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Abstract. Let D ∗ be the multiplicative group of a division ring D. In this note we
study the descending central series of D∗. We show that the structure of subgroups

which appear in a central series of D∗ affect greatly the structure of D∗. For example

it is shown that if every element of a subgroup in a central series of D∗ is algebraic
over the center of D then D is algebraic division algebra. As an application, some

classical theorems of Kaplansky and Jacobson on commutativity of a division ring are
generalized. Also the descending central series of D∗ in the case of totally ramified

and unramified valued division algebra is completely determined.

1. On central series of division algebras

Let D be a division ring and D∗ be the multiplicative group of D. Put G0(D) =
D∗ and for any non-negative integer i, define Gi(D) = [D∗, Gi−1(D)], i.e, the
subgroup generated by mix-commutators of D∗ and Gi−1(D). The sequence

· · · ⊆ G2(D) ⊆ G1(D) ⊆ G0(D) = D∗

is called the descending central series of D∗. It is a classical result that the mul-
tiplicative group of D∗ is not nilpotent, that is, the above series never reaches 1
[8].

The descending central series of D∗ has been studied by U. Rehmann in [12] and
P. Draxl in [2, Vortrag 7] in the case of division algebras over local fields where it is
shown that this series becomes stationary and the quotients Gi(D)/Gi+1(D) have
been calculated. (Also see C. Riehm [14].)

In this note we study the subgroups which appear in a central series of a division
ring. We will show that many properties of subgroups of a central series of D∗

can actually be lifted in a natural way to the group D∗. For example it is shown
that if a subgroup in a central series of D∗ is algebraic over F then D is algebraic
division ring (Theorem 1.4). This is then used to obtain a generalization for some
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commutativity theorems for division rings. In section 2 we concentrate on a valued
division algebra. We show that in the case of unramified valued division algebra,
the study of descending central series reduce to the case of residue division algebra.
Also in the case of totally ramified division algebra, the descending central series of
D∗ is completely determined. Using this, we show that on the case of tame valued
division algebra, the group PSL1(D) is not a simple group (Theorem 2.3).

Before stating our first Lemma, we fix some notation. If G is a group, denote
by Gn the subgroup of G generated by all n − th powers of element of G. If
H and K are subgroups of G, denote by [H, K] the subgroup of G generated by
mix-commutators [h, k] = hkh−1k−1, where h ∈ H and k ∈ K. Note that for
convenience we sometimes denote [D∗, D∗] by D′. We say that a subset S of D
is algebraic over F if each element of S is algebraic over F . Also if S and T are
subsets of D, then S is said to be radical over T , if for any element x ∈ S, there is
an integer r such that xr ∈ T .

Let us begin with the following Lemma which is based on Wedderburn’s factor-
ization theorem and is crucial in our study. Variants of the trick which is used in
this Lemma is also employed in [3],[9],[16] and [17].

Lemma 1.1. Let D be a division algebra with center F , of index n. Let N be a
normal subgroup of D∗. Then Nn ⊆ NrdD/F (N)[D∗, N ].

Proof. Suppose a ∈ N with the minimal polynomial f(x) ∈ F [x] of degree m. Then
from the theory of central simple algebras, we have,

(1) f(x)n/m = xn − TrdD/F (a)xn−1 + · · ·+ (−1)nNrdD/F (a),

where NrdD/F : D∗ −→ F ∗ is the reduced norm, TrdD/F is the reduced trace
and the right hand side of the equality (1) is the reduced characteristic polynomial
of a. (See [13], §9.) Using Wedderburn’s factorization theorem for the minimal
polynomial f(x) of a, one obtains f(x) = (x − d1ad−1

1 ) · · · (x − dmad−1
m ) where

di ∈ D. Now from the equality (1), it follows that

NrdD/F (a) = (d1ad1
−1 · · ·dmadm

−1)n/m.

