On hermitian trace forms over hilbertian fields

Grégory Berhuy

U.M.R.6623 du C.N.R.S., Labo de Maths, Bureau 401M, 16 route de Gray, F-25030 Besançon, France (e-mail: berhuy@math.univ-fcomte.fr)

Abstract: Let k be a field of characteristic different from 2. Let E/k be a finite separable extension with a k-linear involution σ . For every σ -symmetric element $\mu \in E^*$, we define a hermitian scaled trace form by $x \in E \mapsto \operatorname{Tr}_{E/k}(\mu x x^{\sigma})$. If $\mu = 1$, it is called a hermitian trace form. In the following, we show that every even-dimensional quadratic form over a hilbertian field, which is not isomorphic to the hyperbolic plane, is isomorphic to a hermitian scaled trace form. Then we give a characterization of Witt classes of hermitian trace forms over some hilbertian fields.

Introduction: In this paper, the words "quadratic form" are reserved to mean "non-degenerate quadratic form". Let k be a field of characteristic different from 2. If E/k is a finite separable extension and $\lambda \in k^*$, we can define a quadratic form $E \to k, x \mapsto \operatorname{Tr}_{E/k}(\lambda x^2)$, denoted by $\operatorname{Tr}_{E/k}(\langle \lambda \rangle)$. Such a form is called a scaled trace form. If $\lambda = 1$ this form is called the trace form of E/k. Recall that a field k is hilbertian if Hilbert's irreducibility theorem holds. To simplify, k is hilbertian if for all $n, m \ge 1$ and for all irreducible polynomial $P \in k(Y_1, \dots, Y_m)[X_1, \dots, X_n]$, there exist infinitely many specializations $(y_1, \dots, y_m) \in k^m$ such that $P(y_1, \dots, y_m, X_1, \dots, X_n)$ is still irreducible (for a precise statement of this theorem, see [La] for example). A natural problem is to know which quadratic forms over k are isomorphic, or more reasonably Witt-equivalent, to a (scaled) trace form. No answer has been given in general, but Scharlau and Waterhouse gave independently a characterization of scaled trace forms over a hilbertian field (see Theorem 1 below). The characterization of trace forms, which is much more difficult, has been initiated by Conner and Perlis, who were interested in the following question: which quadratic forms over \mathbb{Q} are Witt-equivalent to a trace form ? In [C-P], they showed that such forms are precisely the positive quadratic forms (Recall that a quadratic form over a field k is called *positive* if all its signatures are non-negative). In [S], Scharlau showed that the result is always true when k is a number field. Finally, Krüskemper and Scharlau proved the validity of this result for some hilbertian fields (see Theorem 3 below). Note that a characterization of isometry classes of trace forms has been obtained by Epkenhans in [E] when k is a number field.

Assume now that there exists a k-linear non-trivial involution σ on E. For each σ -symmetric element $\mu \in E^*$, we can also define a quadratic form $E \to k, x \mapsto \operatorname{Tr}_{E/k}(\mu x x^{\sigma})$, denoted by $\operatorname{Tr}_{E/k}(\langle \mu \rangle_{\sigma})$. Such a form is called a hermitian scaled trace form. If $\mu = 1$, this form is called the hermitian trace form of E/k relative to σ . Note that the existence of σ implies that [E:k]is even because the subfield E_0 fixed by the involution verifies $[E:E_0] = 2$. In this paper, we give similar characterizations of hermitian trace forms and hermitian scaled trace forms over hilbertian fields. A complete characterization of hermitian trace forms of number fields can be found in [B1].

A. Scaled trace forms and hermitian scaled trace forms over hilbertian fields.

1. Scaled trace forms over hilbertian fields.

In [S] and [W], Scharlau and Waterhouse respectively proved the following theorem:

Theorem 1: Let k be a hilbertian field of characteristic different from 2. Then every quadratic form over k is isomorphic to a scaled trace form.

2. Hermitian scaled trace forms over hilbertian fields.

In the following, we prove a similar theorem concerning hermitian scaled trace forms. In fact, we show:

Theorem 2: Let k be a hilbertian field of characteristic different from 2. Then every even-dimensional quadratic form over k, which is not isomorphic to the hyperbolic plane, is isomorphic to a hermitian scaled trace form.

