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Introduction

Let A be an excellent henselian two-dimensional local domain (for the definition
of excellent rings, see [EGA IV2], 7.8.2). Let K be its field of fractions and k its
residue field.

Assume that k is separably closed. If k of positive characteristic p, we show that
the unramified Brauer group of K (with respect to all rank 1 discrete valuations
of K) is a p-group. This group is trivial in each of the following cases: k is of
characteristic zero, or A is complete, or A is a henselization of an R-algebra of
finite type, where R is either a field or an excellent discrete valuation ring.

Under some more restrictive conditions such a result was obtained by Artin
[Art2] in 1987. We actually prove a generalization of Artin’s result for the case of
an arbitrary residue field k, following ideas of Artin and Grothendieck, as developed
in Grothendieck’s 1968 paper [GB III].

Assuming further that 2 is a unit in A, we prove that if k is separably closed or
finite, then every quadratic form of rank 3 or 4 which is isotropic in all completions
of K with respect to rank 1 discrete valuations is isotropic.

If k is separably closed of characteristic p ≥ 0, we prove that any division algebra
over K whose order in the Brauer group is n prime to p is cyclic of degree n. For
A the henselization or the completion at a closed point of a normal surface over
an algebraically closed field of characteristic zero, this result was first obtained
by Ford and Saltman [FS]. For k the separable closure of a finite field, the result
was obtained by Hoobler ([Ho], Thm. 13), who used higher class field theory à la
Kato-Saito.

Let A,K, k be as in the beginning of this introduction, with k algebraically closed
of characteristic different from the prime l. Gabber and Kato proved that the l-
cohomological dimension of K is 2 (see Saito [Sai1], Thm. 5.1). Combining this
result and the above cyclicity statement, we prove that any quadratic form over K
of rank at least 5 is isotropic.

The special case where K is the fraction field C((X, Y )) of A = C[[X, Y ]] had
been considered earlier. In that case, the local-global principle for quadratic forms
of rank 3 is easy. For rank 4 it was announced by Jaworski [Ja] after some special
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cases had been proved by Hatt-Arnold [HA]. That quadratic forms of rank at least 5
over C((X, Y )) are isotropic was proved in [CDLR] using the Weierstraß preparation
theorem.

Assume now that k is real closed. We show that every rank 4 quadratic form
over K which is torsion in the Witt group of K and is isotropic in all completions
of K with respect to rank 1 discrete valuations is isotropic. We also show that
every quadratic form of even rank ≥ 6 which is torsion in the Witt group of K is
isotropic. In particular, the u-invariant of K, as defined by Elman and Lam [EL],
is 4.

In the whole paper, we shall only consider rank 1 discrete valuations, and we
shall simply call them discrete valuations.

Given an integer n > 0 and an abelian group A, we let nA = {x ∈ A, nx = 0}.

1. The unramified Brauer group.

We first recall a few definitions and theorems from Grothendieck’s exposés on
the Brauer group [GB I], [GB II], [GB III]. Given a scheme X, we denote its
cohomological Brauer group H2

ét(X,Gm) by Br(X). We let BrAz(X) denote the
Azumaya Brauer group. This is a torsion group. There is a natural inclusion
BrAz(X) ⊂ Br(X).

Given a discrete valuation ring R with field of fractions K, and a class α ∈
Br(K), one says that α is unramified with respect to R, if it is in the image of the
natural embedding Br(R) → Br(K). This property can be checked by going over
to the completion of R. Given a field K we denote by Brnr(K) the unramified
Brauer group of K, consisting of all classes of Br(K) which are unramified with
respect to all discrete valuations of K.

We recall a result which was recorded in [OPS], although it was never used in
that paper.

Lemma 1.1. Let X be a noetherian reduced scheme and U an open subscheme
containing all singular points and all generic points of X. Then the restriction
map Br(X) → Br(U) is injective.

Proof. See [OPS], Theorem 4.1.

Lemma 1.2. (a) For a noetherian scheme X of dimension at most one, and for a
regular noetherian scheme X of dimension at most two, the inclusion BrAz(X) ⊂
Br(X) is an equality.

(b) For X a reduced, separated, excellent scheme of dimension at most two such
that any finite set of closed points is contained in an affine open set, the natu-
ral inclusion BrAz(X) ⊂ Br(X) identifies BrAz(X) with the torsion subgroup of
Br(X).

(c) For any regular integral scheme X of dimension at most two, with field of
fractions K, there are natural inclusions Brnr(K) ⊂ Br(X) ⊂ Br(K).

Proof. (a) This is Cor. 2.2 of [GB II].
(b) Since X is excellent and reduced, the singular locus is closed of dimension at

most one. One may thus find two affine open sets U and V such that their union
W contains the generic points of all components of X, and the complement of W
in X consists of finitely many points whose local rings are regular of dimension 2.
By Lemma 1.1, the restriction map Br(X) → Br(W ) is injective. By a theorem

2



of Gabber [Ga], the map BrAz(W ) → Br(W ) identifies BrAz(W ) with the torsion
in Br(W ). Since all points of the complement of W are regular on X, the proof of
Cor. 2.2 of [GB II] shows that the map BrAz(X) → BrAz(W ) is surjective. Thus
the map BrAz(X) → BrAz(W ) is an isomorphism and (b) follows.

(c) This is Thm. 6.1.b of [GB III].

Let A be an excellent henselian two-dimensional local domain , let k be its residue
field. A model of A is an integral scheme X equipped with a projective birational
morphism X → Spec(A). According to Hironaka, Abhyankar and Lipman (see
[Li1], [Li2]) there exist regular models of A. The fibre X0 of X → Spec(A) at
the closed point of Spec(A) is a projective variety of dimension at most one over k.
Given any one-dimensional reduced closed subscheme C ⊂ X, there exists a further
projective birational morphism π : X ′ → X, with X ′ regular integral, such that
the support of the curve π−1(C) is a union of regular curves with normal crossings
([Sh], Theorem, page 38 and Remark 2, page 43; note that blow-ups of excellent
schemes are excellent and so are closed subschemes of excellent schemes).

Theorem 1.3. Let A be a henselian local ring. Let k be its residue field and p ≥ 0
be the characteristic of k. Let π : X → Spec(A) be a proper morphism and assume
that the fibre X0 → Spec(k) of π over the closed point of Spec(A) is of dimension at
most one. For any prime l different from p, the restriction map Br(X) → Br(X0)
induces an isomorphism on l-primary torsion subgroups. If the scheme X is regular,
the restriction map is an isomorphism up to p-primary torsion.

