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Abstract. Quadratic forms over division algebras over local or global fields of
characteristic 2 are classified by an invariant derived from the Clifford algebra
construction.

Quadratic forms over skew fields were defined by Tits in [14] to investigate twisted
forms of orthogonal groups in characteristic 2, and by C.T.C. Wall [16] in a topo-
logical context. The purpose of this paper is to obtain a classification of these
generalized quadratic forms—which we call simply quadratic forms—over finite-
dimensional division algebras over local or global fields of characteristic 2 by means
of “classical” invariants.

When the characteristic of the base field is different from 2, the corresponding
classification theorem is due to Bartels [3, Satz 5] over global fields and Tsukamoto
[13, p. 363] over local fields. We define in section 2 a relative invariant of quadratic
forms which plays the same rôle as the invariant introduced by Bartels in character-
istic different from 2. The methods are different, however: our definition is based
on Tits’ construction of Clifford algebras, whereas Bartels uses Galois cohomology
with coefficients µ2 = {±1}, which is not available in characteristic 2.

Another feature of the paper is that we systematically consider quadratic spaces
from the viewpoint of their endomorphism algebra. We show in section 1 that
every nonsingular quadratic form on a vector space V induces on its endomorphism
algebra a quadratic pair, as defined in [10, (5.4)], so that quadratic pairs on EndV
correspond bijectively to quadratic forms up to a scalar factor. In section 2, we
discuss Arf invariants and Clifford algebras of quadratic forms, and use them to
define the analogue of the Bartels invariant mentioned above. Section 3 collects
results in the literature about the Witt group of (ordinary) quadratic forms over a
field, and its behaviour under scalar extension to a separable quadratic extension.
The same theme is discussed for generalized quadratic forms in section 4, where a
criterion for a (generalized) quadratic form to become hyperbolic over a separable
quadratic extension is given in terms of the adjoint quadratic pair. This result is
crucial for the classification theorems of section 5, since the main idea of the proof
(as in the work [4] of Bayer–Fluckiger and Parimala, which was the main inspiration
for this part) is to reduce the orthogonal case to the unitary case by a quadratic
extension. Our main classification theorems are the following:
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Theorem A. Let F be a local or global field of characteristic 2, and let q, q′

be nonsingular quadratic forms of the same dimension over a central division F -
algebra. If q, q′ have the same Arf invariant and if the relative invariant c(q, q′)
vanishes, then q and q′ are isometric.

Theorem B. Let F be a local or global field of characteristic 2, and let (σ, f),
(σ′, f ′) be quadratic pairs on a central simple F -algebra A. If the Clifford algebras
C(A, σ, f) and C(A, σ′, f ′) are F -isomorphic, then (σ, f) and (σ′, f ′) are conjugate.

Our techniques can be applied also in characteristic different from 2, to yield
similar results (except in section 3: the transfer map tr∗ is not onto if charF 6=
2). Indeed, it would be possible to give an exposition of our results valid in all
characteristics; we refrained from this option for the sake of clarity, and because all
these results are already known in characteristic different from 2: we refer to [10,
(4.2)] for the relation between hermitian forms and their adjoint involution, to [5,
Theorem 3.3] for the hyperbolicity criterion, to [4, Theorem 4.4.1] and [3, Satz 5]
for the classification theorem for hermitian forms over division algebras and to [11,
Proposition 6] for the classification of quadratic pairs. (In characteristic different
from 2, a quadratic pair is uniquely determined by its orthogonal involution.)

Thus, we assume throughout the paper that the characteristic of the base field
F is 2. We let ℘(F ) = {x2−x | x ∈ F} and for α ∈ F , β ∈ F× we denote by [α, β)
the quaternion F -algebra generated by two elements i, j subject to i2 − i = α,
j2 = β and ji = ij + j. Abusing notations, we also denote by [α, β) the image of
this algebra in the Brauer group Br(F ).

1. Quadratic forms and quadratic pairs

Throughout this section, we let D be a finite-dimensional central division algebra
over a field F of characteristic 2, and let V be a finite-dimensional right vector space
over D. We assume D carries an involution θ which is the identity on F and let

Sym(D, θ) = {x ∈ D | θ(x) = x}(= {x ∈ D | θ(x) = −x}),

Alt(D, θ) = {x− θ(x) | x ∈ D}(= {x+ θ(x) | x ∈ D}).

Following [15], [16] (see also [9, Chapter 14]), we call quadratic form on V any pair
(ψ, q) where

ψ : V × V → D

is a hermitian form with respect to θ, and

q : V → D/Alt(D, θ)

is a map from V to the quotient of the additive group of D by Alt(D, θ) subject to
the following conditions:

(a) q(x + y)− q(x) − q(y) = ψ(x, y) + Alt(D, θ) for x, y ∈ V ;
(b) q(xλ) = θ(λ)q(x)λ for x ∈ V and λ ∈ D.

1.1. Proposition. Let (ψ, q) be a quadratic form on V .

1. The hermitian form ψ is uniquely determined by q through condition (a).
2. For all x ∈ V ,

ψ(x, x) = q(x) + θ
(

q(x)
)

,

where the right side is meant to be κ + θ(κ) for any representative κ ∈ D of
q(x) ∈ D/Alt(D, θ).
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In view of 1, we shall sometimes denote a quadratic form (ψ, q) simply by q.

Proof. 1. If ψ′ is another hermitian form satisfying (a), then ψ −ψ ′ is a hermitian
form with values in Alt(D, θ). Since the set of values of a hermitian form is either
{0} or D, and since D 6= Alt(D, θ), we must have ψ − ψ ′ = 0.

2. Let (e1, . . . , en) be a basis of V and pick gi ∈ D such that q(ei) = gi+Alt(D, θ)
for all i = 1, . . . , n. There is a unique sesquilinear form g : V ×V → D with respect
to θ such that

g(ei, ej) =











ψ(ei, ej) for i < j;

gi for i = j;

0 for i > j.

Using (a) and (b), it is easily verified that

q(x) = g(x, x) + Alt(D, θ) for all x ∈ V ,(1)

hence for all x, y ∈ V ,

ψ(x, y) ≡ g(x, y) + g(y, x) ≡ g(x, y) + θ
(

g(y, x)
)

mod Alt(D, θ).

By uniqueness of ψ (part 1 of the proof), it follows that

ψ(x, y) = g(x, y) + θ
(

g(y, x)
)

for all x, y ∈ V .(2)

Part 2 of the proposition follows from (1) and (2).

Part 2 of the proposition shows that ψ is trace-valued (alternating, in the ter-
minology of [10, §4.A]), i.e. ψ(x, x) ∈ Alt(D, θ) for all x ∈ V .

A quadratic form (ψ, q) on V is called nonsingular if the hermitian form ψ is
nonsingular, i.e. if x = 0 is the only vector such that ψ(x, y) = 0 for all y ∈ V . We
may then consider the adjoint involution σψ on EndD V defined by the equation

ψ
(

x, g(y)
)

= ψ
(

σψ(g)(x), y
)

for x, y ∈ V and g ∈ EndD V .

1.2. Corollary. If (ψ, q) is a nonsingular quadratic form on V , the adjoint invo-
lution σψ is symplectic.

Proof. This readily follows from the fact that ψ is trace-valued, by [10, (4.2)].

Since symplectic involutions exist only on even-degree algebras, it follows that
deg EndD V is even or, equivalently, degD dimD V is even, if V carries a nonsingular
quadratic form.

Consider now the left D-vector space θV defined by

θV = {θv | v ∈ V }

with the operations

θ(v + w) = θv + θw and d · θv = θ
(

vθ(d)
)

for v, w ∈ V and d ∈ D. We may form the tensor product V ⊗D
θV , which is just

a vector space over the center F of D, and consider the F -linear involution ε on
V ⊗D

θV defined by

ε(v ⊗ θw) = w ⊗ θv.

Let Sym(V ⊗D
θV, ε) denote the F -vector space of symmetric tensors, i.e.