Since N is a normal subgroup of D∗, therefore NrdD/F (a) ∈ N . But

d1ad1
−1 · · ·dmadm

−1 = [d1, a]a[d2, a]a · · · [dm, a]a = amda

for some da ∈ [D∗, N ]. Therefore an = NrdD/F (a)d′a where d′a ∈ [D∗, N ]. Thus
Nn ⊆ NrdD/F (N)[D∗, N ]. �

Now let N = G1(D). Since for a ∈ [D∗, D∗], NrdD/F (a) = 1, the above lemma

shows that G1(D)
n
⊆ G2(D). So in this way one can observe the following inter-

esting fact.
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Corollary 1.2. Let D be a division ring with center F , of index n. For any i > 0,
the quotient Gi(D)/Gi+1(D) is a torsion abelian group of bounded exponent n. �

Note that the corollary is valid for i > 0. Using a Jacobson’s Theorem [8, p.
219], it is an easy exercise to see that for i = 0, the group G0(D)/G1(D), namely
K1(D) = D∗/D′ is not a torsion group.

Lemma 1.3. Let D be a division ring with center F and N be a subgroup in a
central series of D∗. If a ∈ D is algebraic over F , then a is radical over F ∗N .

Proof. Since N is a subgroup in a central series of D∗, there is an integer i such
that Gi(D) ⊆ N . Because a is algebraic over F , then from field theory, we have

(1) f(x) = xn − TrF (a)/F (a)xn−1 + · · ·+ (−1)nNF (a)/F (a),

where f(x) is the minimal polynomial of a over F . Now using Wedderburn’s fac-
torization theorem for f(x) as in the Lemma 1.1 and repeating this procedure, one
can obtain an integer r such that ar = fd where f ∈ F ∗ and d ∈ Gi(D). So the
Lemma follows. �

We are now in a position to show how the properties of a subgroup which appear
in the central series of D∗ can be lifted to D∗. The following Theorem shows that
the algebracity of a division algebra is inherited from the algebracity of its subgroup
in a central series. In contrast, note that a division algebra can be transcendental
over its center and yet have maximal subfields which are algebraic (Example 1.5).

Theorem 1.4. Let D be a division ring with center F and N be a subgroup in a
central series of D∗. If N is algebraic over F , then D is algebraic division ring.

Proof. Since N is a subgroup in a central series of D∗, there is an integer i such
that Gi(D) ⊆ N . Consider the set A = {a ∈ Gi−1(D)| a is algebraic over F}∪F ∗.
Since D∗ is not a nilpotent group, Gi(D) * F . On the other hand Gi(D) ⊆ A, so
F ( A. Now suppose a ∈ A and b is an algebraic element of D∗. Denote by ā and b̄
the images of a and b in the quotient group D∗/F ∗Gi(D). Since a ∈ Gi−1(D)∪F ∗,
then ā commutes with b̄. By Lemma 1.3, ā and b̄ are torsion elements. Therefore
ab is torsion. So it follows that ab is algebraic over F . Next consider the element
a+b = a(1+a−1b). Since a ∈ Gi−1(D) and b are algebraic, 1+a−1b is algebraic. It
follows that a+b is algebraic. Now consider the ring 〈A〉 generated by elements of A.
One can see that the ring 〈A〉 is algebraic over F , therefore it is a division ring. It is
easy to see that A∗ is a normal subgroup of D∗. Therefore by Cartan-Brauer-Hua,
A = D. Hence D is algebraic division ring. �

For the sake of completeness, let us give an example which shows that the alge-
bracity of a maximal subfield of a division ring D, does not give rise to algebracity
of D.
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Example 1.5. Let L be a field which is algebraic over its prime subfield and
σ ∈ Aut(L) such that ord(σ) = ∞, e.g., take L = Zp and σ(x) = xpr

or L =
⋃
∞

i=1 Fp2i and σ(x) = xpr

where p is a prime number and r is an integer. Now let

D = L((x, σ)) be a formal twisted Laurent series and K be a fixed field of σ. By
Hilbert classical construction, D is a division algebra with center Z(D) = K. It
is an easy exercise to show that L is a maximal subfield of D which is algebraic
over Z(D). But clearly D is not algebraic. We remark that L and K((x)) are two
maximal subfields of D such that L is algebraic over K whereas K((x)) is purely
transcendental over K.

