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ABSTRACT. To a short exact sequence of triangulated categories with duality, we associate a long exact se-
quence of Witt groups. For this, we introduce higher Witt groups in a very algebraic and explicit way. Since
those Witt groups are 4-periodic, this long exact sequence reduces to a cyclic 12-term one. Of course, in
addition to higher Witt groups, we need to construct connecting homomorphisms, hereafter called residue
homomorphisms.

INTRODUCTION.

The usual Witt group of a scheme is obtained by considering symmetric vector bundles (up to isometry)
modulo the bundles possessing a maximal totally isotropic sub-bundle (called a lagrangian, see Knebusch
[6, definition p.133]). This is an invariant whose behavior with respect to localization is pretty tough.

Several attempts have been made to define higher Witt groups. For instance, one might mention the
famous contributions of Karoubi (see [4]), Pardon (see [7]) and Ranicki (see [8]). However, the existence
of a localization sequence for Witt groups over arbitrary schemes and open subschemes is unknown, even
in the affine case. My opinion on the question is that there is no natural kernel of the localization map
and therefore no obvious result to conjecture, beyond the naive idea that some role has to be attributed
to the closed complement of the open subscheme.

In part IT of this series, I shall explain how the Witt group of a scheme X can be computed in terms of
the derived category of bounded complexes of locally free Ox-modules of finite type. The affine case has
already been treated in [1, theorem 4.1] and [2, théoréme 3.29, p.89]. These results lead us to rephrase
the localization problem in terms of triangulated categories.

It is a real pleasure to see how everything can be expressed in this language and how the axioms of
triangulated categories (including of course the octahedron axiom) are sufficient to establish the 12-term
exact sequence. Nevertheless, the results are not always easier to prove. On the contrary, some of the
questions are harder to tackle in the triangulated case than in the usual one (the better example being
the sub-lagrangian construction treated in §3). On the other hand, this new approach gains in flexibility.
Observe for instance that stably metabolic forms are metabolic (theorem 2.5), which is known to be
wrong in the classical framework, even over rings.

One great advantage of the triangulated point of view is the existence of a kernel category for local-
ization. Let me make this more precise.

First of all, recall that a triangulated category K possesses a duality if it is endowed with a contravariant
exact functor:

#:K— K

such that #2 = Id. Exactness means that # sends exact triangles of K to exact triangles. The Witt
group of K is defined to be the quotient of the monoid of isometry classes of symmetric spaces by the sub-
monoid formed by those spaces possessing a lagrangian. The notion of lagrangian used here generalizes
the classical one in a natural way. For all of this, see § 1.
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2 PAUL BALMER

Now, consider a localization of triangulated categories:
q: K—S7'K

and suppose that both are equipped with a duality in a compatible way (# o ¢ = g o #). Then this
localization has a kernel :

(LOC) 0—J—K—S'K—0

namely the full subcategory .J of K on the objects M such that q(M) is isomorphic to zero in S7T1K.
Note that such an exact sequence does not apply to ezact categories and is a typically triangular strategy.
Using the notion of saturated subcategory (confer [9]), one can start from J and see S™1K as K/J. A
kernel category like above is always saturated. I prefer to stick to the presentation of (LOC) because I
have localization of schemes in mind, but both point of vue are equivalent (loco citato I11.2.1).

If we have an exact sequence like (LOC) above and if the dualities on K and S~'K are compatible, it
is obvious that the duality # of K restricts to a duality on J. Now the conjecture is clear:

To such a localization exact sequence of triangulated categories with duality, we can associate
a long exact sequence of Witt groups (introducing higher and lower Witt groups).

This is the result we are going to establish (see theorem 5.1). There is no assumption to be made on
the triangulated category except a very light noetherianity hypothesis (see definition 3.3).

The higher Witt groups are defined as follows. They are the Witt groups of the same category with
shifted dualities T™ o #, for n € Z (see definition 1.13). In other words, these higher Witt groups can be
defined without topology and without metaphysical considerations on the category of small triangulated
categories (e.g., no use of flasque triangulated categories). This means that the theory of Witt groups
over triangulated categories is in some sense complete with respect to localization. Moreover the simplicity
of their definition allows the computation of some of these higher Witt groups.

It will be our next duty to interpret this 12-term exact sequence in the special case of the derived
category of a scheme (or the derived category of any exact category with duality of course). This requires
additional work and is not presented here but will be part of this series.

One word about the proofs. The main result depends upon two facts: first, stably neutral spaces are
neutral (confer already mentioned theorem 2.5) and, second, we can more or less generalize the classical
sub-lagrangian construction to the derived framework (confer theorem 3.17). The exposition is such that
the reader can follow the reasoning step by step. The only facts needed about triangulated categories are
those recalled in §0 and the four basic axioms. Especially the octahedron is used with no mercy.

Paragraph 1 recalls the definitions of (+1)-dualities and Witt groups in the language of triangulated
categories. Paragraphs 2 and 3 contain results on symmetric spaces to be used in paragraphs 4 and 5,
where the Witt groups return and finally triumph at the satisfaction of the reader.
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0. BACKGROUND ON TRIANGULATED CATEGORIES.

Here is a little baise-en-ville of the triangulated mathematician. Details can be found in [9], for instance.
Let K denote a triangulated category. Recall that K is additive and endowed with a translation additive
functor T': K — K which is an automorphism. We have exact triangles:

(A) A—> B> —>T(A)

which replace the exact sequences of the abelian (or exact) framework. We do not want to write down
the axioms but we would like to recall some very elementary and useful techniques. First, if A is exact,
so is any isomorphic triangle (axiom) and in particular any triangle obtained from A by changing the
sign of two of the three morphisms.

To explain how triangles replace exact sequences, recall that necessarily the composition of two con-
secutive morphisms in A is trivial: vu =0, wv = 0 but also T'(u)w = 0, uT (w) = 0 and so on. Let
us focus on the middle morphism v. Then (A4, ) is a weak kernel of v in the sense that v = 0 and that
any morphism f : X — B such that v f = 0 factors (non uniquely) through A:

A—">B—">C > T(4),
\
Ny
NN vf=0
X
As well, (T(A),w) is a weak cokernel of v: for g : C — Y, we have gv = 0 if and only if g factors (non

uniquely) through T'(A):
u v w

A B C T(A)
g //
gv=20 .7 39
Y.

Another very common trick is the following. Given a morphism of exact triangles :

A—t>p—s0cYsT4)

KRR

A'—> B —> ("
u v w

if two among f, g and h are isomorphisms so is the third (analogue of the five lemma). This is an easy
consequence of the following also useful remark: Given any endomorphism of an exact triangle of the
form:

A—2>p—Ys 0L T(A)

RN

A B C T(4),

u v w

we have necessarily k2 = 0. This, in turn, is an easy consequence of the above remarks about weak
kernels and cokernels.

This implies that the triples (C,v,w) such that A is an exact triangle (for u : A — B fixed) are all
isomorphic. Any such triple (or sometimes only the object C) is called the cone of u and will be written as
Cone(u). The cone plays weakly but simultaneously the role of kernel and cokernel. It contains essentially
all the homological information. A very important question is then to know how to compare the cone of a
composition u' o u with the cones of u' and u. The answer is the famous axiom of the octahedron, which
says: there is a good exact triangle linking the cone of the composition of two morphisms and the cones
of these morphisms. Any more precise formulation should be close to the classical one due to Verdier.
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1. THE FOUR WITT GROUPS OF A TRIANGULATED CATEGORY WITH DUALITY.

1.1. Once and for all. Let K denote a triangulated category and T be its translation automorphism.
Here, we will always suppose that 2 € K. This means that the abelian group Homg (A, B) is uniquely
2-divisible for all objects A and B in K.

1.2. Definition. Let § = £1. An additive contravariant functor # : K — K is said to be d-ezact if
T o# = # oT~! and if, for any exact triangle

A—2>p—tsc-YsT(4),

the following triangle is exact:

# # 8- T(w#
O# ——> B# — > A# ( )T(C#)

where (—)% trickily denotes #(—). Suppose, moreover, that there exists an isomorphism of functors
w: Id 3 # o # such that wrry = T(wwm) and (wM)# owy# = Idy+ for any object M of K. Then
the triple (K, #,w) is called a triangulated category with §-duality. In case § = 1, we shall simply talk
about a duality and in case § = —1, we shall use the word skew-duality.

1.3. Easy and important exercise. Let (K, #, w) be a triangulated category with §-duality (§ = £1).
(1) Let n € Z. Prove that (K,T™ o #,w) is again a triangulated category with ((—1)™ - §)-duality.
(2) Prove that (K, #,—w) is again a triangulated category with d-duality. Same §!

1.4. Notions using only the additive structure. Let (K,#,w) be a triangulated category with
d-duality (6 = £1). In particular, K is an additive category with duality. A symmetric space is a pair
(P, ) such that P is an object in K and ¢ : P = P# is a symmetric form, meaning that ¥ o wp = .
Orthogonal sum and isometries are defined as usual. A skew-symmetric form ¢ : P = P# verifies
©* owp = — or, in other words, is a symmetric form in (K, #, —w). Pay attention: the sign § = +1
has nothing to do a priori with symmetry and skew-symmetry.

1.5. Remark. Our K is more than an additive category: we have the cone data. If u is symmetric
morphism (i.e. u# = u without assuming u to be an isomorphism), then the cone of u is more than the
homological information about u, it also carries a symmetric structure. Let us make this more precise.
This is a central point of our study: do not to skip this part! It will be useful for the definitions of
metabolic spaces and of the connecting homomorphisms in the long exact sequence of localization.

1.6. Theorem. Let 6 = £1. Let (K,#,w) be a triangulated category with 0-duality. Suppose that
% € K. Let A be an object of K and u : A — A# be a symmetric morphism, that is u¥ 0w = u.

(1) Choose any exact triangle over u :

U U1 U2

A A# c T(A).
Then there exists an isomorphism v such that the diagram :
A U A U1 C Uz T(A)
(T §-wa ‘ 2l¢ H5 T (wa)
A## A# T(C#*) ———T(4A)
§-ut ~T(uf) T(u)

commutes and such that

T (y#) o we = (—6) - .
(2) Other choices of (C,u1,us) and ¢ satisfying (1) give an isometric space (C,v).
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1.7. Proof. Choose an exact triangle like in (1). Then dualize it using definition 1.2 to get:

# #
U # 6-T(u
c# —— L o ## v A# () T(C#)

and rotate it to put u# in the first place. Make an even number of sign changes to get the second line of
(). Now the symmetry hypothesis on u can be expressed as the commutativity of the left square of (T').
By an axiom of triangulated categories, one can complete it with some morphism v satisfying:

Yuy = —T(uf)
T =6-T(wa)us.

