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ABSTRACT. In [8] and [9] Knebusch established the basic facts of generic
splitting theory of quadratic forms over a field of characteristic not 2. In
[10], he generalized this theory to a field of characteristic 2. This note
is related to [10]. More precisely, we begin with a complete charac-
terization of quadratic forms of height 1 (in this note we don’t exclude
anisotropic quadratic forms with radical of dimension at least 1). This
allows us to extend the notion of degree in characteristic 2. We prove
some results on excellent forms and generic splitting tower of a qua-
dratic form. Some results on quadratic forms of height 2 and degree 1 or
2 are given.


Let F be a field of characteristic not 2. We associate to an anisotropic quadratic
form ϕ of dimension ≥ 3 over F , the function field F (ϕ) of the projective
quadric defined by the equation ϕ = 0. When ϕ is an anisotropic quadratic
form of dimension 2 (resp. of dimension 1 or isotropic of dimension 2) we set
F (ϕ) = F (


√
−detϕ) where detϕ is the discriminant of ϕ (resp. F (ϕ) = F ).


An anisotropic quadratic form of dimension at least 2 becomes clearly isotropic
over its function field. In [8] Knebusch associated to a non-split quadratic form ϕ
a sequence of extensions and quadratic forms, the so-called generic splitting tower
of ϕ, as follows: ϕ0 = ϕan (the anisotropic part of ϕ), F0 = F and inductively
for n ≥ 1, Fn = Fn−1(ϕn−1) and ϕn = ((ϕn−1)Fn


)an. The height of ϕ is the
smallest integer h = h(ϕ) such that dimϕh ≤ 1. Clearly, for an anisotropic
quadratic form ϕ of dimension at least 2, we have h(ϕ) = h(ϕF (ϕ)) + 1. In
particular, an anisotropic quadratic form ϕ of dimension ≥ 2 is of height 1 if and
only if dim(ϕF (ϕ))an ≤ 1. For any details on generic splitting theory of quadratic
forms in characteristic not 2, we refer to Knebusch’s papers [8], [9].


A quadratic form ϕ is called a Pfister neighbor if there exists an n-fold Pfister
form π and a scalar a ∈ F∗ such that dimϕ > 2n−1 and aπ ∼= ϕ ⊥ ψ for some
quadratic form ψ, where∼= and ⊥ denote respectively the isometry and orthogonal
sum of quadratic forms. The forms π and ψ are unique up to isometry. We call ψ
the complementary form of ϕ and dimπ − dimϕ the codimension of ϕ.
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In general, for a given integer h it is very difficult to describe quadratic forms
of height h. In characteristic not 2, Knebusch [8] and Wadsworth [16] have given
independently a complete characterization of anisotropic quadratic forms of height
1. Such a quadratic form is a Pfister neighbor of codimension 0 or 1.


In [10] Knebusch generalized the generic splitting theory of quadratic forms to
a field of characteristic 2. The height and the generic splitting are defined in the
same manner as in characteristic not 2.


From now on, we assume that F is a field of characteristic 2. We will
investigate the generic splitting of quadratic forms over F . Along this note, we
don’t exclude quadratic forms with radical of dimension at least 1. We begin with
a complete characterization of anisotropic quadratic forms of height 1. We use
that characterization to extend the notion of degree in charactersitic 2, and we
prove some results on anisotropic quadratic forms of height 2 and degree 1 or 2
like those obtained in characteristic not 2 [4], [9], [6]. We extend the notion of
excellent form and we give some results related to those forms. Some general
results on the generic splitting tower of a quadratic form are given.


All basic facts and details on quadratic forms in characteristic 2 can be found in
Baeza’s book [2]. Let [a, b] (resp. [a]) denote the quadratic form aX2 +XY +bY 2


(resp. the quadratic form aX2).


