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Abstract. Let p denote the Gaussian measure on C">X defined by du (Z) =
n~"Kexp [=Tr(ZZ")] dz, where Tr denotes the trace function, z" = ZT,
and dZ denotes the Lebesgue measure on C"K. Let Fp,<k denote the Barg-
mann-Segal-Fock space of holomorphic entire functions on C">K which are
also square-integrable with respect to p. Fix n and let Fhy~ denote the
Hilbert-space completion of the inductive limit limg_, . Fhxk. Let G and
Hy be compact groups such that Hx C G C GLk (C). Let G (resp. Hoo)
denote the inductive limit [Jg=; Gk (resp. Ug=; Hk). Then the representa-
tion Rg,, (resp. Ry, ) of G (resp. Hoo), oObtained by right translation on
Fnx oo, is @ holomorphic representation of Go, (resp. Ho) in the sense de-
fined by Ol'shanskii. Then Rg_, and Ry__ give rise to the dual representations
Réh and R;"ﬁ of the dual pairs (Gp,,G.) and (H,, Hy,), respectively. The
generalized Bargmann—Segal-Fock space Fnxoo Can be considered as both a
(Gh, Gy )-dual module and an (H/,, H,)-dual module. It is shown that the
following multiplicity-free decompositions of Fnx ~ into isotypic components

Frxeo = 2@ 1Y = a1 _ hold, where (\) is a common irreducible
(%))

nxoo nxoo
(€Y}

signature of the pair (G},, G,.) and (i) a common irreducible signature of the
pair (H/,,H,), and (1S (resp. () ) is both the isotypic component of

the equivalence classesn?)\o)oGoc (respr.1><($,_‘oo) and (\)g, (resp. (W) )- A
reciprocity theorem, giving the multiplicity of (u)Hoo in t?]e restriction t?) Hoo
of (\)g_, In terms of the multiplicity of (X)G;] in the restriction to G}, of
(“/)H,q' constitutes the main result of this paper. Several applications of this

theorem to Physics are also discussed.

Résumé. Soit p la mesure de Gauss definie sur I'espace vectoriel C">K par la
formule

dp(2) = 7 "exp [— Tr (ZZT)] dz, z e ¢k,

ot I'on désigne par Tr la trace d’une matrice, ZT = ZT, et par dZ la mesure de
Lebesgue sur C"<K, Soit Fnxk I’espace hilbertien de Bargmann-Segal-Fock
des fonctions entigres holomorphes f: C">*K — C telles que f soient de carré-
integrable par rapport a la mesure p. On fixe n et I’on désigne par Fnxoo le
complété de la limite inductive par rapport a k des espaces Fnxk. Pour chaque
k soient G et Hy deux groupes compacts tels que Hx C Gk C GLk (©), et I'on
suppose aussi que Hx—; C Hx C Hiks1 C - et Gk—1 C Gk C Gk+1 C -+ .
Soit G (resp. Hoo) la limite inductive de la chaine {Gy} (resp. {Hk}). Alors
la représentation Rg__ (resp. Ry ) de G (resp. Hoo), Obtenue par trans-
lation & droite sur Fnxo, €st holomorphe dans le sens de Ol’shanskii. Les
représentations Rg__ et Ry__ donnent lieu aux représentations R’G,n et R;_%,
respectivement, des paires duales (Gj,, G,.) et (H/,, H,.). L’espace hilbertien
generalisé de Bargmann-Segal-Fock Fpx » peut &tre consideré en méme temps
comme un (G}, G,,)-module et un (H/,, H,,)-module. On montre que I'on a
les décompositions suivantes de Fnhx o €n unigues composantes isotypiques

Frxeo =3 @100, =Y @18,

()] (CY)
ou () est une signature irréductible commune de la paire (G,, G, ) et (u) celle
de la paire (H};,H,,), et ot Ir(,>;<)oo (resp. Ir(,“x)oo) est a la fois la composante iso-
typique de la classe d’équivalence de (’\)Goo (resp. (p)HOC) et celle de (/\’)G:1
(resp. (“/)H;,)- On donne une démonstration d’un théoréme de réciprocité,
donnant la multiplicité de (u)Hoo dans la restriction a Hy de (’\)Goo' en fonc-
tion de la multiplicité de (X)Gp, dans la restriction a Gy, de (“,)H,q- L’article se
termine par une discussion de plusieurs applications en Physique du théoréme
précédant.
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1. Introduction

In recent years there is great interest, both in Physics and in Mathematics, in
the theory of unitary representations of infinite-dimensional groups and their Lie
algebras (see, for example, [Kal], and the literature cited therein). Starting with the
seminal work of I. Segal in [Se] the representation theory of U (oc) and other classical
infinite-dimensional groups was thoroughly investigated by Kirillov in [Ki], Stratila
and Voiculescu in [S&V], Pickrell in [Pi], Ol’'shanskii in [Ol1], Gelfand and Graev
in [Ge&Gr], Kac in [Ka2], to cite just a few. A more complete list of references can
be found in the comprehensive and important work of Ol’shanskii in [OI2].

In [OI2] Ol'shanski generalized Howe’s theory of dual pairs to some infinite-
dimensional dual pairs of groups. Recently in [TT1] and [TT2] we investigated the
generalized Casimir invariants of these infinite-dimensional dual pairs. In [TT3] we
gave a general reciprocity theorem for finite-dimensional dual pairs of groups which
generalized our previous results in [KT1] and [LT1]. In this article we give a gen-
eralization of this reciprocity theorem to the case of dual pairs where one member
is infinite-dimensional and the other is finite-dimensional, and discuss the general
case where both members are infinite-dimensional. If Section 2 we will review the
reciprocity theorem given in [TT3] which serves as the necessary background for the
generalized theorem, and more importantly, discuss several interesting applications
of this theorem. Section 3 deals with our main theorem, and the paper ends with
a short conclusion in Section 4.

2. The Reciprocity Theorem for Finite-Dimensional Pairs of Groups
and Its Applications

In [TT3] our reciprocity theorem can be applied to the more general context of
dual representations but for this paper we shall restrict ourself to the case of the
oscillator dual representations and where one of the members is a compact group.

Let C™<k denote the vector space of all n < k complex matrices. Let u denote
the Gaussian measure on C"=K defined by

(2.1) du(Z) =7 "exp [-Tr(zz")] dz, Zz ecC™¥,
where in Eq. (2.1) ZT denotes the adjoint of the matrix Z and dZ denotes the
Lebesgue measure on C™N_ Let Fhxkx = F (C”x") denote the Bargmann-Segal—

Fock space of all holomorphic entire functions on C™** which are also square-
integrable with respect to du. Endowed with the inner product

22) Flo=[ T@IDW@;  foeFu
Fnxk has a Hilbert-space structure. It can be easily verified that the inner product
(2.3) (flg)=F(D)g(Z)|z=o0

where f (D) denotes the formal power series obtained by replacing Z.; by the
partial derivative 9/0Z,; (1 < o <n, 1 <j <Kk). Infactif (r) = (riz,...,rnk)
is a multi-index of integers ro; > 0 let Z(M =z ...z and (r)! = ryg!- - rog!
then it is easy to verify that
7z(r)
> = 0wy

2 ( Z(r)1 Zz(r )1> _ < Z(r)1 1
[(N1z | [(r)1? [(N1z | [(rMY?
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It follows immediately from Eq. (2.4) that {Z(r) / [(r)!]% }( , forms an orthonormal
r

basis for Fxk when (r) ranges over all multi-indices; moreover Ppxx = P (C”xk),
the subspace of all polynomial functions on C"=K is dense in Fpxk.

Let G and G’ be two topological groups. Let Rg and Ry, be continuous unitary
and completely (discretely) reducible representations of G and G’ on Fp <k such that
Rg and R, commute. Then we have the following definition of dual representations
(for the definition of dual representations in a more general context see [TT3]).

Definition 2.1. The representations Rg and R, are said to be dual if the G’ < G-
module Fnxk is decomposed into a multiplicity-free orthogonal direct sum of the
form

(2.5) Fnxk = Z@ Ié>>\<)k'
(QY)

where in Eq. (2.5) the label (\) characterizes both an equivalence class of an irre-

ducible unitary representation Ag of G and an equivalence class of an irreducible
representation Ag,, and Ir(é()k denotes the (\)-isotypic component, i.e., the direct
sum (not canonical) of all irreducible subrepresentations of Rg (resp. Rg/) that

belong to the equivalence class \g (resp. \x,). Moreover the G’ x G-submodule
1), is irreducible for all signatures (A); i.e., 1$2, ~ Vo) 2w e where v ©e)

(resp. W(Aés’)) is an irreducible G-module of class (A\g) (resp. G’-module of class
s))-

We refer to the decomposition (2.5) as the canonical decomposition of the G’ < G-
module Fpnxk.

In this context we have the following theorem which is a special case of Theorem
4.1in[TT3].