Sym(V ⊗D
θV, ε) = {ξ ∈ V ⊗D

θV | ε(ξ) = ξ}.
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For the following statement, we let TrdD denote the reduced trace on D. Recall
from [10, (2.3)] that Sym(D, θ) and Alt(D, θ) are orthogonal for the bilinear form
(x, y) 7→ TrdD(xy) on D. Therefore, even though the map q takes its values in
D/Alt(D, θ), the scalar TrdD

(

q(v)d
)

is well-defined for v ∈ V and d ∈ Sym(D, θ).

1.3. Proposition. Let (ψ, q) be a quadratic form on V . There is a unique F -linear
map

ρq : Sym(V ⊗D
θV, ε) → F

such that for all v ∈ V , d ∈ Sym(D, θ),

ρq(vd⊗
θv) = TrdD

(

q(v)d
)

(3)

and for all u, v ∈ V ,

ρq(u⊗
θv + v ⊗ θu) = TrdD

(

ψ(u, v)
)

.(4)

Proof. Let (e1, . . . , en) be a basis of V . Every symmetric tensor ξ can be uniquely
written in the form

ξ =
∑

1≤i≤n

eidi ⊗
θei +

∑

1≤i<j≤n

(

eidij ⊗
θej + ejθ(dij)⊗

θei
)

for some di ∈ Sym(D, θ), dij ∈ D. We let

ρq(ξ) =
∑

1≤i≤n

TrdD
(

q(ei)di
)

+
∑

1≤i<j≤n

TrdD
(

ψ(eidij , ej)
)

.

Computation shows that ρq satisfies (3) and (4). Uniqueness is clear since elements
of the form vd⊗ θv, u⊗ θv + v ⊗ θu span Sym(V ⊗D

θV, ε).

Using Proposition 1.3, we can define the adjoint quadratic pair of a nonsingular
quadratic form. Recall from [10, (5.4)] that a quadratic pair on a central simple
F -algebra A of degree n is a pair (σ, f) where σ : A → A is an involution of the
first kind such that the F -vector space Sym(A, σ) has dimension 1

2n(n+ 1), and

f : Sym(A, σ) → F

is a linear map such that

f
(

x+ σ(x)
)

= TrdA(x) for all x ∈ A.(5)

This definition can be made in arbitrary characteristic. In characteristic 2, the
condition on the dimension of Sym(A, σ) is satisfied by every involution of the
first kind. However, in a quadratic pair (σ, f) the involution σ must be symplectic
because (5) implies that the reduced trace of every symmetric element vanishes.

Let (ψ, q) be a nonsingular quadratic form on a vector space V as in the beginning
of this section. We may use ψ to define an F -linear map ϕψ : V ⊗D

θV → EndD V
by

ϕψ(u⊗ θv)(w) = uψ(v, w)(6)

for u, v, w ∈ V . Since ψ is nonsingular, the map ϕψ is a bijection (see [10, (5.1)]).
Moreover, for u, v ∈ V we have

σψ
(

ϕψ(u⊗ θv)
)

= ϕψ(v ⊗ θu)

and

TrdEndD V

(

ϕψ(u⊗ θv)
)

= TrdD
(

ψ(v, u)
)

,(7)
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see [10, (5.1)]. Therefore, ϕψ restricts to a one-to-one correspondence

Sym(V ⊗D
θV, ε)

∼
→ Sym(EndD V, σψ).

We may then define a linear map

fq : Sym(EndD V, σψ) → F

by fq(s) = ρq
(

ϕ−1
ψ (s)

)

, where ρq is the map of Proposition 1.3.

1.4. Proposition. With the notation above, (σψ , fq) is a quadratic pair on EndD V .

Proof. It suffices to show

fq
(

g + σψ(g)
)

= TrdEndD V (g) for g ∈ EndD V .

Using the bijection ϕψ, this amounts to proving that for all ξ =
∑

i ui ⊗
θvi ∈

V ⊗D
θV ,

ρq
(

ξ + ε(ξ)
)

=
∑

i

TrdD
(

ψ(vi, ui)
)

.

This readily follows from property (4) of ρq , since

ξ + ε(ξ) =
∑

i

(ui ⊗
θvi + vi ⊗

θui).

The quadratic pair (σψ , fq) is called the adjoint quadratic pair of the nonsingular
quadratic form (ψ, q).

If (ψ, q) is a quadratic form and λ ∈ F , we may define a quadratic form (λψ, λq)
in the natural way: for v, w ∈ V we set

(λψ)(v, w) = λψ(v, w) and (λq)(v) = λq(v).

If (ψ, q) is nonsingular and λ 6= 0, it is clear from the definition of the adjoint
involution that σλψ = σψ. Moreover, the maps ϕψ , ϕλψ : V ⊗D

θV → EndD V are
related by ϕλψ = λϕψ , while ρλq = λρq, hence

fλq = ρλq ◦ ϕ
−1
λψ = ρq ◦ ϕ

−1
ψ = fq.

1.5. Theorem. Each quadratic pair on EndD V is adjoint to a nonsingular qua-
dratic form (ψ, q) on V , which is uniquely determined up to a scalar factor in F×.

Proof. Using a basis of V , we may identify V with Dn and EndD V with the matrix
algebra Mn(D). Let ∗ be the involution on Mn(D) defined by

(aij)
∗
1≤i,j≤n =

(

θ(aij)
)t

1≤i,j≤n
.

As pointed out in1 [10, (5.8)], for every quadratic pair (σ, f) on Mn(D), there is a
matrix a ∈Mn(D) such that a+ a∗ is invertible and

σ(g) = (a+ a∗)−1g∗(a+ a∗) for all g ∈Mn(D),

f(s) = TrdMn(D)

(

(a+ a∗)−1as
)

for all s ∈ Sym
(

Mn(D), σ
)

.

Define a hermitian form ψ : Dn ×Dn → D by

ψ(v, w) = θ(v)t · (a+ a∗) · w

1It is assumed in [10, (5.8)] that the involution ∗ is orthogonal. This hypothesis is not necessary
in characteristic 2.
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for v, w ∈ Dn (viewed as column vectors) and a map q : Dn → D/Alt(D, θ) by

q(v) = θ(v)t · a · v + Alt(D, θ).

It is easily seen that (ψ, q) is a nonsingular quadratic form on Dn, and that σ is the
adjoint involution σψ with respect to ψ. To show that f = fq, we use the bijection

ϕψ : Dn ⊗D
θ(Dn)

∼
→ EndDD

n = Mn(D).

Since Sym
(

Mn(D), σ
)

is spanned by elements of the form ϕψ(vd ⊗ θv) and

ϕψ(u⊗ θv + v ⊗ θu) with u, v ∈ V and d ∈ Sym(D, θ), it suffices to show

ρq(vd ⊗
θv) = TrdMn(D)

(

(a+ a∗)−1aϕψ(vd⊗ θv)
)

(8)

for v ∈ V and d ∈ Sym(D, θ), and

ρq(u⊗
θv + v ⊗ θu) = TrdMn(D)

(

(a+ a∗)−1aϕψ(u⊗ θv + v ⊗ θu)
)

(9)

for u, v ∈ V .
It is easily verified that mϕψ(u ⊗ θv) = ϕψ

(

(mu) ⊗ θv
)

for m ∈ Mn(D) and u,
v ∈ Dn. Therefore, by (7) it follows that the right side of (8) is

TrdMn(D)

(

ϕψ
(

(a+ a∗)−1avd⊗ θv
))

= TrdD
(

ψ(v, (a+ a∗)−1avd)
)

.

By definition of ψ and q, this last expression is equal to

TrdD
(

θ(v)tavd
)

= TrdD
(

q(v)d
)

,

proving (8). Similarly, the right side of (9) is

TrdD
(

ψ(v, (a+ a∗)−1au) + ψ(u, (a+ a∗)−1av)
)

= TrdD
(

θ(v)tau+ θ(u)tav
)

.