Apply T o # to those equations to obtain :

T(uf) T(p*) = —uf#
TW*)uf* =5 T(uf) =t

Compose on the right the first line with we and the second with w4#. Use definition of w : Id ~ # o #
to find :

T(uf) (TW#) o wo) = ~T(@a) uz
(T@w#) o we) ur =35 T(uf).

In other words, (— 8- T()#) o wc) can replace ¢ in the diagram (T'). Since 3 € K, we can replace 1) by
+( =6 -T(W#) o we). This morphism is necessarily an isomorphism (confer §0) and satisfies (1).

Let us prove (2). Part (1) says that ¢ is symmetric in (K,T o #,(0) - w) which is a triangulated
category with the (—4§)-duality
* :=T o #.

Pay attention that “(—d)-duality” does not come from (4) - w but from exercise 1.3 part 1 for n = 1!
Suppose that you make another choice of 1, call it x, satusfying (1). Then x % fits in an endomor-
phism of the triangle over u:

u Uy u2

A A# C T(A)
| | e ]
A—Fp—> At ———>C——>T(4).

By §0, x ¢ =1+ k with k? = 0. It is easy to check that y k = k* x. Therefore,
1., 1 1 .,
(1+§k) x(1+§k) :x(1+§k) =x{1+k)=1.

That is, x and ¢ are isometric. It is even easier to prove that the isometry class of (C,1) does not depend
on the choice of the exact triangle. il

1.8. Definition. As suggested by the above result and by its proof, it is convenient to make the following
convention. Let (K, #,w) be a triangulated category with d-duality for § = £1. Then the translated (or
shifted) structure of triangulated category with (—d)-duality is

T(K,#,@):=(K,To#,(-0) w).
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1.9. Remark and definition. In other words, if # is a duality, we consider —w as the identification
Id 5 (T o #)2. But, if # is a skew-duality, then we use w again as the identification Id = (T o #)2. This
construction is invertible and we can define : for any triangulated category with d-duality (K, #, @),

Tﬁl(K,#,w) = (K, T o#, (+9) -w)

which is a structure of triangulated category with (—d)-duality. Check that this is really the inverse
construction! If confusion with signs occurs, redo exercise 1.3.

For example, if (K, #,w) is a triangulated category with duality (i.e. § = +1) then T"™(K, #,w) =
(K, T"o #,(-1) mlpty -w) is a triangulated category with (—1)"-duality, for all n € Z.

With this terminology, theorem 1.6 can be rephrased as: The cone of a symmetric morphism for
(K, #,w) inherits a symmetric form for the translated duality T (K, #,w). This symmetric form is well

defined up to isometry. This justifies the following definition.

1.10. Definition. Let (K, #,w) be a triangulated category with d-duality (for 6 = +1). Let A be an
object in K and u: A — A% be a symmetric morphism (u* o w4 = u). The cone of (A, u) is defined to

be the symmetric space
Cone(4,u) := (C,v)

fitting in the diagram (T') of theorem 1.6. This is a space for the shifted duality T'(K, #,w). It is well
defined up to (non-unique) isometry.

1.11. Remark. Consider # as the translated duality of T—! o #. Theorem 1.6 allows us to construct
a lot of trivial forms for # starting with symmetric morphisms u for the previous skew-duality 7! o #.
These are the forms for the duality # which we are going to ignore in the Witt group. In [1] and [2],
we chose to call these forms “neutral” because we also had to deal with classical metabolic forms and we
wanted to avoid the confusion.

1.12. Definition. Let (K,#,w) be a triangulated category with d-duality (0§ = £1). A symmetric
space (P, ) is neutral (or metabolic) if there exist an object A and a morphism u : A — T~ 1(A#) such
that

T 'u®)o(d-w)=u and (P, ) = Cone(4, u).

It is easy to convince oneself that this is the natural generalization of Knebusch’s definition of metabolic
forms (see [6]). Compare with [2, définition 2.18, p.32] and the subsequent remarks or with lemma 2.1
(2) below for the “optical” approach to the analogy.

1.13. Definition. Let (K,#,w) be a triangulated category with é-duality (§ = £1). We define the
Witt monoid of K to be the monoid of isometry classes of symmetric spaces endowed with the orthogonal

sum. We write it as
MW (K, #,w).

Obviously, since this cone-construction is additive and since neutrality is preserved by isometry, the
set of isometry classes of neutral spaces form a well defined sub-monoid of MW (K, #,w) that we shall
call

NW(K, #, w).

The quotient monoid is a group (for quotient of abelian monoids, see [2, remarque 2.27, p.35] if

necessary), called the Witt group of (K, #,w) and written as

_ MW(K, #,w)

W(K, #,w) = m

If (P, ) is a symmetric space, we write [P, ¢] for its class in the corresponding Witt group. We say that
two symmetric spaces are Witt-equivalent if their classes in the Witt groups are the same.
Referring to exercise 1.3 and definitions 1.8 and 1.9, we define

W™K, #,w) := W(T"(K,#,w))
for all n € Z. These are the shifted Witt groups of (K, #, w).
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1.14. Proposition. Let (K,#,w) be a triangulated category with duality (6 = +1). The translation
functor T : K — K induces isomorphisms :

W(K,T" o #,w) = W(K,T"?, w)
for all n € Z. In particular, we have the four-periodicity :

WMK) S WH(K).

1.15. Proof. See [1, proposition 1.20] or [2, proposition 2.38, p.37] or do it as an easy exercise. To see
the periodicity, recall that definition 1.8 gives

T2(K,#,W) = (KaTZ o #7 —’W)-

Therefore the isomorphism of the proposition has to be used twice to reach (K,T* o #,w) which is
TY(K, #, w). :

1.16. Remark. Some people like to call symmetric forms for (K, #,—w) skew-symmetric, considering
that (K, #,w) is somehow fixed. Using the previous proposition and our convention for the translation
of a duality, the Witt group of skew-symmetric forms is nothing but W (K, #, w).

The reader should keep in mind the following interpretation of this proposition: on a given triangulated
category with a (+1)-duality #, there is essentially one associated skew-duality, namely T o #. In terms
of Witt groups, it means that we have two Witt groups for the given duality and two Witt groups for the
associated skew-duality, since in both cases one can consider symmetric or skew-symmetric forms. Then
we keep four Witt groups. We have the following collection :

W(K) = W(K, #,w) the natural Witt group of symmetric forms.
W2(K) =W(K,#,—w) the natural Witt group of skew-symmetric forms.

WYK) = W(K,T o#,—w) the associated Witt group of skew-symmetric forms, using the skew-
duality associated to #.

W3(K) = W(K,T o#,w) the associated Witt group of symmetric forms.

To make a long story short, considering all dualities T™ o #, n € Z, and all identifications € - w,
€ = £1, you obtain four Witt groups. We choose to put them in the above order because of the long
exact localization sequence we shall obtain.

1.17. Example. Let X be a scheme. Consider Dj}(X) the derived category of bounded complexes
of locally free Ox-modules of finite rank. This is naturally endowed with a structure of triangulated
category with duality by localizing the usual duality on the exact category of locally free Ox-modules
of finite rank. Its Witt group is the same as the usual one, as we shall establish in part IT of this series,
under weak hypotheses. This generalises to any exact category with duality and we shall prove it in this
generality.

1.18. Remark. The above example places the usual Witt group in the new framework of triangulated
categories with duality. It is very interesting to notice that there exists some kind of a Witt group for
finitely generated (or coherent) modules also.

To understand this, note that under certain hypotheses Dgoh(X ) is endowed an essentially unique
duality as explained in [3, chapter V, pp.252-301]. In other words, this is a G (or K}) type of Witt
group, concept unknown to me until now. Even for rings, it is quite unusual. The point is that any
coherent module becomes reflexive in the derived category D'goh(X ), which is pretty wrong in the abelian
category of coherent modules.

This is another example of the generality of the triangular framework. Of course, both types of Witt
groups will coincide over regular separated schemes.
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2. NEUTRALITY AND STABLE NEUTRALITY.

2.1. Lemma. Let (K,#) be a triangulated category with duality. Let (P, ) be a symmetric space. The
following conditions are equivalent :

(1) (P, ) is neutral;
(2) there exist L, a and w such that the triangle :

T-1(L#) v L a P LA
is exact and such that T~ (w#) = w;
(3) there exists an exact triangle :
T—I(M#) Vo I 141 P Vo M

and an isomorphism h : L = M such that the following diagram commutes :

TiME) —2L s s p L e
T—l(h#)l: :lh :lw :lh#
T-1(L#) M p# L#*.
T 8#) 1/2# 1/117£

2.2. Proof. Using definition 1.12 for 6 = +1 and diagram (T') of theorem 1.6 (recall that T~1# is a
skew-duality), it is obvious that condition (1) and (2) are equivalent. Clearly (2) implies (3) by taking
h=1d.

Suppose now that there exists a diagram like in (3). The triangle

h !
T (M#) — 2 g P—2 >t

is isomorphic to the exact triangle of (3) and is therefore exact. Let w = hovy and a = v; o h™1. Then
the triple (L, o, w) satisfies (2). il

2.3. Definition. Given a neutral symmetric space (P, ), a triple (L, o, w) satisfying condition (2) of
the above lemma is called a lagrangian of (P,¢). In particular, a#pa = 0.

Given any symmetric space (P, ), a pair (L, ) is called a sub-lagrangian of (P, ) if a®pa = 0. We
shall deal with sub-lagrangians in paragraph 3.

2.4. Remark. A symmetric space (P, ¢) is said to be stably neutral if there exists a neutral space (R, )
such that

(Pyp) L(Q, x) =~ (R,4)L(Q, x)

for some symmetric space (@, x). This is the same as saying that (P, ) L some neutral space is neutral
(by adding (@, —x) on both side). This is also the same as saying that [P, ] = 0 in W(K). Obviously
neutral spaces are stably neutral. The converse is wrong in the usual framework (there exist non-metabolic
stably metabolic spaces) but is true in the triangulated one.

