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ABSTRACT. Let p denote the Gaussian measure on C?** defined by du (Z) =
" exp [— Tr (ZZT)] dZ, where Tr denotes the trace function, Z! = Z7,
and dZ denotes the Lebesgue measure on C*** . Let F, y; denote the Barg-

C"*k which are

mann—Segal-Fock space of holomorphic entire functions on
also square-integrable with respect to p. Fix n and let F,,x~ denote the
Hilbert-space completion of the inductive limit limy_, oo Fxi. Let Gp and
Hj, be compact groups such that Hy C Gy C GLg (C). Let G (resp. Ho)
denote the inductive limit J;2; G (resp. Uje; Hx). Then the representa-
tion Rg_, (resp. Ry, ) of G (resp. Huo), obtained by right translation on
Frxoo, 1s a holomorphic representation of G (resp. Hoo) in the sense de-
fined by Ol'shanskii. Then Rg_, and Rg__ giverise to the dual representations
R'(g, and R}-I’ of the dual pairs (G],,G,,) and (H},, H,), respectively. The
gengralized BT&rgmannfsegalfFock space Fnxoo can be considered as both a
(G1,,G)-dual module and an (H)},, H,,)-dual module. Tt is shown that the
following multiplicity-free decompositions of Fp,x o into isotypic components
Frxoco = E@I}lkx)oo = E@Ir(ll;)oo hold, where () is a common irreducible
(0] (1)
signature of the pair (G/,,G,,) and (u) a common irreducible signature of the

pair (H),,H,.,), and ng)oo (resp. Iﬁbl;)oo) is both the isotypic component of
the equivalence classes ()\)GOc (resp. (F‘)Hw) and (M) g (resp. (') ). A
reciprocity theorem, giving the multiplicity of (M)Hco in tﬁe restriction th) Hoo
of (’\)Gw in terms of the multiplicity of (M)g/ in the restriction to G, of
(MI)H;L, constitutes the main result of this pape; Several applications of this

theorem to Physics are also discussed.

RESUME. Soit i la mesure de Gauss definie sur I'espace vectoriel C*** par la
formule

du(Z):Tr_nkexp [—Tr (ZZT)] dZz, z e Xk

oti 'on désigne par Tr la trace d'une matrice, Z1 = Z7T, et par dZ la mesure de
Lebesgue sur C**% . Soit F,, x1 I'espace hilbertien de Bargmann—Segal-Fock
des fonctions entiéres holomorphes f: C"** — C telles que f soient de carré-
integrable par rapport 4 la mesure p. On fixe n et 'on désigne par Fpx oo le
complété de la limite inductive par rapport a k des espaces F,, . Pour chaque
k soient G}, et Hy, deux groupes compacts tels que H, C G C GLj, (C), et l'on
suppose aussi que Hyp_1 C Hy C Hpy1 C -+ et Gp_1 C G, C Gpgq C -
Soit G (resp. Hoo) la limite inductive de la chaine {G},} (resp. {H}). Alors
la représentation Rg__ (resp. Ry ) de G (resp. Hy), obtenue par trans-
lation & droite sur Fpx o0, €st holomorphe dans le sens de Ol’shanskii. Les
représentations Rg__ et Ry_ donnent lieu aux représentations R'C;, et R'H, s
respectivement, des paires duales (G),,G..) et (H},, Hy). L’espacenhilbertign
generalisé de Bargmann—Segal-Fock Fj, x oo peut étre consideré en méme temps
comme un (G}, G, )-module et un (H},, H, )-module. On montre que I'on a
les décompositions suivantes de Fpx oo €n uniques composantes isotypiques

) (»)

ol (X) est une signature irréductible communede la paire (G, G ) et (1) celle
de la paire (H),, H,, ), et ot Iﬁﬁx)oo (resp. I’EL/J;()OO) est a la fois la composante iso-
typique de la classe d’équivalence de ()\)Gcc (resp. (;A)Hm) et celle de (') o
(resp. (4')g+ ). On donne une démonstration d’un théoréme de re'ciprocite:j
donnant la mnultiplicité de (M)Hco dans la restriction a Ho, de (’\)Gw , en fonc-
tion de la multiplicité de (A') o, dansla restrictiona G}, de (u') g/ . L'article se
termine par une discussion de Ti)lusieurs applications en Physiqug du théoréme
précédant.
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1. INTRODUCTION

In recent years there is great interest, both in Physics and in Mathematics, in
the theory of unitary representations of infinite-dimensional groups and their Lie
algebras (see, for example, [Kal], and the literature cited therein). Starting with the
seminal work of I. Segal in [Se] the representation theory of U (co) and other classical
infinite-dimensional groups was thoroughly investigated by Kirillov in [Ki], Stratila
and Voiculescu in [S&V], Pickrell in [Pi], Ol’shanskii in [Ol1], Gelfand and Graev
in [Ge&Gr], Kac in [Ka2], to cite just a few. A more complete list of references can
be found in the comprehensive and important work of Ol’shanskii in [O12].

In [O12] Ol'shanski generalized Howe’s theory of dual pairs to some infinite-
dimensional dual pairs of groups. Recently in [TT1] and [TT2] we investigated the
generalized Casimir invariants of these infinite-dimensional dual pairs. In [TT3] we
gave a general reciprocity theorem for finite-dimensional dual pairs of groups which
generalized our previous results in [KT1] and [LT1]. In this article we give a gen-
eralization of this reciprocity theorem to the case of dual pairs where one member
is infinite-dimensional and the other is finite-dimensional, and discuss the general
case where both members are infinite-dimensional. If Section 2 we will review the
reciprocity theorem given in [T'T3] which serves as the necessary background for the
generalized theorem, and more importantly, discuss several interesting applications
of this theorem. Section 3 deals with our main theorem, and the paper ends with
a short conclusion in Section 4.

2. THE REcIPROCITY THEOREM FOR FINITE-DIMENSIONAL PAIRS OF (GROUPS
AND ITS APPLICATIONS

In [TT3] our reciprocity theorem can be applied to the more general context of
dual representations but for this paper we shall restrict ourself to the case of the
oscillator dual representations and where one of the members is a compact group.

Let C*** denote the vector space of all n x k complex matrices. Let p denote
the Gaussian measure on C"** defined by

(2.1) dp(Z) = =" exp [—Tr (ZZT)] dz, Z € Cxk,

where in Eq. (2.1) ZT denotes the adjoint of the matrix Z and dZ denotes the
Lebesgue measure on C**N . Let Fpup = F ('C”Xk) denote the Bargmann—Segal—
Fock space of all holomorphic entire functions on C*** which are also square-

integrable with respect to du. Endowed with the inner product

(22 Ulo= [ S@a@du(z): o€ Fae

nX
Faxk has a Hilbert-space structure. It can be easily verified that the inner product
(2.3) (Flg)=F(D)g(Z)lz=0

where f (D) denotes the formal power series obtained by replacing Z,; by the
partial derivative 0/0Z,; (1 < a < n, 1< j <k). Infact if (r) = (r11,...,7n&)
is a multi-index of integers r,; > 0 let Zr) = Z7t - Z0k and (r)! = roqleorpg!

then it is easy to verify that B
AQ) > 5
R GO
[(~)1]*

(2.4 ( Z(r)l Z(r’)l) :< Zml
(7)1 ] 1(»)Y? [(r)])?
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It follows immediately from Eq. (2.4) that {Z(’") / [(r)!]%}( : forms an orthonormal

basis for Fpxr when (r) ranges over all multi-indices; moreover Py = P ('C”x[“),
the subspace of all polynomial functions on C***_ is dense in F, x».

Let G and G’ be two topological groups. Let Rg and Rl be continuous unitary
and completely (discretely) reducible representations of G and G’ on F, xj such that
R¢ and R, commute. Then we have the following definition of dual representations
(for the definition of dual representations in a more general context see [TT3]).

Definition 2.1. The representations R and Ry, are said to be dual if the G' x G-
module F, xj is decomposed into a multiplicity-free orthogonal direct sum of the
form

(2.5) Foxk = EEB AN
()

where in Eq. (2.5) the label (A\) characterizes both an equivalence class of an irre-
ducible unitary representation Ag of G and an equivalence class of an irreducible
representation A, and Ir(l);)k denotes the (A)-isotypic component, i.e., the direct
sum (not canonical) of all irreducible subrepresentations of Rg (resp. Ry.) that
belong to the equivalence class Ag (resp. Af). Moreover the G’ x G-submodule

Ir(f;)k is irreducible for all signatures (A); i.e., I(t)k ~ Ve g W()‘IG’), where V(*c)

(resp. W(AIG’)) is an irreducible G-module of class (Ag) (resp. G'-module of class
(V).