We are now ready to generalize some commutativity theorems for a division ring.
The following result may be considered as a generalization of Kaplansky’s Theorem
(See [8, p. 259] and [9]).

Corollary 1.6. Let D be a division ring with center F . If a subgroup N in a
central series of D∗ is radical over F , then D is commutative.

Proof. Since N is radical over F , by Theorem 1.4, we conclude that D is algebraic
division algebra. But again by Lemma 1.3, it follows that D is radical over F ∗N .
On the other hand since N is radical over F , therefore D is radical over F . Now
applying Kaplansky’s Theorem, the proof is complete. �

Next application of Lemma 1.3 is to generalize Noether-Jacobson’s Theorem
which asserts that any noncommutative algebraic division ring D contains an ele-
ment in D\F which is separable over F . (See [8], p.257.)

Corollary 1.7. Let D be non-commutative algebraic division ring with center F .
Then for any subgroup N in a central series of D∗, there exist a ∈ N\F which is
separable over F .

Proof. Suppose this is not the case. Then all elements in N are purely inseparable
over F . This means that N becomes radical over F . Now apply Corollary 1.6 to
get a contradiction. �

The following can be viewed as a generalization of a Jacobson’s Theorem. (See
[8], p.219.)

Corollary 1.8. Let D be noncommutative algebraic division ring with center F .
If a subgroup N in a central series of D∗ is algebraic over a finite subfield of F ,
then D is commutative.

Proof. Exercise. �

2. On descending central series of valued division algebra

In this section we study the descending central series of a Henselian valued
division algebra. Theorem 2.1 determines completely this series in the case of
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totally ramified case. In the case of unramified case we show that the quotient
group Gi(D)/Gi+1(D) is stable under reduction, namely

Gi(D)

Gi+1(D)
'

Gi(D)

Gi+1(D)
.

In order to describe the descending central series of a valued division algebra, we
need to recall some concepts from valuation theory. Let D be a finite dimensional
division algebra with center a Henselian field F . Recall that a valuation v on a
field F is called Henselian if and only if v has a unique extension to each field
algebraic over F . Therefore v has a unique extension denoted also by v to D ([16]).
Denote by VD, VF the valuation rings of v on D and F respectively and let MD, MF

denote their maximal ideals and D, F their residue division algebra and residue field,
respectively. We let ΓD, ΓF denote the value groups of v on D and F , respectively
and UD, UF the groups of units of VD, VF respectively. Furthermore, we assume
that D is a tame division algebra, i.e., Z(D) is separable over F and CharF does
not divide i(D), the index of D. The quotient group ΓD/ΓF is called the relative
value group of the valuation. D is said to be unramified over F if [ΓD : ΓF ] = 1.
At the other extreme D is said to be totally ramified if [D : F ] = [ΓD : ΓF ].

Theorem 2.1. Let D be a tame and totally ramified division algebra over a henselian
field F with index n. Then

(i) G1(D)/G2(D) = Ze, where e = exp(ΓD/ΓF ).
(ii) Gi(D) = Gi+1(D) where i ≥ 2.

Proof. (i). Since D = F , then UD = UF (1 + MD). This shows that [D∗, D∗] ⊆
UF (1 + MD). Therefore it follows that

(1) G2(D) ⊆ [D∗, 1 + MD].

Now applying Lemma 1.1 to the normal subgroup 1 + MD we have

(2) (1 + MD)n ⊆ (1 + MF )[D∗, 1 + MD].