Since θ(v)tau = θ
(

θ(u)ta∗v
)

and TrdD ◦θ = TrdD, the right side is equal to

TrdD
(

θ(u)t(a+ a∗)v
)

= TrdD
(

ψ(u, v)
)

,

hence (9) is proved.
To complete the proof, suppose a quadratic pair (σ, f) on EndD V is adjoint to

two quadratic forms (ψ, q) and (ψ′, q′). Since the involution σ is adjoint to a unique
hermitian form up to a scalar factor, by [10, (4.2)], we may assume ψ ′ = ψ, and
it remains to show q = q′. Using the bijection ϕψ and (3), we have for v ∈ V and
d ∈ Sym(D, θ)

TrdD
(

q(v)d
)

= f
(

ϕψ(vd⊗ θv)
)

= TrdD
(

q′(v)d
)

.

Therefore, if κ (resp. κ′) is a representative in D of q(v) ∈ D/Alt(D, θ) (resp. of
q′(v) ∈ D/Alt(D, θ)), we have TrdD

(

(κ − κ′)d
)

= 0 for all d ∈ Sym(D, θ), hence
κ− κ′ ∈ Alt(D, θ) by [10, (2.3)]. Therefore, q = q ′.

To complete this section, we compare the Witt index of a quadratic form (as
defined for instance in [15, p. 125]) and the Witt index of the adjoint quadratic
pair, defined in [10, §6.A].

Let (ψ, q) be a nonsingular quadratic form on V , and let (σψ , fq) be the adjoint
quadratic pair on EndD V . Recall from [10, (1.12)] that every right ideal I ⊂
EndD V is of the form

I = HomD(V, U) = {g ∈ EndD V | g(V ) ⊂ U}
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for some uniquely determined subspace U ⊂ V . The reduced dimension of a right
ideal I is defined by

rdim I =
dimF I

degD
,

so rdimHomD(V, U) = degD dimD U .
The following proposition readily follows from [10, (6.2)]:

1.6. Proposition. The subspace U ⊂ V is totally isotropic for ψ (i.e. ψ(u, u′) = 0
for all u, u′ ∈ U) if and only if the right ideal HomD(V, U) is isotropic for σψ, i.e.
σψ(g)h = 0 for all g, h ∈ HomD(V, U).

Let w(V, ψ) be the Witt index of ψ and w(EndD V, σψ) be the Witt index of σψ,
i.e.

w(V, ψ) = max{dimD U | U ⊂ V totally isotropic subspace for ψ},

w(EndD V, σψ) = {rdim I | I ⊂ EndD V totally isotropic right ideal for σψ}.

From Proposition 1.6, it follows that

w(EndD V, σψ) = {k degD | 0 ≤ k ≤ w(V, ψ)}.

There are corresponding results for quadratic forms:

1.7. Proposition. The subspace U ⊂ V is totally isotropic for (ψ, q) (i.e. q(u) = 0
for all u ∈ U) if and only if the right ideal HomD(V, U) is isotropic for (σψ, fq),
i.e. σψ(g)h = 0 for all g, h ∈ HomD(V, U) and fq(g) = 0 for all g ∈ HomD(V, U)
such that σψ(g) = g.

Proof. Let ϕψ : V ⊗D
θV → EndD V be the bijection (6). Suppose first HomD(V, U)

is isotropic for (σψ , fq). For u ∈ U and d ∈ Sym(D, θ) we have ϕψ(ud ⊗ θu) ∈
HomD(V, U) ∩ Sym(EndD V, σψ), hence

fq
(

ϕψ(ud⊗ θu)
)

= 0.

However, by definition of fq and (3), we have

fq
(

ϕψ(ud⊗ θu)
)

= ρq(ud⊗
θu) = TrdD

(

q(u)d
)

,

hence TrdD
(

q(u)d
)

= 0 for all d ∈ Sym(D, θ), and therefore q(u) = 0 inD/Alt(D, θ),
proving that U is isotropic for (ψ, q).

Conversely, suppose U is isotropic for (ψ, q), and let (u1, . . . , ur) be a basis of
U . Every g ∈ HomD(V, U) can be written

g = ϕψ

(

r
∑

i=1

ui ⊗
θvi

)

for some v1, . . . , vr ∈ V . Then

σψ(g) = ϕψ

(

r
∑

i=1

vi ⊗
θui

)

,

hence the image of σψ(g) is the span of v1, . . . , vr. Therefore, if σψ(g) = g we
must have v1, . . . , vr ∈ U , and it follows that g can be written in the form

g = ϕψ

(

∑

1≤i≤r

uidi ⊗
θui +

∑

1≤i<j≤r

(uidij ⊗
θuj + ujθ(dij)⊗

θui)
)
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for some di ∈ Sym(D, θ) and some dij ∈ D. In order to prove that fq(g) = 0 for all
g ∈ HomD(V, U) ∩ Sym(EndD V, σψ), it thus suffices to show that

fq
(

ϕψ(ud⊗ θu)
)

= 0

for all u ∈ U , d ∈ Sym(D, θ), and

fq
(

ϕψ(u⊗ θu′ + u′ ⊗ θu)
)

= 0

for all u, u′ ∈ U . These equalities readily follow from the hypothesis that U is
isotropic for (ψ, q), since

fq
(

ϕψ(ud⊗ θu)
)

= TrdD
(

q(u)d
)

and

fq
(

ϕψ(u⊗ θu′ + u′ ⊗ θu)
)

= TrdD
(

ψ(u, u′)
)

.

The condition that σψ(g)h = 0 for all g, h ∈ HomD(V, U) follows from Proposi-
tion 1.6, since U is isotropic for ψ.

Let w(V, q) be the Witt index of q and w(EndD V, σψ, fq) be the Witt index of
(σψ, fq), defined by

w(V, q) = max{dimD U | U ⊂ V totally isotropic subspace for q},

w(EndD V, σψ , fq) = {rdim I | I ⊂ EndD V totally isotropic right ideal for (σψ , fq)}.

From Proposition 1.6, it follows that

w(EndD V, σψ , fq) = {k degD | 0 ≤ k ≤ w(V, ψ, fq)}.

1.8. Corollary. For a nonsingular quadratic form (ψ, q) on a vector space V , the
following conditions are equivalent:

(a) (ψ, q) is hyperbolic, i.e. V contains a totally isotropic subspace U with
dimD U = 1

2 dimD V ;
(b) (σψ , fq) is hyperbolic, i.e. EndD V contains an isotropic right ideal I with

rdim I = 1
2 deg EndD V ;

(c) EndD V contains an idempotent e such that

fq(s) = TrdEndD V (es) for all s ∈ Sym(EndD V, σψ).

Proof. The equivalence of (a) and (b) follows from Proposition 1.7. The equivalence
of (b) and (c) is proved in [10, (6.14)]. (To see that (c) ⇒ (a), one can take for U
the image of e.)

For later use, we also mention the corresponding statement for hermitian forms
(which can be found in [10, (6.7)]):

1.9. Corollary. For a nonsingular hermitian form ψ on a vector space V , the
following conditions are equivalent:

(a) ψ is hyperbolic, i.e. V contains a totally isotropic subspace U with dimD U =
1
2 dimD V ;

(b) σψ is hyperbolic, i.e. EndD V contains an isotropic right ideal I with rdim I =
1
2 deg EndD V ;

(c) EndD V contains an idempotent e such that

σψ(e) = 1− e.
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2. Invariants of quadratic forms

Throughout this section, we use the same notation as in section 1. Thus, D is
a finite-dimensional central division algebra over a field F of characteristic 2, θ is
an involution on D which is the identity on F , and V is a finite-dimensional right
vector space over D.

The Arf invariant Arf(q) and the (even) Clifford algebra Cl(q) of any nonsingular
quadratic form q on V are defined by Tits in [14, §4]. We have Arf(q) ∈ F/℘(F ), and
the center of the algebra Cl(q) is a quadratic étale algebra isomorphic to F [t]/(t2−
t−δ), where δ ∈ F is a representative of Arf(q), see [14, Corollaire 5]. On the other
hand, the discriminant disc(σ, f) and the Clifford algebra C(A, σ, f) of a quadratic
pair (σ, f) on a central simple F -algebra A are defined in [10, (7.7)].

