterization of GBr(R), see Prop. 3.3 below.

Before considering an arbitrary GCDA over R, we note a couple of extreme cases. First, a
GCDA I over R is said to be unramified (or inertial) if 'y = T'p (iff by (1.7), [I : R] = [Ij : Ro]).
In this situation the graded homomorphism Iy ® g, R — I is actually an isomorphism, since it is
clearly surjective, and a dimension comparison then shows it is also injective. Since Z(Iy ®g, R) =
Z(Iy) ®r, R, it follows that Z(I;) = Ry. Thus, there is a one-to-one correspondence (I <> I)
between isomorphism classes of unramified GCDA’s over R and isomorphism classes of central
division algebras (CDA’s) over Ry. Also, if S is a graded R-subalgebra of I, then I's = I'g, so
S = Sy ®g R. Thus, graded R-subalgebras of I are in canonical one-to-one correspondence (not

just up to isomorphism) with Ry-subalgebras of Ij.

At the other extreme, a GCDA T over R is said to be totally ramified if Ty = Ry (iff
't : Tr| = [T : R], by (1.7)). In this case, there is a pairing yr: T* x T* — R} given by
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(s,t) = [s,t] (= sts71t~1). (Recall that T* = T" — {0}.) The pairing is clearly skew-symmetric,
and since the image of yr is central, the commutator identity [s,tu] = [s,#]t[s, u]t~! shows that
~r is bimultiplicative as well. Because yr(s,t) = 1 if s or ¢ is central, the pairing is actually
well-defined on T*/R* x T*/R*. But, as T is totally ramified T7*/R* = I'r/T'g which is finite;
so every element of im(yr) has finite order in Rj. Thus, yr induces a well-defined biadditive

skew-symmetric pairing called the canonical pairing

,BTZ PT/PR X FT/PR — /L(Ro), (21)

given by (deg(s) + g, deg(t) + T'g) + sts~'t~!, where u(Ry) denotes the group of all roots of
unity in the field Ry. (We will use the further notation: If F' is a field and £ a positive integer,
then uy(F) is the group of all £-th roots of unity in F'.)

Proposition 2.1 (cf. [Ba, Prop. 2.6]). Let T' be a totally ramified GCDA over R. Then the
canonical pairing B of (2.1) is nondegenerate. The image of B is a cyclic subgroup of u(Ry) of
order equal to the exponent exp(I'r/T'r). Hence, char(Ry) 1 |I'r/Tg|.

PROOF. For s € T*, if yp(s,t) = 1 for all ¢ € T*, then s € Z(T) = R. This shows (r is
nondegenerate. Let £ = exp(I'r/T'g), i.e., the exponent of the finite abelian group I'rv/T'g; then
im(Br) C we(Ry) as Pr is biadditive. But, if we take any @ € I't/T'gp of order £, then the
nondegeneracy of fr forces the homomorphism fr(a, —): I'r/T'r — ue(Ro) to be surjective, and
forces |pe(Ro)| = £. Hence, im(Br) = pe(Ro), and |im(Br)| = £ = exp(T'r/T'r). If p = char(Ry),
then as p(Rp) has no p-torsion, we must have pt /4. O

Remarks 2.2. (i) If A is any group with ' C A C 'y, then Ty = €@ T), is a graded R-subalgebra

AEA
of T with I'r, = A; furthermore, since Ty = Ry, every R-subalgebra of T has the form Ty for some

A. Thus, the subgroups of ' /T'g classify the R-subalgebras of T. Note also that Z(Ty) = Ty,
where A’/Tr = A/Tr N (A/Tg)*, where (A/Tr)1 denotes the orthogonal subgroup to A/T'r in
I'r/T'r with respect to Sr.

(ii) Relative to the skew-symmetric nondegenerate biadditive pairing Or there always exists a
symplectic base for I'r/T'r (cf. [TW, Prop. 3.1]). This implies that the distinct invariant factors
of the finite abelian group I't/T'gr each occur with even multiplicity. Also, the symplectic base
allows one to decompose T into a tensor product of graded symbol algebras over R, analogous to
the decomposition for tame totally ramified valued division algebras described in [TW, Prop. 4.2].
Furthermore, one can use the symplectic base to see that if Rf; = Ry where £ = exp(I'r/T'g), then
T is determined up to isomorphism by I'r and Br. Also, one can easily see that for any group
I' with ' C T' C Ag, such that I'/T'g is finite and all the distinct invariant factors of I'/T'g
occur with even multiplicity and |pus(Rp)| = ¢, where £ = exp(T'/T'g), there exists a nondegenerate
skew-symmetric biadditive pairing 8: I'/T'r X I'/T'r — p¢(Rp); for any such I and § one can use
a symplectic base for 5 on I'/T'r to construct a totally ramified graded division algebra T' over R
such that I'r =T and Br = S.
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Now, let E be any GCDA over the graded field R. Observe that there is a well-defined group

homomorphism

0 :Tg/Tr = G(Z(Ey)/Ry) given by deg(e)+T'g— (z+— eze 1), (2.2)

for all e € E* and z € Z(Ey), where G(Z(Ey)/Ry) denotes the Galois group of Z(Ey) over Ry.

There are some graded R-subalgebras of E
canonically determined by Ejy: Let

E

Z = Z(Ey) - R, Z(E,) ®r, R, |

C=Cg(2), C=1®zT

I=Ey-R>; EyQg, R, I/ \T (2.3)

T =Cc(I) = Cg(I) = Cp(Ey). NS

Z

Diagram (2.3) shows the inclusion relations among |
these algebras. Note that Z is a graded field and R
C, I, and T are graded division algebras. Clearly,
I'z =Tg and Zy = Z(Ey). The double centralizer
theorem, Prop. 1.5, shows that Z = Z(C), and
[E : C] =[Z:R)]. Since C = Cg(Z) = Cg(Zy),
the definition of 05 shows that I'c /T'gr = ker(0g); grade degree 0
also clearly Cy = Ey. As for I, we have Ij = algebra group / Tk component
Ey and I'; = T'g. Also, Z(I) = Z(Ey Qr, R) = E I'g/Tr E,
Z(Ey)®r,R = Z, so I is unramified over its center C ker(65) B,
Z. Turning to 1", the double centralizer theorem T ker(65) Z(Ey)
shows Z(T) =Z and C =2, I®zT. Also, Ty = Z
as Ty centralizes Iy. Hence, T is totally ramified T (0) Fo
over its center Z. A dimension count using (1.7) Z (0) Z(Ey)
shows I'r /T =T'¢/T'r = ker(0g). R (0) Ry

Proposition 2.3 (cf. [By, Prop. 2.4]). For any GCDA E over a graded field R, the field Z(Ey) is
Galois over Ry and the homomorphism 0 of (2.2) mapsI'g /T g onto the Galois group G(Z(Ey)/Ry),
so G(Z(Ey)/Ry) is abelian. Also, char(Ry) 1 |ker(0g)|.

PRrOOF. We give a different proof from the one in [By]. We use the information accumulated above
about Z, C, I, T. Observe that

|G(Z(Eo)/Ro)| < [Z(Eo): Ry)=[Z:R|=[E:C]=|'p:T¢|
= |Tg/Tr : ker(0g)| = |im(0g)| < |G(Z(Ey)/Ro)|-
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Hence, equality holds throughout. This shows that 0 is surjective and that |G(Z(Eo)/Ro)| =
[Z(Ep) : Ry|, hence Z(Ey) is Galois over Ry. Because T is totally ramified, Prop. 2.1 shows that
ChaI'(Ro) = ChaI‘(Zo) 1’ |FT/Fz| = |k€1‘(9E)| O

Remarks 2.4. (i) In [Ba, p. 4279] Boulagouaz defines a canonical pairing Cg: ker(6g) x ker(0g) —
w(Z(Ep)). This pairing is just the pairing Or: I'r/T'z x T'r/Tz — u(Zp) of (2.1) for the totally
ramified T in E shown in (2.3). This pairing is canonically determined by FE, since T' is built

canonically from FE.

(ii) The graded subalgebras Z, C, I, T of E described here are analogous to valued subalgebras
of a division algebra tame over a Henselian valued field, cf. [JW, §§1-2]. But notice that the
subalgebras of E defined here are unique, not just unique up to isomorphism (as in the valued
situation). Also the existence and properties of the subalgebras are easier to prove in the graded

case than in the corresponding valued case.

(iii) There is a slight variation of the map 6 of (2.2), which will appear in §4: If F is a graded
division algebra over a graded field S with [E : S] < co (so S C Z(FE), but possibly S # Z(E)),
define

0r,s: Tr/Ts — G(Z(Ey)/Sy) by degle)+Ts— (2 eze™) (2.4)

for e € E* and z € Z(Ey). This map is clearly well-defined.

§3 THE GRADED BRAUER GROUP OF A GRADED FIELD

We can now consider the graded Brauer group of a graded field R. Define an equivalence
relation ~, on GCSA’s over R by: A ~, B if there are finitely-generated (hence graded free)
graded R-modules M and N such that A ® g Endr(N) =, B g Endr(M) as graded R-algebras.
So, ~g is clearly an equivalence relation which is compatible with tensor products. Let [A], denote
the equivalence class of A with respect to ~,. Then, the graded Brauer group of R is defined to
be

GBr(R) = {[A]y | A is a GCSA over R}.