2.5. Theorem. Let K be a triangulated category with duality. Suppose that % € K. Any stably neutral
symmetric space is neutral.
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2.6. Proof. Let (P, ) be a stably neutral space. By the above remark, there exists a space (@, x) such
that the space
(P, ) L(Q, x)L(Q,

is neutral. Since (Q,x)L(Q, —X) is isometric to (Q ® Q¥, ( ) this means that the space
0
0
1

(P& Qo Q*,

o O6
o = O
~—

is neutral. By condition (2) of lemma 2.1 applied to the above symmetric space, there exists an exact

triangle :
a
)
c (a*p c* b*)

T-Y(L#) > L—>Pe Qe Q* L#

with w = T~!(w#) for some morphisms a, b and ¢ as above. Chose an exact triangle containing b:

Lo M ron )

(we choose to call T(M) the cone of b). Now, apply the octahedron axiom to the relation
a
(01 0)-[b]=0b
¢

(0 1 0

This gives the following :

1 0
P@Q@Q#<—(0 0)-T(P)@T(Q#)

‘&(

for some morphisms f : L# — T(M) and g : T(M) — T(P) ® T(Q#) such that the above diagram is an
octahedron (meaning that faces are alternatively commutative or exact triangles and that the two ways
from the left to the right (respectively the two ways from the right to the left) coincide). Confer [9] for
the octahedron axiom.

1 0 a
In particular, the condition | 0 0 | -g=T(| b |) - bs forces g to be T(a)by . Thus the above
01 c T(e)by

octahedron reduces to the existence of a morphism f : L# — T(M) such that :
(1) the following triangle is exact :

(T(a)b2> " "
st (M) T (c)b, T(P) & T(QH) (T(a"p) T(b ))T(L#)
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It will appear that (M, aoT ~*(b2), m) is a lagrangian of (P, ¢) for a suitable morphism m : T~ (M#) —
M (more or less). Therefore we baptize:

a:=aoT *by) : M —P.

The reluctant reader can motivate himself by checking that a#pa = 0. The octahedron axiom will help
us to establish an exact triangle over . Let us consider the following identity :

(atp b)) (g’) —
and apply to this the octahedron axiom to get:
L#

# #
(1 0) ~T(a) Q Ter) M#

3f

The exact triangles over (a#y b# ) and b# are obtained respectively by rotating (1) and by dualizing
the exact triangle over b from the beginning.
Here, the relation

Fo(1 0)=—T(t)o (ate b¥)
forces f' = ~T(b¥)a*p = —(a Tfl(bz))#ap = —a#p. Thus the information of the octahedron reduces
to the existence of some g’ : M# — T(M) that we astutely re-baptize g' = T(m) for m : T~"*(M#) — M
such that :
(4) the following triangle is exact :

#
o
T M#) s —2 > p 28 e

(5) mb¥ =—T-1f
(6) ¢T 1(by)m = —b¥.
To make (M, o, m) a lagrangian of (P, ) we still need T~ (m#) = m. So let us consider the triangles
over m and over T~(m#).
To lighten a little bit the notations, we shall write
x=T"1o#.

Dualizing the exact triangle (4), we get the second line of the following diagram, whose first line is
simply exact triangle (4):

o

M —2 sy —2 >p LANGy
|
(7) H A1+ zl1> QOl: H
y
M* M pP# M#

m* pa o
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and it is an axiom of triangulated categories that the above morphism of exact triangles can be completed.

The third morphism is called 1 + x because we are going to prove that z is nilpotent. This is quite a
technical computation. Let us do it step by step, very carefully. Directly from (7), we get:

(8) zm=m*—m
(9) az=0.
;From (8), we immediately have m*z* = (zm)* = (m* —m)* = m —m* = —zm. Call this
(10) m*z* = —xm.
Now, compose (5) on the right with ¢* and use (3) to obtain
(11) mb¥e = —T1(by).
Applying * to this last equality and using (6) gives
T (b)) m* = —b¥ =T (by) m.
Replacing in this equation m* by (1 + x) m, which is allowed by (7), we obtain:
(12) cT (by)xm = 0.
Dualizing this last relation and using (10) gives:
zmb¥c =0.
But (11) allows us to replace m b ¢* to get:
(13) z T () =0.

Now we are going to use the symmetry of the w given at the beginning to deduce some information
about z. Compose relation (5) on the left by 7-!(bs) and use (2) to obtain that

T (b)) mblf = -T2 (bs) T 1(f) = w.
Since w = w*, the left hand side of the above equation is also *-symmetric. This gives
T Y (bo) mb¥ =T (by) m*b¥.
Again replacing m* by (1 + x) m, we obtain
T (b)) zm b = 0.
But then (5) allows us to replace m b¥ and to have
(14) T (b)) zT~'(f) =0.
We are almost done. Recalling the definition of @ = aT~!(b,), composing (9) with m on the right

gives
aT Hby)xm =0.

Since, on the other hand (12) insures us that ¢ T~1(by) zm = 0, we have

(s74) em=0
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Since triangle (1) is exact (rotate it a little bit, if you need), there exists a morphism y : M* — L* such
that

(15) zm = T-1(f)y.

(From relation (13) and the exact triangle over b that we chose at the very beginning of the proof,
there exists a morphism z : L — M such that

(16) x=2T7(by).
Now we are going to compute z>m using the above relations. By (15) and (16), we have
Pm=z-z-(am)=2T" (b)) 2-T7(f)y.
But (14) insures that the composition of the 3 morphisms in the middle is zero. Thus we have established
z°m = 0.

Of course, from (9), we have that az® = 0. In other words, z* makes the following diagram commute :

#
(0%
M — sy —2 > p LNy
ol lmS lo J{o
M* M P M#*,
m a ato

It is an easy exercise (confer §0.) to show that such endomorphisms have trivial square:
8 =0.

1
Therefore, h := 1 + — x is an automorphism of M. Relation (10) says that m*x* = —zm. This and
the fact that m* = (1 4+ =) m insures that
xm

=(1+x)m—T=(1+%$)m=hm.

1
m*h* =m*(1+ zz) =m*+

2 2

In other words, the following diagram commutes (since, of course, we still have a h = a by (9)):

#
o
M —"—>My—2—p LRy
h* lf: hl: gol: h# l:
* # #
M m* M pa P ot M.
Lemma 2.1 insures that (P, ) is neutral. i

2.7. Remark. The same proof goes through for a skew-duality.

2.8. Exercise. Establish how a stably metabolic space in the usual sense becomes neutral in the derived
category. The above proof gives an explicit way to find the lagrangian. The latter will not be (of course)
a complex concentrated in degree 0.
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3. THE SUB-LAGRANGIAN CONSTRUCTION.

In this paragraph, we fix the triangulated category K and its duality #. The case of a skew-duality
can be treated as well and is left to the reader.

3.1. Presentation of the problem.
The classical theory of symmetric spaces as well as some technical problems we shall encounter in the
subsequent paragraphs lead us to consider the following questions.

Consider a symmetric space (P, ). Suppose you have a sub-lagrangian (L,v;), i.e. L is an object and
vy : L = P is a morphism such that

V#(pl/l =0.

Here are natural questions:

(1) Can we correctly define L+, the orthogonal of L ?
(2) Can we map L — L1?
(3) Can we endow Cone(L — L) with a structure of symmetric space Witt-equivalent to (P, ¢)?

The first mental step is to renounce to the constraint for L or for L+ to be subobjects of P, as well
as L to be a subobject of LY. In triangulated categories, it is definitely a too strong hypothesis since
any monomorphism (i.e. any morphism « such that a8 = 0 forces 8 = 0) is a split inclusion as a direct
summand. In other words, this would be the same as forgetting the triangulated structure and focusing
only on the additive one.

In the classical case, L is defined to be the kernel of I/f’E o . Since we know that 7! (Cone(u)) is a
weak kernel of u, the natural analogue of L+ would be here

T~ (Cone(v o )

which is the same as (Cone(l/l))# as can be deduced from exactness of # (confer definition 1.2). In other
words, if we choose an exact triangle containing v :

141 [ vs

L P C T(L)

then L+ = C#. Therefore, we prefer to introduce directly the following exact triangle (setting, if you
prefer vo = =T 1(v3) and M = C#):

(A) -1ty 2 D p 2

in which M is already the orthogonal of L. Then, dualizing the above triangle, we get :

71 # # 7
(A#) T_l(L#) (Vo) o Vs p# 141 I#

This allows us to understand the more precise statement (L, v;)+ = (M, o~ 1v¥).
We are going to construct a morphism of triangles between A and A#. Its first part is given by ¢:

140 141 1)

T-L(M#) L P M#
ziw
T-1(L#) M p# L#.
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Since v} o (pv1) = 0 and since A# is exact, there exists a morphism « : L — M (i.e. we map L in its
orthogonal) such that pv; = 1/;"E a (see below). The third axiom of triangulated categories insures us of
the existence of a third morphism 3 : M# — L# such that the following diagram commutes :

Vo V1 V2

T—1(M#) L P M#
| |
T8 a :J(CP EF;
\f Y
T-YL#) M p# L#.
T () v v

Of course, we would prefer to have 3 = o#. This is easy to obtain. It suffices to define
1 #
Mo = 5(04 + %)

and to check, using the above diagram, that the following diagram commutes:

Tty — 2 s o p 2
) N |#
T-1(L#) M p# L#*.
T () vy v

In other words, we have mapped L reasonably in its orthogonal, M. Now, we introduce the cone of
this map. That is: we consider an exact triangle over 7y :

I o o T 0 72 T(L)

and we use it (and its dual) to extend the last diagram to the following key-diagram, which will be used
several times in the subsequent pages:

Tty —2 s o p 2y
T (nf) o | g
T-'(L#) P M 7 p# 7 L#
) g m
Q* Q
n# 2
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3.2. The question.

Of course, if you consider a diagram like 2, (L, 1) is necessarily a sub-lagrangian of (P, ). Therefore,
the ideal sub-lagrangian question is now:

Given a commutative diagram Q with exact lines and columns, can we construct a symmetric
form 1 : Q = Q% such that (P,¢) and (Q,1)) are Witt-equivalent ?

More precisely, we could also ask 9 to fit in the above diagram. As an exercise, the reader should try
to solve the problem for L = 0. Even in this very case, it is immediate that we cannot expect any form
making the above diagram commute to be Witt-equivalent to (P, ). It appears also from this example
that one cannot simply complete the above diagram using the third axiom. The induced morphism
Q# — @ might very well not be an isomorphism (can even be zero). For these reasons and also for
technical ones appearing in the proof, it seems very important to consider the morphism :

§:= l/2g0711/2# : M — M*.