We refer to the decomposition (2.5) as the canonical decomposition of the G’ x G-
module F,, k.

In this context we have the following theorem which is a special case of Theorem

4.1in [TT3].

Theorem 2.2. Let G be a compact group. Let Rg and Ry, be given dual represen-
tations on Fpxy. Let H be a compact subgroup of G and let Ry be the representation
of H on Fpxi obtained by restricting Rg to H. If there exists a group H' O G’ and
a representation Ry, on Fpxy such that Rl is dual to Ry and Ry, is the restric-
tion of Rl to the subgroup G' of H' then we have the following multiplicity-free
decompositions of Fn,xk into isotypic components

(2.6) Faxi= Y @I =Y a1l
5y )

where () is a common irreducible signature of the pair (G', G) and (u) is a common
irreducible signature of the pair (H', H).

If A (resp. Xg/) denotes an irreducible unitary representation of class (A)
and pg (resp. piy) denotes an irreducible unitary representation of class (i)
then the multiplicity dim[Hompy (pg : Aglm)] of the irreducible representation
tp tn the restriction to H of the representation Ag is equal to the multiplicity
dim [Homg' (Ag: = pihye|ar)] of the irreducible representation N, in the restriction
to G' of the representation py, .

Remarks. In many cases Hompy (p: Ag|g) and Home (A : gy |e) are shown to
be isomorphic and can be explicitly constructed in terms of generalized Casimir
operators as given in [KT2] and [LT2].
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To illustrate this theorem we devote the rest of this section to some typical
examples and discuss their generalization.

Examples 2.3. 1) Consider Fyxx with k > 2; then Fyxj is the classical Barg-
mann space first considered by V. Bargmann in [Ba]. Then Pjxj is the algebra
of all polynomial functions in k variables (71,...,7Zx) = Z. Let G = U (k) and
G’ = U (1); then the complexification of U (k) (resp. U (1)) is Gc = GLg (C) (resp.
Gt = GL;1 (€)). An element f of Fixy is of the form

(2.7) F(Z)=Y ¢z
|(r)|=0

with (r) = (r1,...,7%), |(r)| =1 + -- -+ 15, and Z0) = 7z ~- 7%, ¢y € Csuch
that Zr(or)|:0 |¢:(r)|2 (r)! < oo, where (r)! = ri!---rgl. The system {Z(T) / [(r)!]%}

where (7) ranges over all multi-indices, forms an orthonormal basis for Fixx. R,

and Rg are defined by
[Rae (9) £1(2) = f(Zg), g€ Gl (C),
[Ra (u) f1(Z) = f(Zu), weUlk).
R/Gég and Ry, are defined by

(R @) 1] (2= (@) 2). o €GLi(©).
(R () f1(2) = £ (@) 2), o' eu(1).
The infinitesimal action of R¢g, is given by

0
2.1 =2 1<i,j<k,

(2.8)

(2.9)

which form a basis for a Lie algebra isomorphic to gl (C).
The infinitesimal action of R, is given by
[

k

: _Nz
(2.11) L=2 Zigr

=1

which forms a basis for a Lie algebra isomorphic to gl; (C). If p,q € P1xi then
from Eq. (2.1) of [TT4] we have

(2.12)
Ra (9)p(D) Rae (97Y) = [Rac (97) p] (D), g €GLy (0), * = (s7")",
so that if u € U (k) then

(2.13) (Ra (u) p| Ra (u) q) = [Re (u) p] (D) (Ra (u) q) (2)

Z=0
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t

since u'u = 1. A similar computation shows that

. -1 v
(214) R () p(D) R, ((0)7") = [R(0))] (D), ¢ €GL.(O),
so that if u € U (1) then
(2.15) (R (W) p| R (v') ) = (plq)-
Note that all equations above from (2.12) to (2.15) remain valid if we replace C'**
by C*** and GL; (C) (resp. U(1)) by GL, (C) (resp. U (n)).
It follows that Rg, G = U (k) (resp. Ry, G' = U(n)) is a continuous unitary
representation of G' (resp. G') on F, .

Let ’P{’:L denote the subspace (of Fixy) of all homogeneous polynomial func-
tions of degree m > 0. Then by the Borel-Weil theorem (see, e.g., [TT4]) the

restriction of Rg,. to 77{7:11 is an irreducible subrepresentation of Rg, with highest
weight (m,0,...,0) and highest weight vector ¢Z]", ¢ € C*. In fact, by letting
N———’

k
the infinitesimal operators R;; act on P}’:I)ﬁ one can easily show that P}:le is an
irreducible subrepresentation of Rg.. By “Weyl’s unitarian trick” the restriction of

this irreducible subrepresentation to G' gives an irreducible unitary representation

of G.

Let 0 # p € P{LL. Then (Re (¢)p) (2) = p((¢)' 2) = p(4'2) = (9)" p(2)
for all ¢’ € GL1 (C). So the one-dimensional subspace of F1xj spanned by p is an
irreducible G-submodule with highest weight (m) and its restriction to G’ is an
irreducible unitary G’-submodule. In fact, Euler’s formula implies that

(2.16) Lp = mp, for all p € P{T;
Thus the canonical decomposition of the G’ x G-module Fyyy is simply
(2.17) Fixk =Y ®Pn).

m=0

Let H denote the special orthogonal subgroup SO (k). Then H¢ = SO (C). Then
the ring of all H (or Hg)-invariant polynomialsin P;xy is generated by the constants
and po (Z) = 3, <;< Z}. The ring of all H (or Hc)-invariant differential operators
with constant coefficients is generated by the constants and the Laplacian A =
po (D) = 3 <<k 0*/07ZF. To find the dual representation of Ry we follow the
method given in [TT3] by setting

1 1 1 k
(2.18) Xt = —po, X" =-po(D)==A, and E=—+1L.
2 2 2 2
Then X (resp. X ™) acts on Fixj as a creation (resp. annihilation) operator and E

acts on Fixx as a number operator. In fact, if p € 77{7:,1 then XTp = %pop, X p=
% A p, and Ep = ((k/2) + m) p, so that X* raises P{Tg to 77{7::2), X~ lowers
77{7:,1 to P{Tk_z) and H multiplies (elementwise) 77{7:11 by the number (k/2) + m.

An easy computation shows that
(2.19) [B,Xx+] =2x*+, [F,X"]=-2X", [X°,xt]=F.
Eq. (2.19) gives a faithful representation of the Lie algebra sl (R). Thus the dual

action of H is given by this representation. The integrated form of this Lie algebra
representation is more subtle to describe: it is the metaplectic representation of the
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two-sheeted covering group SLy (R) of SLa (R) (or Sp, (R)), and this group is not a
matrix group. Its concrete description can be obtained by applying the Bargmann—
Segal transform which sends the Schrodinger representation of this group to its
Fock representation Fixg. However, for our purpose, its infinitesimal action (2.19)
together with the action of its maximal compact group G’ = U (1), which is par-
ticularly simple, will suffice. Indeed, it is easy to show that we have the following
decomposition of 'P{’:i:

(2:20) Pl = Do mHi ™,

i=0,..0[m/2]

where [m/2] denotes the integral part of m/2, and Hg’:;zi) denotes the subspace
of all harmonic homogeneous polynomials of degree (m — 2i), i.e., all functions

pE 77{7:;%) such that Ap = 0. For an integer r > 0 then it can be easily shown

that the restriction Rg) of Ry to H(lzgk is an irreducible representation of H with

signature (r,0,...,0) and highest weight vector
~
[k/2]

(2.21) Fn (7) = (Zy +iZs11)", itk = 2s,
(Z1 +iZs42)", ifk=2s5+1, i = /=T

For each integer j > 0, the restriction of Ry to the subspace p%?{(r) is equivalent
to Rg) since pj is H-invariant. Set