(See [Ba, §5]; see also [CvO, II1.4-1V.1] for the case I'g = Z, but note that our GBr(R) is their
UBry(R), see [CvO, p. 139], since we allow I'y 2 T'.) The operation on GBr(R) is induced by
the tensor product, and, as we noted earlier for Cor. 1.2, A ® g A°? =2, Endgr(A). Thus, GBr(R)
is a group with identity element [R], and [A];' = [A°P],. Now, if E is any GCDA over R, L
is any finitely-generated graded right E-vector space, and N is any finitely-generated graded R-
vector space, then Endg(N ®g L) =2, Endgr(N) ® g Endg(L). It follows from this and the graded
Wedderburn theorem, Prop. 1.3, that for GCSA’s A =2, M,,(E)(d) and A" =, M,/(E')(d') with
E,E' GCDA’s over R, we have A ~, A" iff E 2, E'. Thus, GBr(R) classifies GCDA’s over R up

to graded isomorphism. Note that, unlike the case of central simple algebras over a field, we can
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have GCSA’s A, B over R with [A], = [B], and [A: R] = [B : R], but A 2, B. This occurs when
A=y My(FE)(d) and B =, M, (E)(d") with d and d’ sufficiently different.

As we noted above for graded division algebras, the assumption that ' is torsion-free implies
that a graded field R is an integral domain. Let

Q@R = the quotient field of R.
Likewise, for any graded R-algebra B, let
QB = QR Qg B,

an algebra over the field QR. Observe that as B is graded-free as a graded R-module, B is

R-torsion-free, so the canonical map B — @B is injective; also
[@B: QR] =[B: R). (3.1)

Note in particular that if B is a graded division algebra over R with [B : R] < oo, then since B
has no zero divisors the same is true for Q) B; since also [@B : QR] < oo it follows that @B is a
division ring.

Now, suppose A is a GCSA over R. Then as A is an Azumaya algebra over R (see Cor. 1.2),
A determines a class [A] in the (ungraded) Brauer group Br(R); also QA is Azumaya over the field
QR, i.e., QA is a central simple algebra over QR. Indeed QA is the classical ring of quotients of

the prime p.i. ring A. There are canonical group homomorphisms
GBr(R) — Br(R) — Br(QR), (3.2)

given by [A], — [A] and [C] — [QR ®r C], and the composition is injective since if E is a GCDA
over R, then QFE is a CDA over QR of the same degree as E over R. So GBr(R) injects into
Br(R). In general, Br(R) and Br(QR) may be much larger than GBr(R)(but not always, see
[CvO, Th. IV.1.11, p. 139]). We will see below that if we give a total order to I'g, then there is a

valued field extension of QR whose tame Brauer group coincides with GBr(R).

From Prop. 1.1 it is clear that for any graded field extension S of R, there is a well-defined

scalar extension group homomorphism
ress/r: GBr(R) — GBr(S) givenby [A]; — [S®Rr Al,.
We have therefore a corresponding relative graded Brauer group
GBr(S/R) = ker(resg/g)-

We will give in Prop. 3.2 below a cohomological description of GBr(S/R) when S is Galois over

R, by adapting the usual crossed product construction.
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Let R C S be graded fields with [S : R] < co. Then QS (= QR ®g S, as above) is the
quotient field of S, and [@QS : QR] = [S : R]. Recall from [HW, Th. 3.11] (or see [By, Th. 4, p. 33])
that S is tame over R (i.e., Sy is separable over Ry and char(Ry) { |T's : T'g| ) iff QS is separable
over QR, iff S is separable over R. Furthermore, every ()R-automorphism of QS restricts to a
graded R-automorphism of S (since S is the integral closure of R in QS and for every s € S*,
deg(s) is determined by its minimal polynomial over QR, cf. [HW, Cor. 2.5 (a), (d)]). Indeed, by
[HW, Th. 3.11(b)], S is G-Galois over R for some group G iff QS is Galois over QR, and when this
occurs, G is canonically isomorphic to the Galois group G(QS/QR). There is thus no ambiguity in
writing G = G(S/R). Furthermore, the preceding comments show that every element of G(S/R) is

a graded automorphism of S.

The results in [HW] quoted in the preceding paragraph were stated there with the added
assumption that ' is totally ordered. However, they are valid when one only assumes that I'g
is torsion-free (our standing hypothesis here), since any torsion-free abelian group can be given a
total ordering, and the quoted results are independent of the choice of total ordering on I'g. This
remark applies a number of times below when we quote [HW].

We next construct graded crossed products. Assume the graded field S is Galois over R, and
let G = G(S/R). Then S*(= S" — {0}) is a G-submodule of QS*. We write Z¢(G, S*), BY(G, S*),
H*(G,S*) for the i-th cocycle group, i-th coboundary group, i-th cohomology group of G with
coefficients in S*. Take any f € Z2(G,S*). We construct the crossed product algebra (S/R,G, f)

in the usual way: Let {z, | 0 € G} be new symbols, and on the free S-module € Sz,, with base
Y
{z,; | 0 € G}, define multiplication by

(al‘a)(bx'r) = aa(b)f(a, T):I,‘UT, (33)

for all a,b € S, 0,7 € G (and extended distributively to all of €@ Sz,). It is well-known that
(S/R,G, f) is an associative R-algebra since f is a 2-cocycle, and that it is an Azumaya algebra

over R, since all f(o,7) € S*. We now make it into a graded R-algebra.

Lemma 3.1. There is a unique way of assigning degrees to the z, so that (S/R, G, f) is a graded
R-algebra with grading extending the grading on S, such that the x, are all homogeneous. With
this grading, (S/R, G, f) is a GCSA over R.

PROOF. Since z,z, = f(0,T)zs,, we need to assign degrees to the z, so that

deg(z,) + deg(xr) = deg(zor) + deg(f (o, 7)), (3.4)

for all 0,7 € G. Once this is done, define, for any a € S", deg(az,) = deg(a) + deg(z,). Then
formula (3.4) assures that the multiplication on (S/R, G, f) given in (3.3) is compatible with this
assignment of degrees. We obtain a grading

(S/Ra g, f) = @ (S/R7 g, f)(57 where (S/Ra g, f)(5 = ?gsé—deg(xa)waa

0EAR
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where Ar = Q ®z I'r. This makes (S/R,G, f) into a graded R-algebra. By arguing as in the
ungraded case (or invoking Cor. 1.2, since the crossed product algebra is an Azumaya algebra over
R), we see that A is a GCSA over R.

To find degrees for the z, satisfying (3.4), note that the degree map deg: S* — Ag is a G-
module homomorphism, with G acting trivially on Ag; there is an induced map deg*: Z2(G, S*) —
Z2(G,AR). But Z%(G,Ar) = B?(G,AR), since H%(G,Agr) = 0, as the Q-vector space Ap is
uniquely divisible. So, since deg*(f) € B%(G, Ar), there exists {b, | 0 € G} C Ag, such that

deg(f(o,7)) = by + by — byr, (3.5)

for all 0,7 € G. Then, define deg(z,) = b,, and (3.4) holds, as desired. Note also that if we have
another set {0/, | 0 € G} C Ap satisfying deg(f(o,7)) = b/ + b, —b.._, then the map o — (b, —b.)
is a group homomorphism from the finite group G to the torsion-free group Apg; therefore this
homomorphism must be trivial (i.e., H!(G,Agr) = 0). So, the b, satisfying (3.5) are uniquely
determined; hence, there is only one way to define deg(z,) so that (3.4) holds. This gives the

uniqueness asserted in the lemma. The values of deg(z,) are given explicitly by the formula
1
deg(z,) = =1 > deg(f(o,7)) € Ag.
|g| TEG

O
We call (S/R, G, f) with the grading of Lemma 3.1 a graded crossed product algebra.

Proposition 3.2. Let S be a Galois graded field extension of a graded field R (with [S : R] < 00),
and let G = G(S/R). Then,
GBr(S/R) = H?(G,S").

PROOF. Define a map ¢: Z2(G,S*) — GBr(R) by f — [(S/R,G, f)]4, where the crossed product
is given the grading of Lemma 3.1. We will show that ¢ is a group homomorphism with ker(y) =
B?(G,S*) and im(¢)) = GBr(S/R). This will yield the desired isomorphism.

The following diagram is evidently commutative:

P resg/g

Z2(G.8%) —Y— GBr(R) —% GBr(S)

1 I oo

H2%(G,QS8*) —— Br(QR) —— Br(Q5)

In this diagram, the bottom row is exact, and the middle and right vertical maps are injective, by
the comments after (3.2). This shows that 1 is a group homomorphism (since the other maps in
the left square are homomorphisms), and also im(v) C GBr(S/R) and B2?(G,S*) C ker(v).