This is, in some sense, the symmetric map induced by ¢ on M = L+ (which is sent in P through gofluf ).
This morphism will play a central role hereafter. For some reasons, the form ¢ we shall be able to
construct and that will fit in Q will actually give the opposite of [P, ¢] in the Witt group. Of course, this
answers also the question since you can replace i by —1.

Observe that the choice of a diagram 2 is more than the sub-lagrangian hypothesis, because there
might be several such morphisms 79. The question is actually quite complicated because of that precise
point. In the application we shall make of this sub-lagrangian construction to the 12-term sequence, we
will have the diagram  imposed by the opponent. The result goes as follows.

Given a sub-lagrangian (L,v;) of a symmetric space (P, ), there exists always a way to construct a
good 1o, that is an 7y such that the corresponding diagram 2 can be completed and such that the form
on () is Witt-equivalent to the opposite of (P, ). If, moreover, the morphism 7 is imposed, then there
exists a way to modify it into a good one (in the above sense) without modifying its cone too much. Since
we proved in 3.1, that there always exists an 7o (not necessarily good), the first assertion is a consequence
of the second. This explains the weird presentation of the results (theorem 3.17 and corollary 3.24).

As mentioned in the introduction, we were not able to establish the sub-lagrangian construction without
some finiteness hypothesis, called here noetherianity. Let us introduce it.

3.3. Definition. We say that a triangulated category K is noetherian if it satisfies the following two
properties :

(1) If A and B are objects in K such that there exists an isomorphism A @ B ~ A then B ~ 0.

(2) For any pair of fixed objects A, B in K and for any sequence of exact triangles

T(A) )

Wi

(A Ui B Yi C;
i€EN

over A, B such that there exists split injections
(fz 0y — Ci+1)

verifying w;+1 fi; = w; for all 4, this sequence of inclusions as direct summands

€N

Crr Car -y Ciga -

1 f2 i

is stationary. In other words, there exists n € N such that f; is an isomorphism for all ¢ > n.

3.4. Remark. It is an open question to give a good definition of noetherian triangulated categories.
The one given here has the following property: Let X be a noetherian scheme and consider the derived
category of bounded complexes of coherent Ox-modules (resp. locally free Ox-modules of finite type).
Then a simple argument using long exact homology sequences allows us to prove that this category is
noetherian in the sense of definition 3.3. The definition would be “good” if the converse was true. Anyway,
for the future applications to schemes and open subschemes, it will be sufficient to restrict ourselves to
noetherian schemes to be able to use the results of this paragraph.

Under this noetherianity assumption, we can explain how the completion of diagram (2 is sufficient to
have a Witt-equivalent form on the cone of L — L*.
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3.5. Theorem. Let (K, #) be a noetherian triangulated category with duality. Let (P, ) be a symmetric
space and (L,v1) be a sub-lagrangian of this space. Suppose that you have a commutative diagram with

exact rows and columns :

Yo 141 V3

T=1(M#) L P M#
T (nf) Mo ~| ¢ m
T-1(L#) =Tr M 7 p# 7 *
@) ny m
L )
nf’& 2

such that
nfk@bnl = -1y gofluf ‘M — M#.

3.6. Proof. The proof is quite a long way and we shall establish partial results first. As already asserted
above, the symmetric morphism v; w_luf plays a important role and we give it a name:

§:= 1/2@711/2# : M — M#*

once for all. We shall also consider the morphism ng vy : T~ 1(M#) — M which is symmetric for the
skew-duality T—! o #. We adopt the following notations :

*:Tﬁlo#

-1, %
and w := o vy = w* : M* — M. It is clear that (M, (90 77V2 ) ) is a sub-lagrangian of (P, ¢)L(Q,%)
1
but it is rather hard to remove the prefix.

The first lemmas ignore the lower part of Q (i.e. the form 1) and focus on Q.

3.7. Lemma. Given a diagram Q like in 3.1, there exists a morphism y : Q — M# such that

(1) T(vo)y = n2;
(2) the following triangle is exact where w = novg :

(‘P 1”2)
7 v
T-Y(M#) Ys M ! P65Q24>(2 ) M#.
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3.8. Proof. ;From the commutativity of Q, we have @ vy T=1(1p) = v 1o T(n2) = 0 and since ¢ is
an isomorphism, we have
vy 0 ( - T_l(nz)) =0.

Apply the forth axiom of triangulated categories to get the following octahedron, in which we immediately

used the commutativity of the faces containing ( é) and (0 1):

)
Ui
for some z : M — P and Yy Q — M# such that the triangle

T
71 () Y M(m)P@Q (v2 y) o

is exact (recall that w = o vg) and such that

Mg =
T(v0)y = 12
Observe that 210 = v1 = ¢ ¥ 5o by Q. In other words, (z — ¢ 1v¥)ne = 0. Using the exact triangle
containing 7, we find some a : Q — P such that

1

z—¢ i =an.

This can also be expressed by saying that the following diagram commutes:

x
T-1(M#) Wy (771) PaQ (2 y) u#
N
N0 1
yit

But then, since the first triangle is exact, so is the second one. It suffices now to replace y by §y := y+w2a
which still satisfies

T(wo)og=T(o)y+T(vo) va a=nps.
———— N —
=12 =0

This argument will be used again later with less details. i
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3.9. Lemma. Consider the diagram 2 and suppose moreover that

Vs 4,0_11/;‘7E =0.

Then Q can be completed in an Q like in theorem 3.5 in such a way that the following triangle is exact :

soll/f)
w ( m (V2 771#%[’)
%M

T (M#) M P& Q #

where w = ng vo. In particular, (P, ) and (Q, —) are Witt-equivalent.
3.10. Proof. By the previous lemma, we have an exact triangle

)
0) a2 1y T PoQ (r2 y) o

for some morphism y : Q — M# such that T'(vy)y = 72. Since w* = w, we can consider x :=
Cone(M*,w) as defined in 1.10, i.e. a neutral symmetric form

_(a b\ _ %

such that the following diagram commutes (in which the second line is the dual of the first) :

o)
1% Y
a b
o | | ) |
M*—> M P#* o Q* M#,
w (Vf) (et i)
y#
We have a = a#, ¢ = ¢# and
(2) ap v +bm = v
(3) v Wi +em = o*.

Composing (2) on the right with ng and using 7; 150 = 0, we have
a ' ving = ving = o

by €. In other words, (a — ¢) 1 = 0 which means that there exists a morphism d : M# — P# such that

a=y+duv,.

1

Therefore, using our extra hypothesis that vs ¢~ 1/# =0, we have:

ap W =(p+dw) e Wi =vf +dv oW =0F.
=0

This last equality compared with (2) forces

(4) bm = 0.
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Putting (3) and (4) together, we obtain the commutativity of the following diagram (compare with (1))

(727)
1Z
wr Y n P®Q (2 v) M#
@ b

o || | ) |

M*——> M P#* @ Q# M#.

w V;# (V29071 7)1)
y#

In other words, we can replace a by ¢ in (1). By definition, the following form over P @ @ is neutral:

v b
v oc)”
But, of course, we can get rid of the b through an isometry of the type:
—p-t N
b= (é g b) . POQP®Q.
This gives the following. Define ¢ : Q — Q# to be
p=c—b*p b

and check that we have the following isometry :

o (e DG )-8

Use this automorphism h of P @ @ to modify the triangle (0):

(%)
2y
VSIS AP SR G R
1 1 e b
M w M w1 P@Q w2 M#'

The first line is exact triangle (0) and therefore the second is exact, defining w; and wy such that the
diagram commutes. By (4), a direct computation gives:

w0 70)- ()= (707)
0 1 m m
Now, the easiest way to compute ws is by using the fact that the induced form is @11, i.e. concretely:

5 b
we=(r2 y)oh? (i nf’ﬁ)'(bﬁrE c)oh:

() B 10 o b
= (V2‘P ! n#)'(_b#w—l 1) ) (b# c) oh=
6

= (rap™! nf)(‘g 3,):(’/2 i) .

This gives the announced triangle.

—~
—

Use this triangle and condition (2) of lemma 2.1 to understand that ¢ 14 is neutral. Then [P,¢] =
—[@, 9] = [@, —¢] which is the result.
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3.11. Lemma. Let (P, ) be a symmetric space in K such that there exists an exact triangle

T-1(1#) —~L>1-2%>p P, L

satisfying all the following properties :

(1) a#pa =0

(2) B tp# =0

(3) T 1(2%) = 2.
Then, there exists a morphism & : L — L, a morphism n: L — @, where @ = Cone(§) and a symmetric
form 1 over QQ such that the following triangle is exact:

(so‘lﬁ#> .
T-1(L#) v n P®Q (B n™) I#

where w = £ z is moreover symmetric: T~ (w#) = w.
In particular (P, ) and (Q,—) are Witt-equivalent.

3.12. Proof. This is an immediate corollary of the previous lemma and of the fact that there exists a
diagram 2 by discussion 3.1 applied to the case where M = L. This was only stated to make the proof
of the next proposition easier. i

3.13. Proposition. Let K be noetherian. Let (P, ) be a symmetric space in K. Suppose that there
exists an exact triangle

T-Y(L#) 21 %> p b, L
such that all the following properties are satisfied :
(1) a*pa=0
(2) Bt p# =0

(3) T71(2%#) = 2.
Then, (P,¢) is neutral.

3.14. Proof. We are going to apply several times the previous lemma. It is not necessary but more
convenient to proceed ab absurdo. So, let us suppose that (P, ) is not neutral. By theorem 2.5, this is
the same as saying that (P, ) is not stably neutral.

Let us first of all introduce a neutral form on P that will be useful in the proof. Recall that, since
z* = z, there exists a neutral symmetric structure on P defined by :

T (L#) 2> —2>p B,
(4) H H ’ilx =x*
T-Y(L L # #
( ) Z* ,B# P a# L

Keep this in mind.

By lemma 3.11, formally applied, there exists a morphism & : L — L, an object @1 (the cone of &),
a morphism 7; : L — @1 and a symmetric form ¢; on @); such that the following triangle is exact:

o ' p#
#
(5) T-1(L#) 21 I ( T ) P®Q, (ﬂ 7717/’1)L#
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where 21 = & 2z = 2f. Moreover, (Q1,v1) is Witt-equivalent to (P, —p) and therefore is not neutral by
hypothesis. Call this
(6) (Q1,v1) is not neutral.