Theorem 2.2. Let G be a compact group. Let Rg and Rf, be given dual represen-
tations on Fnxk. Let H be a compact subgroup of G and let Ry be the representation
of H on Fpxk obtained by restricting Rg to H. If there exists a group H’ > G’ and
a representation Ry, on Fpxi such that Ry, is dual to Ry and Rg, is the restric-
tion of Ry, to the subgroup G’ of H’ then we have the following multiplicity-free
decompositions of Fpxk into isotypic components

(2.6) Frck = > @ 10 =Y @18,
&Y )

where () is a common irreducible signature of the pair (G’, G) and (u) is a common
irreducible signature of the pair (H’, H).

If A\c (resp. \s/) denotes an irreducible unitary representation of class (\)
and pg, (resp. Hi,) denotes an irreducible unitary representation of class (l)
then the multiplicity dim[Homy (M : Ag|n)] of the irreducible representation
My in the restriction to H of the representation A\ is equal to the multiplicity
dim[Home: (\g/ : My la)] of the irreducible representation Ay, in the restriction
to G’ of the representation pi,,.

Remarks. In many cases Homy (U : Ag|n) and Homg (Mg : Hiy-lc) are shown to
be isomorphic and can be explicitly constructed in terms of generalized Casimir
operators as given in [KT2] and [LT2].
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To illustrate this theorem we devote the rest of this section to some typical
examples and discuss their generalization.

Examples 2.3. 1) Consider F;xx with k > 2; then F1xk is the classical Barg-

mann space first considered by V. Bargmann in [Ba]. Then Pixk is the algebra

of all polynomial functions in k variables (Z;,...,2Zx) = Z. Let G = U (k) and

G’ = U (1); then the complexification of U (k) (resp. U (1)) is Gc = GLk (C) (resp.
¢ = GL1(C)). An element f of Fyxk is of the form

(2.7) f(2)= > c¢nz®
I(r)|=0

with (r) = (ra, ..., 1), (N =ri+ -+, and ZO =2z ... Z ¢y € C such
that 3" 7y =0 ]c(r)|2 (N)! < oo, where (r)! =ry!---rg!. The system {Z(r)/[(r)!]%},
where (r) ranges over all multi-indices, forms an orthonormal basis for Fixk. Rea.
and Rg are defined by
2.8) [Re. (9)F1(2) =f(Z29), 9€GL«(C),

' [Re (W) f](Z2) =f(Zu), ueU(K).
R&, and R, are defined by

9 [Re, @) F] @) =T ((g'ztz) . g €6L1(0),
RS, (U)F](Z) =f ((u’) z), ueu).
The infinitesimal action of Rg, is given by
0
2.10 Rij = Zi=>-, 1<i,j <k,
( ) i 2 <ij<

which form a basis for a Lie algebra isomorphic to gl (C).
The infinitesimal action of Rg,c is given by

k
0
2.11 L= Zi—
241) IETER

which forms a basis for a Lie algebra isomorphic to gl; (C). If p,q € Pixk then
from Eq. (2.1) of [TT4] we have
(2.12)

Rec ()P (D)Re. (971) = [Rec (9°) Pl (D), 9€GLk(O), 97 = (g7,
so that if u € U (k) then

(2.13) (R (u)P|Rs (U)g) = [Re (u) pI (D) (Rg (u) q) (Z)

Z=0

=Rg (u”) p(D)Re (U R(U)q (2)

Z=0
= p(D)Re (u't) q (Zu")

=(pla),

Z=0
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since utu = 1. A similar computation shows that

-1 v
(214  Re @PORg, (@) =[R(@))]®). ¢ec6L©,
so that if u € U (1) then
(2.15) (Re: (W)p[Rg (U a) = (pla).
Note that all equations above from (2.12) to (2.15) remain valid if we replace C*>¥
by C™<K and GL; (C) (resp. U (1)) by GLn, (C) (resp. U (n)).

It follows that Rg, G = U (K) (resp. Rg,, G’ = U(n)) is a continuous unitary
representation of G (resp. G’) on Fpxk.

Let Pl(:’,)( denote the subspace (of F1xk) of all homogeneous polynomial func-
tions of degree m > 0. Then by the Borel-Weil theorem (see, e.g., [TT4]) the
restriction of Rg, to PfT‘)( is an irreducible subrepresentation of Rg, with highest
weight (m,0,...,0) and highest weight vector cZ{", ¢ € C*. In fact, by letting

——
K
the infinitesimal operators R;jj act on Pf;?( one can easily show that PfT‘)( is an
irreducible subrepresentation of Rg.. By “Weyl’s unitarian trick” the restriction of

this irreducible subrepresentation to G gives an irreducible unitary representation
of G.

Let 07 p € P{I. Then (R, (@) (2) = p((0)'2) =p(@'2) = @)"P(@)
for all g’ € GL (C). So the one-dimensional subspace of F1<k spanned by p is an

irreducible Gg-submodule with highest weight (m) and its restriction to G’ is an
irreducible unitary G’-submodule. In fact, Euler’s formula implies that

(2.16) Lp=mp, forallpeP{®.
Thus the canonical decomposition of the G’ x G-module Fixk is simply

o0
(2.17) Fik = » &P
m=0

Let H denote the special orthogonal subgroup SO (k). Then Hc = SOk (C). Then
the ring of all H (or Hc)-invariant polynomials in P31« is generated by the constants
and po (Z) = >, i ZZ. Thering of all H (or Hc)-invariant differential operators
with constant coefficients is generated by the constants and the Laplacian A =
Po(D) = Y1 9?/0Z¢. To find the dual representation of Ry we follow the
method given in [TT3] by setting
+ 1 __1 1 _k

(2.18) X —2po, X —2po(D)—2A, and E = 2+L.

Then X™ (resp. X ™) acts on F1xk as a creation (resp. annihilation) operator and E
acts on F1xk as a number operator. In fact, if p € Pf:a then X*p = %pop, X"p=
1 Ap, and Ep = ((k/2) +m)p, so that X™* raises P{T) to P{T?, X~ lowers
PM to P12 and H multiplies (elementwise) P{™) by the number (k/2) + m.
An easy computation shows that

(2.19) [E,X*] =2x*, [E,X7]=-2X", [X,X*]=E.

Eq. (2.19) gives a faithful representation of the Lie algebra sl, (R). Thus the dual

action of H is given by this representation. The integrated form of this Lie algebra
representation is more subtle to describe: it is the metaplectic representation of the
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two-sheeted covering group SL, (R) of SL» (R) (or Sp, (R)), and this group is not a
matrix group. Its concrete description can be obtained by applying the Bargmann—
Segal transform which sends the Schrodinger representation of this group to its
Fock representation Fixx. However, for our purpose, its infinitesimal action (2.19)
together with the action of its maximal compact group G’ = U (1), which is par-
ticularly simple, will suffice. Indeed, it is easy to show that we have the following

decomposition of P

(2.20) P = Yo phHT,
i=0,...,[m/2]

where [m/2] denotes the integral part of m/2, and Hf:;ﬁ) denotes the subspace
of all harmonic homogeneous polynomials of degree (m —2i), i.e., all functions
pe Pl(r:k_z') such that Ap = 0. For an integer r > 0 then it can be easily shown

that the restriction R(Hr) of Ry to ng)k is an irreducible representation of H with

x

signature (r,0,...,0) and highest weight vector
—
[k/2]
. roe
(221) f(r)H (Z) — (Zl + !Zs+1)r s If k = 2s, -
(Z]_ =+ IZS+2) , if k=2s+ 1' i= \/_—1

For each integer j > 0, the restriction of Ry to the subspace p{,H(r) is equivalent
to R} since p)) is H-invariant. Set

o
(2:22) 12 =D o pHE
j=0

then IiQk is the (r,0,...,0)-isotypic component of R(Hr). From (2.20) and (2.22)
N——

k
we see that

[ee]
(2.23) Fiak = > @ 1D
r=0

Obviously, R{,, (u) = Rg (u), u € G/, leaves each one-dimensional subspace cp{,h,
¢ € C, invariant, since Rg (u) (p{,h) =y (p{,h) (alternatively, E (p%h) =
((k/2) + 1 + 2j) (p{,h)), for all h € H{,. Clearly, X* <p{,h> = 1pd*Dh, h €
H{),.. Finally from the equation

(2.24) X~ (pof) = (k +25) F + %po AT

if ¥ is a polynomial function of degree s, we deduce by induction on the integer
j > 1that

225) X~ (pbh) =ik+20r+i-D)phth heHD
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For each fixed h € ngk let Jh denote the subspace of |§Qk spanned by the set

{pf)h |j=0,1,2,... } Then it follows from the previous discussion that the sub-
representation of the Lie algebra sl, (R) on Jh is irreducible, and thus the metaplec-

tic subrepresentation of SE—Z\(T?) on Jh is irreducible as well. As a U (1)-module Jh
is reducible, and for this special case each one-dimensional subspace cpih, ¢ € C, is
an irreducible submodule, and the lowest one is ch which has weight r (or (k/2)+r)
since

(2.26) Rg(uh=u"h, ueuU(@), or Eh= (g + r) h.