To show that this last inclusion is an equality, take any f € ker(y). We may assume, after

modifying f by a coboundary, that f is normalized. Hence, in (S/R,G,z,) = @ Sz,, z. is the
c€g
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1 (e = ids = identity element of G) and the mapping S — (S/R,G, f) given by s — sz, is a
graded R-algebra monomorphism, so we identify S with its gr-isomorphic copy Sz, in the crossed
product. Let n = [S : R] = |G|. Since f € ker(v), by Prop. 1.3 there is a graded R-algebra
isomorphism a: (S/R, G, f) — Endg(M) for some graded R-vector space M. By dimension count,
dimr(M) = n. The copy of S in (S/R,G, f) acts on M by s-m = «a(s)(m). This action makes
M into a graded S-vector space, necessarily of dimension 1. So M = § - m for any nonzero
m € M". Hence, as Endg(M) = Endg(S - m) =, Endgr(S), we may identify (S/R,G, f) with
Endg(S) so that s € S corresponds to left multiplication by s. For each 0 € G C Endg(S)o, let
8¢ = 2,01 € Endgr(S)". Then, as z,tz;! = o(t) = cotoo~! € Endg(S), for all t € S, we have
Sy € CEndR(S)(S)h = Sh. Since s, # 0, s, € S*. Furthermore, from z,z, = f(o,7)zs;, we obtain
$00(s7)s5L = f(o,7), for all 0,7 € G, proving that f € B?(G, S*), as desired.

Finally, to see that im(¢)) = GBr(S/R), take any GCSA A over R with [A], € GBr(S/R).
Let A’ = AQpg Endg(S), which is also a GCSA over R. After identifying S with its gr-isomorphic
copy in Endg(S), we have A g S is a graded R-subalgebra of A’. Since S splits A, we have
A®r S =2, M, (S)(d) for some d = (J1,...,0y), where m = \/[A: R]. Let B be a graded R-
subalgebra of A @ S such that B =2, M,,(R)(d); let C = Ca/(B). From B C A®r S C A" we
have, using (1.9), C' 2 Ca/(A®RS) = R®R CEndy(s)(S) = R®r S =, S. Thus, we may view S as
a graded R-subalgebra of C. The double centralizer theorem, Prop. 1.5, shows that C' is a GCSA
over R with [C : R] = [A' : R]/[B : R] = [Endg(S) : R] = [S : R]? hence, again by the double
centralizer theorem, Cc(S) = S. Note also that in GBr(R), [A], = [A"]y = [Bly + [Cly = [Clg-
Now, for each o € G, the graded Skolem-Noether theorem, Prop. 1.6, shows that the graded R-
algebra isomorphism o: § — S is induced by conjugation by some z, € C*. Moreover, we may
assume z, € C" by Prop. 1.6(c), as Cc(S)o = So, which is a field. Set f(o,7) = z,x,2,} €

Cco(S)"PnC* C S" — {0} = S*. Then f € Z?(G,S*). Also, the usual calculation shows that the
sum Y, Sz, in C is a direct sum; hence it is all of C, by dimension count. The multiplication in
&) ngegg is the same as that of (S/R, G, f), given in (3.3); so Lemma 3.1 shows (S/R,G, f) =, C.
gl’ehgus, P(f) = [C]y = [A]g in GBr(S/R), completing the proof. [

The description of GBr(S/R) given in Prop. 3.2 leads to a corresponding cohomological de-
scription of all of GBr(R). Recall from [HW, Prop. 3.7] that there is a maximal tame graded field
extension Y of a graded field R. This Y is graded algebraic over R (though typically [Y : R] = c0)
and it contains a graded isomorphic copy of every tame graded field extension. We have that Y} is
the separable closure of Ry and I'y /T'g is the prime-to-p primary component of the torsion group
Apg /T g, where p = char(Ry). Moreover, QY (= QR®rY = quotient field of Y) is Galois over QR,
and G(QY/QR) maps bijectively (by restriction to Y) to the group G(Y/R) of all R-algebra au-
tomorphisms of Y, and every such automorphism preserves the grading on Y. Therefore, G(Y/R)
inherits from G(QY/QR) the structure of a profinite group, in which the closed normal subgroups
of finite index correspond one-to-one to the finite-degree Galois graded field extensions of R in Y
(cf. [HW, Th. 3.9, Th. 3.11)).
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Proposition 3.3. Let R be a graded field, and let Y be the maximal tame graded field extension
of R. Then,
GBr(R) =2 H*(G(Y/R),Y™).

PRrROOF. Let G = G(Y/R). Here H?(G,Y*) denotes the continuous cohomology group with respect
to the discrete G-module Y*. Because G = lim G(S/R) as S ranges over the finite degree Galois
graded field extensions S of R in Y, we have, in light of Prop. 3.2,

GBr(Y/R) =) GBi(S/ ) = n?mm(g(S/R), §*) = H2(G,Y*).

Thus, it remains only to prove that GBr(R) = GBr(Y/R), which we do by showing that GBr(Y) =
0. For this, let F be any GCDA over Y, and form its graded Y-subalgebras Z, C, I, and T as
n (2.3). Since Y} is separably closed and Z, is Galois over Yy by Prop. 2.3, we have Z; = Y}, so
Z =Y and C = E. Moreover, as Br(Yy) = 0, we have Fy = Zy = Yy, s0 I =Y, hence E =T,
which is totally ramified over Y. Since [F : Y] = [T : Y] = [I'y : T'y| which is prime to char(Yp)
by Prop. 2.1, and Ag /Ty is char(Yp)-primary, we must have £ = Y. Hence, GBr(Y) = 0, as
asserted. [

84 VALUATIONS FROM GRADINGS, AND VICE VERSA

We now consider the valuation which arises when the grade group of a graded field R is given
a total ordering. Since I'p is assumed torsion-free there always exists a total ordering on I'p
compatible with its group operation. There are typically many such total orderings. Fix one such
on ', and denote it <. Then, for any torsion free abelian group A containing I'p as a subgroup

such that A/T'g is torsion, there is a unique extension of < to a total ordering on A.

Let E be any GCDA over R. So, the fixed total ordering on I'p extends uniquely to a total
ordering on I'g, again denoted <. A key observation in [By] (see also [HvO, Prop. 3.1] when
'y = 7Z) is that the ordering on I' g induces a valuation on QE: One first defines v: E—{0} —» T'g
by, fora= ) a,

7€lEe
v(a) = min{y € g | a, # 0}.
Clearly, for all a,b € E — {0} we have (i) v(ab) = v(a) + v(b) as I'g is totally ordered, and
(ii) v(a + b) > min(v(a),v(b)) (if b # —a). The function v has an extension to QE™*, also denoted
v: QE* — T'g given by v(ab™!) = wv(a) — v(b). (This is well-defined by property (i).) Then,
properties (i) and (ii) hold for all a,b € QE*. (This is very easy to verify, since every element a of
QE is expressible as a = er~! with e € E and r € R — {0}.) So, v is a valuation on QE. Clearly,

for the value group of v on QF, denoted I'g g, we have

Top =g (4.1)



Also, for the residue division ring, denoted QF, of the valuation ring of v on QE, we have
QF =~ E,. (4.2)

(For, if ¢ € QE* with v(c) = 0, then ¢ = ab™! witha = ) a,, b= ) b, € E— {0} with
v€ElE vElE
v(a) = v(b) = &, say. Then c has the same image in QF as asb; = € Ey.) The valuation on QF

restricts to a valuation on its center QR, which clearly coincides with the valuation determined by

the grading on R.

The properties of graded division algebras correspond most closely to those of valued vision
over a Henselian field, as we will see. We can obtain such a division algebra from the GCDA E
over R by Henselizing: Let HR denote “the” Henselization of the field QR with respect to the
restriction of v to QR (cf. [E, p. 131, (17.11)]). So, HR is a separable algebraic field extension of
QR which is uniquely determined up to isomorphism, and there is a Henselian valuation on HR

extending v on QR, with residue field and value group satisfying
H—Rgm and FHR:FQR- (43)

Define
HE =HRQ®qrQF =HRQ®grE. (4.4)

Because QF has a valuation extending v on QR, Morandi’s Henselization theorem [M;, Th. 2] shows
that HE is a division ring (with center HR), and its unique valuation extending the Henselian
valuation on H R restricts to v on QFE. Furthermore, for the residue division algebra HE and value

group I'g g of the valuation on HE we have (using (4.2) and (4.1)),
HE~QE=~E, and Typ=Tgp="Tg. (4.5)
Moreover, by (1.7) together with (4.5) for E and for R, we have,
[HE : HR] = [QE : QR] = [E : R] = [HE : HR) |Tup : Tug] (4.6)

so the valuation on HE is defectless over HR (likewise QF is defectless over QR). It follows easily
from Prop. 2.3 that HE is also tame over HR (as described in Prop. 4.3 below). We will see in
Th. 5.1 below that the map [E], — [HE] is an isomorphism from GBr(R) to the tame part of the
Brauer group of HR.