—1#
In particular, (); is not zero. Note that 0 ® (ﬂ 77#@01 ) . ((‘0 Wﬂ
1

Call this

2
) =B % + i pim @ nf by m.

(7) nipim = 0.
Define P; := P & (0 and endow it with the form

1 = xli

(pay attention : the neutral form y replaces ¢ on P!). Keep an eye on triangle (5) while defining

ap = (‘pnlﬁ ) and ﬂl::(ﬂ nf&¢1).
We want to check that Py, 1, L, 21, a1, 81 satisfy the hypothesis of the proposition, in place of P, ¢, L, z, a
and (3. First, the exact triangle is simply (5). We already have property (3): 27 = 21 and it suffices to
check that i1 a; = 0 and that 8y ;! 87 = 0. This is easy. Recall that (2) says that So (¢! #) = 0.
Then, exactness of the triangle of the proposition insures the existence of a morphism g : L — L such
that ¢~ 8# = a u. Then

(8) afprar=(Be ) x (¢ 'B*) +nfvim =p* aFxap=0
=(ap* =ap Dy Do
and
9) Broy ' B = Bx7' 8% +nffhim =0.
_— Y~
Qo Dy

Now we can apply the previous lemma to this new space and this new triangle.
So there exists a morphism & : L — L, an object Q> (the cone of &), a morphism 7, : L — @) and a
symmetric form 9 over 5 such that the following triangle is exact :

o1 oY
#*
1)  TH I " )PleaQZL ALV

where 2o = & 21 = z5. Note that (Pi, ;) cannot be neutral, otherwise (since x is) so would be (Q1,1),
in contradiction with (6). Moreover, (Q2,%2) is Witt-equivalent to (P;, —¢1) and therefore isn’t neutral
neither. Call this

(11) (Q2,12)  is not neutral.

In particular, @2 is not zero. But we can deduce something else from the fact that (Q2,2) is Witt-
equivalent to (Pr, —¢1), namely that

XL Ls is neutral
e
= (Pl

and therefore, since x is neutral, we have that

(12) 1L is neutral.

A last property that we can get from (10) is that

(13) 0=(61 n¥n)- ((’01 Ai ) = P11 B +nf hane = nF Yo
72 ————
9)

=0
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. . . . 1 0# x~1p#* a
Finally, a direct computation gives that ¢, " = 0 = m )’ by (4). In other words,
1 1
replacing this in (10) gives the following exact triangle:

a
(771) ( . . )
(14) T-1(L#) P2 NP b 01 Qs B nivr nie I

Using (12), L)1 Lo is not neutral, otherwise so would be . But this new form ¢l L1py satisfies
again the hypothesis of the proposition. In fact, the exact triangle is (14) and since zo = 23, we only
have to check conditions (1) and (2). These are all immediate consequences of (1), (2), (7) and (13). The
good reader checks this carefully.

Consider this as the first step of the proof. To a (non-neutral) symmetric space like in the proposition,
we associate these two spaces (Q1,%1) and (Q-,12) and an exact triangle

— # #o
T—1(L#) & L e PoQ:10Q: P (ﬂ Uke nzlﬁz)L#

where the three morphisms z2, a2, B2 satisfy the same hypotheses (1), (2) and (3) for the symmetric
space

<P ® Q1O Qa, <PJ—¢1J—¢2)-

This space is not neutral. Moreover, ); and @ are not zero.

Then, of course, do this again and again. You will get an infinite tower of spaces always fitting
in triangles over T~'(L#) and L and such that you have the compatibility condition of definition 3.3
(wit1 fi = w;). To see this, observe that the first component of (s is 8 (this was wrong for 8; and is the
reason why we used twice lemma 3.111).

The noetherianity condition insures that this tower should stop, that is some @; = 0, which leads to
a contradiction. f

3.15. Proof of theorem 3.5. Hereafter we shall label by (1) the first hypothesis of theorem 3.5, namely
the fact that we have the commutative diagram 2 with exact lines and columns.
The second hypothesis of theorem 3.5 will be labeled as

(2) nfm = -1 vf .

Forgetting for a while the form over @), we have a diagram ( for (P, ). Therefore, lemma 3.7 insures
the existence of an exact triangle:

)
3) T-1(M#) W L PoQ (r2 y) e

for some morphism y : Q — M# such that

(4) T(v0) y = n2-

Recall that w = ng vy = w*.
By the above proposition, it suffices to prove that :

(4) a*(pLly)a=0 where o= (90_771”;#)
1
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and
(id) Blply) ' g* =0 where Bi=(r y).
That is what we are going to verify.
Condition (i) is immediate :

0 -1, # B 9
at(pl)a=(net nf)- ((g ¢) ' (‘Pnl’/2 ) =wme i +nffym @y,

Dualizing triangle (3) gives the first line of the following diagram, which is an isomorphism of triangles:

#
)
& Py
T ) sy —L L pt gt Lae of)
(et 0
(% )
T-Y(M# M DQ M
ST (77) (n n0)
Y y#

Then the second line is also exact. Call this exact triangle (5).

Now, from (4) and the lower commutative square of Q, we have that :

T(vo)y =n2 = T(vo) ﬂ#lﬁ-

Therefore T'(vg) (y — nf«p) = 0. This gives, using the exact triangle over T'(vp), the existence of a
morphism
(6) r:Q—P such that y= nfbw + v,

This is the same as saying that the following diagram commutes:

)
T M) -2 " o paq (2 ) M#
N 1 r
=10 1)
T Y M# M PaQ M#
ST (2%) oD
Y ly#

The first line of this diagram is exact triangle (3) and the second one is exact triangle (5). It is then an
axiom of triangulated categories that you can complete this into a commutative diagram :

oy
Ty~ ( m >P®Q (2 y) r
(7) H a:g :l((l) ;) H
T-Y(M#) J\V4 PoQ M#,
v (cplv#) (v o)
Yy

and the morphism g is necessarily an isomorphism. In particular, we have from the middle commutative

square:
(8) oW +rm = g

(9) m =v 'y*g.
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Let s := vy g0_1V2# @ —nféw n1. Note that s# = s. Directly from (3), we have that

—1,,#
0=(r2 y)- (90 7711/2 ) = v +ym
and therefore
(10) Yym = —S.

Then composing the equation (9) by 5+ on the left and using (10), we obtain :

_ #
nim =nivy tytg=(ym ) g=—sg
—— ~~
= —8 = —8
which means that
(11) sg=s.
Now, apply v» on the left to (8) to obtain:

Vs ()0*11/;#'é +urorm = 90711/;46 g.
N—— N———

=s =s
This, compared with (11), forces
(12) varmn = 0.

We are now able to compute

) O _
yo gt 2 f v+ )ty S+ er)(mgt) =
_ _ 12 _ 11
—nfemg " +mrmgt D nfem gt E -
~——
=-s

s =

= -1 go_lyf.

Using this last equation, we can now check condition (ii) :

-1
_ (def) 0 # _ _
Boern)os? gy (5 1) (1) mef +yu o
This gives the result by proposition 3.13. i

3.16. Comment. So far, we have established that given a diagram  which has been completed in a
diagram Q (meaning that we have constructed a form on @), then the new form is Witt-equivalent to
(the opposite of) the form we started with.

Unfortunately, this is not enough for the application we want to do of this in the localization exact
sequence (see lemma 5.3). We need to be able to construct such a form on the cone of any morphism g
such that  commutes. We do not know if the latter is true or not! Nevertheless, the following result
will be sufficient.

3.17. Theorem. Suppose that K is a noetherian triangulated category. Let (P, ) be a symmetric space
and (L,v1) be a sub-lagrangian of it. Choose an exact triangle over vy :

T (M#) 2 [ s p 25 k.

Letng : L — M be a morphism such that the diagram ) commutes (confer 3.1). Then there exists another
morphism po : L — M such that :

(1) there exists a form on the cone of po Witt-equivalent to (P, p);
(2) Cone(ug) and Cone(no) are stably isomorphic, namely

P @ Cone(ug) =~ P @ Cone(np)-
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3.18. Proof. First we shall consider two intermediate results. The proof is in 3.23. Notation: once
again x* = T 1o #.

3.19. Lemma. Under the hypothesis of theorem 3.17, there exists a morphism X\ : [ — T~ Y(L#) such
that

(3) T W) Ao =0
(4) setting po :=mno + T’l(l/#)/\, the following triangle is exact :

&) :
Mg By e 1 (T(w) ) T(M)

where s = vy o~ Wi

3.20. Lemma. Under the hypothesis of theorem 3.17, let s = vy go‘ll/f. Given any morphism pg : L —
M such that the triangle

() :
M—5 # —Ho T(L) & L# (T(MO) Vo) T(M)

is exact and given any exact triangle over ug :

L0y g P2 (),

there exists a symmetric form 1 on the cone R of ug such that the following diagram commutes :

140 141 Vo

T-'(M#) L p M#

T () o =|¢ 2

T—(L#) ) M 7 p# S L#
(@) ug 2
R#%R
T H2

M# W T(L)

and such that

Wi = —v o

In other words, such a pg is a good way to send L in its orthogonal, M (see 3.2).

3.21. Proof of lemma 3.19. Let us give a number to the upper part of Q for 7o :

TiME) —2 s op e
(5) T—l(n#)l lno :iv lné*
T-YL#) M p# L#
T () vy vf
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and another number, say the next available one, to the exact triangle:

Mo T 72

(6) L M Q T(L).
We are going to study exact triangles over s = vy c,oflyfE .
Consider the composition axiom for the relation :
vt o (p11) =0
#

to obtain the following octahedron (the exact triangles over v{" and over p vy are obtained from the one
over vy):

for some morphisms a, b, c¢,d. The relations involving the injection <0> and the projection (1 0) do

1
force a = T'(vp) and d = v . As well, the relation

1
bo(—m) =vie L nfv,

insures the existence of a morphism e : T(L) — L# such that :
b= _77# +eT(v).