3. Proof of theorem 2.

The underlying idea of the proof is the following principle from the general theory of hermitian forms used by Scharlau in [S] in order to prove the theorem 1 above. An hermitian operator over an arbitrary field k is a triple (V, b, u), where (V, b) is a regular symmetric bilinear space and $u : V \to V$ is a self-adjoint operator, that is, b(ux, y) = b(x, uy) for all x, y in V. Let us assume that the characteristic polynomial p of u is separable and irreducible, and let L = k[X]/(p). Thus, L is a field and $[L : k] = \dim_k(V)$. Then the law

 $L \times V \to V, (\overline{R}, v) \mapsto R(u)(v)$ endows V with a structure of an L-vector space. Moreover, $\dim_L(V) = \frac{\dim_k(V)}{[L:k]} = 1$, so we can identify V and L. Since L/k is separable, the k-bilinear form $(x, y) \mapsto \operatorname{Tr}_{L/k}(xy)$ is non-degenerate, so we get a k-isomorphism $L \to \operatorname{End}_k(L,k), s \mapsto (a \in L \mapsto \operatorname{Tr}_{L/k}(as)).$ Since $L \to k, a \mapsto b(ax, y)$ is k-linear, there exists a unique element B(x, y)of L such that $\operatorname{Tr}_{L/k}(aB(x,y)) = b(ax,y)$ for all $a \in L$. It is easy to see that B is symmetric and bilinear. Writing $(V, B) = \langle \lambda \rangle$, we get $\operatorname{Tr}_{L/k}(\langle \lambda \rangle) \simeq (V, b).$

Assume that $\dim_k(V) = 2n$ and that p is even. Then $L = k(\alpha)$ has a subfield of codimension 2, namely $k(\alpha^2)$. Suppose that we have

 $\alpha^2 \not\equiv -1 \pmod{k(\alpha^2)^{*2}}$, and that $\lambda \in k(\alpha^2)$. One can easily check that $\operatorname{Tr}_{L/k}(\langle \lambda \rangle) \simeq \operatorname{Tr}_{k(\alpha^2)/k}(\langle 2\lambda \rangle) \perp \operatorname{Tr}_{k(\alpha^2)/k}(\langle 2\lambda\alpha^2 \rangle) \simeq$

 $\operatorname{Tr}_{k(\sqrt{-\alpha^2})/k}(\langle \lambda \rangle_{\sigma})$, where σ is the k-linear involution of L defined by $\sigma(\alpha) = -\alpha$ and $\sigma|_{k(\alpha^2)} = \text{Id.}$

Let $q \simeq \langle s_1, \cdots, s_{2n} \rangle$ be a non-degenerate quadratic form over k, and D the corresponding diagonal matrix. Notice that U = BD is hermitian if and only if B is symmetric, that is $U^t D = DU$. In order to keep the notations of [B2], let $A = U^t$. So we have $D^{-1}AD = A^t$. By the above arguments, it suffices to find a matrix A with an even separable and irreducible characteristic polynomial p with a root α such that $\alpha^2 \not\equiv -1 \pmod{k(\alpha^2)^{*2}}$ and which verifies the above equality, and then to show that we have $\lambda \in k(\alpha^2)$. Unfortunately, we are unable to show that $\lambda \in k(\alpha^2)$ using this point of view, so the proof of the proposition below, which is sufficient to prove theorem 2, uses another method to get the existence of λ , though the underlying idea is the same.

Before starting the proof, we recall the following lemma, proved by O.Taussky in [T], first proof of theorem 1:

Lemma 1: Let k be a field of characteristic different from 2. Let $A \in M_n(k)$ with irreducible separable characteristic polynomial. If α is an eigenvalue of

With interaction dependent V_1 $A, and \mathbf{v}_{\alpha} = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$ is a corresponding eigenvector, then (v_1, \dots, v_n) is a k-basis of $k(\alpha)$ and their exists an eigenvector $\mathbf{v}'_{\alpha} = \begin{pmatrix} v'_1 \\ \vdots \\ v'_n \end{pmatrix}$ of A^t corre-

sponding to α such that (v'_1, \dots, v'_n) is the dual basis of (v_1, \dots, v_n) relative to $\operatorname{Tr}_{k(\alpha)/k}$.