2.1. Proposition. Let (ψ, q) be a nonsingular quadratic form on V and let (σψ , fq)
be the adjoint quadratic pair on EndD V . Then

Arf(q) = disc(σψ , fq) and Cl(q) ' C(EndD V, σψ, fq).

Proof. It suffices to consider the Clifford algebras, since their centers yield the Arf
invariant and the discriminant respectively. Using a basis of V , we identify V
with Dn and EndD V with the matrix algebra A = Mn(D). As in the proof of
Theorem 1.5, let ∗ be the involution on A defined by u∗ = θ(u)t for u ∈ A, i.e.,

(uij)
∗
1≤i,j≤n =

(

θ(uij)
)t

1≤i,j≤n
.

The quadratic form q on Dn has the form

q(x) = θ(x)t · a · x

for some a ∈ A (where x ∈ Dn is viewed as a column vector). The polar bilinear
form ψ is then

ψ(x, y) = θ(x)t · g · y

where g = a+ a∗, and the adjoint quadratic pair (σ, f) is defined by

σ(u) = g−1u∗g for u ∈ A,

f(s) = TrdA(g−1as) for s ∈ Sym(A, σ),

see Theorem 1.5.
Let Sand: A⊗F A→ EndF A be the linear map such that

Sand(u⊗ v)(w) = uwv for u, v, w ∈ A.

According to Tits [14, §4], the algebra Cl(q) is the quotient of the tensor algebra
T (A) of the underlying vector space of A by the ideal I1 + I2, where I1 is the ideal
generated by elements of the type s − TrdA(sa) for s ∈ Sym(A, ∗), and I2 is the
ideal generated by elements of the type c − Sand(c, a) for c ∈ A ⊗ A such that
Sand(c, u) = Sand(c, u∗) for all u ∈ A. On the other hand, the algebra C(A, σ, f)
is defined in [10, §8B] as the quotient of T (A) by the ideal J1 + J2, where J1 is the
ideal generated by elements of the type s − TrdA(g−1as) for s ∈ Sym(A, σ) and
J2 is the ideal generated by elements of the type c − Sand(c, g−1a) for c ∈ A ⊗ A
such that Sand(c, u) = Sand

(

c, σ(u)
)

for all u ∈ A. Multiplication on the right by
g is a linear endomorphism of A which maps Sym(A, ∗) to Sym(A, σ). The induced
automorphism of T (A) maps I1 to J1 and I2 to J2, hence it induces an isomorphism

Cl(q)
∼
→ C(A, σ, f).
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Let now q and q′ be nonsingular quadratic forms on a D-vector space V . Assume
Arf(q) = Arf(q′). Since the Arf invariant is additive, the direct sum q ⊥ 〈λ〉q′ has
trivial Arf invariant for all λ ∈ F×, hence

Cl(q ⊥ 〈λ〉q′) ' C+
λ × C−λ

for some central simple F -algebras C+
λ , C−λ .

2.2. Proposition. 1. Let Z = F [t]/(t2− t−δ), where δ ∈ F is a representative
of Arf(q) = Arf(q′) ∈ F/℘(F ), and identify Z to the center of Cl(q) and to
the center of Cl(q′). Then

{C+
λ ⊗F Z,C

−
λ ⊗F Z} = {Cl(q)⊗Z Cl(q′),Cl(q)⊗Z

ι Cl(q′)},

where ι Cl(q′) is the conjugate algebra of Cl(q′) under the nontrivial automor-
phism ι of Z/F .

2. For λ, λ′ ∈ F×, the algebras C+
λλ′ and C−λλ′ are Brauer-equivalent to C+

λ ⊗

[δ, λ′) and C−λ ⊗ [δ, λ′) respectively.

Proof. The proofs given for the case where charF 6= 2 in [11, Lemma 1] and [7,
Proposition 3.8] apply without any substantial change.

Suppose again q and q′ are nonsingular quadratic forms on a D-vector space V
with the same Arf invariant. As observed above, we have

Cl(q ⊥ q′) = C+ × C−

for some central simple algebras C+, C− (denoted by C+
1 and C−1 above). Note that

degD dimD V is even, as observed after Corollary 1.2. Therefore, degD dimD(V ⊥
V ) is divisible by 4, and it follows from [14, Proposition 7] or [10, (9.14)] that
C+⊗F C

− is Brauer-equivalent to D. Since moreover C+ and C− have exponent 2
(since they carry a canonical involution, see [10, (9.13)] or [14, Proposition 7]), it
follows that the Brauer classes [C+] and [C−] have the same image in the following
quotient of the Brauer group of F :

BD = Br(F )/{1, [D]}.

We may therefore define a relative invariant c(q, q ′) of q and q′ by

c(q, q′) = image of [C+] or [C−] in BD.

This is an analogue of the invariant defined in characteristic different from 2 by
Bartels [3, §7]. We shall show in section 5 that it holds the key to the classification
of quadratic forms over local or global fields in characteristic 2.

If D = F , we have BD = Br(F ), and c(q, q′) is the Brauer class of the full
Clifford algebra C(V ⊕ V, q ⊥ q′), which is the tensor product of the full Clifford
algebras C(V, q) and C(V, q′). (The full Clifford algebras are classically defined,
since q and q′ are ordinary quadratic forms, see for instance [2, Chapter 2, §2].)

2.3. Proposition. If q, q ′, q′′ are nonsingular quadratic forms on V with the same
Arf invariant, then

c(q, q′′) = c(q, q′) + c(q′, q′′).

Proof. If D = F the proposition is clear since

c(q, q′′) = [C(V, q)] + [C(V, q′′)], c(q, q′) = [C(V, q)] + [C(V, q′)],

c(q′, q′′) = [C(V, q′)] + [C(V, q′′)]
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and 2[C(V, q′)] = 0. The general case is reduced to the case where D = F by
scalar extension to the function field L of the Severi–Brauer variety of D. Since
the kernel of the scalar extension map Br(F ) → Br(L) is {0, [D]}, the induced map
BD → Br(L) is injective, and the proposition follows.

To conclude this section, we show to which extent the Clifford algebra of a
nonsingular quadratic form is an invariant of its Witt class.

The Witt equivalence of quadratic forms overD can be defined as in the classical
case: every nonsingular form q decomposes into an orthogonal direct sum of a
hyperbolic form and an anisotropic form, uniquely determined up to isometry and
called the anisotropic kernel of q; two nonsingular quadratic forms are called Witt-
equivalent if their anisotropic kernels are isometric.

Corresponding notions can be defined for central simple algebras with quadratic
pairs (see [8] for the case where charF 6= 2). Suppose (σ, f) is a quadratic pair on
a central simple F -algebra A. If e ∈ A is a symmetric idempotent, then σ restricts
to an involution on each of the F -algebras A1 = eAe and A2 = (1 − e)A(1 − e),
and the restrictions of f to the symmetric elements in A1 and A2 yield quadratic
pairs (σ1, f1) on A1 and (σ2, f2) on A2. The quadratic pair (σ, f) is said to be
an orthogonal sum of (σ1, f1) and (σ2, f2). This terminology is motivated by the
observation that if A = EndD V and (σ, f) is adjoint to a quadratic form (ψ, q)
on V , then every symmetric idempotent in A is the orthogonal projection on a
nonsingular subspace U ⊂ V , and (σ1, f1), (σ2, f2) are the orthogonal pairs adjoint
to the restrictions of (ψ, q) to U and its orthogonal complement U⊥.

If (σ2, f2) is hyperbolic, the algebra with quadratic pair (A, σ, f) is called a hy-
perbolic extension of (A1, σ1, f1). Using the Witt decomposition of quadratic forms,
we see that every algebra with quadratic pair (A, σ, f) is a hyperbolic extension of
an algebra with anisotropic quadratic pair, uniquely determined up to conjugation,
called an anisotropic kernel of (A, σ, f). Two algebras with quadratic pairs are said
to be Witt-equivalent if they have isomorphic anisotropic kernels. Note that the
algebras themselves are then Brauer-equivalent, since for every idempotent e ∈ A,
the algebras A and eAe are Brauer-equivalent.