Remark 4.1. If A is a GCSA over the graded field R, then we have corresponding CSA’s QA =
QR ®gr A over QR (so QA is the Artinian ring of quotients of the prime p.i. ring A) and HA =
HR ®pr A over HR. We can define a valuation-like function on QA — {0}, but when A is not a
graded division algebra, we generally obtain a ring in QA that could not be reasonably called a
valuation ring. Specifically, define w: QA — {0} — I'4 by first defining w(a) = min{y | ay # 0} for
a=2Y a, € A—{0}, and then for c = ar~' € QA— {0} witha € A—{0} and r € R— {0}, defining



w(c) = w(a) — w(r). This is a well-defined function satisfying w(cd) > w(c) +w(d) (if ed # 0) and
w(c+d) > min(w(c), w(d)) (if d # —c) for all ¢,d € QA —{0}. This function yields a subring Vg4
of QA given by Voa = {a € QA — {0} | w(a) > 0} U {0}, but Vg4 need not be a valuation ring,
not even in the sense of Dubrovin (see after Th. 5.3 below). For example, suppose F' is a field, ¢
an indeterminate over F, and R = F[t,t™!] = @ R; where R; = t'F. So, R is a graded field with
Ry = F and I'g = Z with its usual ordering. Wéefave QR = F(t), and the valuation on QR induced
by the grading on R is the t-adic valuation ring Vor = F[t]) = {fg™" | f,g € F[t], g(0) # 0}.
Let Mgr = tVgr, the maximal ideal of Vg, so the residue field is QR = Vor/Mgr = F.
Now, let A = M5(R)(d) where d = (0,3). Then the ring Vg obtained from w on QA — {0} is

’2

Vor Mor ) . Mgor Mgr .
Voa = | .9 Q ), ith Jacobson radical J(Vga) = ( N @ ) J(Vga) is also the
Q4 ( w (Voa) Vor Mor ) (V(Vaa)

Vor  Vor
ideal of elements of positive w “value” in Vga.) So, Voa/J(Voa) & QR®QR, which is semisimple,

but not simple. So, Vg4 is not a Dubrovin valuation ring, and is also not a maximal order in QA.

In fact, every Dubrovin valuation ring of QA contracting to Vg in QR is isomorphic to My (Vgr).

We now turn to valued division algebras, and the graded division algebras derived from them.
This will lead to consideration of the tame part of the Brauer group of a Henselian valued field F',
whose central division algebras all have associated graded division algebras with center the graded
field GF. For the rest of this section we will take the first steps toward proving an isomorphism
between the tame part of the Brauer group of the Henselian field ' and the graded Brauer group
of GF; the proof of this will finally be completed in §5 (see Th. 5.3).

Let D be a division ring, and suppose there is a valuation v : D* — I" on D. That is, I' is a
totally ordered abelian group, and v satisfies, for all a,b € D*,
(i) v(ab) = v(a) + v(b);
(ii) v(a + b) > min(v(a),v(b)) if b # —a.
Let Vp = {a € D* | v(a) > 0} U {0}, the valuation ring of v; Mp = {a € D* | v(a) > 0} U {0} the
unique maximal left ideal (and maximal right ideal) of Vp; Up =V}, = Vp — Mp; D = Vp/Mp,
the residue division ring of v on D; and I'p = im(v), the value group. There will be no ambiguity
in indexing these objects by D, since we will never consider more than one valuation on a given
division ring. Let p = char(D).
The filtration of fractional ideals of Vp determined by v on D yields an associated graded ring
GD. Specifically, for v € I'p, let

W7 ={de D*|v(d) >y} uU{0} and W>? ={d € D* | v(d) > v} U {0};
so W=7 is a subgroup of the additive group W7. Then set

GD= @ GD,, where GD., =W /W>".
Y€TD

Because W>"W?° + WYW> C W>7t9_ for all 7,8 € I'p, the multiplication on D induces a well-

defined multiplication on GD, making it into a graded ring. Moreover, property (i) of the valuation



assures that GD is a graded division ring. Clearly GDy = D and the grade group is [gp = I'p.
It is the basic theme of this paper that much of the structure of D is well reflected in GD.

Now, let FF = Z(D), and suppose [D : F| < oo, so D is a central division algebra (CDA)
over F'. The restriction v|r of the valuation on D is a valuation on F' (with associated structures
Ve, Mp,Up, F,Tr), which induces a corresponding graded field GF. Clearly, GD is a graded
G F-algebra, with

[GD:GF]=[D: F||lp :Tg|=[D: F]/ép,r, (4.7)

by (1.7) above, where 6p/r is the defect of D over F with respect to the valuation. By Morandi’s
Ostrowski theorem for valued division algebras, [My, Th. 3], dp,r is a nonnegative power of 7 if
p > 0, while dp/p = 1if p = 0. Let Z = Z(GD), a graded G F-subalgebra of GD. Even though
F = Z(D), this Z may be strictly larger than GF’; the following result of Boulagouaz shows when

this occurs. Recall (see [JW, (1.6)]) that there is a canonical homomorphism

given by, for any d € D* and any z € Vp with z € Z(D), 0(v(d)+T'r)(Z) = dzd~!. Note that the

following diagram is evidently commutative with horizontal maps the obvious isomorphisms,

'p/Tp —— Tep/Tar

Opl GGD,GFl (49)
G(Z(D)/F) —— G(Z(GDo)/GF)

where 6gp,gr is the map of (2.4).

Proposition 4.2. With D and F as above, for Z = Z(GD),

(a) Zy is the purely inseparable closure of F in Z(D);
(b) T'z/TF is the p-primary part of ker(6p).

PROOF. See [Bg, Prop. 3.1, Th. 3.4]. O

Now, let F' be a field with Henselian valuation. That is, v has a unique extension to each field
L D F with L algebraic over F'. Likewise, as is well known (see [S, Th. 9, p. 53] or [W1, Th.], v has
. . . _ 1
a unique extension to each CDA D over F' (given by v(d) = mv(Nrd(d)) € Q®y ', for all
d € D*). We will focus on tame division algebras D (defined below), which all have the property
that GD is a GCDA over the graded field GF. But first we recall some terminology connected

with Henselian valued fields.

For our Henselian field F, let Fy., denote the separable closure of F' (in some fixed algebraic
closure Fy;q of F'). Let F,, be the inertia field of Fi,,, over F', with respect to the unique extension of

the Henselian valuation v to Fs.,. Then, (see [E, (19.12), (19.8)(b)]) T'r,, =T'r, Fnr = (F)sep, and
F,, is Galois over F with G(F,,,/F) 2 G((F)sep/F). Moreover, for any field L with F C L C Fj,,



and [L : F] < oo, we have (by [E, (19.14)] and an application of Hensel’s Lemma) L C F,, iff
L is unramified over F (i.e., [L : F] = [L : F] and L is separable over F). Note that F,, is the
compositum of all finite degree unramified field extensions of F' in Fyp; Fy,, is called the mazimal
unramified extension of F. Let F; be the ramification field of Fi.p, over F. Then (see [E, (20.17)])
F; & (F)gep and T'p, /T is the prime-to-p primary part of Ap/T'r, where Ap = Q ®7 ['p. That
is, if p = 0 then I'r, = Ap; if p # 0, then I'p, /T'r is p-torsion-free and Ap/T'p, is p-primary
torsion. Also, F; is Galois over F', by [E, (21.2)]. Further, for any field L with F' C L C F,
and [L : F] < oo, we have L C F; iff L is tame (= tamely ramified and defectless) over F' (i.e.,
[L:F]=|[L:F|l:Tp|, L isseparable over F, and p{ |z : T'r|). Here, “only if” follows by
[E, (20.20), (19.10)(b), (19.14)], and “if” from [E, (20.18)], since when L is tame over F', L - F,,
is tame and totally ramified over F),,.. Note that F; is the compositum of all the finite-degree
tame extension fields of F' in Fg.p; F; is called the mazimal tame extension of F. We have
F CF, CF;C Fyp, and if p = 0, then F} = Fp.

The Henselian valuation on F' yields certain distinguished subgroups of its Brauer group Br(F'),

discussed in [JW] and denoted as follows:

IBr(F) = {|D] | D is a CDA over F with [D: F]|=[D: F]
and Z(D) = F} = Br(F), the inertial part of Br(F);
SBr(F) = {[D]| Disa CDA over F, [D: F]|I'p:Tp|=[D: F],
Z (D) is separable over F,and #p is injective}
= Br(F,,/F), the inertially split part of Br(F');
TBr(F) = Br(F;/F), the tame part of Br(F') (further described
in Prop. 4.3 below).

So, IBr(F') C SBr(F') C TBr(F') C Br(F') and if p = 0, then TBr(F') = Br(F'). Our focus will be
on the tame CDA’s D over F (i.e., those for which [D] € TBr(F')), since they are the ones for
which the associated graded division rings GD carry the most complete information about D (see,
e.g., Th. 5.9 below). Tame CDA’s over F' were defined in a different way in [JW], but the next

proposition shows that the definitions are equivalent.

Proposition 4.3. Let D be a CDA over a Henselian field F, with char(F) = p. Then, the
following properties are equivalent:
(i) D is tame (ie., [D] € TBr(F));
(ii) [Dp] € SBr(F'), where Dy is the p-primary component of D;
(iii) [D: F)Tp : Tp| =[D : F], Z(D) is separable over F, and 71 ker(fp);
(iv) D has a maximal subfield which is tame over F';
(v) [GD:GF)=[D: F) and Z(GD) = GF.