For the reader's convenience, we recall the sketch of the proof. Denote by $v_j^{(i)}$ the i^{th} conjugate of v_j . Let $M = (v_j^{(i)})$ and let c_{i1} be the cofactor of $v_1^{(i)}$. Then let $v_i' = \frac{c_{i1}}{\det(M)}$. To be a little more concrete, consider M^t . The columns of this matrix are the eigenvectors for A, with v_{α} as the first column. Then the entries of the corresponding v_{α}' lie in the first row of the inverse $(M^t)^{-1}$. It can be shown that the coordinates of this vector belong to $k(\alpha)$. Using the properties of the determinant, one can easily show that the vector defined by these n elements is an eigenvector of A^t corresponding to α . Moreover, the j^{th} conjugate of v_i' is $\frac{c_{ij}}{\det(M)}$. Thus, $\operatorname{Tr}_{k(\alpha)/k}(v_i v_k') = \sum_{j=1}^n v_i^{(j)} \frac{c_{kj}}{\det(M)}$, and the relation $\det(M)I_n = (\operatorname{com}(M))^t M$ (where $\operatorname{com}(M)$ is the matrix of cofactors associated to M) shows that the last sum is equal to δ_{ik} .

In fact, O.Taussky proved this lemma for $k = \mathbb{Q}$ and $A \in M_n(\mathbb{Z})$, but her proof is also valid under our hypotheses. Indeed, during this part of the proof of Theorem 1, she did not use the fact that the entries of A are integers, and she only used the separability of $\mathbb{Q}(\alpha)/\mathbb{Q}$.

Proof of theorem 2: An easy computation shows that any hermitian scaled trace form of a quadratic extension of k is isomorphic to $\langle 2\lambda, -2\lambda D \rangle$, with $\lambda, D \in k^*, D \notin k^{*2}$. Comparing the discriminants shows that the hyperbolic plane can't be realized as a hermitian scaled trace form. Moreover, it is clear that any binary quadratic form, which not isomorphic to the hyperbolic plane, is isomorphic to a hermitian scaled trace form, so the case n = 1 is completely handled. For the other cases, the comments given at the beginning imply that it suffices to prove the following proposition:

Proposition 1: Let k be an hilbertian field of characteristic different from 2. Let D be a diagonal matrix of $M_{2n}(k), n \ge 2$ with $\det(D) \ne 0$. Then there exist an element α which is separable algebraic of degree 2n over k, such that $\alpha^2 \not\equiv -1 \pmod{k(\alpha^2)^{*2}}, \lambda \in k(\alpha^2)$ and a basis of (v_1, \dots, v_{2n}) of $k(\alpha)$ such that $D = (\operatorname{Tr}_{k(\alpha)/k}(\lambda v_i v_j)).$

Proof of the proposition:

• First, we show the existence of a matrix $A_{2n} \in M_{2n}(k)$ with an even irreducible and separable characteristic polynomial $\chi_{A_{2n}}$ such that $D^{-1}A_{2n}D = A_{2n}^t$. We construct a tridiagonal matrix as follows. Let T_4, T_6, \dots, T_{2n} and X be independent indeterminates over k. For $2 \leq m \leq n$, let

$$B_{2m}(T_4, T_6, \cdots, T_{2m}) = \begin{pmatrix} 0 & T_{2m} & & & & \\ T_{2m} & 0 & 1 & & & \\ & 1 & 0 & T_{2m-2} & & & \\ & & T_{2m-2} & 0 & 1 & & \\ & & & 1 & 0 & \ddots & \\ & & & & 1 & 0 & \ddots & \\ & & & & & T_4 & 0 & 1 \\ & & & & & & T_4 & 0 & 1 \\ & & & & & & 1 & 0 & 1 \\ & & & & & & & 1 & 0 \end{pmatrix}.$$

If $D = diag < s_{2n}, \dots, s_1 >$, then set $D_{2m} = diag < s_{2m}, \dots, s_1 >$ for $2 \leq m \leq n$. Now define $\Delta_{2m}(T_4, \dots, T_{2m}, X) = \det(B_{2m} - XD_{2m}^{-1})$. Since this tridiagonal matrix has zeros on the diagonal, its characteristic polynomial is even (and so is Δ_{2m}). Indeed, for any matrix $C \in M_{2m}(k)$ with the previous properties, it is easy to see that $Q^{-1}CQ = -C$, where

 $Q = diag < 1, -1, 1, -1, \cdots, 1, -1 >$. Then we get $\chi_{Q^{-1}CQ}(X) = \chi_C(X) = \chi_C(X) = \chi_{-C}(X) = \det(-C - XI_{2m}) = \det(C + XI_{2m}) = \chi_C(-X)$. It is shown in [B2] that Δ_{2n} is an irreducible polynomial of $k(T_4, T_6, \cdots, T_{2n})[X]$ (In [B2], it is shown for $k = \mathbb{Q}$ but it is easy to see that this proof is still valid when k is hilbertian).