Every quadratic form ϕ of dimension at least 1 can be written up to isometry:


ϕ = [a1, b1] ⊥ · · · ⊥ [ar, br] ⊥ [c1] ⊥ · · · ⊥ [cs] ⊥ [0] ⊥ · · · ⊥ [0] (1)


with [c1] ⊥ · · · ⊥ [cs] anisotropic.


Definition 1. Let ϕ be as in equation (1).
(1) If dimϕ = 2r + s, then ϕ is called a regular form or a form of type (r, s).
(2) A quadratic form of type (r, 0) is called a nonsingular quadratic form.
(3) A quadratic form of type (r, s) with s ≥ 1 is called a singular quadratic form.
(4) A quadratic form of type (0, s) is called a totally singular quadratic form.
(5) The quadratic form [c1] ⊥ · · · ⊥ [cs] ⊥ [0] ⊥ · · · ⊥ [0] is called the quasilinear
part of ϕ.


LetWq(F ) denote the Witt group of nonsingular quadratic forms, and let W (F )
denote the Witt ring of nonsingular bilinear symmetric forms. It is well known that
Wq(F ) is a W (F )-module.


We denote by 〈a1, · · · , an〉 the bilinear form
n∑


i=1
aiXiYi. For an integer r and


a quadratic form ϕ, we denote by r × ϕ the quadratic form ϕ ⊥ · · · ⊥ ϕ
︸ ︷︷ ︸


r times


. A


quadratic form ϕ is called split if ϕ ∼= r × H ⊥ s × [0] where H = [0, 0] is
the hyperbolic plane. If ϕ and ψ are quadratic forms, then ϕ ∼ ψ means that
ϕ ⊥ r × H ∼= ψ ⊥ s × H. We say that ϕ and ψ are similar if ϕ ∼= aψ for some
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a ∈ F ∗. A nonsingular quadratic form ϕ is hyperbolic if ϕ∼= r × H. For a field
extension K/F and a quadratic form ϕ over F , the quadratic form ϕ ⊗ K is
denoted by ϕK .


An n-fold Pfister form is a quadratic form 〈1, a1〉 ⊗ · · · ⊗ 〈1, an〉 ⊗ [1, an+1]
that we denote by 〈〈a1, · · · , an+1]]. Let PnF (resp. GPnF ) denote the set of
n-fold Pfister forms (resp. the set {απ | α ∈ F∗, π ∈ PnF}). An n-fold Pfister
form π is either anisotropic or hyperbolic [2, Chapter 4, Corollary 3.2]. The
W (F )-submodule of Wq(F ) generated by n-fold Pfister forms is denoted by
InWq(F ). Let Br(F ) denote the Brauer group of F .


Set ℘(x) = x2 + x for x ∈ F and ℘(F ) = {℘(x) | x ∈ F}. If ϕ is
nonsingular, then the Clifford algebra C(ϕ) is a central simple algebra over F ,
and the center Z(ϕ) of the even Clifford algebra C0(ϕ) is a separable quadratic
algebra over F . In this case, Z(ϕ) = F (℘−1(δ)) for some δ ∈ F and the Arf
invariant 4(ϕ) of ϕ is defined as the class of δ in F/℘(F ). More precisely, if
ϕ ∼= a1[1, b1] ⊥ · · · ⊥ ar[1, br] then 4(ϕ) = b1 + · · ·+ br ∈ F/℘(F ).


Let ϕ be a quadratic form of dimension n ≥ 1 which is not isometric to s× [0],
and let Pϕ be the homogenous polynomial given by ϕ. In [13] it is shown that Pϕ
is reducible if and only if ϕ is either isometric to H ⊥ [0] ⊥ · · · ⊥ [0] or isometric
to [a] ⊥ [0] ⊥ · · · ⊥ [0] for some a ∈ F∗. If Pϕ is irreducible, we define the
function field F (ϕ) of ϕ as the field of fractions of


F [X1, · · · ,Xn]


(Pϕ)


where (Pϕ) is the ideal of F [X1, · · · ,Xn] generated by Pϕ. In particular, F (ϕ) is
well defined for an anisotropic quadratic form ϕ.