In general, if a holomorphic discrete series of a noncompact semisimple Lie group

such as SL, (R) considered as a K-module, where K is its maximal compact sub-
group, decomposes into a discrete sum of irreducible submodules, each one of them
can be characterized by a signature (highest weight, for example) and the one with
the lowest highest weight (under the lexicographic ordering) is unique. This low-
est K-type highest weight which corresponds to the Harish Chandra’s or Blattner’s
parameter, can be used to label the given holomorphic discrete series. We shall
call this label its signature. In our example, the holomorphic discrete series Jh of

SL, (R) has signature r. If dim (H§2r> = d (actually, d = (<771 — (*r3)y 1 D,

r r—2
is the r-isotypic component (of the metaplectic representation of SE;(T?)) which

contains d isomorphic copies of signature r.
Now let us verify Theorem 2.2 for this simple example. From Eq. (2.20) we have

(227) dim Homso(k) (r, 0, ey O)SO(k) . (m, 0, ey O)U(k)
[k/2] k 009

_J1, ifr=m-=2ifori=0,...,[m/2],
0, otherwise,

and from Eq. (2.22) and Eq. (2.26) we have

(2.28) dim [Homu(l) (mU(l) Tshw®

_J1, if2j+r=m,
u@) 0, otherwise,
which are obviously identical.

For arbitrary n such that n < k Eqg. (2.7) remains valid with (r) = (ri1,...,rnk)
and Z(D =z ... Zznk Eq. (2.8), (2.12), (2.13), (2.14) remain valid. Eg. (2.10)
is replaced by

n
0 -

2.10)’ Rij = Zpi=—, 1<i,j<k.
(2.10) i szl 7. <ij<
Eq. (2.11) is replaced by

« )
2.11) Lag= Zoi—o:, 1<a,3<n.
(2.11) 8 ; Zn a,f<n

Let B, denote the lower triangular Borel subgroup of G = GLp (C), let ()\) be
an n-tuple of integers such that \; > X, > --- > Ay > 0, let \: B/, — C* be the



THEOREMES DE RECIPROCITE 9
holomorphic character defined on By, by

by,
M) = )™ ()™ i = belongs to B/..
o b

Let P,({;)k denote the subspace of all polynomial functions on C™>K which also satisfy

the covariant condition

(2.29) f'2)=\0)F(2), (', 2) e B}, x C"K,

Let R, denote the representation of G obtained by right translation on Pr(1>>\<)k- Then

by the Borel-Weil theorem (see, e.g., [TT4, Theorem 1.5]) R, is irreducible with
highest weight (\) and highest weight vector

(2.30) cfy (Z) = cAMT2(Z2) A2 22 (Z) .- AM(Z), ceC

where in Eq. (2.30) A; (Z) denotes the it" principal minor of Z.
Similarly let Bf denote the upper triangular Borel subgroup of Gc = GL (C)
and let \': Bf — C* be the holomorphic character defined on BE by

[P % |

N()=b---bn  ifb= ban belongs to B{.

0

bk

Let Pgiz denote the subspace of all polynomial functions on C"*K which also

satisfy the covariant condition

(2.31) f(Zb)=N ) F(2Z), (b Z)=BLxC=k

Let R), denote the representation of G’ on P(A) defined by

nxk

(2.32) Ry @)@ =7(@)z), gec.

Then R}, is irreducible with highest weight (\") and with the same highest weight
vector given by Eq. (2.30). By Weyl’s unitarian trick the restriction of R, (resp.
R),) to G = U (k) (resp. G’ = U (n)) remains irreducible with the same signature.

Let 1), denote the G % G (or G’ x G)-cyclic module in Fnxk generated by

nxk

the highest vector f, given by Eq. (2.29); then by Theorem 3, p. 150, of [Ze], 1

nxk
is irreducible with highest weight (\', X). For the sake of simplicity we say that the
) has signature ()). To prove that 152, ~ Pr(]iz 2rP)

. A) -~
define a map &: Pr(]xz ® Pl'(1>;<)k — Ir(]’:()k as follows:

G * Ge-module 1 K we
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Let " F ¢ Pr(]iz 2P, Then £ and f can be represented in the following
form:

(2.33) =Y cRL@NF,  F=) cRi(g)Fx,
icl’ jel
where in Eq. (2.33) ci,¢; € C, gi € Gg, gj € Gc, and 1" and I are two finite
index sets. Set @ (f' © ) =3,/ ;¢ CigT (i, 9;) Fy, where [T (0f,g;) a] (2) =
T ((g{)tZgj>. Since
V(@) =) ciRL (@9 Fy
icl
and
Ry (@) F =D cjRx(g9;)
jel
it follows that
[RY (@) RA@) (Fef)]l= Y cigT (9'0].99;) F

i€l jeT
=T(@, 9o =f)

for all g’ € G and g € G¢. This means that @ is an intertwining operator and by
Schur’s lemma @ is either 0 or an isomorphism. Since

o (fyef)) ="~
it follows that @ is an isomorphism. Since Pnxk is dense in Fnxx Theorem 3 (p.
150) of [Ze] (see also [KT1]) implies that we have the Hilbert sum Fpxx = > @ I,(ﬁ()k
for the pair (U (n), U (k)). QY
Now suppose k > 2n and set H = SO (k), Hc = SOk (C). Let Jnxk denote the

ring of all H (or H¢)-invariant polynomials in Phxk. Then Jnxk is generated by
the constants and the n(n + 1) /2 algebraically independent polynomials

K
(2.34) Pas (Z) = Zzaizﬁia 1<a<p<n
c—t

It follows that the ring of all H (or H¢)-invariant differential operators with constant
coefficients is generated by the constants and the Laplacians

K
82

2.35 Nas = Pag (D) = —_, l1<a<p<n.
(2.35) 3 = Pas (D) ;21 927 a<pB<n
The infinitesimal action of R¢_ is generated by

« )
2.36 La =§ Zyi—, 1<q,8<n.
(2.36) 7 — 0 o

Set Pog = —Pas, Eap = Lag+ 2Kdap, and Dag = Agg; then it follows from [KLT]
(see Eq. (3.3)) that {E.g, Pos, Dog} defines a faithful representation of sp,, (R)
on Fnxk. By construction this representation is dual to the infinitesimal action

of Ry. The global action Ry, is a unitary metaplectic representation of Sp,, (R),
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the two-sheeted covering of Sp,, (R) (see [KLT] for details). As in the case of the
pair (U (n), U (k)) the common highest weight vector (for Ry, the lowest K'-type
highest weight vector) of signature (1) = (Mg, ..., M) With gy > -+ >, > 0 and

K; € N, 1 <i<n, of the pair (Sp2n (R),SO (k)) is

(2.37) fu(2) = A2 (Zg) AV e (20) - AR (Z0),

where the k %< k matrix g is given by

i{lu L } if kK =2y,

NAEA D
and
. [ 0 1L
— 10 V2 o0 if k =2v+1,
V2 lia, 0 —ig,

and where 1, is the unit matrix of order v.

An element p of Pnxk is called H-harmonic if A,gp=0forall o, =1,...,n.
Let Hn<k denote the subspace of all H-harmonic polynomial functions of Pxx and
let Hnxk (1) denote the subspace of all elements h of Hy<k which also satisfy the
covariant condition

(2.38) h®'z) = @b )" - ®,,)"h@), Vb eB,.

Then according to Theorem 3.1 of [TT4], the representation Ry of H which is
obtained by right translations on Hnxk (1) is irreducible with signature (1).
The infinitesimal action of Ry is given by

) ) .
(2.39) RH = (zm——za-—>, 1<i<j<k.

From [KLT] the dual infinitesimal action of Ry is given by the system {E.z, P, Dag}
which satisfies the commutation relations

[Ea,Ba EIW] = (55uEa,, - éauE;Lﬁ

[Eas: Puv] = 6puPar + 05,Pay

[Eag, D] = —60uDpy = darDpy

[Pag: D] = banBup + 0avEpp + 0puEva + 05,Epa

[Pas: Puv] = [Dag, Dyw] =0

Paﬁ, P/@a, Da,@ = D’Ba

Potﬁ =D, DL/B =Pas E;B = Egas
forall o, 8,1, v =1,...,n.

(2.40)

By Corollary 3.11 of [TT4] the p-isotypic component in Hnxk consists of d,, copies
isomorphic to Hnxk (1), where d, is the degree of an irreducible representation of
G’ = U(n) of signature (M, ...,H,). Since from Eq. (2.40) and the fact that f, is
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H-harmonic

D,quaﬂfu = [DMV’ Eaﬁ] fll + Ea’gDW/fp
= bauDpvfu + 60Dty
=0,

it follows that E T, is H-harmonic for every o, 3 = 1,...,n. Since {Eaﬁ, R:ﬂ =0
forall o, =1,...,nandi,j =1,...,k it follows that E,5: Hnxk (M) — Hnxk are
intertwining operators, and thus are either 0 or isomorphisms. It follows that the g’-
module generated by the cyclic vector T, is irreducible with signature (U, ..., H,).
In fact, from Eq. (3.14) of [TT4] this space is a G’-module. Let G’f,, denote this
G’-module; then by construction G'f,, C Hpxk.