Proof. Let n be an integer, prime to p if k is of characteristic p. The Kummer
sequence of étale sheaves

1 → µn → Gm → Gm → 1 ,

where Gm → Gm is given by x 7→ xn, induces a commutative diagram with exact
rows

0 // Pic(X)/n //

��

H2
ét(X,µn) //

��

nBr(X) //

��

0

0 // Pic(X0)/n // H2
ét(X0, µn) //

nBr(X0) // 0

The vertical maps are induced by the inclusion X0 → X. Since X0 is of dimension
at most one, H2(X0,OX0

) = 0. Since A is henselian, this implies ([EGA IV4],
21.9.12) that the map Pic(X) → Pic(X0) is surjective. Since the morphism π :
X → Spec(A) is projective and the ring A henselian, the proper base change
theorem ([Mi], VI.2.7) implies that the restriction map H 2

ét(X,µn) → H2
ét(X0, µn)

is an isomorphism. Thus the map nBr(X) → nBr(X0) is an isomorphism.
If X is regular, then Br(X) is torsion. The group Br(X0) is torsion because X0

is a curve. The last statement of the theorem follows.

There are two cases where we may get hold of the p-part. The first one is the
case where A is complete, which we now discuss. We start with a series of lemmas.

Let A be a local ring, let π : X → Spec(A) be a proper map such that the fibre
X0 → Spec(k) of π over the closed point of Spec(A) is of of dimension at most one.
Let m the maximal ideal of A and Xn the fibre of π over Spec(A/mn+1).
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Lemma 1.4. The natural maps

Pic(Xn+1) → Pic(Xn)

are surjective.

Proof. We have the exact sequence of sheaves

0 −→ mnOX

mn+1OX
−→

( OX

mn+1OX

)∗
−→

( OX

mnOX

)∗
−→ 1 ,

where the left map is given by x 7→ 1 + x. We have

H2
(
X,

mnOX

mn+1OX

)
= H2

(
X0,

mnOX

mn+1OX

)
= 0

because X0 is of dimension at most one. Hence the map

H1(Xn+1,O∗Xn+1
) → H1(Xn,O∗Xn

)

is surjective.

Lemma 1.5. Assume that A is complete. Then the canonical homomorphism

BrAz(X) → lim
←−

BrAz(Xn)

is an isomorphism.

Proof. Let A be an Azumaya algebra over X. Denote by An the algebra obtained
from A under base change from X to Xn and suppose that it is trivial for each n.
Let

un : An
∼→End(Vn)

be an isomorphism, where Vn is a locally free sheaf on Xn. The sheaf Vn is deter-
mined by An up to a line bundle. By Lemma 1.4 we can successively modify each
Vn+1 in such a way that Vn is isomorphic to Vn+1 ⊗OXn+1

OXn
and the un’s build

up a projective system. By [EGA III1], 5.1.4, the projective system (Vn, n ∈ N)
gives a locally free OX -module V and an isomorphism

u : A ∼→End(V )

of locally free sheaves such that u induces un on Xn. Since each un is an algebra
homomorphism, so is u.

We now prove the surjectivity. We first show that there exists an open covering
X0 = U0 ∪V0 with U0, V0 and U0 ∩V0 := W0 affine. Let X0 be the reduced scheme
associated to X0 and f : Y → X0 its the normalization. By [EGA II], Corollaire
7.4.6 the morphism f is finite. We remark that, by the assumption that X is proper
over Spec(A), the scheme X0 is separated and therefore Y is a projective regular
curve (see [EGA II], Corollaire 7.4.10). Let Y ◦ ⊂ Y be the open set on which
f is an isomorphism. Choose two disjoint sets of closed points {P1, . . . , Pr} and
{Q1, . . . , Qs} on Y ◦ such that U◦ = Y \ {P1, . . . , Pr} and V ◦ = Y \ {Q1, . . . , Qs}
are affine. Then U◦ ∩ V ◦ is affine too. The restriction of f to these three open sets
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is finite, hence, by Chevalley’s theorem ([EGA II], Théorème 6.7.1) their images
under f are affine open subsets of X0. Since a scheme is affine if and only if
its associated reduced scheme is affine ([EGA I], Corollaire 5.1.10) the open sets
U0 = X0 \ f({P1, . . . , Ps}), V0 = X0 \ f({Q1, . . . , Qs}) and U0 ∩ V0 are affine.

There are open sets U , V in X such that U ∪ V = X, U ∩ X0 = U0 and
V ∩ X0 = V0. Let Un and Vn be the intersections of U and V with Xn. Since
the maps U0 → Un, V0 → Vn and W0 → Wn are finite, the sets Un, Vn and
Wn := Un ∩ Vn are affine. We now show that any Azumaya algebra over Xn may
be lifted to an Azumaya algebra over Xn+1. Let A0 be an Azumaya algebra over
X0. Let B0 and C0 be the restrictions of A0 to U0 and V0. By [Ci], Theorem
3, we can find, for any n, Azumaya algebras Bn over Un and Cn over Vn which
restrict to B0 and C0. The algebra A0 defines an isomorphism ϕ0 : B0|W0

→ C0|W0
.

Following the proof of Prosposition 5 of [Ci], we construct successively isomorphisms
ϕn : Bn|Wn

→ Cn|Wn
such that, for n ≥ 1, ϕn|Wn−1

= ϕn−1. Using [EGA III1],
5.1.4, we obtain a vector bundle A on X and a homomorphism A⊗A → A which
restricts to the multiplication on An for each n. Hence A is an Azumaya algebra
over X.

Lemma 1.6. Let C be a one-dimensional noetherian scheme and let Cred ⊂ C be
the associated reduced scheme. The natural map

BrAz(C) = Br(C) → BrAz(Cred) = Br(Cred)

is an isomorphism.

Proof. There exists a sequence of closed immersions

Cred = C0 ⊂ C1 ⊂ · · · ⊂ Cn = C

together with ideals Ij ⊂ OCj
such that OCj−1

= OCj
/Ij and I2

j = 0. On each Cj ,
we have the following exact sequence of sheaves for the étale topology:

0 → Ij → Gm,Cj
→ r∗Gm,Cj−1

→ 1,

where the coherent ideal Ij is viewed as a sheaf for the étale topology, r is the
closed immersion Cj−1 → Cj and the map Ij → Gm,Cj

is given by x 7→ 1 + x.

For any i, we have H i
ét(Cj , Ij) = Hi

Zar(Cj , Ij) (these properties would hold for any
noetherian scheme C).