2.4. Theorem. Let q0 be the anisotropic kernel of a nonsingular quadratic form
q. The Clifford algebra Cl(q) is isomorphic as an F -algebra to an algebra which is
Morita-equivalent to Cl(q0). Similarly, if (A0, σ0, f0) is the anisotropic kernel of an
algebra with quadratic pair (A, σ, f), then the Clifford algebra C(A, σ, f) is isomor-
phic as an F -algebra to an algebra which is Morita-equivalent to C(A0, σ0, f0).

Note that Cl(q) and Cl(q0) cannot be considered as Morita-equivalent since their
centers are not canonically isomorphic. However, if an identification of the centers of
Cl(q) and Cl(q0) is chosen, then the theorem asserts that Cl(q) is Morita-equivalent
to Cl(q0) or to its conjugate algebra ι Cl(q0).

Proof. The same arguments as in the characteristic not 2 case apply, see [8, Propo-
sition 3].

3. The Witt exact sequence of a quadratic extension

In this section, we consider the Witt groupWqF of quadratic forms over a field F
of characteristic 2. Our goal is to relate this group to the Witt groups of quadratic
and hermitian forms over a separable quadratic extension K/F .
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Throughout the section, we fix a separable quadratic field extension K/F . We
write K = F (α) where α2 − α = a ∈ F (a /∈ ℘(F )).

Let 2 Br(F ) denote the 2-torsion subgroup of the Brauer group Br(F ). The
corestriction (or norm) map cor: Br(K) → Br(F ) is described in [13, Ch. 8, §9],
[10, (3.12)].

3.1. Lemma. The kernel of cor: 2 Br(K) → 2 Br(F ) is the image of the scalar
extension map res : 2 Br(F ) → 2 Br(K).

(When charF 6= 2, the corresponding result follows from the exact sequence of

Galois cohomology groups H 2(F, µ2)
res
→ H2(K,µ2)

cor
→ H2(F, µ2), see [13, p. 309]

or [10, (30.12)].)

Proof. The kernel of the corestriction map consists of the Brauer classes of central
simple K-algebras which admit an involution of unitary type, i.e., an involution
whose restriction toK is the non-trivial automorphism ι ofK/F , see [10, (3.1)]. It is
therefore clear that the image of 2 Br(F ) lies in the kernel of cor. Let B be a central
simple K-algebra whose Brauer class is in the kernel of cor: 2 Br(K) → 2 Br(F ).
We may then find on B an involution τ of unitary type and also, since B ⊗K B
is split, an involution σ whose restriction to F is the identity, see [10, (3.1)]. The
composition τ ◦ σ ◦ τ yields an involution on B which is the identity on K, hence
there exists an element u ∈ B× such that σ(u) = u and

τ ◦ σ ◦ τ(x) = uσ(x)u−1 for all x ∈ B.

It follows that for all x ∈ B,

τ ◦ σ(u) · τ ◦ σ(x) · τ ◦ σ(u)−1 = (τ ◦ σ)3(x) = u · τ ◦ σ(x) · u−1,

hence τ ◦ σ(u) = τ(u) = uλ for some λ ∈ K×. Since τ restricts to the nontrivial
automorphism ι of K/F , we have NK/F (λ) = 1, and Hilbert’s Theorem 90 yields

λ0 ∈ K
× such that λ = λ0ι(λ0)

−1. Substituting uλ0 for u, we may thus assume that
τ(u) = u. Define then an F -algebra A = B ⊕ Bz by the following multiplication
rules:

z2 = u, zb = τ ◦ σ(b)z for b ∈ B.

It is easily verified that A is a central simple F -algebra, and that τ extends to an
involution on A such that τ(z) = z. (Compare [1, Chapter 11, Theorem 10], [6,
Exercice 4, p. 59].) Therefore, the Brauer class [A] lies in 2 Br(F ). Moreover, the
centralizer of K in A is B, hence res[A] = [B].

We now turn to quadratic forms. We let WqF denote the Witt group of (non-
singular) quadratic forms over F and, for n ≥ 1, let I nWqF = InF ·WqF , where
InF is the n-th power of the fundamental ideal of the Witt ring WF of symmetric
bilinear forms over F . Let [1, a] be the quadratic form x2 + xy + ay2, which is the
norm form of K/F . Abusing notations, we also let [1, a] denote the Witt class of
this form in WqF . The inclusion i : F ↪→ K and the trace map tr : K → F induce
Witt group maps i∗ : WqF →WqK and tr∗ : WqK →WqF , see [2, Chapter 1, §2].
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3.2. Lemma. The maps i∗ and tr∗ fit into exact sequences

0 → [1, a]WF →WqF
i∗−→WqK

tr∗−−→WqF → 0,(10)

0 → [1, a]IF → IWqF
i∗−→ IWqK

tr∗−−→ IWqF → 0,(11)

0 → [1, a]I2F → I2WqF
i∗−→ I2WqK

tr∗−−→ I2WqF → 0.(12)

Proof. Exactness of the first sequence is proved in [2, Ch. 5, Corollary (5.9)]. The
Arf invariant induces a map Arf : WqF → F/℘(F ) whose kernel is IWqF , by [12,
Theorem 2]. Since Arf

(

[1, a] · 〈b1, . . . , br〉
)

= ra+ ℘(F ), it follows that
(

[1, a]WF
)

∩ IWqF = [1, a]IF.

We have a commutative diagram with exact rows, where U = {0, a+℘(F )}/℘(F ) ⊂
F/℘(F ),

0 −−−−→ [1, a]WF −−−−→ WqF
i∗−−−−→ WqK

tr∗−−−−→ WqF −−−−→ 0

Arf





y
Arf





y





y
Arf





y
Arf

0 −−−−→ U −−−−→ F/℘(F )
i

−−−−→ K/℘(K)
tr

−−−−→ F/℘(F ) −−−−→ 0

and the vertical maps are onto. A chase around this diagram yields the exact
sequence (11).

Similarly, the Clifford algebra construction yields a map w : IWqF → 2 Br(F ).
This map is onto and its kernel is I2WqF , by [12, Theorem 2]. The kernel 2 Br(K/F )
of the scalar extension map res: 2 Br(F ) → 2 Br(K) consists of the Brauer classes
of quaternion algebras [a, x), where x ∈ F×, and we have

w
(

[1, a] · 〈b1, . . . , b2r〉
)

= [a, b1 . . . b2r),

hence
(

[1, a]IF
)

∩ I2WqF = [1, a]I2F.

In view of Lemma 3.1 and the first part of the proof, the rows of the following
diagram are exact:

0 −−−−→ [1, a]IF −−−−→ IWqF
i∗−−−−→ IWqK

tr∗−−−−→ IWqF −−−−→ 0

w





y

w





y





y

w





y

w

0 −−−−→ 2 Br(K/F ) −−−−→ 2 Br(F )
res

−−−−→ 2 Br(K)
cor

−−−−→ 2 Br(F ).

(13)

Moreover, the vertical maps are onto, and commutativity of the rightmost square
can be checked by explicit computation. To make this computation easier, note
that IWqK is additively generated by forms of the type [1, u] · 〈1, v〉 with u, v ∈ K,
v 6= 0, and even by forms of this type where at least one of u, v lies in F . This is
because if v /∈ F we may write u = ξ + ηv for some ξ, η ∈ F , and then

[1, u] · 〈1, v〉 = [1, ξ] · 〈1, v〉+ [1, ηv] · 〈1, η〉 in WqF .

Commutativity of the other squares in diagram (13) is easily seen; a chase around
this diagram then yields the exact sequence (12).