(2.22) I};)k = Z@P{;H({Qk;
7j=0

then I};)k is the (r,0,...,0)-isotypic component of Rg). From (2.20) and (2.22)
S —

k
we see that

(2.23) Fixk = 3 ST
r=0

Obviously, Ry, (u) = Ry (u), u € G', leaves each one-dimensional subspace cp%h,
¢ € C, invariant, since Ry (u) (p{)h) = u"t% (pf)h) (alternatively, E (péh) =
((k/2) + 7 +25) (ph)), for all h € H(),. Clearly, X* (ph) = 1p§*"n, b €
7{({) Finally from the equation

xk*
(2.24) X7 (pof) = (k+2s) f+ %pg Af

if f is a polynomial function of degree s, we deduce by induction on the integer
j > 1 that

(2.25) X~ (p{)h) =j(k+2(r+i—0)ph'h,  hen\),.
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For each fixed h € 7-[(1;)k let Jh denote the subspace of I};)k spanned by the set

{péh |7=0,1,2,.. } Then it follows from the previous discussion that the sub-
representation of the Lie algebra sl (R) on Jh is irreducible, and thus the metaplec-

tic subrepresentation of SLy (R) on Jh is irreducible as well. As a U (1)-module Jh
is reducible, and for this special case each one-dimensional subspace cp)h, ¢ € C, is
an irreducible submodule, and the lowest one is ¢h which has weight r (or (k/2)+7)
since

(2.26) R¢; (u) h = u"h, uweU(1), or Eh = (g + r) h.

In general, if a holomorphic discrete series of a noncompact semisimple Lie group
A

such as SLjy (R) considered as a K-module, where K is its maximal compact sub-
group, decomposes into a discrete sum of irreducible submodules, each one of them
can be characterized by a signature (highest weight, for example) and the one with
the lowest highest weight (under the lexicographic ordering) is unique. This low-
est K -type highest weight which corresponds to the Harish Chandra’s or Blattner’s
parameter, can be used to label the given holomorphic discrete series. We shall
call this label its signature. In our example, the holomorphic discrete series Jh of

S’LFZ\EH/Q) has signature r. If dim (H(r) ) = d (actually, d = (k+:_1) - (k+r_3)) ")

1xr r—2 1xk

is the r-isotypic component (of the metaplectic representation of SLy (R)) which
contains d isomorphic copies of signature r.
Now let us verify Theorem 2.2 for this simple example. From Eq. (2.20) we have

(227) lel HOHlso(k) (T,O,...,O)So(k) H (m,O,...,O)U(k)
N—— N ——
[k/2] k
B {1, ifr=m—2ifori=0,...,[m/2],

0, otherwise,

SO(k)

and from Eq. (2.22) and Eq. (2.26) we have

(2.28) dim

0 1, if25+r=m,
om m TS =

U(1) U) * "sTo®) v 0, otherwise,
which are obviously identical.

For arbitrary n such that n < k Eq. (2.7) remains valid with (r) = (r11,...,7sk)
and Z() = Z7it ... 777k Fq. (2.8), (2.12), (2.13), (2.14) remain valid. Eq. (2.10)
is replaced by

" d
2.10) F— Zozi y 1< ', | < k.
( 0) RJ O; BZoq S4L1 s

Eq. (2.11) is replaced by

(3

k
d
2.11) Log = Zpi—e—, 1<a,f<n.
(2.11) 8 ; 7 <a,6<n

Let Bj, denote the lower triangular Borel subgroup of G, = GL, (C), let (A) be
an n-tuple of integers such that Ay > A3 > -+ > Ay >0, let A: B, = C* be the
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holomorphic character defined on B;, by

bia
AN ! )\1 / )\n . / . O /
A = (byy)"" - (bhn) if b’ = - belongs to B,,.
* b

Let PT(L);)k denote the subspace of all polynomial functions on C*** which also satisfy

the covariant condition

(2.29) FWZy=x)f(2), (', Z) € B, x C"**,

Let Ry denote the representation of G obtained by right translation on P Then

nxk*

by the Borel-Weil theorem (see, e.g., [TT4, Theorem 1.5]) Ry is irreducible with
highest weight (A) and highest weight vector

(2.30) ch (Z) = cAY ™22 (Z) Ay~ (Z)--- AP (Z),  ceC,

where in Eq. (2.30) A; (Z) denotes the i*! principal minor of Z.
Similarly let B denote the upper triangular Borel subgroup of G¢ = GLg (C)
and let X': B! — C* be the holomorphic character defined on B! by

b11
*

N (b)=byl---bdn ifb= ban belongs to BE.

0

brr

)\I
Let Prgxz denote the subspace of all polynomial functions on C*** which also

satisfy the covariant condition
(2.31) f(Zb)y=XN(b)f(Z2),  (b,7Z)=BL x C*k.

Let R’, denote the representation of G’ on 77(12 defined by

(2.32) R () N2 =1 () 7). ¢ ed

Then R}, is irreducible with highest weight (') and with the same highest weight
vector given by Eq. (2.30). By Weyl’s unitarian trick the restriction of Ry (resp.
RS.) to G = U (k) (resp. G’ = U (n)) remains irreducible with the same signature.

Let IT(L);)R denote the G x G (or G' x G)-cyclic module in F,x) generated by
the highest vector fy given by Eq. (2.29); then by Theorem 3, p. 150, of [Ze], A

nXxk
is irreducible with highest weight (A, A). For the sake of simplicity we say that the
G x G-module 7™ has signature (A). To prove that I(t()k R Péig &Pl

nxk n n

define a map &: 73(

n

A)
xk We

ig ®77,(1);<)k — I,(:;()k as follows:
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Let /@ f € 77(12 ®77(>\) Then f’ and f can be represented in the following

n nxk*
form:
(2.33) P=3 ARG o F =D eiRalgi) b
iel! Jel
where in Eq. (2.33) ¢},¢; € C, g; € G, g; € Gg, and I' and I are two finite

index sets. Set @ (f' ® f) = Eie]’,je] cic; T (ggagj) [x» where [T (g:'agj) fA] (2) =
f ((gg)t Zgj). Since

V) =D Ry (d'9) h
iel
and
Ry(9)f = cjRalg9;) Ir
jel
it follows that

Ry (g @R (9) (f@ N = D cieT (gl 99;) I

iel,jeT
=T(g,9)®(f' ®f)

for all ¢’ € Gi; and g € G¢. This means that & is an intertwining operator and by
Schur’s lemma @ is either 0 or an isomorphism. Since

D(fr®fr)=hHh
it follows that @ is an isomorphism. Since P,x is dense in F,,x; Theorem 3 (p.
150) of [Ze] (see also [KT1]) implies that we have the Hilbert sum F,xx = Y @ IT(L);)R
for the pair (U (n), U (k)). ()
Now suppose k > 2n and set H = SO (k), Hc = SOk (C). Let J,xx denote the
ring of all H (or Hg)-invariant polynomials in P, xx. Then J,x is generated by
the constants and the n (n + 1) /2 algebraically independent polynomials

k
(2.34) Pap (Z) = Zai Zpi, I<a<p<n.
i=1

It follows that the ring of all H (or H¢)-invariant differential operators with constant
coefficients is generated by the constants and the Laplacians

k .
az
2.35 Ao = pap (D) = e 1<a<g<n.
(2.35) p = Pap (D) ;Zlazmazm <a<pf<n
The infinitesimal action of Ry, is generated by
: 9
2.36 Lop = Z i ——, 1<a,8<n.
(2.36) 5 ;:1 s <a,f<n

Set Pog = —pap, Eap = Lag + %kéa,@, and D3 = A,g; then it follows from [KLT]
(see Eq. (3.3)) that {E.p, Pag, Dap} defines a faithful representation of sp,, (R)
on Fpxk. By construction this representation is dual to the infinitesimal action

———

of Ry. The global action R/, is a unitary metaplectic representation of Sp,, (R),



THEOREMES DE RECIPROCITE 11

the two-sheeted covering of Sp,,, (R) (see [KLT] for details). As in the case of the
pair (U (n), U (k)) the common highest weight vector (for R, the lowest K'-type
highest weight vector) of signature (u) = (pq,.-., p,) With gy > -+ > p,, > 0 and

u; € N, 1 <i<n, of the pair (Sp2n (R),SO (k)) is

(2.37) J(2) = N (24) AR (2g) - Al (Z4),

where the k£ X k& matrix ¢ is given by

1 1, 1, .
—[ - - ] if £ = 2,

V2 | i, | —il,
and
1 1, 0 1,
— 10 V2 0 ifk=2v+1,
V2 M, 0 —z21,

and where 1, is the unit matrix of order v.