Because the Cj ’s are curves, for i ≥ 2, these last groups vanish. Thus

H2
ét(Cj ,Gm) → H2

ét(Cj , r∗Gm,Cj−1
)

is an isomorphism. We have R1r∗(Gm) = 0 because r is a closed immersion and
H1

ét(A,Gm) = Pic(A) = 0 for any local ring A. We also have R2r∗(Gm) = 0,
because H2

ét(A,Gm) = 0 for any one-dimensional strictly henselian local ring A
(combine [GB I], Cor. 6.2 and [GB II], Cor. 2.2). The Leray spectral sequence for
the immersion Cj−1 → Cj and the sheaf Gm now yields

H2
ét(Cj , r∗Gm,Cj−1

) ∼→ H2
ét(Cj−1,Gm)

Thus
H2

ét(Cj ,Gm) ∼→ H2
ét(Cj−1,Gm).

We may now state:
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Theorem 1.7. Let A be a complete local ring and k its residue field. Let π : X →
Spec(A) be a proper morphism whose special fibre X0 is of dimension at most one.

(a) The natural map of Azumaya Brauer groups BrAz(X) → BrAz(X0) is an
isomorphism.

(b) If X is of dimension two, reduced, excellent and such that any finite set of
closed points is contained in an affine open set, then the natural map Br(X) →
Br(X0) induces an isomorphism of the torsion group of Br(X) with Br(X0).

(c) If X is of dimension two and regular, then the natural map Br(X) → Br(X0)
is an isomorphism.

Proof. Combining Lemmas 1.5 and 1.6 yields (a). Statements (b) and (c) follow
from (a) and Lemma 1.2.

We now discuss the second case where we may get hold of the p-part. The key
ingredient here is Artin’s approximation theorem.

Theorem 1.8. Let R be a field or an excellent discrete valuation ring, and let A be
a henselization of an R-algebra of finite type at a prime ideal. Let k be the residue
field. Let π : X → Spec(A) be a proper map whose special fibre X0 → Spec(k) is
of dimension at most one.

(a) The restriction map BrAz(X) → BrAz(X0) is an isomorphism.
(b) If X is of dimension two, reduced and excellent, and any finite set of closed

points is contained in an affine open set, then the natural map Br(X) → Br(X0) in-
duces an isomorphism of the torsion group of Br(X) with the torsion group Br(X0).

(c) If X is of dimension two and regular, then the natural map Br(X) → Br(X0)
is an isomorphism.

Proof. Given a commutative ring A, a covariant functor F from commutative A-
algebras to sets is said to be of finite presentation if it commutes with filtering
direct limits, i.e. given a filtering system Ai of commutative A-algebras, the natural
map lim

−→
F (Ai) → F (lim

−→
Ai) is an isomorphism. For A and k as above, and Â the

completion of A, a special case of Artin’s approximation theorem ([Art1]) says that

for any element ξ̂ ∈ F (Â) there exists an element ξ ∈ F (A) which has the same

image as ξ̂ in F (k) under the obvious reduction maps. In particular, if F (Â) is not
empty, the same holds for F (A).

Given X → Spec(A) as above, and any smooth A-group scheme G over A,
the functor from commutative A-algebras to sets which sends an A-algebra B to
H1

ét(X×AB,GB) is of finite presentation (see [SGA 4], Tome 2, VII 5.9 and Remark
5.14; this also follows from [EGA IV3], Thm. 8.8.2.).

For any n > 0, we have an exact sequence of group schemes over Z

1 → Gm → GLn → PGLn → 1

which induces an exact sequence of group schemes and of étale sheaves

1 → Gm,Y → GLn,Y → PGLn,Y → 1

over any scheme Y . This sequence in turn induces an exact sequence of pointed
Čech cohomology sets (see [Mi] p. 143)

H1
ét(Y,GLn) → H1

ét(Y, PGLn) → BrAz(Y ).
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By Theorem 1.7, the reduction map BrAz(X ×A Â) → BrAz(X0) is injective.
To prove injectivity in (a), it is thus enough to prove that the restriction map

BrAz(X) → BrAz(X ×A Â) is injective. Let c be an element in the kernel of that
map. There exists an integer n > 0 and a class ξ ∈ H1

ét(X,PGLn) such that
the boundary map H1

ét(X,PGLn) → BrAz(X) sends ξ to c ∈ BrAz(X). Let us
introduce the functor Fξ from commutative A-algebras to sets which to an A-algebra
B associates

Fξ(B) = {η ∈ H1
ét(X ×A B,GLn) | η 7→ ξB ∈ H1

ét(X ×A B,PGLn)}.

One again checks that this functor is of finite presentation. From the exact sequence
of sets

H1
ét(X ×A Â, GLn) → H1

ét(X ×A Â, PGLn) → BrAz(X ×A Â)

we conclude that ξÂ is in the image of the first map. Thus Fξ(Â) 6= ∅. By Artin’s
theorem, this implies Fξ(A) 6= ∅. From the exact sequence of sets

H1
ét(X,GLn) → H1

ét(X,PGLn) → BrAz(X)

we conclude c = 0 ∈ BrAz(X).

Let us now show that the map BrAz(X) → BrAz(X0) is surjective. By Theorem

1.7, the reduction map BrAz(X ×A Â) → BrAz(X0) is an isomorphism. Let ĉ ∈
BrAz(X ×A Â) and let ξ̂ ∈ H1

ét(X ×A Â, PGLn) be a lift for some n > 0. Since
the functor B → H1

ét(X ×A B,PGLn) from commutative A-algebras to sets is of
finite presentation, by Artin’s theorem there exists ξ ∈ H1

ét(X,PGLn) such that

the images of ξ and of ξ̂ in H1(X0, PGLn) cöıncide. Thus the image c of ξ under
the boundary map H1

ét(X,PGLn) → BrAz(X) has same image as ĉ when pushed
into BrAz(X0). This completes the proof of (a).

From Lemma 1.2 we get (b) and (c).

We apply the previous theorems in the case where the residue field k is either
separably closed or finite.

Corollary 1.9. Let A be a henselian local ring and k its residue field. Assume
that k is separably closed of characteristic p ≥ 0. Let π : X → Spec(A) be a proper
map whose special fibre X0 → Spec(k) is of dimension at most one. Then:

(a) The torsion subgroup of Br(X) is a p-primary torsion group.

(b) If X is regular, then Br(X) is a p-primary torsion group.

(c) If A is excellent, two-dimensional and integral, with quotient field K, then
the unramified Brauer group Brnr(K) is a p-primary torsion group.