Quadratic forms of height 1 are as follows.


Theorem 2. Let F be a field of characteristic 2, and let ϕ be an anisotropic qua-
dratic form, possibly singular, of dimension ≥ 1. Then, ϕ is of height 1 if and only
if ϕ is one of the following types:
(1) dimϕ = 2,
(2) ϕ ∈ GPnF for some integer n ≥ 1,
(3) ϕ ∼= ψ ⊥ [c] for some anisotropic ψ ∈ Wq(F ) and c ∈ F∗ such that
ψ ⊥ c [1,4(ψ)] ∈ GPmF for some integer m ≥ 1.


We will need frequently a generalization of the subform notion.


Definition 3. ([11]) Let ψ = [a1, b1] ⊥ · · · ⊥ [ar, br] ⊥ [c1] ⊥ · · · ⊥ [cs] be a
quadratic form.
(1) We say that ψ is dominated by ϕ and denote ψ ≺ ϕ if there exists a form δ such
that


ϕ ∼= [a1, b1] ⊥ · · · ⊥ [ar, br] ⊥ ξ1 ⊥ · · · ⊥ ξs ⊥ δ
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and for all i ∈ {1, · · · , s}, we have ξi = [ci] or ξi = [ci, di] for some di ∈ F .
(2) We say that ψ is weakly dominated by ϕ if aψ ≺ ϕ for some scalar a ∈ F∗.
(3) We say that ψ is a subform of ϕ and denote ψ < ϕ if ϕ ∼= ψ ⊥ µ for some
quadratic form µ.


From Definition 3 we deduce the following remarks.


Remarks 4. (1) If ψ is weakly dominated by ϕ and if F (ψ) is well defined, then
ϕF (ψ) is isotropic.
(2) If ϕ and ψ are nonsingular and ψ is dominated by ϕ, then ψ is a subform of ϕ.
(3) With the same notations and hypothesis as in Definition 3 (1) and if ϕ is non-
singular, then dim ξi = 2 for all i ∈ {1, · · · , s}.


In [11], an analogue of the Cassels-Pfister subform theorem was proved.


Proposition 5. ([11, Proposition 3.4]) Let F be a field of characteristic 2, ϕ ∈
Wq(F ) anisotropic and ψ be an anisotropic quadratic form, possibly singular,
such that ϕF (ψ) is hyperbolic. Then, ψ is weakly dominated by ϕ. In particular,
dimϕ ≥ dimψ.


Proposition 5 was obtained by using a result of Baeza concerning the norm the-
orem for nonsingular quadratic forms [3] and some results of [1].


The following Corollary is an immediate consequence of Proposition 5.


Corollary 6. Let F be a field of characteristic 2, ϕ ∈ Wq(F ) anisotropic and π
be an anisotropic Pfister form. If ϕF (π) is hyperbolic, then there exists a bilinear
form ρ such that ϕ ∼= ρ⊗ π.


The following Lemma is well known, we recall it without proof.


Lemma 7. Let F be a field of characteristic 2, ϕ,ψ ∈ Wq(F ) and
u1, · · · , un, v1, · · · , vn ∈ F such that ϕ ⊥ [u1] ⊥ · · · ⊥ [un] ∼= ψ ⊥ [v1] ⊥
· · · ⊥ [vn]. Then the sets {u1, · · · , un}, {v1, · · · , vn} engender the same vector
space over F2.


We will need a generalization of the Witt cancellation.


Proposition 8. ([7, Proposition 1.2]) Let F be a field of characteristic 2, η ∈
Wq(F ) and ϕ, ψ be quadratic forms, possibly singular, such that ϕ ⊥ η∼= ψ ⊥ η.
Then, ϕ ∼= ψ.