Note that (12) also shows that the corestriction map cor: 2 Br(K) → 2 Br(F ) is
onto, since the map w is surjective.
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Finally, we turn to hermitian forms over K, relative to the nontrivial auto-
morphim ι of K/F . The corresponding Witt group is denoted by W (K, ι). The
determinant deth of a hermitian form h is defined as the image in F ×/NK/F (K×)
of the determinant of any Gram matrix of h. We let I1(K, ι) denote the subgroup
of W (K, ι) generated by forms of even dimension and I2(K, ι) denote the subgroup
of I1(K, ι) generated by forms of even dimension and trivial determinant.

Every hermitian form h on a K-vector space V yields a quadratic form qh : V →
F defined by qh(x) = h(x, x) for x ∈ V . The assignment h 7→ qh defines a map
∆: W (K, ι) →WqF .

3.3. Theorem. The following sequences are exact:

0 →W (K, ι)
∆
−→ WqF

i∗−→WqK
tr∗−−→ WqF → 0,

0 → I1(K, ι)
∆
−→ IWqF

i∗−→ IWqK
tr∗−−→ IWqF → 0,

0 → I2(K, ι)
∆
−→ I2WqF

i∗−→ I2WqK
tr∗−−→ I2WqF → 0.

Proof. By Theorem 1.2 of [13, p. 348], the image of ∆: W (K, ι) → WqF is the
kernel [1, a]WF of i∗. Moreover, Remark 1.4 in [13, pp. 349–350] shows that

Arf(qh) = (dimh)a+ ℘(F ) ∈ F/℘(F ) and w(qh) = [a, deth) ∈ 2 Br(F ),

hence

[1, a]IF =
(

[1, a]WF
)

∩ IF = ∆
(

I1(K, ι)
)

and

[1, a]I2F =
(

[1, a]IF
)

∩ I2F = ∆
(

I2(K, ι)
)

.

The theorem then follows from Lemma 3.2.

3.4. Corollary. If I2WqF = 0, then I2WqK = 0 and I2(K, ι) = 0.

4. The Witt kernel of a separable quadratic extension

In this section, we let A be a central simple algebra over a field F of char-
acteristic 2 and let K be a separable quadratic field extension K = F (α) with
α2 − α = a ∈ F . Our goal is to determine necessary and sufficient conditions
for a quadratic pair on A to become hyperbolic under scalar extension to K. In
the special case where A is split, Proposition 4.2 below proves the exactness of
sequence (10) at WqF , since a quadratic space (V, q) admits a similitude r with
multiplier a such that r2 − r = a if and only if q = [1, a] · b for some symmetric
bilinear form b.

We first consider the case of involutions.

4.1. Proposition. Let σ be an involution on A which is the identity on F . If A
contains an element r such that

r2 − r = a and σ(r) = 1− r,(14)

then the involution σK = σ⊗ IdK on AK = A⊗F K is hyperbolic. Conversely, if σ
is anisotropic (i.e., A does not contain any nonzero isotropic right ideal for σ) and
σK is hyperbolic, then A contains an element r satisfying (14).
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Proof. If A contains an element r satisfying (14), then AK contains r + α (=
r ⊗ 1 + 1 ⊗ α), which satisfies (r + α)2 = r + α and σK(r + α) = 1 − (r + α).
Therefore, σK is hyperbolic by Corollary 1.9.

For the converse, assume AK contains an idempotent e such that σK(e) = 1− e.
We may write e = e1 ⊗ 1 + e2 ⊗α for some e1, e2 ∈ A. The condition e2 = e yields

e21 + ae22 = e1(15)

and

e22 + e1e2 + e2e1 = e2.(16)

We shall use the hypothesis that σ is anisotropic to prove that e2 is invertible.
Assuming this fact, we may let r = e1e

−1
2 and use (15) and (16) to prove that

r2 − r = a. Similarly, the conditions σ(e1) = 1− e1 and σ(e2) = e2, which follow
from σK(e) = 1− e, imply that σ(r) = 1− r.

To complete the proof, we show that e2 is invertible in A. It clearly suffices to
show that the right ideal

I = {x ∈ A | e2x = 0}

is {0} or, in view of the hypothesis on σ, that I is isotropic.
We first show that e1I is isotropic: for x, y ∈ I we have

σ(e1x)e1y = σ(x)(1− e1)e1y = σ(x)(e1 − e21)y.

By (15) we have e1 − e21 = ae22, hence σ(e1x)e1y = 0 since e2y = 0. Therefore, e1I
is isotropic, hence e1I = {0} since σ is assumed to be anisotropic.

Now, for x ∈ I we have e1x = 0 hence, applying σ,

σ(x) = σ(x)e1.

It follows that for x, y ∈ I ,

σ(x)y = σ(x)e1y

and the right side vanishes since e1y = 0 for y ∈ I . This shows that I is isotropic
and completes the proof.

We next turn to quadratic pairs. If (σ, f) is a quadratic pair on A, we denote by

fK : Sym(AK , σK) = Sym(A, σ)⊗F K → K

the linear map extended from f by linearity. It is clear that (σ, f) is a quadratic
pair on AK .

4.2. Proposition. Let (σ, f) be a quadratic pair on A. If A contains an element
r such that

r2 − r = a and f(s) = TrdA(rs) for all s ∈ Sym(A, σ),(17)

then the quadratic pair (σK , fK) is hyperbolic. Conversely, suppose (σ, f) is aniso-
tropic, i.e., A does not contain any nonzero isotropic right ideal for (σ, f). If
(σK , fK) is hyperbolic, then A contains an element r for which (17) holds.

Proof. Suppose A contains an element r satisfying (17). As in the proof of Propo-
sition 4.1, the element r + α ∈ AK is an idempotent. Moreover, for s ∈ Sym(A, σ)
we have TrdA(s) = 0 since σ is symplectic, hence

TrdAK

(

(r + α)s
)

= TrdA(rs) = f(s)
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and it follows by linearity that

TrdAK

(

(r + α)s
)

= fK(s) for all s ∈ Sym(AK , σK).

Therefore, Corollary 1.8 shows that (σK , fK) is hyperbolic.
To prove the converse, suppose (σK , fK) is hyperbolic, and let e = e1⊗1+e2⊗α ∈

AK be an idempotent such that

TrdAK
(es) = fK(s) for all s ∈ Sym(AK , σK).(18)

As in the proof of Proposition 4.1, the condition e2 = e leads to (15) and (16),
hence, assuming that e2 is invertible, to (e1e

−1
2 )2 − e1e

−1
2 = a. On the other hand,

(18) yields

TrdA(e1s) = f(s) and TrdA(e2s) = 0 for all s ∈ Sym(A, σ).(19)

The last equality shows that e2 ∈ Alt(A, σ), by [10, (2.3)], and the first equality
implies that σ(e1) = 1− e1, by [10, (5.7)]. Using (15) and (16), computation yields

e1e
−1
2 + e1 = e1e

−1
2 σ(e1) + ae2

(assuming again that e2 is invertible). Letting e2 = `+ σ(`) with ` ∈ A, we have

e−1
2 = e−1

2 e2e
−1
2 = e−1

2 `+ σ(e−1
2 `)

hence

e1e
−1
2 σ(e1) + ae2 =

(

e1e
−1
2 `σ(e1) + a`

)

+ σ
(

e1e
−1
2 `σ(e1) + a`

)

∈ Alt(A, σ).

Therefore, e1e
−1
2 +e1 ∈ Alt(A, σ) and it follows from (19) that for all s ∈ Sym(A, σ)

TrdA(e1e
−1
2 s) = TrdA(e1s) = f(s).

The element r = e1e
−1
2 thus satisfies (17).

To complete the proof, we show, as in the proof of Proposition 4.1, that e2 is
invertible. We again let

I = {x ∈ A | e2x = 0}

and aim to prove that I is isotropic for (σ, f). Consider first the right ideal e1I .
The same argument as in the proof of Proposition 4.1 shows that σ(e1x)e1y = 0
for x, y ∈ I . To prove that e1I is isotropic for (σ, f), we still have to show that
f(e1x) = 0 if x ∈ I is such that e1x ∈ Sym(A, σ).