An element p of P,y is called H-harmonic if Aygp=0foralla,f=1,...,n
Let H,xx denote the subspace of all H-harmonic polynomial functions of P, % and
let H,xk (¢) denote the subspace of all elements h of H,, xx which also satisfy the
covariant condition

(2.38) h(WZ)= (b)) (b)) "h(Z), Vb €B..

Then according to Theorem 3.1 of [TT4], the representation Ry of H which is
obtained by right translations on Hyxg (1) is irreducible with signature (p).
The infinitesimal action of Ry is given by

d d
2. 0 _ Zimo— = Zi —— |, 1<i<j<k.
(2.39) Rl] Oé_;n( 07; J@Zm') <1<J<
From [KLT] the dual infinitesimal action of Ry is given by the system {Eog, Pag, Dag}
which satisfies the commutation relations

S|

[ afs Euu] =6puFoy — o Eyp

[Eozﬁv Puu] = 0puPoy + gy Poy

[Eaﬁ, DIW] - _6O<ND/3V - 5OWDﬁN

(2‘40) [ Dlw] = 5OKMEV»3 + 5OWEH»3 + 5ﬁHEV0< + 5ﬁVEN0<
[Pag, Puv] = [Dap, Dyn] = 0

Ply=D.5,  Dly=P.  Ely=Es,
for all a, B, p,v=1,...,n

By Corollary 3.11 of [TT4] the p-isotypic component in H, xx consists of d,, copies
isomorphic to H,xk (1), where d, is the degree of an irreducible representation of
G’ = U (n) of signature (pq,...,4,). Since from Eq. (2.40) and the fact that f, is
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H-harmonic
DuyEosfu = [DquEaﬁ] Ju+ EapDpu fu
=8auDpv fu+ 0 Dayfy
=0,

it follows that F,gf, is H-harmonic for every a, 3 =1,...,n. Since {Eaﬁ, Rfﬂ =0
foralla,f=1,...,nand i,j =1,..., kit follows that Eag: Hnxr (1) = Hnxs are
intertwining operators, and thus are either 0 or isomorphisms. It follows that the g’-
module generated by the cyclic vector f, is irreducible with signature (y1,...,u,).
In fact, from Eq. (3.14) of [TT4] this space is a G'-module. Let G’f, denote this
G’-module; then by construction G'f, C Hnxk.

If h € G'f, then from Eq. (2.40) we have

Dm,Poéﬁh = [DHW Paﬁ] h+ PaﬁDuyh

= - (5auEuﬁ + 6041/Eu,6 + 5ﬁpElja + 6,61/E,uu) ha

and therefore D, Pogh belongs to G’ f,. It follows that J,xxG’f, is an irreducible
8Py, (R)-module with signature (p). Let H! ., (1) denote this module and let Ir(ﬁx)k

nxk

be the H' x H-cyclic module generated by f,; then a proof similar to the case

IT(L);)R shows that H/ ., (1) @ H, (1) is isomorphic to I,(l‘;)k. By the “separation

of variables theorem” 2.5 of [TT4] and from the fact that P, xx is dense in F,xx
it follows that the orthogonal direct sum decomposition F,xr = > @ Ir(f;)k holds.
(1)

Therefore the reciprocity theorem 2.2 holds for these pairs (G', G) and (H', H) as
well.

2) Let k = 2 and consider again the dual pair (G' =U(n),G=U (k)). Let
H =Sp(k); then He =Spi (C). If L > n > 2 then the theory of symplectic harmonic
polynomials in [T'T5] implies that the dual representation to the representation Ry
on F,xk is a representation of the group SO* (2n) = H’ whose infinitesimal action
is given by Eq. (4.2) of [KLT]. Using Theorem 2.1 of [TT5] and the “separation of
variables theorem” for this case we can show similarly that F,,xx = > @ I(”)

nXxk
(1)
this dual pair (SO* (2n),Sp (k)). Thus the reciprocity theorem 2.2 holds again for

these pairs (G',G) and (H', H).

for

3) The case of the dual pairs (G'=U(p)xU(q),G=U(k)xU(k)) and
(H =U(p,q),H=U(k)) can be treated in a similar fashion using the results
of [TT6] and the infinitesimal action of H' on F,,x is given by Eq. (6.4) of [TT3].
However, its generalization to the case H = U (oco) in Section 3 is quite delicate
and requires a quite different embedding that we shall describe in detail below.
Let p and ¢ be positive integers such that p+¢q = n. Let £ be an integer such that
k > 2max (p, q). Let (A) be a g-tuple of integers such that Ay > Ay > ---> A, > 0.

Let Ry denote the representation of GLg (C) (or U (k)) defined on P;i)k given by



THEOREMES DE RECIPROCITE 13

Eq. (2.29) and (2.30) with n replaced by q. We define the contragredient (or dual)
representation of Ry as follows.

Let s, denote the r x r matrix with ones along the reverse diagonal and zero
elsewhere:

0 !
1"..0

If W e CI%F let W = sqWspi. Thus W is of the form

Wor -+ Woa
(2.41) W= : :
Wig -+ Win
() . T T .
Let quk denote the subspace of all polynomial functions in W which also satisfy
the covariant condition
(2.42) 7 (0W) =a) £ (W)

for all b" € By, where By is the lower triangular Borel subgroup of GL, (C), and
b = sqb'sq.

v
Define the representation Ry~ of GLg (C) (or U (k)) on P(A )

gxk by
(2.43) [Rac (0) 11 (W) = £ (Wsegss), g€ GLu(O).
Then R, . is irreducible with signature (0,...,0, —X;, —Ag—1,..., —A1) and lowest
weight vector ¥
(2.44) cfre (W) = AN () AT () AN (), ee O
of weight (—A1, —Az,...,—Ag0,...,0).
v ! -

Let P(gik) denote the subspace of all polynomial functions in W which also
satisfy the covariant condition
(2.45) f (WE) —A(b)f (W) ,

where b = sgbsk, b € BZ (it follows that b is a lower triangular matrix of the

. brk
form b = ( *'-_O )) Let R’()\,), denote the representation of GL, (C) (or of
bll

G'=U(q)) on P;i;)l defined by
(2.46) [R;m, (¢") f} (W) = (sq (g')_lqu), g € GL, (C).

Then R’(A,), is irreducible with highest weight ()\‘/)/ and with lowest weight vector

given by ¢fy~, ¢ € C*, of weight (—A1, —=A2,...,—Ag).
Ay v
As in the case (') ® (X) it can be shown that ngik) ®P§ik) is isomorphic to

v v
Iq(ik) and we have the Hilbert sum decomposition Fyxr = > @Iq(ik) for the pair
(U(q), U (k). ()
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Now let G = U (k) x U (k) act on F, i via the outer tensor product

e [rowdman o ([E]) =1 (|52 ).

where Z € CP*k W € C2%F  p+q = n, g1,92 € U(k). Then G' = U (p) x U(q)

acts on F,x via the outer tensor product

ey (R o Ry s ([2]) =1 ([@)Z

where (g3, 95) € U (p) x U(q).
It follows that we have the isotypic decomposition for the dual pairs (G, G)

v)® A
(2.49) Faxk= Y @I:Lx)k ( )7
()®(A)
14 v v
where I:Lx)ff()\ ) is isomorphic to I;(;l;)k ® I(gik).

Let H = {(g,9) : g € U(k)}; then H is isomorphic to U (k) and H acts on Fpx,
via the inner (or Kronecker) tensor product Ry = RU(k)®RU(k)‘/' Let J,xx denote
the ring of all H (or Hg & GLj (C))-invariant polynomials in P, xx. Then from
[TT6] and [TT3] J,xx is generated by the constants and the p x ¢ algebraically
independent polynomials

k
VA -
(2.50)  pap ([WD - (ZskWt)aﬁ =Y ZuiWp, 1<a<p 1<f<q
=1

Tt follows that the ring of all H or (Hg)-invariant differential operators with constant
coefficients is generated by the constants and the Laplacians

k
82
9251 Aus=pas(D)=S —L _ 1<a<p 1<B<q.
(2.51) 5 = Pagp (D) ;ZIBZMBWW <a<p 1<pB<q

Together with the infinitesimal action of GL, (C) on F,xx the pog’s and Ayg’s
generate a Lie algebra isomorphic to su(p,¢) with commutation relations given
by Eq. (6.4) in [TT3]. The global action of this infinitesimal action defines a
representation R, of H' = SU (p,q) on F,xx which is dual to the representation
Rp.