By using Proposition 8 it is clear that a nonsingular quadratic form ϕ is hyper-
bolic if and only if ϕ ∼ 0.


Proof of Theorem 2. To prove this theorem in the nonsingular case, we use the
same idea as in characteristic not 2 but we proceed differently by using a function
field argument. The singular case needs some observations, the point is that we
can’t follow directly the proof given in characteristic not 2 because Knebusch used
a Witt cancellation argument which is not allowed in characteristic 2.


We recall a lemma.
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Lemma 9. ([11, Lemma 3.1]) Let ϕ = [a, b] ⊥ [y] be a quadratic form. We have:
(1) If z ∈ F is represented by ϕ, then either [y]∼= [z] or there exists r ∈ F such
that ϕ ∼= [z, r] ⊥ [y].
(2) If ϕ is isotropic of type (1, 1), then ϕ∼= H ⊥ [y].
(3) If a = y, then ϕ ∼ [y].


Let ϕ be an anisotropic quadratic form of type (1), (2) or (3) as in Theorem
2. It is clear that h(ϕ) = 1 when dimϕ = 2 or ϕ ∈ GPnF for some integer
n ≥ 1. Let’s assume now that there exists a nonsingular quadratic form ξ and a
scalar c ∈ F ∗ such that ϕ ∼= ξ ⊥ [c] and π := ξ ⊥ c [1,4(ξ)] ∈ GPmF for
some integer m ≥ 1. Since ϕ is weakly dominated by π, it follows that πF (ϕ) ∼ 0
and ξF (ϕ) ∼ (c [1,4(ξ)])F (ϕ). In particular, ϕF (ϕ) ∼ (c [1,4(ξ)] ⊥ [c])F (ϕ). By
Lemma 9 and Proposition 8, we deduce that (ϕF (ϕ))an ∼= ([c])F (ϕ).


For the converse, we may assume that dimϕ ≥ 3 and h(ϕ) = 1. Set ϕ =
[a1, b1] ⊥ · · · ⊥ [ar, br] ⊥ [c1] ⊥ · · · ⊥ [cs].


(1) If ϕ is nonsingular: Let k be the maximal integer such that there exists a k-
fold Pfister form ψ as a subform of ϕ. We have to prove dimϕ = 2k+1. Assume
dimψ < dimϕ, and let ψ′ be a quadratic form such that ϕ∼= ψ ⊥ ψ′. Since ψ is
anisotropic and ϕ is nonsingular of dimension ≥ 4, it follows that F (ψ)(ϕ) is well
defined. However, ϕF (ψ)(ϕ) ∼ ψ′


F (ψ)(ϕ) ∼ 0 and dimψ′ < dimϕ. Proposition


5 implies that ψ′
F (ψ) ∼ 0, and thus ψ is weakly dominated by ψ′. Consequently,


there exists a scalar a ∈ F∗ and a quadratic form η such that ψ′ ∼= aψ ⊥ η.
The form ψ ⊥ aψ is a subform of ϕ and is similar to a (k + 1)-fold Pfister form,
contradicting the maximality of k. Hence, ϕ is similar to a Pfister form.


(2) If ϕ is singular: In this case we need some results on the isotropy problem, and
the relation between the height and the type of a singular form.


Proposition 10. ([11, Proposition 1.1]) Let F be a field of characteristic 2, and let
ϕ, ψ be anisotropic quadratic forms.
(1) If dimϕ = 2 and dimψ ≥ 3, then ϕF (ψ) is anisotropic.
(2) If ϕ is nonsingular of dimension 2 and ψ is totally singular, then ϕF (ψ) is
anisotropic.


Proposition 11. Let ϕ be as above. Then, s = 1.