Let a ∈ 1+MD. Consider the field F (a) and a ∈ 1+MF (a). Since F is a henselian
field, so is F (a). Applying Hensel lemma to the polynomial f(x) = xn − a, we
obtain an element b ∈ 1+MF (a) such that bn = a. This shows that a ∈ (1+MD)n.
Therefore (1 + MD) is a n-divisible group, namely (1 + MD) = (1 + MD)n. So the
equation (2) takes the form,

(3) 1 + MD = (1 + MF )[D∗, 1 + MD].

In particular 1 + MD ⊆ (1 + MF )D′. This shows that

(4) [D∗, 1 + MD] ⊆ G2(D).
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Now (1) and (4) imply that G2(D) = [D∗, 1 + MD]. On the other hand it is not
difficult to see that 1 + MF ∩D′ = 1. Therefore 1 + MD ∩D′ = [D∗, 1 + MD]. So

(5) G2(D) = [D∗, 1 + MD] = D′ ∩ 1 + MD.

Now consider the reduction map UD −→ D
∗

. Restriction of this map to D′ gives
rise to the following isomorphism,

D′

D′ ∩ (1 + MD)

'

−→ D′.

Since G2(D) = D′∩1+MD , therefore D′/G2(D) ' D′. On the other hand D′ ' Ze

where e = exp(ΓD/ΓF ). (See the proof of Theorem 3.1 in [15].) Therefore

D′

G2(D)
= Ze

and the proof is complete.
(ii). By (5), G2(D) = [D∗, 1 + MD]. On the other hand by (3), 1 + MD =

(1 + MF )[D∗, 1 + MD]. Therefore G2(D) = [D∗, [D∗, 1 + MD]] = G3(D). �

The calculation of G1(D)/G2(D) in the above theorem was possible because we
were able to calculate the exact amount of 1 + MD ∩ D′ which not only gives rise
to a short and elementary proof of Platonov’s congruence theorem [11], but also
compute the exact amount of it. (See [4].)

As it is shown in the course of the proof of Theorem 2.1, If D is tame and
henselian division algebra, then

1 + MD = (1 + MF )[D∗, 1 + MD].

This shows that [D∗, 1 + MD] ⊆
⋂
∞

i=0 Gi(D).

Theorem 2.2. Let D be a tame and unramified division algebra over a henselian
field F with index n. Then

(i) [D∗, 1 + MD] ( Gi(D), for any i ≥ 1.
(ii) Gi(D)/Gi+1(D) ' Gi(D)/Gi+1(D), for any i ≥ 1.

Proof. As in the proof of Theorem 2.1, the restriction of reduction map UD −→ D
to [D∗, D∗] gives rise to ,

G1(D)

[D∗, 1 + MD]
'

−→ [D∗, D∗].

But D is unramified, namely [ΓD : ΓF ] = 1. Thus Z(D) = F and D∗ = F ∗UD.
Therefore for a, b ∈ D∗, the element c = aba−1b−1 may be written in the form
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c = αβα−1β−1 where α and β ∈ UD. This shows that [D∗, D∗] = [D
∗

, D
∗

]. Now

by Corollary 1.6, [D
∗

, D
∗

] is not a torsion group. Therefore G1(D)/[D∗, 1+MD] is
not torsion. On the other hand by Corollary 1.2, G1(D)/Gi(D) is a torsion group.
This shows that [D∗, 1 + MD] ( Gi(D).

(ii) Since the valuation is unramified, similar to the first part, it can be shown

that, Gi(D) = Gi(D). Now it is easy to see that the restriction of reduction map
to the subgroup Gi(D) give rises to

Gi(D)

[D∗, 1 + MD]

'

−→ Gi(D).

Therefore
Gi(D)

Gi+1(D)
'

Gi(D)

Gi+1(D)

and we are done. �

Dieudonne has shown that the projective special linear group

PSLn(D) =
SLn(D)

Z(SLn(D))

is a simple group where n > 2 or n = 2 and D has more than 3 elements [1, §21].
In the case of n = 1, there is also an example due to Dieudonne which shows that

PSL1(D) =
D′

Z(D′)

is not a simple group [7, p.191]. The following theorem shows that, if a division al-
gebra enjoys a tame valuation, then PSL1(D) is not a simple group. This Theorem
also answers a question which is asked by B. Mirzaii in [6].