0
1

cbyc+ V# e, and calling this T'(3), everything reduces to the existence of an exact triangle:

As in the proof 3.8, one can use the automorphism ( _1 ) of T(L)®L# to replace b by —178‘?E . Replacing

") :
M Myt — o T()e L r® &) T(M)

for some morphism 3 : L — M such that:
T(W})T(8) =T (o) T(v1)

because this was true for ¢ and because T(Vf ) 1/8'#E = 0. This is equivalent to:

(8) V2#5=<PV1-
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Of course, the aesthete would prefer to have 8 = 9. This is not true in general but it appears that one
can replace 1o by some pg such that the following triangle is exact :

) :
© M-yt — et (T(0) ) T(M).

That is what we are going to do now.

(From property (8) and from (5), we deduce that
Vz#ﬂ:%o’/l = Vf’?o-
In other words, v¥ (8 — 19) = 0. Then there exists a morphism [ : L — T~1(L#) such that
(10)  B=m+T 'L

Dualizing exact triangle (7), recalling that s# = s, gives the following exact triangle :

(6u)
#
T(v -vg  +T(m)
M —5e gt L) L* @ T(L) (-4 o)) T(M).
Then using the isomorphism (_01 é) from L#* @T(L) to T (L) L¥, we get the following exact triangle:
T(Vo))
(— # T(n) v
M—3 y# a T(L)® L* (Tw) 5) T(M).

Put this last triangle as the second row of the following diagram, in which the first is simply (7):

(5 (1@ )
$ M|# T(L)& L# T(M)
(1) H 31+ [(zey ) |
T

and whose right square commutes because of (10). Since it has exact rows, it is an axiom that there
exists a morphism such that the entire diagram commutes and nobody can keep us from calling it 1 + h
for some morphism h : M# — M#. We have the following relations :

(12) hs=10
(13) T(Vo) h=0
(14) —B*(L+h) =T T(vo) — i -

Compose (14) on the right with v, gives:

— B*vy  —B%huy =T(1) T () vo — N va
(8) =0 5
= 1/]#(’0 (:) 1/1#90

which forces obviously
(15) B#hvy = 0.
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(From (12) and the exact triangle presented in the second line of (11), we deduce that
= (T(y
(16) h=h ( _%32)

for some morphism h : T(L) @ L# — M#. Similarly, from (13) and the exact triangle in the first line of
(5), we deduce that :

(17) h=uvyh

for some morphism h : M# — P.
Now, compute h? using (16) and (17):

W =h (T_(gg” oho(uh)=h ({%32:;’;) h.

It follows then immediately from (13) and (15) that h® = 0. Therefore 1+ %k is an isomorphism:

1 ~
1+§h:M#—>M#.

But, dualizing (11) and using as before the isomorphism (_01 (1]>, we get the following morphism of

exact triangles:

(T ¢
M=y — "0 (1) I# (1) ) T(M)
1+h#l H J{(_}# ?) l1+T(h#)
M ——=> M# y T(L)® L#* " T (M)
(T_(ﬁg)) (T(mo) )

If the reader prefers, this last diagram can be obtained directly from the relations (10), (12), (13) and
(14) by applying the duality. Taking the mean of this last morphism with (11), we get the following:

(18)
) :
M=yt —— s Py e I# (r®) ) T(M)
Tp#le 14 L 1 0 ~1 4 Lo
S [ P SO B (P T
M M# T(L)® L* T(M).
—p3#
Let us give names:
f::1+%h#:M:>M and l_::l;l*:—l_*:L—)T_l(L#).
Pushing f up and f# down in (18), we obtain the following morphism of exact triangles :
(" ¢
-1 _ T(f)o(T
sf At Mo T(L) & L# (f) ( B) v ) T(M)
1 0
| R
# T(L)® L# T(M).
TR (e (M)

(T Yo g (Tew) o)



TWG I: THE 12-TERM LOCALIZATION EXACT SEQUENCE

29

;From (12) and the definition of f, we have s f = s and from (13) we have T'(vo) f# = T(vo). Use this

in the above diagram to obtain the following one:

(7)) ¢
o S u* —No T(L)@L# (T(V) Vo) T(M)
1 0
w | (7o ¥ |
# T(M
M (7)) R T SR
—’)’#

where v := f 8. Note that the exact triangle of the first line gives:
T (vo)
0=(T() uf)- ( ) =T — vl
which implies
* %k 5
(20) TV = Voo @ 7o Vo-
Now, since the third commutative square of (19) gives
(21) =m0+l
we have, composing this last equation with vy on the right and comparing with (20), that :
(22) vilvg = 0.

Consider now the following commutative diagram :

(T—(;%)> (T() o)
M2 pr# 0 T(L)&® L* 0 T (M)
1 0
w | |70 ) |
M —> M# T(L)® L# T(M)

(%T([T 50V)o>_ n#) (T(y=3wD )

in which the first row (and therefore also the second) is an exact triangle (see 19). Define

L.
Mo =10 + El/ol.

Observe that (21) implies
1. 1.
7= 5%l =10+ 5¥0 = ko
and that (here we use [ = —I* which is immediate from the definition of 1) :

1. 1 1
N# = TI# + §l#T(V0) = 77# + §T(l v) = 77(?)$E - §T(1V0)-

Replace these two last facts in the second line of (23) to obtain the announced exact triangle (4) :

(7;(/522) (T(mo) v§)
M —S pr# ° ‘. T(L) e L* 07 . T(M).

Define A = %f, so that wo = mo + Y§A as required. Condition (3) asks yjAvy = 0, which is a direct

consequence of (22).

!
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3.22. Proof of lemma 3.20. Recall that * = T~ o # and that s denotes s = vy o~ 'vf : M — M#.
Note that s = s#. Call (1) the exact triangle of the hypothesis :

T (o)
¥ i
(1) M A ( Ho> (L) & L# (T(NO) 0) T(M).

Apply the composition axiom to the relation :

po = (po vg)- ((1))

to construct the following octahedron (where the exact triangle over (po ) comes from (1)) :

M
(mo v
S
-T
L@T*I(L#)<_< (’;0))_]\/[# Ho &
+ 10
\ 32’
1
(o)
uﬁ\L 12 R

dy

The relation yo (0 1) = pyo(p vy) forces y = py 1. Then, the octahedron reduces to the existence
of a morphism z : R — M# such that

(2) the following triangle is exact :

* #
Y
T-1(L#) 1 vy R—Z p# Ho #
(3) zpy = s
(4) =T(vo) z = pa-
Dualizing (2) we obtain the exact triangle:
# =T (vo) pi
(5) J Ry YAy L T(L).

But we already have an exact triangle over pg, so let us compare them :

Ho H1 M2

L M R T(L)
|
0 || e |
Y
L M R# T(L)
fo 7* ~T(vo) it

There exists an isomorphism, non necessarily symmetric, x : R = R* making diagram (6) commute.
We cannot use the classical argument because x# does not make diagram (6) commute!
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Since x w1 = 2%, we obtain by composing on the right with —v; that

xo(~mg) = —=% 5.
Using the dual of (4), the right hand side of the above equation may be replaced by ,u;# . Apply duality

to this new equation to obtain: —T' (1) ,ufk) o x# = po which should be compared with (6). We can
complete it into:

I Ho M M1 R M2 T(L)
|
o | A e
¥
L M R# T(L)
Ko Z* ~T(vo) i

for some morphism h : M — M. We immediately have:
(8) hpo = 0.

;From (6), we took x u1 = 2. Dualize it: ,ufex# = z. Compose this last equality by p; on the right
and use (3) to obtain:

3
(9) pxt = zm s,

But (7) tells us that x# u; = z# (1 + h). Replacing this in (9) gives:

s=pf 2 (1+h)=(zm)" (1+h)=s*(1+h)=s(1+h)

< p1
~—

—
N

=S

and therefore:
(10) sh=0.

We still haven’t used the third commutative square of (6) which says that us = —T'(vp) uf& x- Dualizing
gives:

pi = —x*m g
We can use (7) to replace x¥ uy by 2% (1 + h):
pf = =21+ h)yg = - 2* i —z#hua‘@u#—z#hl/a‘
———
= (T(Vo) Z)#
from which one finds:
(11) 2* hus =0.

It is now easy to get h* = 0. Use (8) and exact triangle (5) to write
h=hz*
for some morphism h : R# — M. Similarly, use (10) and exact triangle (1) to write
h=(p v3)oh

for some morphism h : M — L & T~'(L#). Now simply compute

W =hz¥oho(uy vi)h="ho(z¥huy 2*hui)oh
0 0
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Equations (8) and (11) insure the central matrix to be zero. Therefore h is nilpotent and then 1+ $h
is an isomorphism. Taking the mean between (6) and (7), we obtain the following commutative diagram
with exact rows:

I Mo u M1 R M2 T(L)
1 1
~ - - #
o er e |
L M R# T(L)
Ho Z* —T(vo)

is an isomorphism. Diagram (12) gives:
T(vo) Nfé%b = 2.
This means that the form 1 makes the diagram Q commute. We still have to check
plom =—v2o™vf (= —s)
but this is immediate from the mean of relation (9) and its dual. i
3.23. Proof of theorem 3.17. Choose A as in lemma 3.19 and define of course
Mo = 1o + 5 A

Lemma 3.20 insures the existence of a completion Q and theorem 3.5 implies that (R, —1) is Witt-
equivalent to (P, ) which is expected property (1) of theorem 3.17. To see how to obtain property (2),
observe that :

def . .
Mo Vo (:e)(ﬂo + Vg A) o = 1o Vo + Vg A vy = 1o Vo.
~———

@y

Then it suffices to apply twice lemma 3.7, once to 79 and once to po. But in both case the morphism

w = 1Mo Vo = po Vo is the same. Therefore Cone(w) is P & Q or P @& R as well. This gives (2) and then
theorem 3.17. i

By discussion 3.1, there always exists a morphism 79 such that Q commutes. Therefore the above
proof gives in particular the following corollary.

3.24. Corollary. For any symmetric space (P, @) and any sub-lagrangian (L,vy) of (P, ), for any exact

triangle over vy :
140 141 Vo

T~ (M#) L P M#
there exists a morphism po : L — M and a form v on R := Cone(ug) such that diagram 0 of lemma
3.20 commutes, has exact lines and columns and such that /ﬁl#w p1 = —vs go_ll/f. In particular (R,%) is
Witt-equivalent to (P, —¢). il

3.25. Remark. This result, although it sounds very nice, is probably useless in general. In the classical
case, it was the ideal formulation because there was only one way to send a sub-lagrangian into its
orthogonal. Here, there are several (1o, o, --..), some better (o) than others (19). Theorem 3.17 will
be more useful.