Proof. Assume s ≥ 2. Since h(ϕ) ≤ 1, it follows that


ϕF (ϕ)
∼= r ×H ⊥ (s− 1)× [0] ⊥ [α]


for some α ∈ F (ϕ). Lemma 7 implies that the F (ϕ)2-vector space spanned by
c1, · · · , cs is of dimension ≤ 1. In particular, the F (ϕ)2-vector space spanned by
c1, c2 is of dimension ≤ 1, which means that the form [c1] ⊥ [c2] becomes isotropic
over F (ϕ), a contradiction with Proposition 10.


We consider the following quadratic forms


µ := [a1, b1] ⊥ · · · ⊥ [ar, br],
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and


ν := [a1, b1] ⊥ · · · ⊥ [ar, br] ⊥ c1 [1,4(µ)] .


Lemma 12. Let µ and ν be as above. Then, ν is anisotropic and νF (ϕ) is hyper-
bolic.


Proof. Since ϕF (ϕ) ≺ νF (ϕ) and ϕF (ϕ) contains r hyperbolic planes, it follows
that νF (ϕ)


∼= r ×H ⊥ ξ for some 2-dimensional quadratic form ξ. By comparing
Arf invariant we get ξ ∼= H. Therefore, νF (ϕ) is hyperbolic. The quadratic form
ν is not hyperbolic because ϕ is anisotropic. Assume that ν is isotropic. Thus,
2 ≤ dim νan ≤ dim ν − 2 < dimϕ and (νan)F (ϕ) ∼ 0, a contradiction with
Proposition 5.


To complete the proof, let k be the maximal integer such that there exists a k-
fold Pfister form ψ as a subform of ν. We have to prove dim ν = 2k+1. Assume
dim ν > 2k+1, and let ψ′ be a quadratic form such that ν ∼= ψ ⊥ ψ′. Notice that
dimψ′ ≤ dim ν − 2 < dimϕ. Since ψ is anisotropic, ϕ is not totally singular and
c 6= 0, it follows that F (ψ)(ϕ) is well defined. However, νF (ψ)(ϕ) ∼ ψ′


F (ψ)(ϕ) ∼ 0.
By Proposition 5, we have ψ′


F (ψ) ∼ 0, and thus ψ is weakly dominated by ψ′.
Hence, there exists a ∈ F∗ and a quadratic form η such that ψ′ ∼= aψ ⊥ η. The
form ψ ⊥ aψ is a subform of ν and is similar to a (k + 1)-fold Pfister form,
contradicting the maximality of k. Hence, ν is similar to a Pfister form.


We recall a general result on the isotropy problem.


Proposition 13. ([11, Corollaire 3.3]) Let F be a field of characteristic 2, and let
ϕ, ψ be anisotropic quadratic forms over F of dimension ≥ 2 such that ϕ is totally
singular and ψ is not totally singular. Then, ϕF (ψ) is anisotropic.


As a corollary we have:


Corollary 14. Let F be a field of characteristic 2, and let ϕ, ψ be anisotropic
quadratic forms. Assume that ψ is not totally singular and ϕ is totally singular. Let
(Fi, ϕi)0≤i≤h(ϕ) be the generic splitting tower of ϕ. Then, Fi(ψ) is well defined
for all i ∈ {0, · · · ,h(ϕ)}.


Proof. Set ψ = [a1, b1] ⊥ · · · ⊥ [ar, br] ⊥ [c1] ⊥ · · · ⊥ [cs]. By assumption we
have r ≥ 1. Let i ∈ {0, · · · ,h(ϕ)} and assume that Fi(ψ) is not defined. Hence,


ψFi
∼= H ⊥ [0] ⊥ · · · ⊥ [0] (2)


In particular, r = 1. If s ≥ 1, then the F2
i -vector space spanned by {c1, · · · , cs}


is of dimension ≥ 1, a contradiction with Lemma 7 and equation (2). Hence,
ψ = [a1, b1] and ψFi


∼= H. Since, ϕj is totally singular for all j ∈ {0, · · · ,h(ϕ)},
it follows from Proposition 10 (2) that ψFi


is anisotropic, a contradiction.