If h € G’f, then from Eq. (2.40) we have

Dp,upaﬁh = [Dy,lly Paﬁ] h+ Pa,BD;u/h

= (604;1, EI/B + 6041/ Eyﬂ + 6,6’|JE1/0¢ + d[)’l/Ey,u) h1

and therefore D,,,P,sh belongs to G'f,. It follows that J,<kG'f, is an irreducible
sp,,, (R)-module with signature (u). Let HY .., (1) denote this module and let (K

nxk
be the H’ x H-cyclic module generated by f,; then a proof similar to the case

I(A)k shows that H/ .., (1) ® H ., (1) is isomorphic to 1®) . By the “separation

nx nxk-"
of variables theorem” 2.5 of [TT4] and from the fact that P<k is dense in Fnxk
it follows that the orthogonal direct sum decomposition Fpxik = > @ Ir(ffk holds.
()
Therefore the reciprocity theorem 2.2 holds for these pairs (G’, G) and (H’,H) as
well.

2) Let k = 2l and consider again the dual pair (G'=U(n),G =U(k)). Let
H =Sp(k); then Hc =Spk (C). If I > n > 2 then the theory of symplectic harmonic
polynomials in [TT5] implies that the dual representation to the representation Ry
on Fnxk is a representation of the group SO* (2n) = H’ whose infinitesimal action
is given by Eq. (4.2) of [KLT]. Using Theorem 2.1 of [TT5] and the “separation of
variables theorem” for this case we can show similarly that Fnxx = > @ 189 for

nxk
(V)
this dual pair (SO* (2n), Sp (k)). Thus the reciprocity theorem 2.2 holds again for

these pairs (G’,G) and (H’, H).

3) The case of the dual pairs (G'=U(p)>xU(),G=U(k)>xU(k)) and
(H' =U(p,q),H =U(K)) can be treated in a similar fashion using the results
of [TT6] and the infinitesimal action of H’ on Fnxk is given by Eq. (6.4) of [TT3].
However, its generalization to the case H = U (c0) in Section 3 is quite delicate
and requires a quite different embedding that we shall describe in detail below.
Let p and g be positive integers such that p+q = n. Let k be an integer such that
k > 2max(p,q). Let (\) be a g-tuple of integers such that Ay > X > --- > g > 0.

Let R, denote the representation of GLk (C) (or U (k)) defined on Pé;\)k given by
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Eqg. (2.29) and (2.30) with n replaced by g. We define the contragredient (or dual)
representation of R, as follows.
Let s, denote the r < r matrix with ones along the reverse diagonal and zero

elsewhere:
0 ..1
(1 70 ) |

If W € CoK let W = sqWsi. Thus W is of the form
Wq‘k e Wq‘]_
(2.41) W= : :
Wik -+ Wi

v ~
Let Pq(ik) denote the subspace of all polynomial functions in W which also satisfy
the covariant condition
(2.42) f (E'VT/) =A()F (W)
for all b” € By, where By is the lower triangular Borel subgroup of GLq (C), and
b = s4b'sq.

v
Define the representation R,. of GLk (C) (or U (k)) on P(A ) by

gk
(2.43) Ry (g) ] (W) =f (Wskgsk) . geGL(C).
Then R, is irreducible with signature (0,...,0, —\q, —Ag—1, ..., —A1) and lowest
weight vector M
(2.44) of,. (W) = AN (W) AP T (W) AN (W),  ceCr

of weight (—Ay, —XA2,...,—Xq,0,...,0).

A7) . . L~ .
Let Pq(xk) denote the subspace of all polynomial functions in W which also
satisfy the covariant condition

(2.45) f (VT/B) =A(b)f (vT/) ,
where b = sybsk, b € BE (it follows that b is a lower triangular matrix of the

~ brk
form b = < *-._0 )). Let R’(A,), denote the representation of GL (C) (or of

b11

v ’
6" = U(q) on P defined by

axk
~ 1
(2.46) [sz), (g’)f] (w) =f (sq @) sqw) . ¢ €GLy(C).
Then Ry, is irreducible with highest weight (A7) and with lowest weight vector
given by cfy., ¢ € C*, of weight (=1, —A2,..., —Ag).
vy’ v

As in the case (\) ® (\) it can be shown that Pq(ik) ® Pq(ik) is isomorphic to

v v
Iq(ik and we have the Hilbert sum decomposition Fgxx = > @ Iq(ik) for the pair

(U (@), U (k). o)
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Now let G = U (k) < U (k) act on Fnxk Via the outer tensor product

A

Wsigy sk |/

where Z € CP*k W € C9K p+q =n, g1,02 € U(k). Then G’ = U (p) x U(q)
acts on Fpxk Vvia the outer tensor product

@) [Rup SR | @an t ([ 5] ) =7 < L;q— (;j;)_lzsqwl ) ,

where (91, 95) € U (p) x U (q).
It follows that we have the isotypic decomposition for the dual pairs (G/, G)

47 [Rugg @Rugyr | (@10 F ([VZT/D - (

e(\’
(2.49) Fraxk = Z ® |n><k( )’
)
v A) L. . v A
where Ir(lzf’( ) is isomorphic to Ip()x)k ® Iq(xk)'

Let H = {(9,9) : g € U(k)}; then H is isomorphic to U (k) and H acts on Fpxq
via the inner (or Kronecker) tensor product Ry = Ru(k)®RU(k)«. Let Jnxk denote
the ring of all H (or Hc =~ GL (C))-invariant polynomials in Pnxk. Then from
[TT6] and [TT3] Jnxk is generated by the constants and the p < q algebraically
independent polynomials

k
Z ~
(250)  Pas QWD = (ZscW') =3 ZaWs,  1<a<p l<f<q
& i=1

It follows that the ring of all H or (Hc)-invariant differential operators with constant
coefficients is generated by the constants and the Laplacians

k

82
(2.51) Aaﬁ:paﬁ(D):Zaz 1<a<p 1<B<q.
i=1

(w',aWBi ,

Together with the infinitesimal action of GL (C) on Fnxk the pas’s and Ayp’s
generate a Lie algebra isomorphic to su(p,q) with commutation relations given
by Eq. (6.4) in [TT3]. The global action of this infinitesimal action defines a
representation R{,, of H" = SU (p,q) on Fnxk Which is dual to the representation
Ry.

An element p of Pnx is called H-harmonic if Ay,gp = 0 for all o = 1,...,p,
and 0 = 1,...,0q. Let Hnxk denote the subspace of all H-harmonic polynomial
functions of Ph<k and let Hh<k (1) denote the subspace of Hh<k generated by the

v
elements f € Pé‘;)k ® Pq(ik) which also satisfy the condition A,3 =0, 1 < «a < p,
1<B<q LetRY =) (A), denote the representation of H on Hpxk (1)
defined by

e [wor (18] -+ ([422])

for all g € H. Then Theorem 5.2 of [TT3] implies that:
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The representation R(H“) of H =~ U(K) on Hnsxk (1) is an irreducible unitary
representation of class () which has signature

(2.53) (W)= (1, 79,0, ..,0,=Agy- .., —A1),
K

where in Eq. (2.53) v, 1 < a < p, and g, 1 < B < q, are integers such that
Z ~
> > >0and A >0 > A > 0. Let fqu-D =, @)f (W),

where f, is given by Eq. (2.30) with v replacing A and f,. is given by Eq. (2.44).

Let Ir(,‘jfk be the H’ < H-cyclic module generated by f,,; then a proof similar to

the previous cases shows that H .., (1) ® H, ., (1) is isomorphic to (1 By the

nxk"*

“separation of variables theorem” 1.5 of [TT6] and Theorem 5.1 of [TT3] it follows

that the orthogonal direct sum decomposition Fpxkx = > @ Ir(,'fk holds. Therefore
(%))
the reciprocity theorem 2.2 also holds for these pairs (G’, G) and (H’, H).

4) This example is a generalization of the previous example. Consider r copies of
one of the following groups: U (k), SO (k), or Sp(k), with k even for the last, and
let each of them act on a Bargmann-Segal-Fock space Fp; <k, 1 < i < r, by right
translations. Let p; +p2 +---+p, = n, and let G denote the direct product of
r copies of each type of group. In the case of U (k) we allow the rt" copy to act
on Fp,=k either directly or contragrediently; for the other cases it is not necessary
to consider the contragredient representations since they are identical to the direct
representations.

On each Fp, <k for the U (k) action we have the dual action of U (p;) by left
translations, and with possibly the dual (left) contragredient representation in the

—~

case i =r. For SO (k) we have the metaplectic representation of Sp,,, (R), and for
Sp(k) we have the corresponding representation of SO* (2p;). Let G’ denote the dual
group of G thus obtained. Let H denote the diagonal subgroup of G; then in the case
of U (k) an element of H is of the form (u,u,...,u) or (u,...,u,u), u € U(k), and
N——— H/—l’
r r—
in other cases an element of H is of the form (u, u, ..., u), u € SO (K) or u €Sp(k).
——

M
Let H’ denote the dual group of H thus obtained. Then H’ is isomorphic in each

case to U (n), §E); (R), or SO* (2n). As in previous examples it is straightforward
to verify that the reciprocity theorem 2.2 holds for these pairs (G’, G) and (H’, H).