PROOF. (i) = (ii) If [D] € TBr(F), then [D3] € TBr(F), since [D5] = [D®"] for some n. (If p = 0,



it is understood that Dy = F'.) Let B = Dy Qp Fy,,. Since F} splits B, there is a splitting field L
of B with F,,, C L C F; and [L : F,,| < co. Since L is tame over Fy, and F,, is separably closed,
[L: Fn] =|T'L : g, |, which is prime to p. Because ged([B : Fy,],[L : Fy,r]) = 1 and L splits B,
B must already be split, proving (ii).

(ii) < (iii) was proved in [JW, Lemma 6.1].

(iii) & (v) Let Z = Z(GD), a graded GF-subalgebra of GD. Then, Z = GF iff Z, = F
and I'z = ['r. Therefore, (iii) < (v) follows immediately from (4.7) and Prop. 4.2, since Z(D) is
normal over F, by [JW, Prop. 1.7].

(ii) = (iv) Assume [Dp| € SBr(F). Then, Dy has a maximal subfield K with K unramified
over F', by [JW, Lemma 5.1]. Let M be any maximal subfield of D', the prime-to-p compo-
nent of D. Since p t [M : F], M is tame over F, by “Ostrowski’s theorem,” which says that
[M : F]/([H : F]|Tas : Tp|) equals a nonnegative power of p if > 0, and equals 1 if p = 0, (by
[E, (20.21)] applied to N over M and N over F, where N is the normal closure of M over F).
Since K C F; and M C F;, the compositum K - M is also tame over F. Clearly, K - M splits
D>2Dy®p D' and [K-M:F|<[K:F|M:F]=deg(D),so K-M is a maximal subfield of D.

(iv) = (i) is clear, since any maximal subfield of D is a splitting field. O

Now, let F' be a Henselian field, with its associated graded field GF', and let QGF be the
quotient field of GF'. The total ordering on I'r gives us a total ordering on I'eqr = I'r, which
induces a valuation on QGF, as described at the beginning of this section. Let HGF' be the
Henselization of QGF with respect to this valuation. Then, HGF need not be isomorphic to
F (they need not even have the same characteristic). But we have shown in [HW, Prop. 5.1,
Th. 5.2] that for the maximal tame extensions HG(F;) & (HGF);, and the canonical map of
Galois groups G(F;/F) — G((HGF);/HGF) is an isomorphism. We also have homomorphisms
of multiplicative groups F} — G(F;)* and G(F)* — HG(F;)* — (HGF)}; these maps com-
pose to give a group homomorphism Fy* — (HGF'); which is clearly compatible with the respec-
tive Galois group actions. Therefore, there is a homomorphism of continuous cohomology groups
HY(G(F/F),F}) - H(G((HGF);/HGF),(HGF)}). In particular, for i = 2, we obtain a group

homomorphism

v: TBr(F) — TBr(HGF).

Theorem 4.4. Let F be a Henselian valued field. Then, the map v: TBr(F) — TBr(HGF) just

defined is an isomorphism.

Proor. We do this by stages. For the maximal unramified extension F,,, of F', it is easy to check
that HG(Fy,) & (HGF),, canonically, and that v maps SBr(F') into SBr(HGF'). We first show
that this map SBr(F) — SBr(HGF) is an isomorphism. We have SBr(F) = H?(G, F},), where
g = Q(FSEP/F) = G(Fnr/F) 2 G(HGF ) /HGF). Let I' =Tp,, =T'r = I'ygr. We have a



commutative diagram:

0 —— H?G,Up,) —— H*G,F}) —— H?(G,T) —— 0

J l l (4.10)

0 —— H*(G,Uwcr),,) — H?(G,(HGF)},) —— H?*(G,T) —— 0
The first row of (4.10) arises from the short exact sequence of G-modules
1—-Ug, = F,,>T =1

induced by the valuation on F,,,, and the second row arises likewise from (HGF),,. It was shown
in [JW, (5.4)] that the rows of (4.10) are exact, since F' and HGF' are Henselian. It was also shown
that

IBr(F) = H*(G,Ur,,) = H*G, For ) = Br(F),

where the middle isomorphism arises from the projection Ug,, — F—nr* It follows from this and
the isomorphism F),, = (HGF),, that the left vertical map in (4.10) is an isomorphism. Since the
right vertical map is the identity, the 5-lemma shows that the middle vertical map in (4.10) is also

an isomorphism. Thus,
SBr(F) =~ H*(G,F},) = H*(G,(HGF)},) = SBr(HGF),

and the composition of these isomorphisms coincides with v on SBr(F').

Now, we have a commutative diagram with exact rows

0 —— SBr(F) —— TBr(F) ——  TBr(F,,)

l vl l (4.11)

0 — SBr(HGF) — TBi(HGF) —— TBr((HGF)n,)

We just showed that the left vertical map in (4.11) is an isomorphism. To analyze the right vertical
map, first note that TBr(F,,) has no p-torsion, since [F} : F,,,] is prime to P as a supernatural num-
ber. Take any positive integer n such that n is prime to p (if p = 0, this means any positive integer at
all). Since the n-th power map F}* — F}* is surjective, we have for the n-torsion in the tame Brauer
group, , TBr(Fy,) = H?(G', un(F})), where G' = G(F;/F,,.) = G(HGF);/(HGF),,). (Note that
|ttn (Ft)| = n since F is Henselian and |, (F})| = n, which holds as F} is separably closed.) Be-
cause fup, (F;) maps isomorphically onto py,((HGF):), the map , TBr(F,,) — ,TBr((HGFy,)) is
an isomorphism. Since this is true for all n prime to P, the right vertical map in (4.11) is an

isomorphism.

The scalar extension map TBr(F') — TBr(F,,) is in general not onto. In fact, we claim that the
image of TBr(F') — TBr(F,,) equals |J nTBr(F,,) as m ranges over the positive integers prime to
m

p such that |, (F)| = m. For, by [TW, Th. 4.3, Prop. 4.2] every class in TBr(F,,.) is represented



by a division algebra D which is tame and totally ramified over F', and D is determined up to
isomorphism by its associated nondegenerate symplectic pairing Bp: I'p/T'r,. xTp/Tr,, — u(Fnr)
(given by (6 + g, ,e +Tr ) +— (ded—le=1) for any d,e € D* with v(d) = § and v(e) = ).
Moreover, if £ = exp(T'p/T'r) then £ is prime to p, im(8p) = p¢(Fnr), and [D] has exponent £
in TBr(F,,). If |u(F)| = £ (which occurs iff |u¢(F)| = £ as F is Henselian), then one can easily
construct a tame totally ramified division algebra over F' as a tensor product of symbol algebras
which will have the same value group and pairing as D; this algebra will map to [D] in TBr(Fy,).
Suppose, on the other hand, that |u.(F)| < £. By [JW, Lemma 6.2], any tame central division
algebra E over F is representable as E ~ S ® p T in TBr(F') where S is inertially split and 7" is a
tame and totally ramified division algebra over F. Then in TBr(F,,), E ®p F,,. ~T QF F,,, and
T ®p Fy, has the same value group and pairing as T, so the image of the pairing must lie in u(F).
So, T ®f Fpr ? D, since their canonical pairings have different images. Thus, when |u/(F)| < £,
then [D] cannot lie in the image of TBr(F), proving the claim. Since F =2 HGF, so they have the
same roots of unity, the claim shows the right vertical map of (4.11) restricts to an isomorphism
of the images of the maps TBr(F') — TBr(Fy,,) and TBr(HGF) — TBr((HGF)y,). Thus, the

5-lemma can be applied to diagram (4.11) to see that v is an isomorphism. O

Corollary 4.5. Suppose F' is a Henselian valued field, and K is a finite degree tame Galois
extension field of F. Take any 2-cocycle f € Z?(G(K/F), K*) such that f(o,7) € 1 + Mg for all
0,7 € G(K/F). Then the crossed product algebra (K/F,G(K/F), f) is split.

PROOF. The group homomorphism Fy — G(F:)* — (HGF); has kernel 1 + Mp,. Hence,
Y(K/F,G(K/F),f)] = 1 in TBr(HGF). So, Th. 4.4 shows that (K/F,G(K/F), f) must be
split. O

85 ISOMORPHISMS BETWEEN GBr AND TBr

Let R be a graded field with T'p totally ordered. We have seen that for any GCSA A over
R there is a CSA HA = HR @p A over the Henselian field HR. The map [A], — [HA] gives a
well-defined group homomorphism GBr(R) — Br(HR), since it is the composition of the forgetful
homomorphism GBr(R) — Br(R) with the scalar extension map Br(R) — Br(HR). Also, A =,
M, (E)(d), where E is a GCDA over R with [4], = [E],, and by (4.6), Prop. 2.3, and Prop. 4.3,
HE is a tame CDA over HR with [HE : HR] = [E : R]. Thus, our map to Br(H R) actually lands
in TBr(HR), and we have an index-preserving group homomorphism 3: GBr(R) — TBr(HR).
Now, the Henselian field HR has an associated graded field GHR, and by Prop. 4.3 there is a
map 0: TBr(HR) — GBr(GHR) taking [D] — [GD], for any tame CDA D over HR. Also,
let Y be the maximal tame graded field extension of R, so we have isomorphisms (HR); = HY
and GHY = G((HR):) = (GHR), by [HW, Prop. 5.1]. Let G = G(Y/R), which we identify
with G((HR);/HR) and G(GHY/GHR) in view of [HW, Prop. 5.1]. The continuous G-module



homomorphisms Y* — (HR); and (HR); — (GHY)* lead to homomorphisms ': H?(G,Y*) —
H2(G,(HR)}) and ¢': H?(G,(HR)}) — H?(G,GHY*). These maps fit together into a diagram

GBr(R) —2— TBr(HR) —'— GBi(GHR)

T ! 1 o

H2(G,v*) —2 H%(G,(HR);) —— H2(¢,GHY™)

Theorem 5.1. For any graded field R with T'p totally ordered, diagram (5.1) is commutative,
and all the maps in it are group isomorphisms. The maps  and ¢ are index-preserving. Also, §o 3

and ¢’ o 3’ coincide with the isomorphisms arising from the canonical isomorphism GHR =, R.