Multiplying equation (15) by x ∈ I , we get e21x = e1x. Therefore, we have by
(19)

f(e1x) = TrdA(e21x) = TrdA(e1x),

and it follows that f(e1x) = 0 if e1x ∈ Sym(A, σ) since the reduced trace of every
symmetric element is 0. Thus, e1I is isotropic for (σ, f), hence e1I = {0} since
(σ, f) is anisotropic. Now, for x ∈ I ∩ Sym(A, σ) we have by (19)

f(x) = TrdA(e1x) = 0

since e1x = 0. Moreover, the same argument as in the proof of Proposition 4.1
shows that σ(x)y = 0 for x, y ∈ I . Therefore, I is isotropic for (σ, f), hence
I = {0} since (σ, f) is anisotropic. It follows that e2 is invertible and the proof is
complete.
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For later use, we conclude this section with a few observations on central simple
algebras with quadratic pair (A, σ, f) which contain an element r for which (17)
holds.

Let degA = n = 2m and let Ã = CA(r) be the centralizer of r in A. This is a
simple algebra of degree m with center F (r) ' K. Since σ(r) = 1 − r, it follows

that σ restricts to an involution σ̃ of unitary type on Ã.

4.3. Lemma. If σ̃ is hyperbolic, then (σ, f) is hyperbolic.

Proof. Let e ∈ Ã be an idempotent such that σ̃(e) = 1− e. To prove that (σ, f) is
hyperbolic, it suffices to show that f(s) = TrdA(es) for all s ∈ Sym(A, σ).

We have σ(e− r) = e− r, hence

e− r = (e− r)r + σ
(

(e− r)r
)

∈ Alt(A, σ).

Therefore, TrdA
(

(e − r)s
)

= 0 for all s ∈ Sym(A, σ), by [10, (2.3)], and it follows
that

TrdA(es) = TrdA(rs) = f(s) for all s ∈ Sym(A, σ).

For the next statement, recall that for every central simple algebra with unitary
involution (B, τ), a discriminant algebra D(B, τ) is defined in [10, §10.E].

4.4. Lemma. Use the same notation as above. If degA ≡ 0 mod 4, then the
discriminant of (σ, f) is trivial, hence C(A, σ, f) = C+×C− for some central simple
F -algebras C+, C−. Moreover, one (at least) of C+, C− is Brauer-equivalent to

D(Ã, σ̃).

Proof. On a separable closure, the characteristic polynomial of r has the form
(X−α)m1(X−α−1)m2 for some m1, m2 such that m1+m2 = n. Since σ(r) = 1−r
has the same characteristic polynomial, we must have m1 = m2 = m, hence the
coefficient of Xn−2 is

Srd(r) = ma+ 1
2m(m− 1),

and it follows that

disc(σ, f) = ma+ ℘(F ) ∈ F/℘(F ).

This proves the first statement.
To prove the second part, we first consider the case where A is split. We may then

represent A as A = EndF V for some F -vector space V , and consider a quadratic
form q on V whose adjoint quadratic pair is (σ, f). Identifying EndF V with V ⊗V
through ϕψ, where ψ is the polar bilinear form of q, we then have q(v) = f(v⊗ v),
hence (17) yields

q(v) = Trd(r(v) ⊗ v) = ψ
(

v, r(v)
)

.(20)

We use r ∈ EndF V to define on V a K-vector space structure by

vα = r(v) for v ∈ V .

The centralizer Ã of r in A is then EndK V . We also define a map h : V × V → K
by

h(v, w) = ψ
(

v, r(w)
)

+ αψ(v, w) for v, w ∈ V .
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Since ψ is symmetric and σ(r) = 1− r, it follows that h is a hermitian form on V .
For f ∈ EndK V , we clearly have

h
(

v, f(w)
)

= h
(

σ(f)(v), w
)

for v, w ∈ V ,

hence σ̃ is the adjoint involution of h, and it follows from [10, (10.35)] that

[D(Ã, σ̃)] = [a, deth) in Br(F ).

To relate D(Ã, σ̃) to q, observe that (20) yields h(v, v) = q(v) for v ∈ V , hence
q = qh in the notation of section 3. Therefore, Remark 1.4 in [13, pp. 349–350] shows
that the Clifford algebra C(V, q) is Brauer-equivalent to the quaternion algebra

[a, deth). Since C+ (' C−) is Brauer-equivalent to C(V, q), it follows that D(Ã, σ̃)
is Brauer-equivalent to C+ (and to C−), proving the lemma in the split case.

In the general case, we extend scalars to the function field L of the Severi–Brauer
variety of A. Since the lemma holds in the split case, we have

[D(Ã, σ̃)⊗F L] = [C+ ⊗F L] (= [C− ⊗F L]) in Br(L),

hence [D(Ã, σ̃)]−[C+] lies in the kernel of the scalar extension map Br(F ) → Br(L),

which consists of 0 and [A]. Thus, [D(Ã, σ̃)] = [C+] or [C+] + [A], and the proof is
complete since [C+] + [A] = [C−] by [10, (9.14)].

4.5. Lemma. With the notation above, suppose degA ≡ 0 mod 4 and one of C+,
C− is split. If Ã is not split, then D(Ã, σ̃) is split. If Ã is split, the same property

holds either for A or for a hyperbolic extension of A. More precisely, if D(Ã, σ̃) is
not split, then there is a hyperbolic extension (A′, σ′, f ′) of (A, σ, f) and an element

r′ ∈ A′ such that r′
2
−r′ = a, TrdA′(r′s) = f ′(s) for all s ∈ Sym(A′, σ′), and letting

Ã′ be the centralizer of r′ in A′ and σ̃′ be the restriction of σ′ to Ã′, the algebra
D(Ã′, σ̃′) is split.

Proof. Suppose C+ is split. Then C− is Brauer-equivalent to A, by [10, (9.14)],
hence

[C− ⊗F K] = [A⊗F K] = [Ã] in Br(K).

On the other hand, we have [D(Ã, σ̃)⊗F K] = m[Ã] by [10, (10.30)], hence K splits

D(Ã, σ̃) since m is even. Therefore, if Ã is not split D(Ã, σ̃) cannot be Brauer-

equivalent to C−; it follows from Lemma 4.4 that D(Ã, σ̃) is Brauer-equivalent to
C+, hence it is split.

For the rest of the proof, we assume Ã is split and D(Ã, σ̃) is not split; it is

then Brauer-equivalent to C−, by Lemma 4.4, hence also to A. Since Ã is Brauer-
equivalent to A ⊗F K, it follows that A is split by K, hence it is equivalent to a
quaternion division algebra Q. Let A = EndQ V for some Q-vector space V , and let
q be a quadratic form on V whose adjoint quadratic pair is (σ, f). Let (V0, q0) be a
hyperbolic plane over Q, let A0 = EndQ(V0), and let (σ0, f0) be the quadratic pair
on A0 adjoint to q0. We consider the orthogonal sum (V ′, q′) = (V ⊕ V0, q ⊥ q0)
and let

A′ = EndQ(V ⊕ V0) =

(

EndQ V HomQ(V0, V )
HomQ(V, V0) EndQ V0

)

,

endowed with the quadratic pair (σ′, f ′) adjoint to q ⊥ q0. Suppose r0 ∈ A0 is
such that r20 − r0 = a and TrdA0

(r0s) = f0(s) for all s ∈ Sym(A0, σ0). We then let
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r′ =
(

r 0
0 r0

)

∈ A′ be the endomorphism of V ⊕ V0 defined by

r′(v + v0) = r(v) + r0(v0).