Proof. For any proper curve X0 over a separably closed field, Br(X0) = 0 ([GB
III], Cor. 5.8, p. 132). Statements (a) and (b) immediately follow from Theorem
1.3. Statement (c) follows upon taking a regular model X of Spec(A) and applying
Lemma 1.2.
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Corollary 1.10. Let A be a henselian local ring and k its residue field. Assume
that A is complete, or that it is the henselization of an R-algebra of finite type
at a prime ideal, where R is a field or an excellent discrete valuation ring. Let
π : X → Spec(A) be a proper map whose special fibre X0 → Spec(k) is of dimension
at most one. Assume that k is separably closed. Then:

(a) The group BrAz(X) is trivial.
(b) If X is two-dimensional and regular, then Br(X) = 0.
(c) If A is excellent, two-dimensional and integral, with quotient field K, the

unramified Brauer group Brnr(K) is trivial.

Proof. As above, using Theorem 1.7 and Theorem 1.8.

Corollary 1.11. Let A be a henselian local ring. Assume that its residue field k
is finite of characteristic p. Let π : X → Spec(A) be a proper map whose special
fibre X0 → Spec(k) is of dimension at most one. Then:

(a) The torsion subgroup of Br(X) is a p-primary torsion group.
(b) If X is regular, then Br(X) is a p-primary torsion group.
(c) If A is excellent, two-dimensional and integral, with quotient field K, then

the unramified Brauer group Brnr(K) is a p-primary torsion group.

Proof. For any proper curve X0 over a finite field, Br(X0) = 0 ([GB III], p. 97).
The rest of the proof is as in Corollary 1.9.

Remark. It would be worth comparing this result with those of [Sai1].

Using Theorems 1.7 and 1.8, we similarly obtain:

Corollary 1.12. Let A be a henselian local ring and k its residue field. Assume
that A is complete, or that it is the henselization of an R-algebra of finite type
at a prime ideal, where R is a field or an excellent discrete valuation ring. Let
π : X → Spec(A) be a proper map whose special fibre X0 → Spec(k) is of dimension
at most one. Assume that k is finite. Then:

(a) The group BrAz(X) is trivial.
(b) If X is two-dimensional and regular, then Br(X) = 0.
(c) If A is excellent, two-dimensional and integral, with quotient field K, the

unramified Brauer group Brnr(K) is trivial.

We now consider the case in which the residue field of A is real closed.

Lemma 1.13. Let A be a regular local ring, K its field of fractions and k its
residue field. Let α ∈ Br(A). If α vanishes in Br(R) for every real closed field R
containing K, then its restriction to Br(k) vanishes when pushed over to any real
closed field containing k.

Proof. If k is not formally real, the statement is empty. We therefore assume k
formally real, hence in particular 2 invertible in A.

The first, well-known, step is the reduction to the case of a discrete valuation
ring. Let d = dim(A) ≥ 2. Asssume the theorem has been proved for rings of
dimension at most d − 1. Let t be a regular parameter in the maximal ideal of
A. Let L be the residue field of the discrete valuation ring A(t). Applying the
theorem to A(t), we see that the image of α in Br(L) vanishes in each real closed
field containing L. The ring A/t is a (d− 1)-dimensional regular local ring and its
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fraction field is L. Applying the theorem to the image of α in Br(A/t) yields the
result.

To prove the statement when A is a discrete valuation ring, it is enough to prove
it when A is complete. Since k is assumed formally real, its characteristic is zero,
hence A is isomorphic to k[[t]]. But any embedding of k in a real closed field R may
be extended to an embedding of k((t)) into a real closed field R1 with R ⊂ R1. The
natural map Z/2 = Br(R) → Br(R1) = Z/2 is an isomorphism, which completes
the proof.

Proposition 1.14. Let C be a reduced quasi-projective curve over a field k. Let
f : C ′ → C be its normalization and D the closed subscheme of C defined by the
conductor of f . The canonical homomorphism

Br(C) → Br(C ′)×Br(D)

is injective.

Proof. Since C is of dimension 1 andD is of dimension 0, the statement is equivalent
to : BrAz(C) → BrAz(C

′) × BrAz(D) is injective. Let S ⊂ C be a finite set of
closed points containing at least one point of each component of C and containing
all the points whose local ring is not regular. Let A be the semilocal ring of C at S
and let A′ be its inverse image under f . We have a Milnor patching diagram (see
[Ba], Chapter IX, §5 and in particular Example 5.6)

A //

��

A′

��

A/c // A′/c

where c = {a ∈ A | aA′ ⊆ A} is the conductor of A′ in A. Let A be an Azumaya
algebra over A which becomes trivial over A′ and over A/c. We may assume
that A is of constant rank n2. In this case A is obtained by patching Mn(A′)
and Mn(A/c) with an automorphism α of Mn(A′/c). Since A′ is semilocal, the
canonical map GLn(A′) → GLn(A′/c) is surjective and thus α is induced by an
automorphism of Mn(A′). This implies that A ' Mn(A) and proves the injectivity
of BrAz(A) → BrAz(A

′)×BrAz(A/c). The proof now follows from the commutative
diagram

BrAz(C) //

��

BrAz(C
′)× BrAz(D)

��

BrAz(A) // BrAz(A
′)× BrAz(A/c)

in which the left vertical map is injective by passing to the limit in Lemma 1.1 and
where the bottom map is injective by the above discussion.

Proposition 1.15. Let C be a quasi-projective curve over a real closed field k. If
α ∈ Br(C) vanishes at all k-rational points of C, then it vanishes.

Proof. By Lemma 1.6 we may assume that C is reduced. By Proposition 1.14 it
suffices to show that the images of α in Br(D) and in Br(C ′) are trivial. For Br(D)
this is clear by a zero-dimensional variant of Lemma 1.6 because the reduced scheme
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underlying D is just a set of closed points of C. Since every real point of C′ maps
to a real point of C, the image of α in Br(C ′) is trivial at every real point of C ′,
thus we are reduced to the case of a smooth curve. In this case the proposition was
proved by Witt for k = R and can be deduced from Remark 10.6 in [Kn] for an
arbitrary real closed k.

Remark 1.15.1. For affine singular curves over R this result was proved by
Demeyer and Knus ([DK]). For affine varieties of arbitrary dimension there is a
generalization for suitable higher cohomology groups ([Sch] Thm. 20.2.11 p. 235).

Theorem 1.16. Let A be a henselian local domain, K its quotient field and k its
residue field. Assume that k is a real closed field. Let π : X → Spec(A) be a proper
birational map, where X is regular integral and the special fibre X0 → Spec(k) has
dimension at most one. Let α ∈ Br(X). Assume that for any real closed field R
with K ⊂ R, the image of α in Br(R) vanishes. Then α = 0.

Proof. Since X is regular, Lemma 1.13 implies that, for any real closed field R
and any morphism Spec(R) → X, the inverse image of α on Spec(R) vanishes.
Let α0 be the image of α in Br(X0). It vanishes at all rational points of X0.
Therefore, by Proposition 1.15, α0 vanishes. By Theorem 1.3, the restriction map
Br(X) → Br(X0) is an isomorphism. Hence α = 0 in Br(X).