3. Reciprocity Theorems for Finite-Infinite Dimensional Dual Pairs
of Groups

Let H be an infinite-dimensional separable complex Hilbert space with a fixed
basis {e1,€2,...,€k,...}. Let GLk (C) denote the group of all invertible bounded
linear operators on H which leave the vectors e, n > k, fixed. We define GL, (C)
as the inductive limit of the ascending chain of subgroups

GLi(C)cCc--CcGL(CO)C .
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Thus

GL. (C) = {A = (aij), i,j € N| Alis invertible
and all but a finite number of a;; — d;; are 0}.

If for each k we have a Lie subgroup Gk of GLk (C) such that Gy is naturally
embedded in G+1, k=1,...,n,..., then we can define the inductive limit G,, =
lim Gk = Uz, Gk. For example, U(c0) = {u € GLu (C):u* =u~'}, and thus
U (o) is the inductive limit of the groups Uy of all unitary operators of H which
leave the vectors en, n > Kk, fixed.

Following Ol'shanskii we call a unitary representation of G, tame if it is con-
tinuous in the group topology in which the ascending chain of subgroups of type
{ 10“ 2 , k=1,2,3,..., constitutes a fundamental system of neighborhoods
of the identity 1.,. Assume that for each k a continuous unitary representation
(Rk, Hk) is given and an isomorphic embedding itﬂ: Hk — Hyg+1 commuting with
the action of Gy (i.e., i, o Rk (9) = Rk+1(9) 0if,;) is given. For j < k define the
connecting map gjk: Gj < Hj — Gk % Hy by

(3.1) eik (@5, %) = (O, X)), (95,%5) € Gj x Hj,
where in Eq. (3.1) gk (resp. Xk) denotes the natural embedding of g; (resp. X;) in
Gk (resp. Hy). Then obviously the diagram

Gj x H; —RL> H;j

j+2 Tj+1

(32) ijl lif‘(:it_lo...oij+1oij

Gk < Hi R, Hy
is commutative. Let H., denote the Hilbert-space completion of | J;—, Hk and
define a representation R, of G, on Hy by

3.3) R () X = Rk (9) X if g € Gk and x € Hy.

Then obviously R+ is a unique continuous unitary representation of G, on | J.—; Hk
which can be extended to a unique continuous unitary representation of G,, on
H,. Let ¢k denote the canonical map of (Gk, Hk) into (G.., Hs) and ix denote
the canonical map of Hy into H.; then obviously the diagram

Gk xHkx 25 Hy

(3.4) o [

G XHew —= Hx

is commutative.
The following theorem, which is well-known when i, ; is an isometric embedding
(see, e.g., [OI2)]), is crucial for what follows.

Theorem 3.1. If the representations (Rg, H) are all irreducible then the inductive
limit representation (R, Hoo) is also irreducible.
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Proof. Let A be a bounded operator on H., which belongs to the commutant of
the algebra of operators generated by the set {R~ (9),9 € G} Since U=, Hk is
dense in H, and all the linear operators involved are continuous we can without loss
of generality consider them as operating on | Jy—; Hk and satisfying A (ik (x)) = Ax
for k < I and for all x € Hy. Let Py denote the projection of UE‘;l Hy onto Hy.
Let Ax denote the restriction of A to Hy; then Ay is a bounded linear operator
of Hy into (JoZ; Hn. It follows immediately that PxAx: Hx — Hy is a bounded
linear operator on Hy. Let x € Hy and suppose Axx = Ax belongs to Hy. If I <k
we may use the isomorphic embedding i}, = i{j_l o+ oily: H — Hg to identify
AXx with an element of Hy so that P Axx = Axx = AX, and thus

Rk (9k) PkAkX = R4 (k) AX = AR (9k) X = PRk (9) X, V ok € Gk.

If 1 > k then use ik to identify Hx with a subspace of H;. Write Ax =y + 2z
where y belongs to the identified subspace of Hx and z belongs to its orthogonal
complement in H,. Since all representations are unitary and for gx € Gk we have
Ill( o Rk (gk) = Ry (gk) o It( it follows that

PiRoo (9k) AkX = PRk (9k) Y = Roo (9k) PAX.
By assumption R, (gk) Ax = AR (gk) X, therefore

Rk (9k) PkAkX = Roo (9k) PkAX
= PkRoo (gk) AX = PkAkRoo (gk) X = PrAKRk (gk) X.

Since this relation holds for all x € Hx and gk € Gk it follows that Py Ay be-
longs to the commutant of the algebra of operators on Hy generated by the set
{Rk (gk) , 9k € Gk}. Schur’s lemma for operator algebras (see, e.g., [Di, Proposi-
tion 2.3.1, p. 39]) implies that P Ax = A¢lk, where )¢ is a scalar depending on
k and Iy is the identity operator on Hx. Now A is a map of inductive limit sets
such that PxAx: Hk — Hg, and it follows from the definition of an inductive limit
map that A\« = A for sufficiently large k, | with k < I. Indeed, if x € Hyx and
Arx = Ax € Hj with j <k then PyAxx = i{( (AX) = \¢X. For | = k we then have

NiF ) = PiA (iF (X)) = PiA (if (x)) = PIAX
=il (A0 = it (i (A%) = i (PLAK () = A (9.
On the other hand, if Ax € Hj with j =k then for all | > j we have

PIA| (if (X)) = PIA (if (X)) = PIAX = PJA; (i (X))
=PiPjA; (i (9) = P (45 00) = i} (N 09) = N (i (0) = X (9.

Since PiA; (il (x)) = AjiK (X), we must have \j = A for all | > j. This implies that
A = A, where X € C is a constant and |, is the identity on H.,. By the same
Schur’s lemma quoted above the representation R, on H,, must be irreducible. O

Now fix n and consider the chain of Hilbert spaces Fnxk from Section 2 with
k = 2n. Let (G}, G,) denote a dual pair of groups with dual representations
(Rn, Ry) acting on Frxk as in Theorem 2.2. Then we have the chain of embedded
subgroups Gx C Gk+1 C - - -; for example, U (K) is naturally embedded in U (k + 1)
via the embedding u — (8 9), u € U (k). Therefore we can define the inductive limit
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Gy = ﬂm Gk = Uﬁizn Gk. We also have an isometric embedding itﬂ: Fnxk —
Frx+1) such that

iII§+1 oRk (9) = Rk+1(9) ° it+1'

To see this we take the case n = 1: then an element f of F,xk is a function
of Z = (2,,...,2Z) of the form given by Eq. (2.7), and the verification of the
equation above is straightforward. Let Fn .., denote the Hilbert-space completion
on UE‘;zn Fnxk- Then it is clear that the inductive limit representation R, of G,
on Fn« is tame and satisfies the relations (3.2), (3.3), and (3.4).

If Gk is a compact group then every irreducible unitary representation of Gy
is of the form (p,,V.) with highest weight (Ax) = (Mg, my,...,m;,...), where
mi, My, ... are nonnegative integers satisfying m; > m, > --- and the numbers m;
are equal to 0O for sufficiently large i. Consider the decomposition (2.5) of Definition
2.1 of the dual module Fpxk into isotypic components

A
ank = Z@ Ir(1><kl2
(k)

where the signatures (k) actually depend essentially on n, but since n is fixed, to
alleviate the notation we just tacitly assume this dependence. Also for k sufficiently
large if (\) = (M1,...,mj,...) then (Ak+1) = (My,...,Mj,...,...) and we write
succinctly (\x) € (Ak+1).