An element p of Ppyp is called H-harmonic if Aygp = 0 for all @ = 1,...,p,
and = 1,...,q. Let H,xx denote the subspace of all H-harmonic polynomial
functions of P,xk and let H,,xx (1) denote the subspace of H, x5 generated by the

v
elements f € P}Sl;)k ® Pq(ik) which also satisfy the condition A,p =0, 1 < o < p,
1< B<gq. Let Rg), p = (v)® (AY), denote the representation of H on Hxk (1)

defined by

e ] ()

for all g € H. Then Theorem 5.2 of [TT3] implies that:

Wsig” sk
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The representation Rg) of H =~ U(k) on Huxi (1) is an irreducible unitary
representation of class (p1) which has signature

(2.53) (1) = (v1,.. 00, 0,000,0,=Ag, ..., = A1),

k

where in Eq. (2.53) va, 1 < a < p, and Ag, 1 < 8 < ¢, are integers such that

A -
v > o>y >0and Ay > o0 > A, > 0. Let f, ([D — 1, (Z) frr (W)
W
where f, is given by Eq. (2.30) with v replacing A and fy. is given by Eq. (2.44).
Let I(”)k be the H' x H-cyclic module generated by f,; then a proof similar to

nX
the previous cases shows that H,. ;. (1) ®H,, . (1) is isomorphic to Ir(l”)gk. By the

“separation of variables theorem” 1.5 of [TT6] and Theorem 5.1 of [TT3] it follows

that the orthogonal direct sum decomposition Fxr = Y& I}I’Qk holds. Therefore
(1)

the reciprocity theorem 2.2 also holds for these pairs (G, G) and (H', H).

4) This example is a generalization of the previous example. Consider r copies of
one of the following groups: U (k), SO (k), or Sp(k), with k even for the last, and
let each of them act on a Bargmann-Segal-Fock space Fp,xx, 1 < ¢ < r, by right
translations. Let py 4+ p2 + ---+ p, = n, and let G denote the direct product of
r copies of each type of group. In the case of U (k) we allow the r*! copy to act
on Fp,x either directly or contragrediently; for the other cases it is not necessary
to consider the contragredient representations since they are identical to the direct
representations.

On each F,,xx for the U(k) action we have the dual action of U (p;) by left
translations, and with possibly the dual (left) contragredient representation in the
case i = r. For SO (k) we have the metaplectic representation of S/F:z; (R), and for
Sp(k) we have the corresponding representation of SO* (2p;). Let G’ denote the dual
group of GG thus obtained. Let H denote the diagonal subgroup of G; then in the case
of U (k) an element of H is of the form (u,u,...,u) or (u,...,u, @), u € U(k), and

——— ———

r r—1

in other cases an element of H is of the form (u,u,...,u), u € SO (k) or u €Sp(k).
———

Let H' denote the dual group of H thus obtained. Then H’ is isomorphic in each

case to U (n), Sp: (R), or SO* (2n). As in previous examples it is straightforward
to verify that the reciprocity theorem 2.2 holds for these pairs (G', G) and (H', H).

3. REcIPROCITY THEOREMS FOR FINITE-INFINITE DIMENSIONAL DUAL PAIRS
oF (GROUPS

Let A be an infinite-dimensional separable complex Hilbert space with a fixed
basis {e1,€2,...,€k,...}. Let GLg (C) denote the group of all invertible bounded
linear operators on H which leave the vectors e,, n > k, fixed. We define GL, (C)
as the inductive limit of the ascending chain of subgroups

GLI(C) C"'CGLk(‘C) C---.
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Thus

GL (C) ={A = (ai;), i,j € N| A is invertible

and all but a finite number of a;; — d;; are 0}.

If for each k we have a Lie subgroup Gy of GLj (C) such that Gy is naturally
embedded in Ggy1, kK =1,...,n,..., then we can define the inductive limit G =
@Gk = Us~, Gk. For example, U (c0) = {u € GLe (C) 1 u* = u_l}, and thus
U (00) is the inductive limit of the groups Uy of all unitary operators of H which
leave the vectors e,, n > k, fixed.

Following Ol’shanskii we call a unitary representation of G, tame if it is con-
tinuous in the group topology in which the ascending chain of subgroups of type

{ (1; 2) } , k=1,2,3,..., constitutes a fundamental system of neighborhoods

of the identity 1.,. Assume that for each k& a continuous unitary representation
(Rk, Hi) is given and an isomorphic embedding i£+1 : Hi — Hpy1 commuting with
the action of Gy, (i.e., illz+1 o Rk (9) = Rk4+1(g) o0 i£+1) is given. For j < k define the
connecting map ;i G; X H; = G x Hy, by
(3.1) eik (95 25) = (gr, k), (95,25) € Gy x Hj,
where in Eq. (3.1) gx (resp. xx) denotes the natural embedding of g; (resp. ;) in
G (resp. Hp). Then obviously the diagram

R;

Gj X Hj — 7‘lj

(3.2) gojkl lii:i:_lo~~oi§¢;oi§+l

kaﬂk ﬁ) Hk

is commutative. Let Ho, denote the Hilbert-space completion of |Jy—, Hx and
define a representation R, of G, on Hj by

(3.3) R (9)z=Ri(g9)x if g € Gy, and = € Hy,.

Then obviously R, is a unique continuous unitary representation of G, on UZO:1 Hr
which can be extended to a unique continuous unitary representation of G, on
Heo. Let @ denote the canonical map of (G, Hi) into (Guoo, Heo) and ix denote
the canonical map of H into H.o; then obviously the diagram

Gk X?‘lk &) %k

(3.4) ‘Pkl lik
Goo X Hoo 5 Hoa
is commutative.
The following theorem, which is well-known when i£+1 is an isometric embedding
(see, e.g., [O12]), is crucial for what follows.

Theorem 3.1. If the representations (Rg, Hy) are all irreducible then the inductive
limit representation (Reo, Hoo) is also irreducible.
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Proof. Let A be a bounded operator on H., which belongs to the commutant of
the algebra of operators generated by the set { R« (9),9 € Goo}. Since Uy, Hg is
dense in H, and all the linear operators involved are continuous we can without loss
of generality consider them as operating on | J, ., Hx and satisfying A (zf (l‘)) = Az
for k <1 and for all x € Hy. Let P, denote the projection of U:ozl Hi onto Hy.
Let Ay denote the restriction of A to Hj; then Ay is a bounded linear operator
of Hy into Uff:l"ﬂn- It follows immediately that Py Ag: Hr — Hp is a bounded
linear operator on Hy. Let € Hy and suppose Agz = Az belongs to H;. If I < k
we may use the isomorphic embedding 22 = iZ_l 0--:0 i§+1 : H; — Hy to identify
Az with an element of Hy so that PyAyx = Axx = Ax, and thus

Ry (9x) PAre = Roo (g1) Az = AR (9x) 2 = Py Ry (9x) , Vgr € Gi.

If { > k then use if to identify H; with a subspace of #H;. Write Az = y + z
where y belongs to the identified subspace of H; and z belongs to its orthogonal
complement in H;. Since all representations are unitary and for gx € Gy we have
i¥ o Ry (gx) = Ri (gx) o iF it follows that

PyRo (9x) Axz = PuRi (95) Yy = Roo (9&) P Az.
By assumption Re (9x) Az = AR« (g&) 2, therefore

Ry (gx) P Axz = R (gi) PrAx
= PyRo (gx) Axz = Py A Boo (gx) * = Py AxRi (g&) 2.