In the following theorem, we give some general results on the generic splitting
tower of a quadratic form.
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Theorem 15. Let ϕ be an anisotropic quadratic form of height h = h(ϕ) and type
(r, s), and let (Fi, ϕi)0≤i≤h(ϕ) be its generic splitting tower. When s ≥ 1, we
denote by η the quasilinear part of ϕ. Then, we have the following statements:
(1) If ϕ is totally singular and ψ is not a totally singular quadratic form, then
h(ϕ) = h(ϕF (ψ)).
(2) If s ≥ 2, then there exists j ∈ {0, · · · ,h(ϕ)− 1} such that ϕj is of type (0, s).
More precisely, we have ϕj ∼= ηFj


.
(3) If r, s ≥ 1, then h(η) + 1 ≤ h(ϕ) ≤ h(η) + r.
(4) Assume that r, s ≥ 1 and there exists j ∈ {0, · · · ,h(ϕ) − 1} such that ϕj is of
type (rj , 1). Then s = 1.
(5) Let j ∈ {0, · · · ,h(ϕ)}. Assume that ϕj is of type (rj, ε) with rj ≥ 1. Then, for
all i ∈ {0, · · · , j} the type of ϕi is (ri, ε) for some integer ri.
(6) If s ≥ 2, then ϕh(ϕ)−1 is totally singular of dimension 2.
(7) If s = 1, then for all i ∈ {0, · · · ,h(ϕ)} the type of ϕi is (ri, 1) for some ri.
(8) If s = 0, then ϕh(ϕ)−1 is similar to a Pfister form.


Proof. (1) Set ψ = [a1, b1] ⊥ · · · ⊥ [ar, br] ⊥ [c1] ⊥ · · · ⊥ [cs] and µ = [a1, b1].
By Corollary 14 the fields Fi(ψ), Fi(µ) are well defined.


(i) If µ = ψ, then by Proposition 10 we deduce that µFi
is anisotropic, and thus


by Proposition 13 (ϕi)Fi(µ) is anisotropic.


(ii) If dimψ > dimµ, then dimψ ≥ 3. By the same argument as in the proof
of Corollary 14 and by using dimψ ≥ 3, we deduce that Fi(µ)(ψ) is well de-
fined. The extension Fi(µ)(ψ)/Fi(µ) is purely transcendental [13, Lemma 1]. If
(ϕi)Fi(ψ) is isotropic, then (ϕi)Fi(µ) is also isotropic, a contradiction with Propo-
sition 13.
Since, (ϕi)Fi(ψ) is anisotropic for all i ∈ {0, · · · ,h(ϕ)}, it follows that h(ϕ) =
h(ϕF (ψ)).


(2) Since dimϕ ≥ s ≥ 2, it follows that h(ϕ) ≥ 1. Let j be the smallest
in {1, · · · ,h(ϕ)} such that ϕj is of type (rj , sj) with sj < s. By the choice of
j, the form ηFj−1


is anisotropic. Lemma 7 implies that ηFj
is isotropic. Since


Fj = Fj−1(ϕj−1), it follows from Proposition 13 that ϕj−1 is totally singular.
Therefore, by the minimality of j we conclude that ϕj−1 is of type (0, s), and thus
by Lemma 7 we obtain ϕj−1


∼= ηFj−1
.


(3) The statement is clear for s = 1. So we may assume s ≥ 2. By state-
ment (2), there exists j ∈ {0, · · · ,h(ϕ) − 1} such that ϕj ∼= ηFj


. Since ϕ is not
totally singular and ϕj is totally singular, we obtain j ≥ 1. Since ϕj−1 is not to-
tally singular, it follows that ϕl is not totally singular for all l ∈ {0, · · · , j − 1}.
By statement (1) we conclude that h(ηFj


) = h(ηFj−1
) = · · · = h(η). Since,


h(ϕ) ≥ h(ϕj−1) = h(ϕj) + 1 and ηFj
∼= ϕj , we conclude that h(ϕ) ≥ h(η) + 1.