Clearly, r′
2
− r′ = a, and it is easily verified that f ′(s) = TrdA′(s) for all s ∈

Sym(A′, σ′). Consider the centralizer Ã′ of r′ in A′ and the centralizer Ã0 of r0
in A0, with the restrictions σ̃′ and σ̃0 of σ′ and σ0 respectively. The orthogonal
projections eV =

(

1 0
0 0

)

∈ A′, eV0
=

(

0 0
0 1

)

∈ A′ of V ⊕ V0 on V and V0 respectively

are symmetric idempotents in Ã′ such that

eV Ã
′eV = Ã, eV0

Ã′eV0
= Ã0,

and the restrictions of σ̃′ to eV Ã
′eV and eV0

Ã′eV0
are σ̃ and σ̃0. Therefore, (Ã′, σ̃′)

is an orthogonal sum of (Ã, σ̃) and (Ã0, σ̃0). Since these algebras are split, their
discriminant algebras are given by the determinant of the corresponding hermitian
forms (see [10, (10.35)]), hence

[D(Ã′, σ̃′)] = [D(Ã, σ̃)] + [D(Ã0, σ̃0)] = [A] + [D(Ã0, σ̃0)] in Br(F ).

To complete the proof, it suffices to show that A0 contains an element r0 as
above such that D(Ã0, σ̃0) is Brauer-equivalent to A.

Since (A0, σ0, f0) is hyperbolic we may identify A0 = M2(F )⊗F Q in such a way
that σ0 is the tensor product of the symplectic involutions on M2(F ) and Q, and
f0 is the canonical form f⊗, see [10, (15.14)]. Define

r0 =

(

0 a
1 1

)

⊗ 1 ∈M2(F )⊗Q.

Computation shows that r20−r0 = a and f0(s) = TrdA0
(r0s) for all s ∈ Sym(A0, σ0).

The centralizer of r0 is Ã0 = F (r0) ⊗F Q, and the involution σ̃0 is the tensor
product of the non-trivial automorphism of F (r1)/F and the canonical involution

of Q. Therefore, D(Ã0, σ̃0) ' Q, by [10, p. 129].

4.6. Proposition. Suppose A contains an element r satisfying (17), and degA ≡
0 mod 4, hence C(A, σ, f) ' C+×C− for some central simple F -algebras C+, C−.

Assume moreover that Ã and one (at least) of C+, C− are split. If I2WqF = 0,
then (A, σ, f) is hyperbolic.

Proof. Lemma 4.5 shows that, up to a hyperbolic extension, we may assumeD(Ã, σ̃)

is split. Since Ã is split, we may represent it as EndKW for some K-vector space
W ; then σ̃ is the adjoint involution of some hermitian form h on W relative to the
non-trivial automorphism ι of K/F . The dimension of W is even since degA ≡ 0

mod 4; moreover the determinant of h is trivial since D(Ã, σ̃) is split, hence h
represents an element of I2(K, ι). By Corollary 3.4, h is hyperbolic, hence (A, σ, f)
is hyperbolic by Lemma 4.3.

5. Classification over local and global fields

In this section, we prove classification theorems for quadratic forms and quadratic
pairs on central division algebras over fields F of characteristic 2 with the following
properties:

(a) every central simple F -algebra of exponent 2 is Brauer-equivalent to a quater-
nion algebra;

(b) there is no Cayley division algebra over F .
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Condition (b) can be rephrased in various ways, as was shown by Sah [12, Theo-
rem 3]; for instance, it is equivalent to the requirement that quadratic forms over
F are classified by their dimension, Arf invariant and Clifford algebra, or to the
condition that I2WqF = 0. Local and global fields (of characteristic 2) satisfy (a)
and (b).

5.1. Theorem. Let A be a central simple algebra over a field F satisfying (a)
and (b), and let (σ, f) be a quadratic pair on A. Suppose degA ≡ 0 mod 4 and
disc(σ, f) = 0, hence C(A, σ, f) = C+×C− for some central simple F -algebras C+,
C−. If one (at least) of C+, C− is split, then (A, σ, f) is hyperbolic.

Proof. If A is split, then (σ, f) is adjoint to a quadratic form over F . From the
hypotheses, it follows that this quadratic form has trivial Arf invariant and split
Clifford algebra, hence it is hyperbolic since I 2WqF = 0. We may thus assume A is
not split. Moreover, substituting for (A, σ, f) its anisotropic kernel, we may assume
(A, σ, f) is anisotropic. Condition (a) shows that A is split by a quadratic field
extension K/F . The extended quadratic pair (σK , fK) on AK = A⊗F K is adjoint
to some quadratic form over K with trivial Arf invariant and split Clifford algebra.
Since I2WqK = 0 by Corollary 3.4, it follows that (AK , σK , fK) is hyperbolic.
Therefore, Proposition 4.2 shows that A contains an element r satisfying (17), and

it follows from Proposition 4.6 that (A, σ, f) is hyperbolic, since the centralizer Ã
of r in A is Brauer-equivalent to A⊗K, hence split.

Our first classification result follows. Recall from section 2 the relative invariant
c(q, q′).

5.2. Theorem. Let V be a vector space over a central division F -algebra D, and
let q, q′, q0 be quadratic forms on V . Suppose Arf(q) = Arf(q′) = Arf(q0) and
c(q0, q) = c(q0, q

′). If F satisfies (a) and (b), then q and q′ are isometric.

Proof. Since c(q0, q) = c(q0, q
′), it follows from Proposition 2.3 that c(q, q ′) = 0,

which means that one of the direct factors of the Clifford algebra Cl(q ⊥ q ′) is split.
Theorem 5.1 shows that the quadratic pair adjoint to q ⊥ q ′ on EndD(V ⊕ V ′) is
hyperbolic, hence q ⊥ q′ is hyperbolic and therefore q ' q ′.

Since local and global fields satisfy (a) and (b), Theorem A in the introduction
follows from Theorem 5.2. Note that if F is local and D is a quaternion alge-
bra, the condition c(q0, q) = c(q0, q

′) is automatically satisfied, since the quotient

2 Br(F )/{0, [D]} is trivial.
The corresponding classification theorem for quadratic pairs is next.

5.3. Theorem. Let A be a central simple F -algebra and let (σ, f), (σ′, f ′) be qua-
dratic pairs on A. Suppose the Clifford algebras C(A, σ, f) and C(A, σ′, f ′) are
F -isomorphic. If F satisfies (a) and (b), then (σ, f) and (σ′, f ′) are conjugate.

Proof. Choose a representation A = EndD V and quadratic forms q, q′ on V whose
adjoint quadratic pairs are (σ, f) and (σ ′, f ′) respectively. For any λ ∈ F×, we have

Cl(q ⊥ 〈λ〉q′) = C+
λ × C−λ

for some central simple F -algebras C+
λ , C−λ , since the hypothesis C(A, σ, f) '

C(A, σ′, f ′) implies disc(σ, f) = disc(σ′, f ′), hence Arf(q) = Arf(q′). Let Z be the
center of C(A, σ, f), which we identify (non-canonically) to the center of C(A, σ′, f ′).
If degA ≡ 0 mod 4, the canonical involution on C(A, σ, f) is the identity on Z,



CLASSIFICATION OF QUADRATIC FORMS IN CHARACTERISTIC 2 21

hence C(A, σ, f) ⊗Z C(A, σ, f) is split. If degA ≡ 2 mod 4, the canonical involu-
tion restricts to the non-trivial automorphism ι of Z/F , hence the tensor product
C(A, σ, f)⊗Z

ιC(A, σ′, f ′) is split. Thus, in all cases Proposition 2.2 shows that Z
splits one of C+

λ , C−λ . Say Z splits C+
λ ; then C+

λ is Brauer-equivalent to a quater-
nion algebra [δ, µ) for some µ ∈ F×, where δ ∈ F is such that Z ' F [t]/(t2− t− δ).
It then follows from the second part of Proposition 2.2 that C+

λµ is split. This means

that c(q, 〈λµ〉q′) = 0, hence Theorem 5.2 yields q ' 〈λµ〉q ′, hence (σ, f) and (σ′, f ′)
are conjugate.

Since local and global fields satisfy (a) and (b), Theorem B in the introduction
is a particular case of Theorem 5.3. If F is local and A has index 2, it suffices to
assume disc(σ, f) = disc(σ′, f ′) to conclude that (σ, f) and (σ′, f ′) are conjugate.
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