Since this relation holds for all x € H; and g € Gy it follows that Py Ag be-
longs to the commutant of the algebra of operators on Hj generated by the set
{Rk (gx) , g5 € Gr}. Schur’s lemma for operator algebras (see, e.g., [Di, Proposi-
tion 2.3.1, p. 39]) implies that PxAg = Ailr, where \g is a scalar depending on
k and Ij is the identity operator on Hi. Now A is a map of inductive limit sets
such that Py Ag: Hir — Hg, and it follows from the definition of an inductive limit
map that A\, = A for sufficiently large k, [ with k < I. Indeed, if z € #H; and
Agz = Az € H; with j < k then PyAgz = i), (Az) = Agyz. For [ > k we then have

Nt (2) = PA (if (z)) = PA(if (2)) = PA=
= if (A2) = if (i] (A2)) = if (Pudx (2) = Meif (2)-
On the other hand, if Az € H; with j > k then for all [ > j we have
PA (if (x)) = PA(if (x)) = PiAz = PA; (if (x))
= PP A; (if (2) = P (N5 (2)) = i (Vif (2)) = A (3 (2)) = A (=) -
Since PiA; (if (z)) = Aif (z), we must have \; = X; for all [ > j. This implies that

A = M, where A € C is a constant and I, is the identity on H.,. By the same
Schur’s lemma quoted above the representation R, on H ., must be irreducible. [

Now fix n and consider the chain of Hilbert spaces F,, «xr from Section 2 with
k > 2n. Let (G),G,) denote a dual pair of groups with dual representations
(R, R,) acting on F,,xx as in Theorem 2.2. Then we have the chain of embedded
subgroups G, C G411 C - - -; for example, U (k) is naturally embedded in U (k + 1)
via the embedding u — (% 9), u € U (k). Therefore we can define the inductive limit
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Go = @Gk = U,C:;zn G. We also have an isometric embedding i£+1: Frxk —
Frx(k+1) such that

Z'11§+1 o Ry (9) = Ri41(g) 0 Z'1!1!§+1-

To see this we take the case m = 1: then an element f of F,x; is a function
of Z = (Z1,...,7Zy) of the form given by Eq. (2.7), and the verification of the
equation above is straightforward. Let F, o, denote the Hilbert-space completion
on U[c:;z” Frxk- Then it is clear that the inductive limit representation R, of G,
on F,xeo i tame and satisfies the relations (3.2), (3.3), and (3.4).

If G is a compact group then every irreducible unitary representation of Gy
is of the form (pa,, Va,) with highest weight (Ax) = (m1, m2,...,m;,...), where
mq, My, ... are nonnegative integers satisfying my > mg > -+ and the numbers m;
are equal to 0 for sufficiently large i. Consider the decomposition (2.5) of Definition
2.1 of the dual module F, xx into isotypic components

Fue = Y01
(Ak)

where the signatures (A;) actually depend essentially on n, but since n is fixed, to
alleviate the notation we just tacitly assume this dependence. Also for & sufficiently
large if (Ax) = (mq,...,m;,...) then (Agy1) = (my,...,m4,...,...) and we write
succinctly (Ag) C (Ak41)-

For sufficiently large £ we can exhibit an isomorphic embedding i£+1: Ir(yk) —

IfLAXk(-;-ﬁflll)‘ If Hy is a subgroup of G such that H), contains G}, and (H}, H})
forms a dual pair then the same process can be repeated for the chain (H},, H,) C

(H,’NH,H_I) C -+-. If Gy (or Hy) is of the type U (k) x --- x U(k) then each

r
iﬁ_i_l is an isometric embedding; for other types of Gy (or Hy) the definition of

2'12_1_1 is more subtle. This can be examined case by case although the process is
very tedious. To illustrate this we consider the case Fix; with Hy = SO (k) and

—~— e~

G1 = Sp, (R) = SLz (R). Then Eq. (2.22) and Eq. (2.23) imply that

Fixe=Y ozl with T =S aop 1)k

r=0 j=0

where po (Z) = Z3 + -+ Z2, (), = (r,0,...,0), and H(&)k are the subspace of
——_———

k
all harmonic homogeneous polynomials of degree r. Obviously a harmonic homo-
geneous polynomial i of degree r in k variables can be considered as a harmonic
homogeneous polynomial of 7 in k£ + 1 variables. So we can define an isomorphic

embedding i£+1: I}Q; — IiQE‘]:_Il_l) by sending p{;’kh into pé7(k+1)h, and clearly

Ru (k) (P e pnyh) = P oy Bt (k) o = i1 Ror (i)
= it ((Rir (ue) P ) (B () 1)) = it (R () (phih) )

for all up € Hg. Thus, Ry (ug) o iﬁ+1 = i11§+1 o Ry (ug) for all uy € Hy. Tt
follows that iﬁ+1 can be extended to the whole space F1x; and that i£+1 (Fixk) =
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[ee]
S ® i£+1 (Ii;)g) is an isomorphic embedding of Fixx into Fixx41)- Also note
r=0
in this very special case (r), C (r),,, for all k¥ > 2 and that no other signatures
(7). 41 occur in Fiy x4y without (r), occurring in Fix; this fact is an exception

and almost never happens in the general case (e.g., n > 2). By Theorem 3.1
the tensor product representations R(G):) ® R(G)\D)0 and Rl(;,) ® Rgl of G, x G,

and H) x H_, on I,(lx)oo and I,(lx)oo, respectively, are irreducible with signature
(A),, and (,u)oo, respectively, where if (Ay) = (mq,ma,...,m;,...) then (X)_ =
(mq,ma,...,m4,...,0,...,0) and similarly for (1)_ . Note that as n is fixed, the

(o]
group G/, remains fixed; however, its representation R'G, on F,xxr does depend

on k, and should be written as (RG, )k, and as k — oo, (RG,) has to be

considered as an inductive limit of representations, although for & sufﬁc1ently large

)\I
all the representations (R((,;, )> are equivalent. The same observations apply to

(R}I, ) and <R1(:’ )) . To illustrate this let us consider again the case U (1) x U (k)
" n )

and S’L,Z\Zﬂ/%) x SO (k) acting on Fixx. Indeed, the infinitesimal action of R/GQE is
given by Eq. (2.11) as Ly = Zle 7;0/0Z; and Lgyq = Efill Z;0/07Z;, and for
pE 77{7:;1 C P{$2k+1) Eq. (2.16) implies that

Lip = Lgy1p = mp.
By Eq. (2.18) the infinitesimal actions of R}Ii on Fixp and Fiyky1) are given,
respectively, by

k
k 1 .
_ + _ 2 - _
Ek—§+Lka Xk—ié Zz’a Xk— E BZZ’ an
(3.5) . o 1k+1 5
Bipr = 5=+ Iy X =5 §I Yo =32 57

If hy € ”H(lf;gk then Egs. (2.24), (2.25) applied to {Ek, X:,X_} show that Jihy is an
)
then Jgy1hgy1 is also an irreducible representation of sly (R) with signature (7).
Let Foxoo denote the Hilbert-space completion of |J, Frnxr; then Frxeo =
@fnxk is the inductive limit of the chain {F,x}.
After this necessary preparatory work we can now state and prove the main

theorem of this paper.

irreducible representation of sl (R) with signature (r). Similarlyif hg41 € H

Theorem 3.2. Let G, denote the inductive limit of a chain G C G411 C -+ of
compact groups. Let Rg_, and R’(G,n) be given dual representations on Fpxoo- Let
H, denote the inductive limit of a chain of compact subgroups Hy, C Hiy1 C -« -+
such that Hy C Gy for all k. Let Ry be the representation of Heo on Fpxco
obtained by restricting Rg., to Hy. If there exists a group H), D G! and a rep-
resentation RI(HL),X, on Fnxoeo such that R’(H,) is dual to Ry, and R(G,) is

the restriction of R’(H,) to the subgroup G}, of H), then we have the following
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multiplicity-free decompositions of Fpxoo into isotypic components:
(3)6) nxoo _ZEB nxoo ZGB TLXOO

where (A\) is a common irreducible signature of the pair (G,,Gs) and (p) is a
common irreducible signature of the pair (H),, H,).
If Aa.. (resp. )\’(G,) ) denotes an irreducible unitary representation of class (A)

and py_ (resp. ,u’(H,) ) denotes an irreducible unitary representation of class (u)

then the multiplicity dim [HomHm (un :)\GOQ|H°°)] of the irreducible represen-
tation pg  in the restriction to He of the representation g, is equal to the

Homg:, ()‘/(G'n),, ).