2. Every algebra is cyclic

Let X be an integral scheme with function field K and let n > 0 be invertible
on X. Given a regular codimension one point x ∈ X with residue field κ(x), there
is a natural (and classical) residue map

∂x : H2
ét(K,µn) = nBr(K) → H1

ét(κ(x),Z/n) .

A class α ∈ nBr(K) is unramified at x if and only if ∂x(α) = 0 ([GB II], Prop.
2.1).

Given a class ξ ∈ nBr(K), the ramification divisor of ξ on X is by definition the
sum

ramX(ξ) =
∑

x

{x} ,

where x runs through the codimension one points where ∂x(ξ) 6= 0 and {x} is the
closure of x in X.

Let us recall the following special case of a very general fact (Kato, [Ka], §1). On
any excellent integral scheme X with field of functions K, given an integer n > 0
invertible on X, there is a natural complex

H2
ét(K,µ

⊗2
n ) →

⊕

x∈X(1)

H1
ét(κ(x), µn) →

⊕

x∈X(2)

Z/n (C) .

The set X(i) is the set of points of codimension i on X. Assume x is a regular point
of codimension one on X. For any a, b ∈ K∗ with cup-product (a, b) ∈ H2

ét(K,µ
⊗2
n ),

the first map in (C) is given by the tame symbol formula

δx(a, b) = (−1)vx(a).vx(b)(avx(b)/bvx(a)) ∈ κ(x)∗/κ(x)∗n.
10



If y is a regular point of codimension one on X and x is a point of codimension
two on X which is a regular point on the closure Y ⊂ X of y, then the map
κ(y)∗/κ(y)∗n = H1(κ(y), µn) → Z/n associated to y and x in (C) is simply the
valuation modulo n associated to the discrete valuation ring OY,x.

Suppose we are given an isomorphism Z/n ' µn over X. Then for any regular
codimension one point x ∈ X, the map

H2
ét(K,µ

⊗2
n ) →

⊕

x∈X(1)

H1
ét(κ(x), µn)

is the residue map ∂x mentioned above.

Theorem 2.1. Let A be an excellent henselian two-dimensional local domain, K
its field of fractions and k its residue field. Assume that k is separably closed. Let
∆ be a central division algebra over K whose class in the Brauer group of K has
order n, prime to the characteristic of k. Then ∆ is a cyclic algebra of index n.

Proof. The assumptions on A allow us to choose an identification of Z/n with µn

over Spec(A).
Let ξ ∈ nBr(K) be the class of ∆. As recalled at the beginning of §1, there exists

a regular model X → Spec(A) of A such that the ramification divisor of ξ is of the
form C + E where C and E are (not necessarily connected) regular closed curves
on X, and C + E has normal crossings. If C + E is empty, i.e. if ξ is unramified
on X, since nBr(X) = 0 (Cor. 1.9), then ξ = 0 and the theorem is clear. We thus
assume C +E not empty.

Let S be a finite set of closed points of X including all points of intersection of C
and E and at least one point of each component of C+E. Since X is projective over
Spec(A), there exists an affine open U ⊂ X containing S. The semi-localization
of U at S is a semi-local regular domain, hence a unique factorization domain.
Thus there exists an f ∈ K∗ such that the divisor of f on X is of the form
divX(f) = C + E + G, where the support of G does not contain any point of
S, hence in particular has no common component with C +E. Let L be the cyclic
field L = K(f1/n). At each generic point of a component of C + E, the extension
L/K is totally ramified of degree n. In particular, L/K is of degree n. To prove
the theorem, it suffices to show that the image ξL of ξ in nBr(L) is zero.

Let X ′ be the normalization of X in L and let π : Y → X ′ be a projective
birational morphism such that Y is regular and integral. Let B be the integral
closure of A in L. The ring B is an excellent henselian two-dimensional local domain
with the same residue field k. By the universal property of the normalization the
composite morphism X ′ → X → Spec(A) factorizes though a projective birational
morphism X ′ → Spec(B), hence induces a birational projective morphism Y →
Spec(B). By Corollary 1.9, nBr(Y ) = 0.

It is thus enough to show that ξL is unramified on Y . Let y ∈ Y be a codimension
one point. We show that ∂y(ξL) = 0. Let x ∈ X be the image of y under the
composite map Y → X ′ → X.

Suppose first that codim(x) = 1. If {x} is not a component of C+E, then ∂x(ξ) =

0, hence ∂y(ξL) = 0. Suppose that D = {x} is a component of C +E. Then f is a
uniformizing parameter of the discrete valuation ring OX,x. The extension L/K is
totally ramified at x. The restriction map Br(K) → Br(L) induces multiplication
by the ramification index on the character groups of the residue fields. Hence ξL is
unramified at y.
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Suppose now that codim(x) = 2. If x does not belong to C or E, then ξ belongs
to Br(OX,x), hence ξL is unramified at y. Suppose x belongs to C but not to E.
Let π ∈ OX,x be a local equation of C at x. Since C is regular we can choose a δ
such that (π, δ) is a regular system of parameters of OX,x. Since the ramification
of ξ in OX,x is only along π, using the complex (C), or rather its restriction over
the local ring OX,x, one finds that ∂π(ξ) ∈ κ(π)∗/κ(π)∗n has image zero under the
map κ(π)∗/κ(π)∗n → Z/n induced by the valuation defined by x on the field κ(π),
which is the fraction field of the discrete valuation ring OX,x/π. Thus ∂π(ξ) is the
class of a unit of OX,x/π, and such a unit lifts to a unit µ of OX,x. Now the residues
of ξ − (µ, π) at all points of codimension one of OX,x are trivial. Since OX,x is a
regular two-dimensional ring, this implies that ξ − (µ, π) is the class of an element
η ∈ Br(OX,x). Now

∂y(ξL) = ∂L((µ, π)) = µvy(π) modulo κ(y)∗n ,

where κ(y) is the residue field of y and µ is the class of µ in κ(y). This class comes
from κ(x) = k, which is separably closed of characteristic prime to n, therefore µ
is an n-th power and ∂y(ξL) = 0.

Suppose now that x belongs to C∩E. There exists a regular system of parameters
(π, δ) defining (C,E) such that f = uπδ, with u ∈ O∗X,x. Since the ramification of

ξ on Spec(OX,x) is only along π and δ, a variant of the above argument using the
complex (C) ([Sal1], Prop. 1.2) shows that one we may write

ξ = η + (π, µ1) + (δ, µ2) + r(π, δ) ,

with µ1, µ2 ∈ O∗X,x, with η ∈ Br(OX,x) and some r ∈ Z. Since f = uπδ, we get

(π, δ) = (π, fu−1π−1) = (π, f) + (π,−u) .
The symbol (π, f) vanishes over L and the other symbols, as in the previous case,
become unramified at y.