Theorem 2.3. Let D be a tame valued division algebra over henselian field F .
Then PSL1(D) is not a simple group.

Proof. We consider two cases. If D is commutative, then it is known that the
derived series · · · ⊆ D′′′ ⊆ D′′ ⊆ D′ never stops. (See [2], p. 58.) Therefore
UF D′′ 6= UF D′. Thus UF D′′/UF C UF D′/UF . But PSL1(D) = UF D′/UF . This
shows that PSL1(D) is not a simple group. If D is not commutative, then consider
the normal subgroup Z(D′)(1 + MD ∩ D′). It is not difficult now to show that
PSL1(D) has a normal subgroup. �

Acknowledgments. I wish to thank Ulf Rehmann who mentioned his work in [12] to
me and for some discussions. The final version of this note was written when the
author was visiting Universite Catholique De Louvain, following an invitation by
Jean Pierre Tignol, to whom I am grateful. Also I would like to thank University
of Ioannina, Greece for the nice hospitality.



8 ROOZBEH HAZRAT

References

1. P. Draxl, Skew Field, London Math. Soc. Lecture Note Ser. Vol 81, Cambridge, Univ. Press.

Cambridge, 1983.

2. P. Draxl, M. Kneser (eds.), SK1 von Schiefkörpern, Lecture Notes in Math. Vol 778, Springer,
Berlin, 1980.

3. Y. Ershov, Henselian valuation of division rings and the group SK1(D), Math USSR Sb. 45

(1983), 63-71.

4. R. Hazrat, Wedderburn’s factorization theorem, application to reduced K-theory, To appear

in Proc. Amer. Math. Soc.
5. R. Hazrat, SK1 like functors for division algebras, Preprint, Bielefeld (May 2000).

6. R. Hazrat, M. Mahdavi-Hezavehi, B. Mirzaii, Reduced K-theory and the group G(D) =

D∗/F ∗D′, Algebraic K-theory and its Application, H. Bass, A.O.Kuku, and C. Pedrini.(Ed).
World Sci. Publishing, River Edge, NJ. (1999), 403-409.

7. N. Jacobson, Structure of Rings, Amer. Math. Soc., New York, 1991.
8. T. Y. Lam, A first course in noncommutative rings, Springer-Verlag, New York, 1991.

9. M. Mahdavi-Hezavehi, On derived groups of division rings, Comm. Algebra 23 (1995), no. 3,

913-926.
10. M. Mahdavi-Hezavehi, S. Akbari, M. Mehrabadi, H. Hajie-Abolhassan, On derived groups of

division rings II, Comm. Algebra 23 (1995), no. 8, 2881-2887.

11. V. P. Platonov, The Tannaka-Artin problem and reduced K-theory, Math USSR Izv. 10

(1976), 211-243.

12. U. Rehmann, Die kommutatorfaktorgruppe der normeinsgruppe einer p-adischen Divisional-

gebra, Arc. Math. 32 (1979), 318-322.

13. I. Reiner, Maximal Orders, Academic Press, 1975.

14. C. Riehm, The norm 1 group of a p-adic division algebra, Amer. J. Math. 92 (1970), 499-523.
15. J. -P. Tignol, A. R. Wadsworth, Totally ramified valuations on finite-dimensional division

algebras, Tran. Amer. Math. Soc. 302 (1987), no. 1, 223-250.

16. A. R. Wadsworth, Extending valuations to finite dimensional division algebras, Proc. Amer.
Math. Soc. 98 (1986), 20-22.

17. V. Yanchevskii, Reduced norms of simple algebras over function fields, Proc. Steklov Inst.
Math. 183 (1991), 261-269.

Department of Mathematics, University of Bielefeld, P. O. Box 100131, 33501

Bielefeld, Germany.

E-mail address: rhazrat@mathematik.uni-bielefeld.de