Now, we prove that it is separable in X. It is well known that an irreducible polynomial is separable if and only if the derived polynomial is not zero. As a polynomial in X, $\Delta_4(T_4, X) = (s_1 s_2 s_3 s_4)^{-1} X^4 +$ (lower degree terms). Since all $s_i \neq 0$ and $char(k) \neq 2$, the polynomial $\frac{\partial \Delta_4}{\partial X}(T_4, X)$ has nonzero X^3 -coefficient, so Δ_4 is separable in X. If m > 2, let P_{2m} be the determinant of the matrix obtained by cancellation of the first row and the first column of $B_{2m} - X D_{2m}^{-1}$. Thus, we have $\Delta_{2m} = -s_1^{-1} X P_{2m} - T_{2m}^2 \Delta_{2m-2}$. Since P_{2m} does not depend on T_{2m} , we get $\frac{\partial \Delta_{2m}}{\partial X} = U + \frac{\partial \Delta_{2m-2}}{\partial X} T_{2m}^2$, where U is a polynomial which does not depend on T_{2m} . The separability follows by induction.

By Hilbert's irreducibility theorem, we can find $t_4, \dots, t_{2m} \in k$ such that $\Delta_{2n}(t_4, \dots, t_{2n}, X)$ is a separable irreducible polynomial. Now $A_{2n} = DB_{2n}$ satisfies the required conditions, because the characteristic polynomial of this matrix is a scalar multiple of $\Delta_{2n}(t_4, \dots, t_{2n}, X)$.

• Let α be an eigenvalue of A_{2n} . Since the characteristic polynomial of this matrix has distinct roots, the matrix $A_{2n} - \alpha I_{2n}$ has rank 2n - 1, so there exists some non-zero cofactor. Let v_j be the j^{th} cofactor of $A - \alpha I_{2n}$

in this row and set $\mathbf{v}_{\alpha} = \begin{pmatrix} v_1 \\ \vdots \\ v_{2n} \end{pmatrix}$. Then $\mathbf{v}_{\alpha} \neq 0$ and the properties of

the determinant show easily that \mathbf{v}_{α} is an eigenvector corresponding to α . By the lemma, there exists an eigenvector $\mathbf{v}'_{\alpha} = \begin{pmatrix} v'_1 \\ \vdots \\ v'_{2n} \end{pmatrix}$ of A^t_{2n} which

corresponds to α such that (v_1, \dots, v_{2n}) and (v'_1, \dots, v'_{2n}) are dual bases with respect to $\operatorname{Tr}_{k(\alpha)/k}$. The relation $D^{-1}A_{2n}D = A_{2n}^t$ implies that $D^{-1}\mathbf{v}_{\alpha}$ is an eigenvector of A_{2n}^t corresponding to α . Since the irreducible polynomials of A_{2n} and its transpose are the same, and since $\chi_{A_{2n}}$ is separable, the characteristic spaces associated to A_{2n}^t have dimension one. So there exists $\lambda \in k(\alpha)$ such that $\lambda D^{-1}\mathbf{v}_{\alpha} = \mathbf{v}'_{\alpha}$. It is shown in [B2] that $\lambda \in k(\alpha^2)$ for this particular choice of \mathbf{v}_{α} . Since we have $\lambda v_j = s_{2n-j+1}v'_j$ for all j, we get $\operatorname{Tr}_{k(\alpha)/k}(\lambda v_i v_j) = \operatorname{Tr}_{k(\alpha)/k}(s_{2n_j+1}v_i v'_j) = \delta_{ij}s_{2n-j+1}$, that is $D = (\operatorname{Tr}_{k(\alpha)/k}(\lambda v_i v_j))$.