The results of this paragraph might be used to establish some link between the Witt group I propose
here and the quotient of it defined by Youssin in [10].
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4. LOCALIZATION CONTEXT AND RESIDUE HOMOMORPHISM.

4.1. Localization of triangulated categories with duality.
Let us consider what we can call an ezact sequence of triangulated categories:

0—J—K—L—0.

By that, we understand that L is a localization of K, that is L = S~'K for a class S of morphisms.
We can always suppose that S is saturated (i.e. S is formed by all the morphisms of K which become
isomorphisms in L) and that L is obtained by calculus of fraction (nice exercise). Then J is supposed to
be the kernel of this localization, i.e. the full subcategory of K over the objects which become isomorphic
to zero in L.

Suppose moreover that K is endowed with a duality (or a skew-duality) # such that #(S) = S. Then
S~1K inherits a unique duality that can be called the localization of # and that we shall lazily also
denote by #. It is then clear that # restricts to a duality on J. In other words, we have an exact
sequence of triangulated categories with duality:

0 J ekt agig—
(LOC) #l #l #J{
0 J ——>K—> 51K —>0.

4.2. Example. Let X be a noetherian regular separated scheme and U an open subscheme. Consider
D}’f (X) the derived category of bounded complexes of locally free Ox-modules of finite rank. Then D}}(U )
is a localization of D}}(X ). It is moreover a localization of triangulated categories with duality (confer
[1, théoréme 4.17, p. 28]).

The kernel category J is here the (derived) category of complexes whose homology is concentrated on
Y, the closed complement of U in X. It is a good question to wonder how the Witt groups of J might
be related to the Witt groups of Y.

This very application of the present paper is my main motivation and it will hopefully appear in
forthcoming works. However, this and the 12-term localization sequence seem to me independent ques-
tions. In other words, first, there is a localization sequence which is easy to formulate in the triangulated
framework and second, we shall try to interpret J in terms of Y. This enlights another point, namely the
difficulty usually encountered to define a good residue of a form on U with values in some Witt groups of
Y. When existing, this residue will actually be decomposable as the general residue presented hereafter
followed by some homomorphism between the Witt groups of J and those of Y.

4.3. Remark. If we have an exact sequence (LOC), functoriality of Witt groups naturally induces short
complexes:
W (j wr
W) SR W) S W (SIK)
for all n € Z. To get a long (periodic) exact sequence, we are going to construct connecting homomor-
phisms between W™(S—'K) and W™ (.J). This will use the cone construction of 1.6-1.10. First of all

we shall recall from [2] the construction of W(S~1K) using S-spaces.

4.4. Definition. Let (K, #,w) be a triangulated category with §-duality (§ = £1). Let S be a system
of morphisms in K. A S-space is a pair (4, s) where A4 is an object in K and s is a morphism s : A — A#
such that :

(1) s=s*wy

(2) ses.
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We say that two S-spaces (4, s) and (B,t) are S-isometric if there exists an object C' and morphisms
u,v in S such that u: C - A, v:C — B and

u#su=v*tv.

Instead of S-spaces, the term S-lattice or symmetric S-lattice might be more conceptually acurate.

4.5. Proposition. Let J 2y K% S71K be a localization of triangulated categories with d-duality in the
sense of 4.1. The application (A, s) — (q(A),q(s)) induces a well defined monoid homomorphism between
the set of S-isometry classes of S-spaces and the Witt monoid MW (S™1K) of S~'K (see definition 1.13).
This homomorphism is an isomorphism.

Through this application, NW (K) maps surjectively onto NW(S™1K).

4.6. Proof. See [2, lemme 2.11, p.98]. i

4.7. Remark. Of course, a symmetric space is an S-space. The above proposition describes the Witt
monoid of S7'K in terms of S-spaces in K. Neutral spaces in S™'K are obtained by the neutral
spaces of K. In other words, the Witt group of S~'K can be computed as follows. Take S-isometry
classes of S-spaces and divide out by neutral spaces of K. As a consequence of that, to define an group
homomorphism

W(ST'K) —G

to a group G, it suffices to define it additively on S-spaces, to check that it is invariant under S-isometries
and that it sends neutral spaces of K to zero in G.
We are going to check that such an homomorphism is induced by the cone construction of 1.6-1.10.

4.8. Theorem. Let J<5 K 5% S™'K be a localization of triangulated categories with §-duality in the
sense of 4.1. Let (A,s) and (B,t) be S-isometric S-spaces in K. Then

[Cone(A, s)] = [Cone(B,t)] € W(J).

4.9. Proof. The proof goes in several steps. First of all, observe that the cone construction is additive:
Cone((A, s) L(B,t)) ~ Cone(A4, s) LCone(B, t)
and is well defined up to strong isometry :
Cone(B, h** s h) ~ Cone(A, s)

if h: B3 A is an isomorphism in K.

We shall only prove the case where # is a duality, that is 6 = +1. The skew-duality goes as well. It is
convenient to abreviate * = T o # the shifted skew-duality. If (A, s) is an S-space for #, then Cone(A4, s)
is a symmetric space for (K, *, —w). See, if necessary, (I') in theorem 1.6 and definition 1.10.

4.10. Lemma. Let (P,¢) be a symmetric space in K and let (L,v1) be a sublagrangian of this space
such that L belongs to J, the kernel category. Choose an ezxact triangle

140} 141 Uy

T-'(M#) L p M#,

Then vs € S and L+ = M inherits from ¢ a structure of S-space, namely (M, vs (,0711/2#), such that

Cone(M, vy o~ v¥) = (T(L)® L*, (_01 (1]> )-

In particular, [Cone(M,v¥o=11,)] = 0 in W(J).
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4.11. Proof. Define s := v QO*IV# : M — M#. By discussion 3.1, there exists a morphism 7o : L — M
such that diagram 2 commutes (confer 3.1). By lemma 3.19, there exists an exact triangle

) :
M =5 # —Ho T(L) & L* (T(NO) Vo) T(M)

where po : L — M is obtained by some modification of 79 of no importance here. Since one can use any
exact triangle over s to construct Cone(M, s), let us use the above one.

By definition, Cone(M,s) = (T(L) & L#,4) for some form ¢ : T(L) & L# — (T(L) & L#)" =
L# @ T(L) such that ¢* = —1 and such that the following diagram commutes :

81 = (T(V;)#)> #
M5 —Hg T(L) & L# s2:= (T(uo) v§) T(M)
| | |
M M# L#* & T(L) " T(M).
s §* = —M# 51 = (V# _T(NO))
2 —T'(n)
. 0 1
Clearly, it suffices to take ¢ = (_1 0). i

4.12. Lemma. Let (P, ) be a symmetric space in K and let s: C — P be a morphism in S. Then

[Cone(C,s*ps)]=0 in WJ).

4.13. Proof. Choose an exact triangle over s:

(1) c—2sp D T(C).

Observe that s € S forces
(2) DeJ

Define
t:=s"ps:C — C¥.

We want to prove that Cone(C,t) is stably neutral in (J, ). That is, we have to find some object N in J

and a morphism w : N — N# (observe that T~ ! ox = #) such that w = w# and Cone(C, t) L Cone(N,w)

is neutral in J. Choose N := D# and w := —s;¢p's : D¥ — D. Observe immediately that w# = w.
Choose an exact triangle over t of the form :

t
c—ts o# —LsT(L)

and observe that t € S implies
(3) Leld

Write down the composition axiom for the relation

t=(s"p)s
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where the exact triangle over s# (and then over s# ) is constructed from exact triangle (1). This gives
the following octahedron:

t1

—T(w)\ c t T(L)
Ve
/ ? Jw,

D
That is, we have an exact triangle
p# 2> p - 1(1) 2> T(D?)
and relations among which :
4) T ") siws = T(s)ta.
Let us baptize vy : L — P to be
4
(5) vy = 5T ts) @ o LT (wy).

We are going to use the previous lemma. To do that, observe that (L,v,) is a sub-lagrangian of (P, ) :

v o ® (T(w#) s19” ) (sT () =0.

To apply the previous lemma, we have to construct an exact triangle over v;. To do that, observe that
to (=T 1sy) = —s*psT (sy) = 0.

The octahedron gives:

3 T(l/())

T-1(D)<—(0 1)——Cc#* oD

31/2
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In particular, we have an exact triangle

0] %1 9]

T (C*)aT (D) L P C* oD

X

where vy =
S1

) for some morphism z : P — C# such that s = t. But t = s*¢s. This means that

(s"p—1x)s=0.

Using exact triangle (1), we have the existence of some morphism a : D — C# such that s#p —z = a sy,

which, in turn, can be seen as
1 a\ [z _ [s*p
0 1 S1 - S1 ’

Using this endomorphism of C# @ D, one can then suppose that

#
= (")
S1

changing vy as well, but keeping the v; : L — P we liked. Now, having lemma 4.10 in mind, compute

_ st _ t 0
VchIVf:(sfo 7 (es sT) =10 _uw)-

Since L € J by (3), lemma 4.10 insures us that the cone of this form is neutral is J. But it is obviously
the orthogonal sum of the cone of ¢ and of the cone of —w : D# — D, the latter being neutral in .J
because D# € J by (2). Therefore, [Cone(t)] = 0 in W*(J) as claimed. il

4.14. Proof of theorem 4.8. Let (4, s) and (B,t) be S-isometric S-spaces. It suffices to do the case
when there exists a morphism v : B — A, u € S, such that

(1) t=u"su.
Recall that the cone construction is additive and invariant under strong isometries in K (see 4.9). Now
consider
1 0y (s O (1 uw)\Q@® s su
u? 1 0 —t 0 1) \u*s 0)°

S sUu

It suffices to prove that [Cone(A4 & B, (u# s 0 ) )]=0in W '(.J). Now, consider the morphism

(1 0 ) CA®B—s A@ A*
0 su

which obviously belongs to S and consider the symmetric form

(1)

over A ® A#. The result is now a direct consequence of lemma 4.18 since

10#__10_ssu
0 su) P \0 su) \u#s 0 )"
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4.15. Mea culpa. The carefull reader of [1] will object that theorem 5.15 there already states that
this connecting homomorphism is well defined. The proof of lemma 5.11 loc. cit. on which this theorem
relays, is incomplete and contains several typographic mistakes, as I noticed too late. The present version
should fill this gap.