Remark. The technique used in the proof is essentially the one used in the papers
[FS], [Sal1] and [Sal2].

Recall a conjecture of Serre: for any semisimple simply connected linear algebraic
group G over a perfect field K of cohomological dimension two, H1(K,G) = 0.

Corollary 2.2. Let A be an excellent henselian two-dimensional local domain, K
its field of fractions and k its residue field. Assume that k is algebraically closed of
characteristic zero. Let G be a semisimple simply connected linear algebraic group
over K without E8-factors. Then H1(K,G) = 0.

Proof. Since any finite field extension of K is the field of fraction of an excellent
henselian two-dimensional local domain whose residue field is algebraically closed of
characteristic zero, a standard argument allows us to assume thatG/K is absolutely
almost simple. By a theorem of Gabber and Kato (see Theorem 3.2 below), the
cohomological dimension of K is two. The statement now follows for groups of type
A1

n (Merkurjev-Suslin, see [BP]) and for all groups of classical type and of type G2

and F4 ([BP]).
By theorem 2.1, the field K has the additional property that a division algebra

over K of exponent n has index n. By Gille’s results ([Gi], §IV.2) this implies
H1(K,G) = 0 for the other exceptional groups except possibly those of type E8.

12



3. Quadratic forms

In this section we shall use the standard notation in the algebraic theory of
quadratic forms ([La]).

Theorem 3.1. Let A be an excellent henselian two-dimensional local domain in
which 2 is invertible, K its field of fractions and k its residue field. Assume that
k is either separably closed or finite. Every quadratic form ϕ of rank 3 or 4 over
K which is isotropic in all completions of K with respect to discrete valuations is
isotropic.

Proof. The isotropy of the rank 3 form <a, b, c> is equivalent to the isotropy of
the rank 4 form <a, b, c, abc>. Thus we may assume that ϕ is 4-dimensional and
after scaling that ϕ =< 1, a, b, abd > with a, b, d ∈ K∗. If d is a square, then ϕ
is the norm form of a quaternion algebra A. The condition that ϕ is isotropic at
all completions implies that A is split at all completions of K. In particular A is
unramified in Br(K) and hence, by Corollaries 1.9 and 1.11, is trivial. In particular,
ϕ is hyperbolic.

Suppose now that d is not a square. Let L = K(
√
d). The field L and the

integral closure B of A in L satisfy the same assumptions as K and A. The form
ϕL over L has trivial discriminant and is isotropic at all completions of L at discrete
valuations. By the previous case, ϕL is hyperbolic. By [La], Ch. 7, Lemma 3.1, the
form ϕ contains a multiple of <1,−d> and, being of discriminant d, also contains
a rank 2 subform of discriminant 1. Hence it is isotropic.

Remark 3.1.1. For A as in Theorem 3.1, any discrete valuation ring R on the
fraction field K is centered on A, i.e., A is contained in R. Indeed, since k is
separably closed or finite, there exists a prime l different from the characteristic of
k such that k∗ = k∗l. Hence, since A is henselian, A∗ = A∗l, hence A∗ = A∗l

n

for
any n > 0. For any x ∈ A∗, the valuation v(x) ∈ Z is thus divisible by arbitrarily
high powers of l, hence v(x) = 0 and A∗ ⊂ R∗ ⊂ R. Now A = A∗ + A∗, hence
A ⊂ R.

Remark 3.1.2. Theorem 3.1 does not in general hold for quadratic forms of rank
2 (this was also observed by Jaworski [Ja]). Let A be as in the theorem, with k
algebraically closed of characteristic not 2. Let X → Spec(A) be a regular model,
and let X0 be the special fibre. By the proper base change theorem ([Mi], VI.2.7),
there is an isomorphism H1(X,Z/2) ' H1(X0,Z/2). One may produce examples
where X0 is the union of smooth projective curves of genus zero Ci, with i ∈ Z/n
(n ≥ 2), Ci intersecting Ci+1 transversally in one point, and Ci ∩ Cj = ∅ for
j /∈ {i− 1, i, i+ 1}. We then have H1(X,Z/2) = H1(X0,Z/2) = Z/2.

Let ξ ∈ H1(X,Z/2) be the nontrivial class. Since X is regular hence normal,
the map H1(X,Z/2) → H1(K,Z/2) = K∗/K∗2 given by restriction to the function
field is injective, hence the image ξK ∈ K∗/K∗2 is nontrivial. On the other hand
let v : K∗ → Z be a discrete valuation on K and let R be the associated valuation
ring. Let Kv be the completion of K at v. By Remark 3.1.1, we have A ⊂ R.
Since X → Spec(A) is proper, there exists a point x of the scheme X on which R
is centered, i.e. the local ring B = OX,x is contained in R and the inclusion is a
morphism of local rings. We claim that ξK has trivial restriction to each K∗v/K

∗2
v .

This will produce an anisotropic quadratic form of rank 2 over K which is isotropic
over each completion Kv. To prove the claim, it is enough to show that the image
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ξκ of ξ under the composite map

H1(X,Z/2) → H1(B,Z/2) → H1(κx,Z/2) → H1(κ,Z/2)

is trivial. If x is of codimension 2 on X, then the residue field κx coincides with
k, hence H1(κx,Z/2) = 0 and the result is clear. Suppose x is a codimension one
point of X which is not on X0. Let Y ⊂ X be the Zariski closure of x in X. This is
a connected one-dimensional scheme which is proper and quasi-finite, hence finite
over Spec(A), hence Y = Spec(T ) where T is a one-dimensional henselian local ring
with residue field k. Hence H1(T,Z/2) = 0. The map H1(X,Z/2) → H1(κx,Z/2)
factors through H1(T,Z/2), hence is trivial. Let us now assume that x is the
generic point of one of the components of X0. By assumption, any such component
is isomorphic to the projective line P1

k. The mapH1(X,Z/2) → H1(κx,Z/2) factors
through the group H1(P1

k,Z/2) = 0, hence is zero.

The following theorem is due independently to Gabber and Kato.

Theorem 3.2. Let A be an excellent henselian two-dimensional local domain, K
its field of fractions and k its residue field. Assume that k is algebraically closed.
Then, for every prime l 6= char(k), cdl(K) = 2.

Proof. See [Sai1], Theorem 5.1.