X(G’n),x, in the restriction to G, of the representation ,u’(H;L)w.

multiplicity dim

)] of the irreducible representation

Proof. Asremarked above, the dual (G, G, )-module Ir(ono is irreducible (by The-

orem 3.1) with signature (A), and isotypic components of different signatures are

mutually orthogonal since their projections I( )Z are mutually orthogonal. Finally

if a vector in Fj, %0, which we may assume to belong to F,xx for some k, is or-

thogonal to Z, ,(Lx)oo for all (X), it must therefore be orthogonal to Z T(LX);; for all (A),,
and hence must be the zero vector in F,,xx, and thus zero in F,xe. A similar

and thus Eq. (3.6) holds.

Now fix (A) and (p). Then the restriction of Rg_ to I,(L ><)oo decomposes into a
(non-canonical) orthogonal direct sum of equivalent irreducible unitary representa-
tions of signature (A)_,. A representative of this representation may be obtained by
applying Theorem 3.1 to get the inductive limit (Goo, R(A)m) of the chain (G, R»,);
for example, when Gy = U (k), the representation R, is given by Eq. (2.29) on
77,(1););; Considered as a GJ,-module I,(LX)OO
thogonal direct sum of equivalent irreducible unitary representations of signature
(X'),,. A representative of this representation may be obtained by applying The-

orem 3.1 to get the inductive limit (G;,R’( o ) (note that although G, is a

stationary chain at n, the representations R(A,) depend on k even though they

argument applies to the isotypic components I,(L X)oo,

decomposes into a (non-canonical) or-

are all equivalent and belong to the class (X'),); for example, when G, = U (n) the
representation R/, is given by Eq. (2.32) on ’P( ). which is defined by Eq. (2.31).

nxk

By an analogous argument we infer that the same conclusions hold for (), A

nxoo!
(HOO’R(M),,)’ (H;NR/(H’n)w)'

Now consider the decomposition of the restriction to Hy of the representation
Ry, of Gg. The multiplicity of (g), in (A), |#, is the dimension of
Homypy, (Ruk : R, lm,), where Homgy, (Ruk : Ra,|m,) is the vector space of lin-
ear homomorphisms intertwining Ruk and Ry, |m,. Since Gy and Hj are, by as-
sumption, compact, this dimension is finite. If Tx: H, — 7, is an element of
Hompg, (Ruk : R)\lek)) where H, (resp. H,,) denotes the representation space
of Ry (resp. R,,), then since H, C I(H)k and Hx, ( )“ it follows that we

have an inductive chain of homomorphisms {Tk. Huk — 7—[>\k}. Let H,_ (resp.
)., ) denote the inductive limit of #, (resp. Hy,); then there exists a unique
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homomorphism To : H, _ — Hi, (see, for example, [Du, Theorem 2.5, p. 430],
or [Ro, p. 44]). Again by Theorem 3.1, Rx_ = lim Ry, (resp. Ry = lim R, )
is irreducible with signature (X)_ (resp. (#)..), and it is easy to show that T
is an intertwining homomorphism. Conversely, all homomorphisms of inductive
limits arise that way. Consequently, the chain Hompg, (Ruk iRAlek) induces
the inductive limit Hompg_ (Ruw : Rxlew)- Obviously for sufficiently large &,
dim [Homp, (Ruk : Balm,)] = dim [Homp (R,._ : Ra_|n.)]. By duality, we

; ac-
Gl

tually this chain stabilizes for k sufficiently large. Tt follows from Theorem 2.2 (see
also the proof of Theorem 4.1 in [TT3]) that dim [Homp_ (pgy_ : Aa.|m.)] =

Homg, (AlG;) FHy) G,)

As an example we again consider the case Fixoo With Goo = U (00), G = U (1),

Hy = SO (00), and Hy = Sm) Then from Eq. (2.17), (A), = (m,0,...,0),

obtain in the same way the inductive limit |Homg: le’ ) Rlu’ )

O

dim

oo

1x oo

k
Al = (m), and le)k = {T:ll It follows that (A\),, = (m,0,0,(_l) and V> =

P{’:gg’, the vector space of all homogeneous polynomials of degree m in infinitely

many variables 7y, Z3, etc. The infinitesimal action of R/(U(1)) is given by Eq.
k
(2.10), Ly = Zle Z;0/0Z;, so the infinitesimal action L(m)ec is given the formal

series >, Z;0/0Z;. For Hy, = SO (00) and H| = SLZ( ) the actions are more
delicate to describe. From Eq. (2.22), (u), = (r 0,...,0), where r is an integer
h\,—/

[k/2]
> 0, and therefore (p)_ = (r, 0,0, (_l) Let 7—[(1;)2 denote the space of all harmonic

homogeneous polynomials of degree r in k variables 71, ..., Zi then from Eq. (2.22)
lek = Z@pﬁk lxl;’ where po (Z) = Zle Z?%. We define the actions Rs0(c0)

and R’ as follows:
(SL2 (®))

Consider th?ac algebras (sly (R)), with the bases {Ek, Xt Xk_} given by Eq. (3.5);
define the projective or inverse limit of the family { sly (IR)),, ,Ii;)k} as follows: For

each pair of indices [, k with [ < k a continuous hornornorphlsnl oF: (sly (R)), —
(sl (R)), by sending Ej to Ej, X+ to X;', X7 to X~!, and extends by linearity to
(sla )) — (slz (R)),. Clearly qul satisfies fhe following:

(R
a) ¢ is the identity map for all k,
b) if i <1< k then ¢F = ¢! o ¢F.

The inverse limit of the system {sl, (R),} is denoted by
(3.7) sla (R),, =limsly (R), = (P, X, X5,

1 1 loo 0
) _ 4 + _ = 2 - _ __
where Eoo—2loo'l‘Looa Xoo_2 E :Zz Xeo _22_: a7
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Then {E., X%, X} acts on Fixe as follows: If f € Fixo then we may assume
that f € Fixx for some k& and

(3.8) Eof = Exf, XXf=Xffr and XLf=X.f

If 7—[(12;‘5 denotes the subspace (of 77} )°°) of all harmonic homogeneous polynomials
(M) oo

1x oo

of infinitely many variables 7y, 7, etc. (i.e., h € Hixoo if and only if h € P
and X_h = 0) then

(39) lxoo Z@ 2X+ 12007

where in Eq. (3.9) 2XE = (po),, = Yo, Z}. Note that # e corresponds to

1xXoo
the inductive limit of the chain {Hlxk}' Let R(S(%( ) denote the inductive limit
representation of the chain R( )‘( k) then R(SO(oo) together with Eq. (3.8) describes
completely the action of the dual pair (Sm), SO (oo)) on the isotypic component
() oo
z

1x oo

and (SLZ( ), SO (0 ))

and thus we have the isotypic decompositions for the dual pairs (U (1), U (c0))

-Tlxoo —Z@leoo Z@leoo’

m=0

and thus Theorem 3.2 is verified for this example.
Since the next two examples are very important by their applications to Physics
we shall state them as corollaries to Theorem 3.2.

Corollary 3.3. Let G, denote the direct product of v copies of Hy, where Hyy =
U (00), SO (00), or Sp (00). If G acts as the exterior tensor product representation
VMe @ @ V) where each Ve, 1 < i <r, is an irreducible unitary Ho,-
module, then Hoo acts as the inner (or Kronecker) tensor product representation
on Ve @...@ Ve If Ag., denotes an irreducible unitary representation of
class (AM1)g_ @+ ® ()\ ) ¢ and py  denotes an irreducible unitary representation
of class (j1);_ then the multiplicity dim [HomHo0 (pr : )\Gm|Hm)] of the repre-
sentation (pt)y  in the inner tensor product (A1), @ ®(Ar), is equal to the
multiplicity of (1), in the inner tensor product (A1), @« ® (Ar), for sufficiently
large k.