PROOF. The vertical maps in (5.1) are the isomorphisms of Prop. 3.3 for the graded fields R,
GHR, and the standard Brauer group isomorphism for the valued field HR. It is clear from the
definitions that 7o 8 and 7' o 8 are the isomorphisms arising from the canonical map R 2, GHR.
Hence, the outer rectangle in (5.1) is commutative, and 3 and ' are injective. Also, it is clear from
the definitions that the left square in (5.1) is commutative, and that g is a group homomorphism
(since it is essentially a scalar extension map). We will show below that 8’ is onto. Assume
this for now. Then from the commutative left square, # is onto, hence an isomorphism. So,
§ = (60f) o371 is a group isomorphism. (Note that it is not at all apparent from the definition
or from direct calculations that & is even a group homomorphism.) Likewise, &' = (6’0 3') o 8/~ is
an isomorphism. The commutativity of the right square in (5.1) follows from the commutativity
of the outer rectangle and the left square. We noted above that 3 is index-preserving. Because

0 o B is also index-preserving, so must be 9.

It remains to verify the surjectivity of 3. For this, consider the maps
w20, v") L5 w29, (HR);) > 29, GHY") 25 HY(G, (HGHR),),

where ', 0" are as in (5.1) and 3" corresponds to ' when we start with GH R instead of R as ground
graded field. The canonical gr-isomorphism GHR =, R induces an isomorphism HGHR = HR
of Henselian valued fields, and the map 3" o ¢’ is the corresponding isomorphism of cohomology
groups. (It is also the isomorphism given by Th. 4.4.) Since 3" o §’ is onto, so is 5”. But with
respect to the gr-isomorphism GHR =, R, (" corresponds to ', so ' must also be onto. [

Remark 5.2. There is a variation of Th. 5.1 which does not involve Henselization. For this, let
R be a graded field (with I'p torsion-free) and let Y be the maximal tame graded field extension
of R, as in [HW, Prop. 3.7]. Give some total ordering to I'r, use this to define a valuation on
the quotient field QR of R, and let GQR be the associated graded field for the filtration on QR
arising from the valuation. Let QY = QR ®r Y, which is the quotient field of Y. Then, there are

index-preserving group isomorphisms E and § in a diagram

GBr(R) —’— Br(QY/QR) —’— GBrGQR) (5.2)



such that & o E coincides with the isomorphism arising from the canonical graded isomorphism
GQR =, R. Also, there is commutative diagram like (5.1) (where G = G(QY/QR) ) in which all
the maps are isomorphisms, and the middle column is H?(G,QY) — Br(QY/QR). Here, A is the
map [E], — [E ®r QR], and § will be described below.

The properties asserted for the maps in (5.2) can be seen as follows: Let HR be the Henseliza-

tion of @R with respect to our valuation on @R, and consider the diagram

GBr(R) —— TBr(HR) —°— GBr(GHR)

Te T (5.3)

GBr(R) —’— Br(QY/QR) —— GBr(GQR),

where (3,6 are the maps of (5.1), € is the scalar extension map, and ¢ is the isomorphism arising
from the canonical gr-isomorphisms GQR =, R =, GHR. The left square of (5.3) is clearly
commutative. Hence, 5 is injective and index-preserving, since this is true for 8 by Th. 5.1.
Moreover, E is onto, since the corresponding homological map is onto, by arguing just as in the
last paragraph of the proof of Th. 5.1. Hence, ¢ is an index-preserving isomorphism (and indeed
maps into TBr(HR), not just into Br(HR)). Take any CDA D over QR with D split by QY.
Since B is onto and index-preserving, there is a GCDA E over R with D 2 FE®r QR = QF so the
valuation on QF induced by the grading on F yields a valuation on D extending the one on QR;
this valuation on D is uniquely determined, by [W1, Th.], and it is a tame valuation (in the sense
of Prop. 4.3(iii)) by Prop. 2.3. The map 6: Br(QR/QR) — GBr(GQR) can now be defined by
[D] — [GD],, where GD is the associated graded division ring arising from the valuation on D. It
is clear that the right square in (5.3) is commutative. Hence, § is an index-preserving isomorphism,

since this is true for ¢, 4, and c.

We next prove our main result, which is a theorem like 5.1, but starting with a Henselian
field instead of with a graded field. Fix a field F' with Henselian valuation v, and let GF' be the
associated graded field. As in Th. 4.4, let HGF be the Henselization of QGF with respect to
the valuation induced by the grading on GF using the total ordering on I'gr corresponding to
the ordering on I'r. There is a map a: TBr(F') — GBr(GF) mapping [D] — [GD],, for any
tame CDA D over F. There is also a group homomorphism 3: GBr(GF) — TBr(HGF') given
by [A]y = [A ®qr HGF). Let G = G(F;/F) = G(G(Fy)/GF) = G(HGF):/HGF) (see before
Th. 4.4 and [HW, Prop. 5.1]). We have homomorphisms o/: H?(G, F}) — H?(G,G(F;)*) and
B': H2(G,G(Fy)*) — H?*(G,(HGF);) induced by the G-module homomorphisms F; — G(F;)*
and G(F;)* — (HGF);. These fit into a diagram:

TBr(F) —%— GBi(GF) —’— TBi(HGF)

1 T T oo

H2(G,F}) —%— H%(G,G(F)*) —— H2(G,(HGF);)



Theorem 5.3. For any Henselian valued field F, diagram (5.4) is commutative, and all its maps

are group isomorphisms. Furthermore, o and 3 are index-preserving.

Before proving Th. 5.3, we recall some facts about Dubrovin valuation rings. If A is a CSA
over a field L, then a subring B of A is called a Dubrovin valuation ring of A if B has an ideal
J such that B/J is simple Artinian, and for each a € A — B there exist b;,by € B such that
bia,aby € B — J, cf. [D4], [Da], [W2]. It is known that J is the Jacobson radical of B, that B is
a prime ring which is a left and right order in A, that J N L is a valuation ring of L, and that
the two-sided ideals of B are linearly ordered by inclusion. Let st(B) = {a € A* | aBa~! = B},
and let I'p = st(B)/B*, the “value group” of B. For each § = sB* € I'g there is an associated
fractional ideal (= B-B sub-bimodule of A), I = Bs = sB. The ideals I° are all the fractional
ideals of B which are cyclic as left and as right B-modules. One has I - 1% = 9 .J% =[5+ The

abelian group I'p is given a total ordering by 6§ < &' iff I8 D I%. If we set I>0 = U I% then we
6'>6
may form the associated graded ring of B with respect to the filtration by fractional ideals I¢,

GB= @ GBjs, where GB; =1°/17°.
§€ls

If V is a given valuation ring of L, Dubrovin’s existence theorem ([D2, §3, Th. 2], see [BG,
Th. 3.8] for another proof) says that there is a Dubrovin valuation ring B of A with BNL =V.
Moreover, the conjugacy theorem ([Wa, Th. A], with a more direct proof given in [G, Th. 3.3]) says
that if B’ is another Dubrovin valuation ring of A with B'N L =V, then B’ = aBa™!, for some
a € A*; so clearly GB’ =, GB. Since we are interested in ground fields L with a fixed valuation
v on L, we will write GA for GB, for any Dubrovin valuation ring B of A with BN L = Vj.
So, GA is a graded G L-algebra, which is well-defined up to gr-isomorphism, with '¢4 = ' and
GAy = B/J. The notation GA is consistent with our previous usage. For, if D is a valued CDA
over L with Vp N L = Vg, then Vp is the unique Dubrovin valuation ring of D contracting to Vg,
in L, and then GD as just defined (i.e., G(Vp)) is exactly the graded division ring GD defined in
84 above.

Also, for any natural number n, if B is a Dubrovin valuation ring of A, then M, (B) is a
Dubrovin valuation ring of M, (A) with M,,(B)NL = BN L and T'js,(py = I'p canonically (cf.
[W2, Cor. 3.5]). Consequently, G(M,(A)) 2, M,(GA).

One convenient way of building Dubrovin valuation rings is by using Morandi’s value functions
introduced in [My]: Given a CSA A over L, suppose I' is a totally ordered abelian group and
w: A— {0} — T is a function such that for all a,b € A — {0},

(i) w(a + b) > min(w(a),w(b)), if b # —a;

(i1) w(ab) > w(a) + w(d) ;

(iii) By/Jw is a simple Artinian ring, where By, = {a € A — {0} | w(a) > 0} U {0} (a ring),
and J, ={a € A— {0} | w(a) > 0} U{0} (an ideal of B,,);

(iv) im(w) = w(st(w)), where st(w) = {a € A* | w(a™') = —w(a)}.