4.16. Corollary and definition. Let J i) K 2 S7'K be a localization of triangulated categories with
d-duality in the sense of 4.1. The cone construction of 1.6 and 1.10 induce well defined homomorphisms

o" s W(STIK) —W ()
z —[Cone(A4, s)]
where z = [¢(A), q(s)]

for all n € Z. They will be called the residue homomorphisms.

4.17. Proof. This is immediate from theorem 4.8 and remark 4.7. In fact, the cone of any (neutral)
form in K is of course trivial since the cone of an isomorphism is zero.
The theorem was stated for n = 0 but this is of course enough: apply it to T" (K, #, w).

#

4.18. Exercise. Check that the 9" : W"(S~1K) — W™t (.J) commute with the periodicity isomor-
phisms W™ 5 W ™ of proposition 1.14.

4.19. Exercise. Check that the sequence obtained by using the natural homomorphisms of 4.3 and the
residue homomorphisms of 4.16 is a complex (very easy).

4.20. Exercise. Understand the analogy between the residue homomorphisms presented here and the
classical (second) residue in the case of a valuation ring, for instance. Understand first why an S-space
is a good generalization of a lattice.

5. MAIN RESULT.

5.1. Theorem. Let J < K - S~'K be a localization of triangulated categories with duality in the sense
of 4.1. Suppose that K and S™'K are noetherian and that % € K. Then, using the natural homomor-
phisms W™(j) and W "(q) and the residue homomorphisms 0™ of definition 4.16, we obtain the following
long exact exact sequence :

W™(q) a"

W_(ji —>W"(571K)—>W"+1(J)—>"'

---—>W"_1(S_1K)L_1>Wn(¢]) W"(K)

of localization.

5.2. Proof. We are now well prepared to prove this theorem. We shall only establish exactness of the
sequence at W(J), W(K) and W(S 1K) (the last one is already done in [1] and in [2]). The same results
for the shifted groups, using the translated dualities go as well. The reader can establish the analogue of
the results of paragraphs 2 to 4 for skew-dualities. Details are left as an exercise.

EXACTNESS AT W(J).

Let z € Ker(W(J) - W(K)). Choose a symmetric space such that z = [P, ¢]. Then (P, ¢) is stably
neutral in K. By theorem 2.5, (P, ¢) is neutral in K. This means by definition 1.12 that

(P, ) = Cone(4, u)
for some object A in K and some morphism u : A — T~!(A#) such that

T (u#) = u.
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The reader puzzled down by the sign should re-read remark 1.9 and its neighbors.
Then Cone(u) = P € J and therefore u becomes an isomorphism in S~!K (where P would be zero).
Then, since S is saturated, u € S. In other words, (A,u) is an S-space for the skew-duality 7! o # and

(P, ) = Cone(A,u).
By definition 4.16,
(P,p) =0 ' (q(A), q(u)).

This is the announced result. Observe that we did not use that K is noetherian. The key point is of
course the very strong theorem 2.5.

EXACTNESS AT W(K).

The first step is to give a criterion for symmetric spaces over K to become neutral in S~'K. This
should be compared with lemma 2.1 condition (3). In S~!K the new isomorphisms are essentially the
morphisms of S and therefore we obtain new neutral forms using the criterion of the lemma. We prove
hereafter that they are the only one.

5.3. Lemma. Let J<5 K - S~'K be a localization of triangulated categories with duality in the sense
of 4.1. Suppose that % € K. Then a symmetric space (P, ) in K is neutral in ST K if and only if there
exists a morphism of exact triangles :

L] 151 vy

T-1(M#) L P M#
T_l(h#)l lh :lcp lh#
T-1(L#) M p# L#
T () vy vit

with h € S.

5.4. Proof. Suppose that there exists such a diagram. Then localize it (i.e. see it in S~'K) and apply
lemma 2.1 in ST'K. You will obtain neutrality of (¢(P),q(¢)).

The converse is the interesting part. The reader should pay attention to distinguish diagrams in S~1K
from those in K. Hereafter, * shall denote 7! o # from time to time.

Let (P, ) be a symmetric space in K neutral in ST'K. By definition, there exists an exact triangle
in ST1K:

Q a a
(1) T-1(A#*) —2> A —> p 25 g#

such that
(2) ay = a¥pin STK;
(3) ap = a} in ST'K.

Trivial Remark. Consider an ezact triangle in S 1K like in (1) satisfying (2) and (3). Choose any
morphism s : B — A in K such that s € S. Set by = a; 05 and w = s 'ag (s‘l)*. Then we have an
eract triangle in ST1K :

b b¥
Tfl(B#) w B 1 P 1 ¥ B#

with w = w* in S 'K.
To prove this, it suffices to observe the commutative diagram in S~1K :

ao
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which commutes because, in S™'K, we have:

2
bfﬁgo = (a1 s)#go = s#afﬁgo @ s*as.

Of course (3) implies that w* = w. This finishes the proof of the trivial remark.

Consider the exact triangle (1). Write a; as a fraction :
ai =b15_1 : A(S—BA)P

for some object B and some morphism s : B — A in S. We have by = a1 s. Then the remark tells us
that we can replace (1) by an exact triangle in S1K:

b b
Tfl(B#) w B 1 P 1 ¥ B#

with w = w* in S™'K. Then it is immediate that
b b =0 in ST'K.
This implies that there exists a morphism s’ : B’ — B such that
b¥obios’ =0 in K.

Use again the trivial remark to replace b; by b; s'. Summarizing up, we have the following situation :
(4) we have an exact triangle in S7'K :

b b¥
T-1B#) s p s p 1% gt

(5) w=w*in ST1K,
(6) by is a morphism in K (meaning = ¢(b1))
(7) b¥ob =0in K.

Since we have (6), we can choose an exact triangle in K containing b :

(8) T-Y(C) B P C.

In S71K, we can compare (4) and (8), or if you prefer, (4) and the localization of (8):

b b
7Bt — Y gt o p P gy
|
| ML
9) I~ D#
| A
v lEiu
T-1(C
(@) b B b P 5 C

There exists an isomorphism B# 5 C, that can be expressed as a fraction like displayed above. Moreover,
the relation t#bfﬁap = uby is valid in S7'K and therefore in K up to some composition, say on the left,
by a morphism in S. Up to a modification of D, t and u, one can suppose (9) and moreover :

t#b"l#cp:ubg in K.

Since S is saturated, we have t,u € S. Define ¢; := byt : D — P so that the above relation becomes :
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(10) Fo=uby in K.

Choose an exact triangle over ¢; in K and use the definition of ¢, to construct the following morphism
of exact triangles in K :

B —2-p-2sp-2sp
| |
(11) T~ (v)! lt H 1Jves
M Y
T-1(C :
(©) b B . p b C

There exists a morphism v : E — C making (11) commute and it is necessarily in S, which is saturated.
Now define
l:==uv:E — D¥.

Note that [ € S. Compose on the left the third square of (11) with u to obtain l ¢2 = ubs and therefore,
because of (10), we have:
(12) lex =clop in K.

Define also in S~'K :
zi=ttowo (V) : TV (D#) - D.

Relation (5) forces z* = z in S™'K. Now compute :

2T 1) = 2T (wo) =t~ w () T Hu) T (v)
—_——
© Bo
=t b T (v) w Co in ST'K.
Regrouping this last relation with (12), we have the following commutative diagram in S™1K :

Co &S] C2

T-(E) D P E
T-1(D#) D P D*.
? “ o

But relation (12) was true in K and therefore can be expressed as the commutativity of the following

right hand square in K :
Co C1 Co

T-Y(E) D P E
T‘l(l)l lcp ll
T-YD#) —— E#* p# D#

o c;# cf’E

where the first line is the exact triangle over ¢; we chose in (11) and where the second line is simply the
dual of the first. Now, choose in K a morphism m : D — E# such that the following diagram commutes :

Co C1 Ca

T-YE) D P E
|
(14) T_l(l)l [3m J{‘P ll
Y
T-Y(D#) —— g# p# D#
o c}l’E cf’E

Observe that m € S. Define
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It is obvious from (14) that the following diagram commutes in K (easy exercise):

B -—Lsp A.p 2 .p
(15) T71(h) lh i@ lh
T-Y(D#) —— E# p# D#
o cﬁ'é cfe

The only non-trivial point is to check that h € S, which is of course not true simply because I,m € S.
To prove this last point, we are going to establish that h# also makes diagram (13) commute (in place
of 1). This is enough because S is saturated. In view of the definition of h, it is of course sufficient to
establish that m# makes diagram (13) commute.

In other words, we have to establish:

(16) 2T~1(m#) =c¢g in ST1K

(17) m# ¢y = o in S K.
But (17) is already true in view of the middle square of (14), by applying #. Now simply compute in
STIK:

* (14)

zm*=z"m*=(m _z ) '=(meT (")) (c8)* = co-

(1:3) co T—l(l—l)

Putting everything together, we have the commutative diagram (15) with exact lines in K, for a
morphism h : D — E# such that h € S. This is exactly the claim of the lemma. The proof of this lemma
is octahedron-free! i

It is now easy to establish exactness of the sequence at W(K). It suffices to prove that a form satisfying
the condition of the lemma is Witt-equivalent in K to a form (R,%) with R € J. Theorem 3.17 applied
to 1o = h, precisely asserts that there exists a form on some R = Cone(pug), Witt-equivalent to (P, ¢)
and such that

P @ R~ P @ Cone(h).

Localize the above isomorphism in S71K :

q(P) @ q(R) ~ q(P) & q(Cone(h)) ~ q(P)
=0

because h € S. Therefore, since S~'K is noetherian(and we only use condition (1) of definition 3.3),
g(R)~0 in ST'K.

This means by definition that R € J. Then, [P, ¢] € Im(W(j)).

EXACTNESS AT W(S™1K).

This was established in [1, theorem 5.17] and in [2, théoréme 2.21, p. 103]. At that pre-walterian time,

W was written W, to recall the 1 from “T" o #” and the minus from “—w”. i

Theorem 5.1, proposition 1.14 and exercise 4.18 immediately give the following corollary.
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5.5. Corollary. Let J i) K 5 S7YK be a localization of triangulated categories with duality in the sense
of 4.1. Suppose that K and S~1K are noetherian and that % € K. Then, we have the following :

W(J) ——— W(K) ——= W(S'K)

W3(S—'K) W(J)
W3(K) 12-term cyclic exact sequence. WH(K)
W3(J) W(S1K)
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