Corollary 3.3. For A, K and k as in Theorem 3.2, if char(k) 6= 2 any 3-fold
Pfister form over K is split. The group I 3(K) ⊂W (K) vanishes.

Proof. For any field F of characteristic 6= 2 and any a, b, c ∈ F ∗ the form

<<a, b, c>>=<1,−a> ⊗ <1,−b> ⊗ <1,−c>

is split if and only if the element (a)∪ (b)∪ (c) of H3
ét(F,Z/2) vanishes (Merkurjev,

see [Ara2], Proposition 2). In our case, H3
ét(K,Z/2) = 0, whence the first result.

We then have I3K = 0, since I3(K) is spanned by multiple of 3-fold Pfister forms.

Theorem 3.4. Let A be an excellent henselian two-dimensional local domain, K
its field of fractions and k its residue field. Assume that k is algebraically closed
and of characteristic 6= 2. Then every quadratic form of rank at least 5 over K is
isotropic.

Proof. It suffices to prove the theorem for a form ϕ of rank 5. In this case the
form ψ = ϕ ⊥<−det(ϕ)>, having discriminant 1, is similar to a so called Albert
form < a, b,−ab,−c,−d, cd>. We refer to [KMRT], §16 for the theory of Albert
forms. We recall that an Albert form < a, b,−ab,−c,−d, cd> is isotropic if and
only if the biquaternion algebra (a, b) ⊗ (c, d) is not a division algebra. In our
case, by the cyclicity result (Theorem 2.1) no such algebra is a division algebra
and therefore ψ is isotropic. This means that ϕ represents det(ϕ) and hence is
of the form < det(ϕ)>⊥ ϕ0, where ϕ0, having determinant 1, can be written as
det(ϕ)· <u, v, w, uvw> for some u, v, w ∈ K∗. This shows that

ϕ = det(ϕ)· <1, u, v, w, uvw>

is similar to a Pfister neighbour of <<u, v, w>>. But a 3-fold Pfister forms over K,
by Corollary 3.3, contains a 4-dimensional totally isotropic space, which intersects
the underlying space of ϕ in a nontrivial space. This proves that ϕ is isotropic.
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Remark 3.4.1. The same argument would yield a local-global principle for the
isotropy of 5-dimensional forms over the field of fractions of an excellent henselian
two-dimensional local domain with finite residue field, if the following question over
such a field K had a positive answer:

Let D be the tensor product of two quaternion algebras over K. Assume that
D ⊗K Kv is similar to a quaternion algebra over each completion Kv of K at a
rank one discrete valuation. Is D similar to a quaternion algebra over K ?

Proposition 3.5. Let Y be an irreducible algebraic surface over a finite field F

and let A be a local domain which is the henselization of Y at a closed point. Let
K be the fraction field of A. For any integer n prime to the characteristic of F, the
map H3(K,µ⊗2

n ) → ∏
v H

3(Kv, µ
⊗2
n ), where v runs through the discrete valuations

of K, is injective.

Proof. We shall prove an a priori stronger statement. Let X → Spec(A) be a
regular model of A. We claim that the group H0(X,H3(µ⊗2

n )) vanishes.
Note that since X is regular and essentially of finite type over a field, the Bloch-

Ogus theory applies (see [BO], [CT]). We therefore have an exact sequence

H3(X,µ⊗2
n ) → H0(X,H3(µ⊗2

n )) → CH2(X)/n

(see [CT] (3.10)). The only codimension two points on X are the closed points
of the special fibre X0. Given any such point M , one may find an integral curve
Y ⊂ X which is not contained in X0 and on which M is a regular point (indeed
the local ring at M is a two-dimensional regular local ring). This regular integral
curve Y is proper and quasifinite, hence finite over Spec(A). Thus Y is affine,
Y = Spec(T ). By one of the definitions of a henselian local ring, T is local, hence
is a discrete valuation ring. Hence on this curve M is rationally equivalent to zero,
hence also on X.

The above exact sequence now reduces to a surjective map

H3(X,µ⊗2
n ) → H0(X,H3(µ⊗2

n )).

Going over to multiples of n prime to the characteristic of F, and passing to the
direct limit, we obtain a commutative diagram

H3(X,µ⊗2
n ) //

��

H0(X,H3(µ⊗2
n ))

��

H3(X,Q/Z′(2)) // H0(X,H3(Q/Z′(2)))

Here for any j ≥ 0, we let Q/Z′(j) be the direct limit of all µ⊗j
n for n running

through the integers prime to the characteristic of F. The map H0(X,H3(µ⊗2
n )) →

H0(X,H3(Q/Z′(2))) is injective: indeed, the map H3(K,µ⊗2
n ) → H3(K,Q/Z′(2))

is injective by the Merkurjev-Suslin theorem. To prove our claim, it is enough to
show that the group H3(X,Q/Z′(2)) vanishes. By the proper base change theorem
([Mi], VI.2.7), we have H 3(X,Q/Z′(2)) ' H3(X0,Q/Z

′(2))). The Hochschild-Serre
spectral sequence for the curve X0 over the finite field F yields an isomorphism
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H3(X0,Q/Z
′(2)) ' H1(F, H2(X0,Q/Z

′(2))). Because the Brauer group of the (pos-
sibly singular) proper curve X0 is trivial ([GB III], Cor. 5.8, p. 132), we have

Pic(X0)⊗Q/Z′(1) ' H2(X0,Q/Z
′(1))).

Thus H1(F, H2(X0,Q/Z
′(2))) = H1(F, P ⊗ Q/Z′(1)) for P = Pic(X0). Now for

any discrete Galois module P over F, we have H1(F, P⊗Q/Z′(1)) = 0. Let us recall
the proof of this well-known lemma: reduce to P finitely generated, use the fact
that F is of cohomological dimension 1 to reduce to the case where P a permutation
lattice, use Shapiro’s lemma and finally use H1(F1,Q/Z

′(1)) ' F∗1 ⊗Q/Z′ = 0 for
any finite extension F1 of F.

Remark 3.5.1. Proposition 3.5 should be compared with Theorem 5.2 of Saito
[Sai2]. When A is normal, Saito’s theorem computes the kernel of the map

H3(K,µ⊗2
n ) →

∏

v

H3(Kv, µ
⊗2
n )

when the product is restricted to the valuations given by primes of height one on
A. That kernel need not be zero.

Theorem 3.6. Let Y be an algebraic surface over a finite field F of characteristic
different from 2. Let A be a local domain which is the henselization of Y at a closed
point. Let K be the fraction field of A. The map I 2(K) → ∏

v I
2(Kv), where v

runs through the discrete valuations of K, is injective.