For sufficiently large k we can exhibit an isomorphic embedding ik, ,: 10 —

nxk
Ir(‘ik(‘[(ﬁl). If Hy is a subgroup of Gy such that H/, contains G;, and (H/,,H,)

forms a dual pair then the same process can be repeated for the chain (H/,,H,) C
(H;,,Hkﬂ) C . If Gk (or Hy) is of the type U(K) x---x U(K) then each

v
ik, is an isometric embedding; for other types of Gk (or H) the definition of
i, , is more subtle. This can be examined case by case although the process is
very tedious. To illustrate this we consider the case Fixk with Hx = SO (k) and

—_—~

Gi1 = 5p, (R) = SL2 (R). Then Eq. (2.22) and Eq. (2.23) imply that
oo o0 )
Fiodo= ol with 112 = op) HI2
r=0 j=0

x

where pox (Z) = Z2+ -+ Z2, (r), = (r,0,...,0), and H{?, are the subspace of
N———

K
all harmonic homogeneous polynomials of degree r. Obviously a harmonic homo-
geneous polynomial h of degree r in k variables can be considered as a harmonic
homogeneous polynomial of r in k + 1 variables. So we can define an isomorphic

embedding ik, , IEQIE — Iii)(k;jl) by sending p{,’kh into p{)’(kﬂ)h, and clearly

Ri (U (P gesyn) = b ey R (@) 1 = i 1ph (Ri (i
= ike1 ((Rr (WPl ) R @ M) =iy (Ri (i) (phch))

for all ux € Hx. Thus, Ry (uk) o if,; = if,; o Ry (uk) for all ux € Hy. It
follows that iﬁﬂ can be extended to the whole space F1xk and that itﬂ (Fixk) =
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o0
@ik, (lfQ;) is an isomorphic embedding of Fixk into Fix+1). Also note
r=0

in this very special case (r), C (r),., for all k > 2 and that no other signatures
(Ny1 occur in Fyxqe1y Without (r), occurring in Fix; this fact is an exception
and almost never happens in the general case (e.g., n > 2). By Theorem 3.1
rRG) © RY

the tensor product representations G.. and R,(_r,) ® R(I-I& of Gy, x G

and H/, < H_ I,(fx)oo and I,(&)oo, respectively, are irreducible with signature
(M), and (u)oo, respectlvely, where if (Ax) = (Mg, my,...,m;,...) then (1) =
(mg, My, ...,m;,...,0,...,0) and similarly for (). Note that as n is fixed, the

o
group Gy, remains fixed; however, its representation Ry ,on Fnxk does depend
on k, and should be written as (Rg, )k, and as k — oo, (Rg,) has to be
considered as an inductive limit of representations, although for k Sufﬁmently large

all the representations (Ré, )> are equivalent. The same observations apply to
"k

(th,1> . and (R(Ht)> K To illustrate this let us consider again the case U (1)< U (K)

and SE;(T?) x SO (k) acting on Fixk. Indeed, the infinitesimal action of Rg, is

given by Eq. (2.11) as Lx = Y., Zid/0Z; and Ly+1 = S 7i09/0Z;, and for

pe P c PO .1y Ed. (2.16) implies that

Lxp = Lk+1p = mp.

By Eqg. (2.18) the infinitesimal actions of R{41 on Fixk and Fix+1y are given,
respectively, by

k
_k +_1Z ) _ 1 0?
Ek—z"'l_k, Xk—z Zi’ Xk—— —I and

(3:5) k+1 k+1

k+1 _
Ex+1 = - + L, X = ZZ X1 = 2 2 Z 322

If he € H{Y, then Egs. (2.24), (2.25) applied to {E,., X", X, } show that Jkhi is an
irreducible representation of sl, (R) with signature (r). Similarly if hy41 € Hlx(k+1)
then Jx+1hk+1 is also an irreducible representation of sl, (R) with signature (r).
Let Fnxoo denote the Hilbert-space completion of |J, Frnxk; then Fnyoo =
um Fnxk is the inductive limit of the chain {Fnxk}.
After this necessary preparatory work we can now state and prove the main
theorem of this paper.

Theorem 3.2. Let G, denote the inductive limit of a chain Gy C Gg+1 C + -+ of
compact groups. Let Rg_ and R(G,) be given dual representations on Fp .. Let
H.. denote the inductive limit of a chain of compact subgroups Hx C Hyg+1 C -

such that Hx C Gk for all k. Let Ry_ be the representation of H., on FnXoo
obtained by restricting Rg__ to H... If there exists a group H/, D G;, and a rep-
resentation REH,) on Fnxeo such that REH,) is dual to Ry, and R(G,) is

the restriction of R’(H,) to the subgroup G, of H/, then we have the foIIowmg
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multiplicity-free decompositions of Fn«, into isotypic components:

(3.6) Frxeo = Z® Ir(1>>\<)oo = ZGJ Ir(&)oo
Q)] (V)
where (\) is a common irreducible signature of the pair (Gj,,G.) and (u) is a
common irreducible signature of the pair (H},, H_.).
If A\, (resp. A’(G,) ) denotes an irreducible unitary representation of class (1))

and p_ (resp. qu/) ) denotes an irreducible unitary representation of class ()

then the multiplicity dim [Homp, (Ky_ : Ac..|H., )] of the irreducible represen-
tation ., in the restriction to H, of the representation Ag_ is equal to the

multiplicity dim [Homeh (A’(G,) : uQH,) )1 of the irreducible representation
n/o0o n/oc GF,

)\I

(G 1n the restriction to Gy, of the representation Ly, -

Proof. As remarked above, the dual (G},, G, )-module I,(fx)oo is irreducible (by The-
orem 3.1) with signature (\), and isotypic components of different signatures are

mutually orthogonal since their projections Ir(,i)ﬁ are mutually orthogonal. Finally

if a vector in Fpny., Which we may assume to belong to Fnxk for some k, is or-
thogonal to 1Y for all (), it must therefore be orthogonal to 1Y% for all My

nxoo nxk
and hence must be the zero vector in Fnxk, and thus zero in Fpxoo. A similar

argument applies to the isotypic components I,ﬁ“x)oo, and thus Eqg. (3.6) holds.

Now fix (A) and (i). Then the restriction of Rg__ to Ir(,’\x)OO decomposes into a
(non-canonical) orthogonal direct sum of equivalent irreducible unitary representa-
tions of signature (\) . A representative of this representation may be obtained by
applying Theorem 3.1 to get the inductive limit (Goo, R(A)m) of the chain (G, Ry, );
for example, when Gk = U (k), the representation Ry, is given by Eq. (2.29) on

Pr(fx),ﬁ Considered as a Gj,-module I,(ﬁx)oo decomposes into a (non-canonical) or-
thogonal direct sum of equivalent irreducible unitary representations of signature

(N),- A representative of this representation may be obtained by applying The-

orem 3.1 to get the inductive limit (G;,RQM)O) (note that although G}, is a

stationary chain at n, the representations RQA, ) depend on k even though they
are all equivalent and belong to the class ()\'),,); for example, when G, = U (n) the

O which is defined by Eq. (2.31).
By an analogous argument we infer that the same conclusions hold for (p), 1

nxoo?
(Hoo, Ray__ ) (Hé, R'(Wn)m)-

Now consider the decomposition of the restriction to Hy of the representation
Ry, of G. The multiplicity of (u), in (M) |n. is the dimension of
Hompy, (Ry, : Raclm,), where Homy, (R, : Ry, ln,) is the vector space of lin-
ear homomorphisms intertwining Ry, and Ry, |n,. Since Gk and Hy are, by as-
sumption, compact, this dimension is finite. If Tx: Hy — Hy, is an element of
Homp, (Ry, : Raglh,), where Hy (resp. Hy,) denotes the representation space

of Ry, (resp. Ry,), then since H, C Ir(,i); and H,, C I,(fx),'; it follows that we

have an inductive chain of homomorphisms {Tk: Hy, — H,\k}. Let H,_ (resp.
H,..) denote the inductive limit of H,, (resp. H,,); then there exists a unique

representation R/M, is given by Eqg. (2.32) on P
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homomorphism To.: H, _ — Ha_ (see, for example, [Du, Theorem 2.5, p. 430],
or [Ro, p. 44]). Again by Theorem 3.1, Ry, = limR,, (resp. Ry = limRy, )
is irreducible with signature (\)_ (resp. (1)), and it is easy to show that T,
is an intertwining homomorphism. Conversely, all homomorphisms of inductive
limits arise that way. Consequently, the chain Homy, (Ruk R lhi) induces
the inductive limit Homy__ (R“w : RAOJHOO)- Obviously for sufficiently large Kk,
dim [Homp, (Ry, : Ralh)] = dim [Homy (R 1 RalH.)]. By duality, we
'R}

! .
S TR (AN )] » ac-
Gl

tually this chain stabilizes for k sufficiently large. It follows from Theorem 2.2 (see
also the proof of Theorem 4.1 in [TT3]) that dim [Homu_, (My_ : Ae.lHs )] =

dim lHomG/n (A’(G%)m P MG G/)

As an example we again consider the case F1 ., with G, = U (00), G; = U (1),
Hs = SO(c0), and H{ = SL» (R). Then from Eq. (2.17), (), = (m,0,...,0),
N———

obtain in the same way the inductive limit |Homg, | R

O

Kk
L= (m), and 100 = P{X. It follows that (), = (m,0,0,0) and 110 =

1xoco

Pl(':c)g‘ the vector space of all homogeneous polynomials of degree m in infinitely

many variables Z;, Z,, etc. The infinitesimal action of Rzua))k is given by Eq.