• Now we show that we can choose α such that $\alpha^2 \not\equiv -1 \pmod{k(\alpha^2)^{*2}}$. Since Δ_{2m} is even, we can write $\Delta_{2m}(T_4, \cdots, T_{2m}, X) = U_{2m}(T_4, \cdots, T_{2m}, X^2)$. We can show (as for Δ_{2m}) by an inductive argument that the polynomial $F_{2m}(T_4, \cdots, T_{2m}, X) = U_{2m}(T_4, \cdots, T_{2m}, -X^2)$ is irreducible in $k(T_4, \cdots, T_{2m})[X]$ and separable for all m. Indeed, if we replace X^2 by $-X^2$ in the proof of the proposition in [Be2], we obtain a relation between F_{2m} and F_{2m-1} . Then we can conclude using suitable valuations as in [Be2]. Then, by Hilbert's irreducibility theorem, we can find a specialization of the T_i such that the specialized polynomials $\Delta_{2n}(X)$ and $F_{2n}(X)$ are irreducible and separable. Let α be a root of Δ_{2n} . By definition, $F_{2n}(\sqrt{-\alpha^2}) = \Delta_{2n}(\alpha) = 0$. Since $(-1)^n F_{2n}$ is monic and irreducible, we get $Irr(\sqrt{-\alpha^2}, k) = (-1)^n F_{2n}$. So we have $[k(\sqrt{-\alpha^2}) : k] = 2n$ and $[k(\sqrt{-\alpha^2}) : k(\alpha^2)] = 2$, which means that $-\alpha^2$ is not a square in $k(\alpha^2)$. This concludes the proof of the proposition.

B. Witt classes of trace forms and hermitian trace forms over hilbertian fields.

1. Definitions and notation.

We denote by ~ the equivalence in W(k) and by \mathbb{H} the hyperbolic plane $\langle 1, -1 \rangle$. The stability index st(k) of a field k is the least integer s such that,

for all n > s, and all $a_1, \dots, a_n \in k^*$, there exist $b_1, \dots, b_s \in k^*$ such that the *n*-fold Pfister forms $\langle a_1, \dots, a_n \rangle \rangle$ and $\langle b_1, \dots, b_s, 1, \dots, 1 \rangle \rangle$ differ only by a torsion form in W(k) (cf.[K-S2]). We say that a quadratic form ϕ is totally positive definite if $\operatorname{sign}_P \phi = \dim(\phi)$ for each ordering P of k. This is equivalent to say that there exists an isometry $\phi \simeq \langle a_1, \dots, a_n \rangle$ where every a_i is totally positive. Finally, a quadratic form is called algebraic (respectively *h*-algebraic) if it is Witt-equivalent to a trace form (respectively a hermitian trace form).

2. Witt classes of trace forms over hilbertian fields.

Krüskemper and Scharlau proved the following result:

Theorem 3:

- 0. Let k be a hilbertian field. Then every 2-dimensional quadratic form is algebraic.
- 1. Let k be a hilbertian field, and let ϕ be a totally positive definite quadratic form. Then ϕ is algebraic.
- 2. Let k be a non formally real hilbertian field. Then every quadratic form is algebraic.
- 3. Let k = R(X), where R is a real closed field. Then every positive quadratic form is algebraic.
- 4. More generally, let k be a hilbertian field such that $st(k) \leq 2$. Then every positive quadratic form is algebraic.

The fourth first points can be found in [K-S1], and the last one can be obtained using theorems 2.1 and 2.3 of [K-S2].

We could hope that every positive quadratic form over a hilbertian field is algebraic, as it has been conjectured by Krüskemper and Scharlau in [K-S1]. In fact, this conjecture is false. Indeed, it becomes false as soon as $st(k) \ge 4$ (cf.[K-S2], theorem 2.4).

3. Witt classes of hermitian trace forms over hilbertian fields.

In the following, we prove

Theorem 4:

- 1. Let k be a hilbertian field, and let ϕ be an even-dimensional quadratic form, which is totally positive definite. Then ϕ is h-algebraic.
- 2. Let k be a non formally real hilbertian field. Then every even-dimensional quadratic form is h-algebraic.
- 3. Let k = R(X), where R is a real closed field. Then every evendimensional positive quadratic form is h-algebraic.
- 4. More generally, let k be a hilbertian field such that $st(k) \leq 2$. Then every even-dimensional positive quadratic form is h-algebraic.