Proof. By Merkurjev’s theorem, the classical invariant e2
K : I2(K) → H2(K,Z/2)

has kernel I3(K). By Corollary 1.11, the map H 2(K,Z/2) → ∏
v H

2(Kv,Z/2) is
an injection. Hence the kernel of I2(K) → ∏

v I
2(Kv) is contained in the kernel

of I3(K) → ∏
v I

3(Kv). The field K is a C3-field, hence I4(K)=0. By Prop. 3.1
of [AEJ], this implies that the Arason invariant e3

K : I3(K) → H3(K,Z/2) is in-
jective. Proposition 3.5 shows that H3(K,Z/2) → ∏

v H
3(Kv,Z/2) is an injection.

Therefore the kernel of I3(K) → ∏
v I

3(Kv) is zero and the theorem follows.

4. The real case

A quadratic form ϕ over a field K is said to be torsion if, for some integer n, the
form n · ϕ = ϕ ⊥ · · · ⊥ ϕ is hyperbolic. By a well-known theorem of Pfister, ϕ is
torsion if and only if ϕR is hyperbolic for every real closed extension K ⊂ R.

By a result of Arason (see [AEJ], Lemma 2.2), for an element ξ ∈ Hn
ét(K,Z/2),

ξR is zero in Hn
ét(R,Z/2) for all real closed extensions K ⊂ R if and only if there

exists a natural integer i such that the cup-product ξ ∪ (−1) ∪ · · · ∪ (−1) is zero in
Hn+i

ét (K,Z/2); here (−1) denotes the class of −1 in K∗/K∗2 = H1(K,Z/2). We
say that such a class is (−1)-torsion.

Theorem 4.1. Let A be an excellent henselian two-dimensional local domain, K
its field of fractions and k its residue field. Assume that k is real closed. Every
(−1)-torsion element ξ ∈ H2

ét(K,Z/2) is the class of a quaternion algebra.

Proof. Let K = K(
√
−1). By Theorem 3.2, the field K has cohomological dimen-

sion 2. Consider the long exact cohomology sequence

· · · → H i
ét(K,Z/2)

Cor
K/K−−−−−→ Hi

ét(K,Z/2)
∪(−1)−−−−→ Hi+1

ét (K,Z/2) → · · ·
16



(see [Ara1], Corollary 4.6) where CorK/K denotes the corestriction map. Since

Hi
ét(K,Z/2) = 0 for i ≥ 3, the group H3

ét(K,Z/2) is (−1)-torsion free. This
implies ξ ∪ (−1) = 0, hence from the same sequence we conclude that there exists

a ξ̃ ∈ H2
ét(K,Z/2) such that

CorK/K(ξ̃) = ξ .

Resolution of singularities and uninhibited blowing up yield an integral regular
scheme X and a projective birational morphism π : X → Spec(A) such that the
ramification locus ramX(ξ) of ξ on X is contained in C +E with C and E regular
curves with normal crossings ([Sh], Theorem, page 38 and Remark 2, page 43).

Similarly, one can ensure that on ramX(ξ̃) ⊂ C +E on X = X ×Z Spec(Z(
√
−1)),

where C and E are the preimages of C and E. Since the projection X → X is
étale, C and E are also regular, with normal crossings. As in the proof of Theorem

2.1, we can find an f ∈ K∗ such that, ξ̃K(
√

f) is zero in Br(K(
√
f)). From the

commutative diagram

H2
ét(K,Z/2) //

��

H2
ét(K(

√
f),Z/2)

��

H2
ét(K,Z/2) // H2

ét(K(
√
f),Z/2)

we see that ξK(
√

f) = 0. This proves that ξ is the class of a quaternion algebra.

Theorem 4.2. Let A be an excellent henselian two-dimensional local domain, K
its field of fractions and k its residue field. Assume that k is real closed. Then
every 4-dimensional torsion form over K which is isotropic in each completion
with respect to a discrete valuation of K is isotropic.

Proof. Let ϕ be such a form and let d be its discriminant. Let L = K(
√
d). It

suffices to show that ϕL is isotropic (see [La], chap. 7, Lemma 3.1). Scaling ϕL we
may assume that it is of the form <1,−a,−b, ab>, hence it suffices to show that
the associated quaternion algebra (a, b)L is trivial. Let B be the integral closure of
A in L and π : X → Spec(B) a projective birational morphism, with X regular and
integral. The quaternion algebra (a, b) is unramified at each codimension one point
of X because it is trivial in all completions with respect to the discrete valuations of
L. By Lemma 1.2(c), it comes from a class α ∈ Br(X). If X0 is the closed fiber of
π, by Theorem 1.3 we have Br(X) ∼→ Br(X0); thus, to show that α = 0 it suffices
to show that its restriction to X0 is trivial. By Proposition 1.15 it suffices to show
that α vanishes at all real points of X0. Now, the torsion assumption on ϕ implies
that (a, b)L vanishes at all real closures of L. By Lemma 1.13 this implies that it
also vanishes at all real closed points of X, in particular at all rational points of
X0.

Proposition 4.3. Let A be an excellent henselian two-dimensional local domain,
K its field of fractions and k its residue field. Assume that k is real closed. Then
every 6-dimensional torsion form over K is isotropic.

Proof. Let ϕ =<a, b, c, d, e, f> be a 6-dimensional torsion form. For any real closed
extension R of K the discriminant of ϕR is −1, hence ψ =<a, b, c, d, e,−abcde> is
torsion as well. Now, ψ is a scalar multiple of a torsion Albert form. By Theorem
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4.1 and the basic property of Albert forms, such forms are isotropic, hence ψ is
isotropic. In this case < a, b, c, d, e > is a neighbour of a 3-fold Pfister form χ.
This Pfister form is isotropic hence hyperbolic at all real closures of K, hence it is
torsion. But, as we already saw in the proof of 4.1, H3

ét(K,Z/2) is torsion free and
thus χ is trivial. This implies that <a, b, c, d, e> is isotropic.

Theorem 4.4. Let A be an excellent henselian two-dimensional local domain, K
its field of fractions and k its residue field. Assume that k is real closed. Then
every torsion form ϕ over K of even rank ≥ 6 is isotropic.

Proof. By Proposition 4.3 we may assume that ϕ is of rank at least 8. Its Clifford
invariant is torsion, hence, by Theorem 4.1, this Clifford invariant is represented
by a torsion 2-fold Pfister form ψ.The form ϕ ⊥ −ψ is a torsion form in I3(K).
Since K(

√
−1) has cohomological dimension 2, I3(K(

√
−1)) = 0. By Prop. 1.24

of [AEJ], this implies that I3(K) is torsion free hence ϕ ⊥ ψ is hyperbolic and ϕ,
being of rank at least 8, must be isotropic.
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