(2.10), Ly = Z:‘zl Zi0/0Zj, so the infinitesimal action Lmy_, is given the formal

series >, Zid/0Zi. For Hy, = SO (00) and Hi = SL; (R) the actions are more

delicate to describe. From Eq. (2.22), (W), = (r,0,...,0), where r is an integer
N——

[k/2]
> 0, and therefore (1), = (r,0,0,ﬁ). Let ngﬁ denote the space of all harmonic
homogeneous polynomials of degree r in k variables Z1, ..., Zx then from Eq. (2.22)

|§Q,; = _ZOQ) pf)‘ngzﬁ, where pox (Z) = Y1, ZZ. We define the actions Rso(o0)
J:

and R/, —_ ., as follows:
(5)
Consider the algebras (sl (R)),. with the bases {Ek, X, Xk_} given by Eq. (3.5);

define the projective or inverse limit of the family {(slz Ry Ig();} as follows: For

each pair of indices I,k with | < k a continuous homomorphism ¢k: (sl2 (R)), —
(sl (R)), by sending Ex to E;, X to X,;", X, to X~!, and extends by linearity to
(sl2 (R)), — (sl2 (R)),. Clearly ¢k satisfies fhe following:

a) ¢k is the identity map for all k,

b) if i <1 <k then ¢k = ¢! o oK.
The inverse limit of the system {sl> (R),} is denoted by
37 sk(R), =limsl (R), = (E.,, X%, XZ),

=

1 1 _ 1 0
whereEoo=§1<>o+Loc, x;=§Zz§, 0025232.2'
i=1 i=1 1
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Then {E_, X%, X} acts on F1, as follows: If f € F1.. then we may assume
that ¥ € F1«k for some k and

(3.8) Eof=Ef, XIF=X'f and X_f=X_Ff.
(N

1xo0

If H{”> denotes the subspace (of P

1x oo

) of all harmonic homogeneous polynomials
(N

1xo0

of infinitely many variables Z;, Z,, etc. (i.e., h € Hix if and only if h € P
and X__h = 0) then

o -
(39) 10% = (2x0) HiZx,

i=0
where in Eq. (3.9) 2X% = (po),. = > ;=, Z2. Note that ngx)gg corresponds to
the inductive limit of the chain {ng',;} Let Rgc);(go) denote the inductive limit

representation of the chain Rgo)'(k); then Rgo)zgo) together with Eq. (3.8) describes

completely the action of the dual pair (SLZ (R), SO (oo)) on the isotypic component

Ifrx)gg and thus we have the isotypic decompositions for the dual pairs (U (1), U (cc))

and (SE(T?), SO (00)) ,

o o0
Fieee = > 0 s =Y 010z,
m=0 r=0

and thus Theorem 3.2 is verified for this example.
Since the next two examples are very important by their applications to Physics
we shall state them as corollaries to Theorem 3.2.

Corollary 3.3. Let G, denote the direct product of r copies of H,, where H,, =
U (o), SO (o0), or Sp (o0). If G, acts as the exterior tensor product representation
Ve ...V A where each V s, 1 <i <, is an irreducible unitary H.-
module, then H,, acts as the inner (or Kronecker) tensor product representation
on Ve &... @V A, If \g_ denotes an irreducible unitary representation of
class (M) ®  ®(Ar)g_ and py_ denotes an irreducible unitary representation
of class (u),,_ then the multiplicity dim [Homn_ (My_ : Ac.lH..)] of the repre-
sentation (W),  in the inner tensor product (M) @@ (\r),, is equal to the
multiplicity of (W), in the inner tensor product (A1), & ® (\r)y for sufficiently
large k.

Proof. If (\i), = ()\,1/\,2 LML ) where M are integers such that A} > A2 >

- and )\J; = 0 for all but a finite number of j, let n denote the total number of
all nonzero entries M, 1 <i <r; then Ve © .- @ V) can be realized as a
subspace of the Bargmann-Segal-Fock space Fp«o,. From Theorem 3.2 it follows

. . A
that V Mw @ ..V (s belongs to the isotypic component Ir(,x)fcw of Frx oo, thus
Ve ... @V A is the inductive limit of the chain {V Ok @ .. @V O},
If uy_, is an irreducible unitary representation of class (1),  then by Theorem 3.2

8

dim [Homu . (M @ Ae.lH. )] = dim

Home;, <X<G:1>w LChN



THEOREMES DE RECIPROCITE 23

where X(Gh)oo (resp. “l(Hé,)w) is the representation of G/, (resp. H,,) dual to Ag__ (resp.

Hy_ ). For sufficiently large k every p,_is the inductive limit of a chain p,, and
for such a k Theorem 2.2 implies that

dim [Homu, (K, : Aailh )] = dim [HomG% (A/(Ga)k FHGH), G )]

=dim [Homeg ()\/(G;])oo :u/(H,Q)% - >‘| ,

and this achieves the proof of Corollary 3.3. O

Remark. The reason that this corollary only holds for sufficiently large k can be
seen in the following example. Let Gx = U (k) < --- x U (k) and Hx = U (k) and

4 times
consider the tensor product (1,0,...,0) ® (2,0,...,0) ® (2,0,...,0) ® (3,0,...,0);
N—— N—— N—— N——

k k k k
then for k = 2 we have the spectral decomposition

(1,0)®(2,0) ®(2,0) ® (3,0) = (8,0) +3(7,1) +5(6,2) +5(5,3) + 2(4,4),
for k = 3 we have

(1,0,0) ® (2,0,0) ® (2,0,0) ® (3,0, 0)
=(8,0,0)+3(7,1,0) +5(6,2,0) +5(5,3,0) +2(4,4,0)
+3(6,1,1)+6(5,2,1)+5(4,3,1)+3(4,2,2)+2(3,3,2),
for k > 4 we have

1,0,...,0)®(2,0,...,0) ® (2,0,...,0) ® (3,0,...,0)
—— —— —— N————
K K K K
=(8,0,...,0)+3(7,1,0,...,0) +5(6,2,0,...,0) +5(5,3,0,...,0)
+2(4,4,0,...,00+3¢(,1,1,0,...,0) +6(5,2,1,0,...,00 +5(4,3,1,0,...,0)
+3(4,2,2,0,...,00+2(3,3,2,0,...,0) +(5,1,1,1,0,...,0)
+2(4,2,1,1,0,...,0) +(3,3,1,1,0,...,0) + (3,2,2,1,0,...,0).
Thus we can see that the spectral decomposition of (1, 6) ® <2, 6) ® (2, 6) ®
(3, 5) is the same as that of order k for k > 4, with infinitely many zeroes at the
end of each signature.
Note also that this corollary applied to the tensor product (1, 6) R ® (1, 0)

-
oo

r times

together with the Schur—-Weyl Duality Theorem for U (r) implies the generalized
Schur-Weyl Duality Theorem proved by Kirillov for U (c0) in [Ki].

Corollary 3.4. Let Vs VOrs and V Mo be irreducible unitary represen-

tation of H,. Let V (M) be the representation (of H..) contragredient to V (W«
Let 1°° denote the equivalence class of the identity representation of H,,. Then
the multiplicity of () in the tensor product (A1) ®: - ® (\r),, is equal to the
multiplicity of 1> in the tensor product (A1) & ® (\r) & (1)

oo”
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Proof. To prove this corollary we apply Corollary 3.3 to G, = Hy X<+ X H
—_— —m——

r

and G = Hy x -+ % Hy, then apply Theorem 3.2t0 G, = Ho, % -+ X Hoo X HY
N———— N—————

r

Y
and Gk = Hy x --- x Hx ® HY, and finally apply Theorem 2.1 of [KT3] to obtain
N———’

M
the desired result at order k. The main difficulty resides with the definition of the

. . . M) A Ay 0oL 2y W) . .
identity representation onV ®e & ... @V Ae &V K ) which we will construct
below.

For each k let I denote the identity representation of Hy on

VOB ... &V O & v () This means that if 1 occurs with multiplicity d in

VOB ... &V O &V ()i then there exist d nonzero vectors fiv,i=1,...,d,
such that Ry, (u) fi x = fj« for all u € Hx. By construction each f; k is a polyno-
mial function in Fnxk for some n. Thus f; i is an Hg-invariant polynomial in Fpxk.
If Jix denotes the one-dimensional subspace spanned by T; x, then for sufficiently
large k and for each fixed i =1,...,d we have a chain of irreducible unitary repre-
sentations {Hi, 1%, Jik }, . We can define the isomorphism ¢, ; : Jik — Jik+1 by
Yk, 1 (cFik) = cfik+1, C € C; then obviously

Ui (Ruy (W) Fik) = Ry (U) Firr = Ri, (W) 1 (Fin)
for all u € Hg. Also for all k, I, m with k <1 < m we have g, = w,'n oz/),k. Thus
we can define the inductive limit representation {H.., 1°°, Ji o}, Where the action
of He 0N Ji o is defined as follows:
Let u € H; then u € Hy for some k. If £ € J; for some | then
Ru. (W fi =Rp, (WLt  forl <k,
and
Ru. (Wfi =Rp, (Wyf  fork <l
Then it follows from Theorem 3.1 that {H., 1 *°, Ji o } is irreducible with signature
(6) . The only problem with this approach is that the isomorphism embedding

¥K,1 is not the isomorphic embedding i, ;: Frnxk — Fnx+1y- T0 circumvent this
difficulty we define the inverse or projective limit of the family {Hk, 1, .Jk} where