Proof. If (X)), = ()\Z-l, A2, ..,)\g, .. ) where /\Z are integers such that A} > A\ >

- and Al = 0 for all but a finite number of j, let n denote the total number of
all nonzero entries X!, 1 < i < r; then Ve @ ... @ V() can be realized as a
subspace of the Bargmann—Segal-Fock space F,xco. From Theorem 3.2 it follows

that VAo ©...@V(*+)= belongs to the isotypic component I( oo of.T nxoos Thus

TLXOO
V1 @ ... @ VA is the inductive limit of the chain {V @ VO }
If gy is an irreducible unitary representation of class (,u)Hco then by Theorem 3.2

G’n)

dim [Homp,, (py_ : A |p.)] = dim

i

Homg:, (X(G'n)w A
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/

where X(G’n)w (resp. 'u(HiL)w) is the representation of G/, (resp. H,,) dual to Ag__ (resp.

g ). For sufficiently large k every piy  is the inductive limit of a chain py, and
for such a & Theorem 2.2 implies that

dim [Homp, (pg, @ Ag,|m.)] = dim

Homg;, (X(G'n)k L),

= dim

oo

HOngln ()‘I(G’n)
and this achieves the proof of Corollary 3.3. O

Remark. The reason that this corollary only holds for sufficiently large k& can be
seen in the following example. Let G = U (k) x --- x U (k) and Hy = U (k) and

4 times

consider the tensor product (1,0,...,0)® (2,0,...,0) ® (2,0,...,0)® (3,0,...,0);

k k k k
then for & = 2 we have the spectral decomposition

(1,0) ®(2,0) @ (2,0) © (3,0) = (8,0) + 3 (7, 1) +5(6,2) + 5 (5,3) + 2 (4,4),,

for k = 3 we have

(1,0,0)®(2,0,0)® (2,0,0) ® (3,0,0)
=(8,0,0)+3(7,1,0)+5(6,2,0)+5(5,3,0) + 2 (4,4, 0)
+36,1,1)+6(5,2,1)+5(4,3,1)+3(4,2,2)+2(3,3,2),
for k > 4 we have
(1,0,...,0) ®(2,0,...,0) ®(2,0,...,0) ®(3,0,...,0)
IR _—

S——— S——
k k k k

=(8,0,...,0)+3(7,1,0,...,0) +5(6,2,0,...,0)+ 5(5,3,0,...,0)
+2(4,4,0,...,0)+3(6,1,1,0,...,0) + 6 (5,2,1,0,...,0) + 5(4,3,1,0,...,0)
+3(4,2,2,0,...,0)+2(3,3,2,0,...,0) + (5,1,1,1,0,...,0)
+2(4,2,1,1,0,...,0) 4+ (3,3,1,1,0,...,0) + (3,2,2,1,0,...,0).
Thus we can see that the spectral decomposition of (1, 6) ® (2, 6) ® (2, 6) ®
(3, 6) is the same as that of order k for k > 4, with infinitely many zeroes at the
end of each signature.
Note also that this corollary applied to the tensor product (1, 0) R ® (1, 0)

— —
e} o0

r times

together with the Schur-Weyl Duality Theorem for U (r) implies the generalized
Schur-Weyl Duality Theorem proved by Kirillov for U (co) in [Ki].

Corollary 3.4. Let VAo .. Ve and VB be irreducible unitary represen-

tation of Hs. Let V(”J)co be the representation (of Hes) contragredient to Ve,
Let I denote the equivalence class of the identity representation of Hu,. Then
the multiplicity of (u)_, in the tensor product (A1), &« ® (A;), is equal to the

multiplicity of I°° in the tensor product (A1), @+ @ (Ar), © (1)

o’
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Proof. To prove this corollary we apply Corollary 3.3 to Goo = He X --- X Heo
N—_— ————

and Gy = Hy X --- x Hg, then apply Theorem 3.2 to Goo = Hoo X - -+ X Hyo X Ho‘g
N—_— ——— N—_— ————

r

and Gy = Hy x -+ x Hy ® HY , and finally apply Theorem 2.1 of [KT3] to obtain
————

the desired resultrat order k. The main difficulty resides with the definition of the

identity representation on V1< & ... @ VA r)e & V(“J )co, which we will construct
below.
For each k let I* denote the identity representation of Hj; on

VO g ..o Ve § V(‘“J)k. This means that if I* occurs with multiplicity d in

VO @ ..o VA & V(‘“/)k then there exist d nonzero vectors fir, 1 =1,...,d,
such that Ry, (u) fix = fix for all u € Hy. By construction each f;x is a polyno-
mial function in F, x; for some n. Thus f; 1 is an Hy-invariant polynomialin Fy x.
If J; 1 denotes the one-dimensional subspace spanned by f; i, then for sufficiently
large k and for each fixed 1 = 1,...,d we have a chain of irreducible unitary repre-
sentations {Hk, I*, Ji,k}k- We can define the isomorphism 1/)£+1: Jix = Jikg1 by
1/;£+1 (efix) = cfikt1, ¢ € C; then obviously

Uk (Ra, () fik) = Riy, (u) fiker = Ra,p (W) ¥ig (Fin)

for all u € Hy. Also for all k, [, m with k <1 < m we have %, = ¢L oF. Thus
we can define the inductive limit representation {Hso, I, J; o }, where the action
of Hy, on J; o is defined as follows:

Let u € Hyo; then u € Hy for some k. If f € J;; for some [ then

Ry (u) fi = R, (u) ¥k f for | < k,
and

Ry, (u) fi = Ry, (u)yf f for k <.
Then it follows from Theorem 3.1 that {H, I, J; oo } is irreducible with signature
(6)00 The only problem with this approach is that the isomorphism embedding

1/;£+1 is not the isomorphic embedding i£+1 : Faxk — Fnx(k+1)- To circumvent this
difficulty we define the inverse or projective limit of the family {Hk, I*, Jk} where

Jj. denotes the subspace of all Hy-invariants in VOe & ... @ V)i & V(“J)k, as
follows: For each pair of indices [, k with [ < k define a continuous homomorphism
(bf: Ji — J; such that

i) ¢ is the identity map on Jj,

ii) if i <1 < k then ¢F = ¢! o ¢F.
Here we can take ¢f as the truncation homomorphism, i.e., ¢f is defined on the
generators f; . by

& (fir) = fiu-
The projective limit of the system {Hk, Jk, qﬁf} is then formally defined by

Jooo :=lim T = {(fk) elz[Jk:fl = 0 (fi), VI< k}
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Let m;: Joo_ — Ji denote the projection of Jo,,_ onto Jy. Let I°°+ denote the
representation of He, on Jo_; then mp (I°< f) = m (f). Recall that if Ppxp
denotes the subspace of all polynomial functions on C?** the P,yx is dense in
Frxk- Let Ppxoo = UZO=1 Prxx denote the inductive limit of P, «x; then clearly
Pnxoco is dense in Fpxoo. Let Pl o (resp. Fr, o) denote the dual or adjoint space
of Ppxoo (resp. Frxoo). Then since Ppy oo is dense in Fxoo, Frryj is dense in Py .
By the Riesz representation theorem for Hilbert spaces, every element f* € ),
is of the form (- | f) for some f € Fpxc, and the map f* — f is an anti-linear
(or conjugate-linear) isomorphism. Thus we can identify FZ with F_ and obtain
the rigged Hilbert space as the triple P,y oo C Frxoo C Prixoo (see [G&V] for the
definition of rigged Hilbert spaces). However, generally an element of Jo,_ does not
belong to P; ., but can still be considered as a linear functional (not necessarily

continuous) on P, x, and furthermore, in this context the identity representation
1°°+ will respect the isomorphic embedding z",:_l_l: Fraxk = Fax(k+1)- O

4. CONCLUSION

We have studied thoroughly several reciprocity theorems for some dual pairs
of groups (G!,G_,) and (H!,H_), where G is the inductive limit of a chain
{G}} of compact groups, Hs, is the inductive limit of a chain {Hj} such that for
each k, Hy is a compact subgroup of G, and G, C H], are finite-dimensional Lie
groups. These theorems show, in particular, that the multiplicity of an irreducible
unitary representation of H, with signature (),  in the restriction to Ho, of an
irreducible unitary representation of G, with signature (/\)Gec is always finite. This
is extremely important in the problem of spectral decompositions of tensor products
of irreducible unitary representations of inductive limits of compact classical groups.
This type of problems arises naturally in Physics (cf. [K&R]), and in [H&T] tensor
product decompositions of tame representations of U (co) are investigated. In [O12]
Ol’shanskii generalized Howe’s theory of dual pairs to some infinite-dimensional
dual pairs of groups. This is the right context to generalize the reciprocity theorem
3.2 for the infinite-dimensional dual pairs (G.,, G,) and (H.,, H,) which will be
part of our work in a forthcoming publication.
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