4. Some useful results.

Proposition 2 (cf.[K-S2], Theorem 2.1): Let k a hilbertian field. Then a sum of algebraic forms is algebraic.

Proposition 3 (cf.[K-S1], Corollary 4): Let k be a field. If every odddimensional positive quadratic form over k is algebraic, then every evendimensional positive quadratic form $\phi \not\sim < -1, -1 > is$ Witt-equivalent to a form $\operatorname{Tr}_{L(\sqrt{\lambda})/k}(<1>), \lambda \notin L^{*2}$.

For the reader's convenience, we recall the sketch of the proof:

By assumption, $\psi = \langle 2 \rangle \phi \perp \langle 1 \rangle$ is algebraic. Thus we have $\psi \sim \operatorname{Tr}_{L/k}(\langle 1 \rangle)$. Then there exists $\lambda \in L^*$ such that $\operatorname{Tr}_{L/k}(\langle \lambda \rangle) \sim \langle -1 \rangle$ (cf.[K-S1], Lemma 5). λ is not a square, otherwise an easy computation shows that $\phi \sim \langle -1, -1 \rangle$. Then, $\operatorname{Tr}_{L(\sqrt{\lambda})/k}(\langle 1 \rangle) \simeq \operatorname{Tr}_{L/k}(\langle 2, 2\lambda \rangle) \sim \langle 2 \rangle \psi \perp \langle -2 \rangle \sim \phi$.

If we apply the previous proof to odd-dimensional quadratic forms, which are totally positive definite, we get:

Proposition 4: Let k be a field. If every odd-dimensional and totally positive definite quadratic form is algebraic, then every even-dimensional and totally positive definite quadratic form $\phi \not\sim < -1, -1 > is$ Witt-equivalent to a form $\operatorname{Tr}_{L(\sqrt{b})/k}(<1>)$. In particular, it is true over any hilbertian field.

The last statement can be proved using proposition 2 and the fact that every 1-dimensional positive form over a hilbertian field is algebraic (cf.[K-S1], theorem 2).

We finish this section by a well-known lemma (cf. [K-S1], lemma 5 for example):

Lemma 2: Let L/k be a separable extension of odd degree. For any $\delta \in k^*$ there exists a $\lambda \in L$ such that $\operatorname{Tr}_{L/k}(\langle \lambda \rangle) \sim \langle \delta \rangle$.

5. Proof of theorem 4.

1. Let ϕ be a form which verifies the hypotheses. Suppose first that $\phi \sim 0$ (this case can occur if k is non formally real).

Let X, T be two indeterminates over k, and let $F(X,T) = X^4 - (2X^2 - 1)T^2$. Clearly, F is an irreducible polynomial of k(X)[T] (it suffices to show that it has no roots in k(X)), so Fis irreducible in k[T][X]. As a polynomial in X, F is monic so F is irreducible in k(T)[X]. Since k is hilbertian, there exists $t \in k$ such that F(X,t) is still irreducible. Let θ be a root of $X^4 - 2t^2X^2 + t^2$ in an algebraic closure of k. Then $k(\theta)/k$ is of degree 4, and $k(\theta^2)/k$ is of degree 2. Let σ the k-linear involution of $k(\theta)$ defined by $\sigma(\theta) = -\theta$. It is easy to see that the trace of θ, θ^3 and θ^5 is equal to zero. Then, one can verify that $1, \theta, t^2 - \theta^2, (2t^2 - 1)\theta - \theta^3$ is an orthogonal basis for $\operatorname{Tr}_{k(\theta)/k}(<1>_{\sigma})$, and that the corresponding diagonalization is $< 4, -4t^2, 4t^2(t^2 - 1), (1 - t^2) >$. Since the last quadratic form is isomorphic to 2 \mathbb{H} , we get $\phi \sim \operatorname{Tr}_{k(\theta)/k}(<1>_{\sigma})$. Assume now that $\phi \not\sim < -1, -1 >$. Using proposition 4, we get

 $\phi \sim \text{Tr}_{L(\sqrt{b})/k}(\langle 1 \rangle)$. By the previous case, we can assume that ϕ is not hyperbolic. Then it is easy to show that $-b \notin L^{*2}$, so we get

 $\operatorname{Tr}_{L(\sqrt{-b})/k}(\langle 1 \rangle_{\sigma}) \simeq \operatorname{Tr}_{L(\sqrt{b})/k}(\langle 1 \rangle) \sim \phi$, where σ is the k-linear involution of $L(\sqrt{-b})$ defined by $\sigma(\sqrt{-b}) = -\sqrt{-b}$.