Jx denotes the subspace of all Hy-invariants in VO« & ... &V Ok v () as
follows: For each pair of indices I, k with | < k define a continuous homomorphism
#K: Ik — J such that

i) #F is the identity map on Jy,

ii) if i <1<k then ¢k = ¢! o k.
Here we can take ¢k as the truncation homomorphism, i.e., ¢k is defined on the
generators f; x by

o (Fi) = Fiy.
The projective limit of the system {Hk, Jk, (b',‘} is then formally defined by

Joo = limJy = {(fk) e[[3:fi=o¢r (), Vi< k}.
k
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Let mx: Joo. — Jk denote the projection of J.,_ onto Jx. Let 1°°— denote the
representation of H,, on J._; then mx (1°°=F) = m¢ (). Recall that if Pk
denotes the subspace of all polynomial functions on C"*¥ the Ppx is dense in
Frxk. Let Pnxoo = Ugz; Pnxk denote the inductive limit of Pnxi; then clearly
Phxoo is dense in Fnyoo. Let Py, o (resp. Fj, ) denote the dual or adjoint space
0f Prxoo (resp. Frnxoo). Then since Py isdense in Fry oo, Fi i dense in Py, .
By the Riesz representation theorem for Hilbert spaces, every element * € Fj,
is of the form (- |f) for some f € Fp. o, and the map f* — f is an anti-linear
(or conjugate-linear) isomorphism. Thus we can identify F% with F_ and obtain
the rigged Hilbert space as the triple P, .. C Fnyoo C Py, (see [G&V] for the
definition of rigged Hilbert spaces). However, generally an element of J.,_ does not
belong to P}, .. but can still be considered as a linear functional (not necessarily

continuous) on Pnx ., and furthermore, in this context the identity representation
1°°— will respect the isomorphic embedding ik, ;: Fnxk — Frsxk+1)- O

4. Conclusion

We have studied thoroughly several reciprocity theorems for some dual pairs
of groups (G,,,G.,) and (H/,,H_), where G, is the inductive limit of a chain
{Gk} of compact groups, H., is the inductive limit of a chain {Hy} such that for
each k, Hy is a compact subgroup of G, and G}, C H}, are finite-dimensional Lie
groups. These theorems show, in particular, that the multiplicity of an irreducible
unitary representation of H. with signature (), in the restriction to He of an
irreducible unitary representation of G, with signature (\)g__ is always finite. This
is extremely important in the problem of spectral decompositions of tensor products
of irreducible unitary representations of inductive limits of compact classical groups.
This type of problems arises naturally in Physics (cf. [K&R]), and in [H&T] tensor
product decompositions of tame representations of U (co) are investigated. In [O12]
Ol'shanskii generalized Howe’s theory of dual pairs to some infinite-dimensional
dual pairs of groups. This is the right context to generalize the reciprocity theorem
3.2 for the infinite-dimensional dual pairs (G ,G_.) and (H. ,H_) which will be
part of our work in a forthcoming publication.

References
[Ba] V. Bargmann, On a Hilbert space of analytic functions and an associated integral trans-
form, Comm. Pure Appl. Math. 14 (1961), 187-214.
[Di] J. Dixmier, Les C*-algébres et leurs représentations, Gauthier-Villars, Paris, 1969.

[Du] J. Dugundji, Topology, Wm. C. Brown, Dubuque, lowa, 1989, originally published by
Allyn and Bacon, 1966.

[Ge&Gr] I.M. Gelfand and M.l. Graev, Principal representations of the group U(cc), Repre-
sentation of Lie groups and Related Topics (A.M. Vershik and D.P. Zhelobenko, eds.),
Advanced Studies in Contemporary Mathematics, vol. 7, Gordon and Breach, New York,
1990, pp. 119-153.

[G&V] I.M. Gelfand and N. Ya. Vilenkin, Generalized Functions, Vol. 4: Applications of Har-
monic Analysis, Academic Press, Boston, New York, and London, 1964, translation of
O6o0mennble ¢pyHknuy, Boim. 4, HekoTopble IpUMeHeHUA FapMOHUUECKOrO aHAJI-
u3a, ['ocynapcrs. Uzpnar. dus.-Mar. Jlut., Moscow, 1961 (Russian).

[H&T] R.M.Howe and T. Ton-That, Multiplicity, invariants and tensor product decompositions
of tame representations of U(oco), submitted for publication, 1998.

[Kal] V.G Kac, Infinite dimensional Lie algebras, third ed., Cambridge University Press,
Cambridge, 1990.



26

[Ka2]

[K&R]

[Ki]

[KLT]
[KT1]
[KT2]
[KT3]

[LT1]

[LT2]

[0l1]

[012]

[Pi]
[Ro]
[Se]
[S&V]
[TT1]

[TT2]

[TT3]

[TT4]
[TT5]
[TTé]

[Ze]

TUONG TON-THAT

, Highest weight representations of infinite-dimensional Lie algebras, Proceed-
ings of the International Congress of Mathematicians (Helsinki, 1978), Acad. Sci. Fen-
nica, Helsinki, 1980, pp. 299-304.
V.G. Kac and A.K. Raina, Bombay lectures on highest weight representations of infinite-
dimensional Lie algebras, Advanced Series in Mathematical Physics, vol. 2, World Sci-
entific, Teaneck, NJ, 1987.
A.A. Kirillov, Representations of an infinite dimensional unitary group, Soviet Math.
Dokl. 14 (1973), no. 5, 1355-1358, translation of Tokxn. Akan. Hayk CCCP 212 (1973),
no. 2, 288-290 (Russian).
W.H. Klink, E.Y. Leung, and T. Ton-That, Casimir operators of semidirect products of
semisimple with Heisenberg groups, J. Phys. A 28 (1995), 6857-6875.
W.H. Klink and T. Ton-That, n-fold tensor products of GL(N, C) and decomposition of
Fock spaces, J. Funct. Anal. 84 (1989), 1-18.
, Invariant theory of the block diagonal subgroups of GL(n,C) and generalized
Casimir operators, J. Algebra 145 (1992), 187-203.
, Multiplicity, invariants, and tensor product decompositions of compact groups,
J. Math. Phys. 37 (1996), 6468—6485.
E.Y. Leung and T. Ton-That, On a multiplicity formula of weights of representations of
SO*(2n) and reciprocity theorems for symplectic groups, Proc. Amer. Math. Soc. 123
(1995), 1281-1288.
, Invariant theory of the dual pairs (SO*(2n), Sp(2k, C)) and (Sp(2n, R), O(N)),
Proc. Amer. Math. Soc. 120 (1994), 53-65.
G.l. Ol'shanskii, Method of holomorphic extensions in the theory of unitary represen-
tations of infinite-dimensional classical groups, Funct. Anal. Appl. 22 (1988), no. 3,
273-285, translation of ®yuknumonas. Anas. u Ipusosxken. 22 (1988), no. 4, 23-37
(Russian).
, Unitary representations of infinite-dimensional pairs (G, K) and the formalism
of R. Howe, Representation of Lie groups and Related Topics (A.M. Vershik and D.P.
Zhelobenko, eds.), Advanced Studies in Contemporary Mathematics, vol. 7, Gordon and
Breach, New York, 1990, pp. 269-463.
D. Pickrell, Decomposition of regular representations for U(H ), Pacific J. Math. 128
(1987), 319-332.
J.J. Rotman, An Introduction to Homological Algebra, Pure and Applied Mathematics,
vol. 85, Academic Press, New York, London, 1979.
I.E. Segal, The two-sided regular representation of a unimodular locally compact group,
Ann. of Math. (2) 51 (1950), 293-298.
S. Stratila and D. Voiculescu, Representations of AF-Algebras and of the group U (c0),
Lecture Notes in Mathematics, vol. 486, Springer-Verlag, Berlin, New York, 1975.
T. Ton-That, Poincare—Birkhoff-Witt theorems and generalized Casimir invariants for
some infinite-dimensional Lie groups, I, submitted for publication, 1998.

, Invariant theory for tame representations of infinite-dimensional classical
groups, Special Session in Invariant Theory, 924 AMS Meeting, Montréal, Sept. 26-28,
1997, Abstract 924-22-210.
, Dual representations and invariant theory, Representation Theory and Har-
monic Analysis (Cincinnati, OH, 1994), Contemp. Math., vol. 191, Amer. Math. Soc.,
Providence, 1995, pp. 205-221.
, Lie group representations and harmonic polynomials of a matrix variable,
Trans. Amer. Math. Soc. 216 (1976), 1-46.
, Symplectic Stiefel harmonics and holomorphic representations of symplectic
groups, Trans. Amer. Math. Soc. 232 (1977), 265-277.
, Sur la décomposition des produits tensoriels des représentations irréductibles
de GL(k, C), J. Math. Pures Appl. (9) 56 (1977), 251-261.
D.P. Zelobenko, Compact Lie groups and Their Representations, Translations of Math-
ematical Monographs, vol. 40, American Mathematical Society, Providence, 1973, trans-
lation of KomnakTubie rpynnet Jlu u ux npeacrasiaenus, Vznar. “Hayka”, Moscow,
1970 (Russian).