Then, by [Ma, Th. 2.4, Cor. 2.5], B,, is a Dubrovin valuation ring with B,, integral over B,, N L.
Further, st(B,) = st(w) and T'p, = im(w). Also, for § € T'p,, I° = {a € A—{0} | w(a) > 5§} U{0}
and I>° = {a € A — {0} | w(a) > 6} U {0}.

Lemma 5.4. Let F be a Henselian field, let K be a tame finite degree Galois extension field of F,
and set H = G(K/F). Let f € Z?(H,K*) be a normalized 2-cocycle, and let A = (K/F,H, f) =

@ Kuz,. There is a unique function w: {z, | 0 € H} = Q ®z 'r such that, for all o,7 € H,
ocEH

w("Ea) + ’LU(.’ET) = U(f(aa T)) + w(:l?,,-,—) (5'5)

(where v denotes the valuation on K extending the given valuation on F'). Extend w to A — {0}
by defining
w( ¥ eowr) = minfo(e,) + (o) | e # 0} (56)

ocEH
Suppose By, /Jy, is simple Artinian (for B,,, J,, defined as in (iii) above). Then GA =, (GK/GF,H, f),
where f(o,7) = image of f(o,7) in GK".

PROOF. Let Ap = Q®z 'r O I'. The valuation v: K* — Ap is H-equivariant (with # acting
trivially on Ag), so it induces a map in cohomology v*: H?(H,K*) — H?(H,AFr). Because
H is finite and Ap is uniquely divisible, H?>(H,Ar) = H'(H,Ar) = (0). The existence of
{w(z,)} satisfying (5.5) is a restatement of v*[f] = 0, and the uniqueness of {w(z,)} follows from
HY(H,Ar) = (0). See the proof of Lemma 3.1.

Now consider the function w on A — {0} defined by (5.6). We check that w satisfies conditions
(i)—(iv) above for a value function. (i) is clear, and (ii) follows because by (5.5), for any ¢,d € K*,
0,7 € H, w((czy)(dz;)) = w(cry) + w(dz,). Property (iii) holds by hypothesis. The previous
equation shows {cz, | ¢ € K*, 0 € H} C st(w), so (iv) holds. Therefore, B,, is a Dubrovin
valuation ring of A with B, N F = Vg, so GA = GB,,.

We show that GB,, is the desired crossed product. Since w restricts to v on K, GA contains
GK as a graded subring. Further, if 4, is the image of z, in GB,, then y,y, = f(0,7)Yor;
also, each y, € (GBy)* and y,cy;! = o(c) for any ¢ € GK", hence for any ¢ € GK. Because
K is tame over F', the elements of # induce distinct graded automorphisms of GK, and GK

is H-Galois over GF. The sum », GKy, in GB,, is actually a direct sum, as one can see by
ocEH
the usual argument (conjugating a homogeneous sum Y c,y, = 0 with the minimal number of

nonzero ¢, € GK by an element of GK”" — {0}, and subtracting to get a contradiction). Finally,
to see Y, GKy, is all of GB,,, take any 6 € I'gp, = I'p, and any b € (GBy)s, b # 0. Then,

b is the image of some a = ) c,z4, ¢y € K, with w(a) = 6. So, each w(c,z,) > § and some
oEH
w(c,z,) = 8. If welet o' = Y co,, where S = {0 € H | w(cyx,) = 6}, then o/ = a (mod I>?),
oc€ES
so if we let bar denote the image in GA, b =@ = d = Y. CZ, = Y. C¥s. Thus, we have
o€eS o€S

GA=GB, = Y GKy, = @ GKy, = (GK/GF,H, f), as desired. [
oc€EH oc€EH



PROOF OF TH. 5.3. The vertical maps in (5.4) are isomorphisms (by Prop. 3.3 for the middle
map). We know from Th. 5.1 that the right square of (5.4) is commutative and that 8 and (3’
are isomorphisms with § index-preserving. Also, §' o o’ is the isomorphism 7 of Th. 4.4. Hence,
o = f'71o (B od') is also an isomorphism. Since o maps tame CDA’s over F to GCDA’s over
GF, it is index-preserving. It remains only to prove that the left square of (5.4) is commutative.
(Note that it is not apparent at this point even that « is a group homomorphism. We would like
to complete the proof by invoking the fact that the ¢ of (5.1) is an isomorphism but we do not

know how to carry out such an argument.)

Take any finite tame Galois extension field K of F', set X = G(K/F), and take any f €
Z%(H,K*). If f satisfies the hypothesis of Lemma 5.4 (i.e., By, /Jy, is simple Artinian), then that
lemma shows the left square of (5.4) is commutative for the image of f in H?(G, F;). Note the
following two cases where this applies. First, whenever K is unramified over F', it was shown
in [MW, Th. 2.3] that the hypotheses of Lemma 5.4 hold for any f € Z?(#,K*). Second, if T
is any division algebra tame and totally ramified over F', then (as 7' is isomorphic to a tensor
product of symbol algebras, see [Dr, Th. 1]) T" has a maximal subfield L which is Galois (and

necessarily tame and totally ramified) over F. So T is a crossed product, say T = € Lz,
oc€G(L/F)
with z,2; = g(0,7)2sr. Then, for the unique w of (5.5), we must have w(z,) = v(z,), where v is

the valuation on T'. Furthermore, the v(z,) are distinct mod I'y. For, if v(2,) = v(z;) (modTy),

then v(z,) € ', for p = o771, Since the canonical pairing 87 on I'r/T'f is trivial on I', /T'F as L

is commutative, we have 1 = z,z, 4= = p(£)¢=1 € u(F) for all £ € L*. From the nondegenerate
pairing 'z, /Tr x G(L/F) — u(F) for a tame totally ramified Galois field extension, see [TW,
Prop. 1.4(i)], it follows that p = idr; so 0 = 7 whenever v(2,) = v(2,) (modI'r). Hence, the
function w on T' — {0} defined by (5.6) from {w(z,)} coincides with v on all of 7" — {0}. So,
By = Vr, Juw = Mr, and B, /J, =T = F, so the hypotheses of Lemma 5.4 are satisfied for the

cocycle g.

Now, let v: H?(G, F}') — TBr(F) be the left vertical map of (5.4) (an isomorphism), and take
any [A] € TBr(F). By [JW, Lemma 6.2], [A] = [S] + [T] in TBr(F), for some CDA’s S and T
with S inertially split and 7' tame and totally ramified over F. By the preceding paragraph, the
left square of (5.4) is commutative for 1 ~1[S] and % ~![T]. But it was shown by Boulagouaz in
[B2, Prop. 9.4], using value functions and [MW, Th. 2.1] that a[A] = a[S] + o[T]. Consequently,
the left square of (5.4) is commutative for 1y~1[A], hence for all of H%(G, F}*), as 1~ is onto. This
completes the proof. [

Remark 5.5. One interesting fact that Th. 5.3 makes clear is that if F' is any Henselian valued field,
then the structure of TBr(F') is independent of the ordering on I'r (though it certainly depends on
I'r as an abstract group). For, TBr(F') = GBr(GF'), and the graded Brauer group is independent

of the ordering on I'p.

Remark 5.6. It was proved in [By, Th. 10.3] that if F' is a Henselian field and D is a tame CDA



over F, then exp(GD) = exp(D), where exp(GD) denotes the order of [GD] in the abelian group
GBr(GF). Observe that this follows immediately from the a of (5.4) being a monomorphism,
which we proved in Th. 5.3.

Corollary 5.7. Let F C K be Henselian fields (with the valuation on K extending the one on F).

Then, there is a commutative diagram:

TBr(F) —**~ GBi(GF) —*— TBr(HGF)

| 1 1 o7

TBr(K) —*% GBr(GK) —2*— TBr(HGK)
PROOF. The vertical maps in (5.7) are the canonical scalar extension maps. It is clear from the
description of K; as the ramification field for the Galois extension K;/K that F; C K;. So, the
scalar extension maps Br(F') — Br(K) maps TBr(F) — TBr(K). Likewise, since we are assuming
the Henselization HGK of QGK has been chosen to contain HGF, we have (HGF); C (HGK);,
so TBr(HGF') maps to TBr(HGK). The right inner square in (5.7) is commutative because Op
and [k are essentially scalar extension maps. Also, it is clear from the homological definition of
the tame Brauer group, and Th. 5.3, that the outer rectangle in (5.7) is commutative. Hence, by
Th. 5.3 and the fact that Sr and Sk are isomorphisms, it follows that the left inner square in (5.7)

is also commutative. [

Corollary 5.8. Let F' C K Henselian fields as in Cor. 5.7, and let A be a tame CSA over F.
Then, K splits A iff GK splits GA, iff HGK splits HGA.