Finally suppose that $\phi \sim < -1, -1 >$. This implies that k is not formally real. If $-1 \in k^{*2}$, then $\phi \sim 0$ and we have finished. So we can suppose that $-1 \notin k^{*2}$. Since k is non formally real, < -2 > is algebraic by theorem 3. So we have $\operatorname{Tr}_{L/k}(<1>) \sim <-2>$. Notice that [L : k] is odd. By lemma 2, there exists a $\lambda \in L$ such that $\operatorname{Tr}_{L/k}(\langle \lambda \rangle) \sim \langle 2 \rangle$. Then λ is not a square in L, otherwise we get $\langle 2 \rangle \sim \operatorname{Tr}_{L/k}(\langle \lambda \rangle) \sim \operatorname{Tr}_{L/k}(\langle 1 \rangle) \sim \langle -2 \rangle$, that is $\langle -2 \rangle \simeq \langle 2 \rangle$, which implies that $-1 \in k^{*2}$. Now set $E = L(\sqrt{\lambda})$, and let σ be the k-linear involution of E defined by $\sigma(\sqrt{\lambda}) = -\sqrt{\lambda}$ and $\sigma|_L = \operatorname{Id}$. Then $\operatorname{Tr}_{E/k}(\langle 1 \rangle_{\sigma}) \simeq \operatorname{Tr}_{L/k}(\langle 2, -2\lambda \rangle) \sim \langle -1, -1 \rangle$,

- and this concludes the proof.
- 2. It is a particular case of the previous point.
- 3. In the proof of [K-S1], Corollary 5, it is shown that every odd-dimensional positive quadratic form is algebraic. Let ϕ be an even-dimensional positive form. Since k is an ordered field in this case, < -1, -1 > is not positive, so $\phi \not\sim < -1, -1 >$. By proposition 3, we have $\phi \sim \operatorname{Tr}_{L(\sqrt{\lambda})/k}(<1>)$. If $-\lambda \in k^{*2}$, ϕ is hyperbolic, and the argument used in the first point is still valid, since R(X) is hilbertian. Otherwise, the isomorphism $\operatorname{Tr}_{L(\sqrt{\lambda})/k}(<1>) \simeq \operatorname{Tr}_{L(\sqrt{\lambda})/k}(<1>_{\sigma})$ gives the conclusion.
- 4. By the second point, we can assume that k is formally real. The fifth point of theorem 3 gives in particular that every odd-dimensional positive quadratic form is algebraic. Now conclude as previously.

References

- [B1] Berhuy, G.: Characterization of hermitian trace forms. J.of Algebra 210, 690-696 (1998)
- [B2] Berhuy, G.: Réalisation de formes Z-bilinéaires symétriques comme formes trace hermitiennes amplifiées. (to appear in J. Théorie des Nombres de Bordeaux)
- [C-P] Conner, P.E., Perlis, R.: A survey of trace forms of algebraic number fields. Singapore: World Scientific Publ. 1984
- [E] Epkenhans, M.: On trace forms of algebraic number fields. J.of Number Theory 44 (1992)

- [K-S1] Krüskemper, M., Scharlau, W.: On trace forms of hilbertian fields. Comment.Math.Helv. 63, 296-304 (1988)
- [K-S2] Krüskemper, M., Scharlau, W.: On positive quadratic forms. Bull.Math.Soc.Belg. 40, 255-280 (1988)
- [La] Lang, S.: Diophantine geometry. Interscience Tracts in Pure and Applied Mathematics No **11** (1962)
- [S] Scharlau, W.: On trace forms of algebraic number fields. Math.Z. 196, 125-127 (1987)
- [T] Taussky, O.: On matrix classes corresponding to an ideal and its inverse. Illinois Math. J.1, 108-113 (1957)
- [W] Waterhouse, W.C.: Scaled trace forms over number fields. Arch.Math.47, 229-231 (1986)