PROOF. This is immediate from the commutativity of diagram (5.7), since the horizontal maps

are isomorphisms by Th. 5.3. O

Theorem 5.9. Let D be a tame CDA over a Henselian field F', and let A be a tame CDA over
a field K D F such that [K : F] < oo and K is defectless over F'. Then A is F-isomorphic to
an F-subalgebra of D iff GA is GF-gr-isomorphic to a graded GF'-subalgebra of GD, iff HGA is
HGF-isomorphic to an HGF-subalgebra of HGD.

PROOF. Let £k = [K : F] and let a®> = [A : K]. Recall (see, e.g., [MiW, Prop. 2.1(b)]) that
ind(D)/ind(D ®F A°P) < ak, with equality holding iff A embeds F-isomorphically into D.

Clearly, any F-monomorphism of A into D induces a graded GF-monomorphism of GA into
GD. Suppose next that GA is graded G F-isomorphic to a subalgebra of GD. Since K is defectless
over F', GK Qqr HGF = HGK. Also, HGF is flat over GF, since it is a direct sum of copies of
the localization QGF of GF. Hence HGA, which equals GAQgx HGK =2 GAQgr HGF', embeds
in HGD = GD ®gr HGF'.

Now, suppose HGA embeds in HGD over HGF. Since HGK = Z(HGA) and also
[HGA : HGK] = [A : K] = o® and [HGK : HGF) = [K : F] = k (as K/F is defectless),



the formula in the first paragraph gives
ind(HGD)/ind(HGD ®@ugr (HGA)®) = ak. (5.8)

Let yr = Br o ap, where Or and ap are the maps of (5.4) for F; likewise, let yx = Bk o ax. Also,

let res denote the scalar extension map. Then, in TBr(HGK) we have

[HGD ®uor (HGA)®] = [HGD ®@uar HGK] + [(HGA)P]
= resgyax/HGF © Yr|D] + 7 [AP]

=x[D ®r K]+ 7x[A] = 7k [D @F A%],

where the second equality uses Th. 5.3 twice and the third equality is by Cor. 5.7. Since vx and
vr are index-preserving by Th. 5.3, this yields

ind(D)/ind(D ®p A°?) = ind(HGD)/ind(HGD ®@ucr (HGA)®?) = ak.
It follows by the first paragraph that there is an F-algebra monomorphism of A into D. [

Remark 5.10. It follows from Th. 5.9 that results on defectless subfields of division algebras over
Henselian fields can be carried over completely to results on graded subfields of graded division
algebras. This applies, for example, to the work of Morandi and Sethuraman in [MS] on Kummer
subfields, and that of Brussel in [Br] on totally ramified subfields, as well as many of the results
in [JW]. Also, there are of course analogues to Cor. 5.7, 5.8, Th. 5.9 where we start with a graded
field instead of a Henselian field, and use Th. 5.1 instead of Th. 5.3.

§6 COMPATIBILITY WITH CORESTRICTION

We have shown that the maps between tame Brauer groups of Henselian valued fields and
graded Brauer groups of graded fields are compatible with scalar extensions. We now show that

they are compatible with the corestriction.

Let R C S be graded fields (with I'g torsion-free, as always), with [S : R] = k < oo and S tame
over R. Then, by [HW, Th. 3.9, Th. 3.11] there is a graded field U D S with [U : R] < oo and U
Galois over R. Let G = G(U/R) = G(QU/QR), and let H = G(QU/QS) C G. Then, as S =UNQS
(see [HW, Cor. 2.5(b)]), for the elements of U fixed by H, we have U? = UNQU™" = S; so by [Gr,
Th. 2.2, p. 7], U is H-Galois over S, and |G : H| = [QS : QR] =[S : R] = k, by (3.1). Note that if
N is any finite-dimensional graded U-vector space, and G acts on N by graded R-automorphisms

and the action is semilinear (i.e. o(un) = o(u) - o(n) for all o € G, u € U, n € N), then

NY is a graded R-vector space with dimg(NY) = dimy (N), and the map

6.1
U®r N9 — N given by u ® n — u-n is a graded U-vector space isomorphism. (6-1)



That N9 is graded is clear; the other assertions in (6.1) follow by noting that QR ® N9 =
(QU ®y N)Y9, and applying the corresponding properties for semilinear group actions on vector
spaces (since G = G(QU/QR)).

We first describe the corestriction of a finite dimensional graded S-vector space M. Let
Ty,...,Tk be a set of representatives of the left cosets of H in G. The left action of G on the cosets
{m1H1... 7, H} associates to each o € G a permutation o of {1,2,...,k} defined by o7, H = 75;yH.
For each i, let M; = U ®s,r, M, i.e., the scalar extension of M from S to U, with U treated as
an S-algebra via 7;: S — U. That is, M; satisfies the middle linearity rule u ® sm = u7;(s) ® m,
foralu e U, s € §, m € M. Since 7; is a gr-isomorphism of U, M; is a graded U-vector space.
Note that for each o € G there is a (well-defined!) o-semilinear graded R-vector space isomorphism
G : M — Ms ;) given by u®m — o(u)®m; clearly, po = pod for p,o € G. Then, observe that there
is a graded semilinear action of G on M; Qp ... Quy My, given by oc(m1 ®...Qmg) =n1 ® ... ng,
where n,(;y = &(m;) for each i. Define corg/r(M) to be (M1 ®y ... ®u My)Y. So, corg/r(M) is a
graded R-vector space, and (6.1) shows

dimp(cors/p(M)) =[S : R|dimg(M) and U ®g cors/p(M) =, My ®y ...®y My.  (6.2)

Now, if A is a GCSA over S, then corg/r(A), as just defined but with A replacing M, is a
graded R-algebra since G acts on A1 Qy...®u Ax (where A; = U®s, -, A) by algebra automorphisms.
Furthermore, the graded U-algebra isomorphism U ®g corg/r(A) =4 A1 ®p ... ®u Ag shows that
corg/r(A) must be a GCSA over R. The construction of corg,r(A) is clearly independent of the
choice of coset representatives 7; of H in G, and, by the usual argument, is also independent (up
to graded isomorphism) of the choice of Galois graded field extension U of R containing S. If B
is another GCSA over S, then clearly corg/r(A) ®r cors/r(B) =, cors/r(A ®s B). Also, if M is
a finite dimensional graded S-vector space, then clearly U ®g, ;, Ends(M) =, Endy (U ®s,-, M),
with compatible G-actions. It follows easily that cors,r(Ends(M)) =, Endgr(cors;gr(M)). Thus,
the corestriction corg, g yields a well-defined group homomorphism cors;r: GBr(S) — GBr(R). It

is clear from the definitions and a dimension count that

QR ®gr COI‘S/R(A) = COI"QS/QR(QS ®g A). (6.3)

Likewise, for any total ordering on I's (with corresponding ordering on I'r C I'g), if HS is the
Henselization of Q.S with respect to the valuation on @}S induced by the ordering on I'g, then

HR ®r Cors/R(A) gCOTHs/HR(HS ®s A) (64)
It follows from (6.3) and the injectivity of GBr(U/R) — Br(QU/QR) that we have a commutative

diagram
H2(H,U*) —5 H2(G,U*)

=| =| (6.5)

GBr(U/S) — GBr(U/R)

corg/g

where the top map in (6.5) is the cohomological corestriction.



Theorem 6.1. Let F' be a field with Henselian valuation, and K a finite degree tame field extension

of F'. Then, there is a commutative diagram,

TBr(K) —% GBi(GK) —2%X TBi(HGK)
lcorx/p JVCOTGK/GF lCOYHGK/HGF (6.6)
TBr(F) —%% GBi(GF) —2% TBr(HGF)
where «, 8 are the maps of (5.4).

PROOF. Let v = fBr o ar and yx = P © ak, which are isomorphisms by Th. 5.3. The outer
rectangle of (6.6) is commutative since by Th. 5.3 yr and i correspond to maps in cohomology,
the cohomological corestriction is functorial with respect to G-module homomorphisms, and the
cohomological corestriction is consistent with the algebra corestriction. The right inner square of
(6.6) is commutative by (6.4). Since ax = fx o vx and ar = Br o yg', it follows that the left

inner square of (6.6) is also commutative. [

Proposition 6.2. Let R C S be a finite degree tame extension of graded fields (with T'g torsion-
free). Let E be a GCDA over S, and let A be the underlying GCDA of corg r(E) (i-e., [A], =
[cors/r(E)]y in GBr(R)). Then,

P'a Cleorg n(6) CT'E (6.7)

and
Z(Ag) C Nk, (6.8)

where N is the normal closure of Z(FEy) over Ry and k = exp(ker(6g)), where O is the map of

(2.2) .

PROOF. The inclusions in (6.7) are evident from the definitions. For (6.8), let < be any total
ordering on I'r, and H R the Henselization of QR with respect to the valuation on QR determined
by the ordering on I'p. Then HA (= HR®pr A) is a CDA over HR (see after (4.4) above), and
[HA] = [corys/ur(HE)] in Br(HR) by (6.4). Since HE = E; and HR = Ry and the map 0y g of
(4.8) corresponds to g (so ker(fpp) = ker(6g)), it follows by [H, Th. 18] that Z(HA) C N/k.
Then (6.8) follows as A9 = HA. O

The value of k given in Prop. 6.2 can be improved by taking into account [Sy : Rg] and which
roots of unity lie in Ry. See [H, Th. 18] for the full statement.
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