The second inequality is obvious.
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(4) There is nothing to prove in the case j = 0. So we may assume j ≥ 1. Let
(rj−1, sj−1) be the type of ϕj−1. Since ϕj is of type (rj , 1) and j ≤ h(ϕ) − 1, it
follows that rj > 0, otherwise h(ϕj−1) = 1 and j = h(ϕ). In particular, rj−1 > 0
and ϕj−1 is not totally singular. Set ϕj−1 = ξj−1 ⊥ ηj−1 with ξj−1 ∈ Wq(Fj−1)
and ηj−1 a totally singular form over Fj−1. If sj−1 ≥ 2, then ηj−1 becomes
isotropic over Fj−1(ϕj−1), a contradiction with Proposition 13. Hence sj−1 = 1.
We finish the proof by a simple iteration argument.


(5) There is nothing to prove in the case j = 0. So we may assume j ≥ 1. Then,
the type (rj−1, sj−1) of ϕj−1 satisfies rj−1 ≥ rj ≥ 1 and sj−1 ≥ ε. In particular,
ϕj−1 is not totally singular. Set ϕj−1 = ξj−1 ⊥ ηj−1 with ξj−1 ∈ Wq(Fj−1) and
ηj−1 a totally singular form over Fj−1. If sj−1 > ε, then ηj−1 becomes isotropic
over Fj = Fj−1(ϕj−1), a contradiction with Proposition 13. Hence, sj−1 = ε. We
finish the proof by a simple iteration argument.


(6) Assume s ≥ 2. By statement (2) there exists j ∈ {0, · · · ,h(ϕ) − 1} such
that ϕj is of type (0, s). In particular, ϕh(ϕ)−1 is totally singular. It follows from
Theorem 2 that ϕh(ϕ)−1 is totally singular of dimension 2.


(7) Obvious.


(8) If s = 0. Then, all forms ϕi are nonsingular. By Theorem 2 the form ϕh−1


is similar to a Pfister form.


The notion of a Pfister neighbor form was extended in characteristic 2 as follows.


Definition 16. ([11, Définition 1.2]) A quadratic form ϕ is a Pfister neighbor if
there exists an n-fold Pfister form π such that dimϕ > 2n and ϕ is weakly domi-
nated by π. We call dimπ − dimϕ the codimension of ϕ.


In [11, Proposition 3.1], it is shown that an anisotropic Pfister neighbor can’t be
totally singular, and if ϕ is a Pfister neighbor of π then π is unique up to isometry.


Theorem 2 allows us to extend the notion of degree of a quadratic form. So,
let ϕ be a non-split quadratic form of height h = h(ϕ), and let (Fi, ϕi)0≤i≤h be
its generic splitting tower. Assume that dimϕ0 ≥ 2. Then, h(ϕ) ≥ 1. The field
Fh−1 is called the leading field of ϕ [8]. Since ϕh−1 is of height 1, it follows
from Theorem 2 that ϕh−1 is either a Pfister neighbor of codimension 0 or 1
(in the sense of Definition 16), or a singular form of dimension 2. We have two
possibilities:


(1) If ϕ0 is nonsingular, then ϕh−1 is also nonsingular. Hence, ϕh−1
∼= aπ for


some a ∈ F ∗
h−1 and π ∈ PdFh−1 for some integer d. In this case, we say that


ϕ is of degree d + 1. The form π is called the leading form of ϕ and is uniquely
determined by ϕ (we use the same argument as in [8]).
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(2) If ϕ0 is singular, then Theorem 15 implies that ϕh−1 is also singular.
In this case, we say that ϕ is of degree 0. By Theorem 2 ϕh−1 is of type
(rh−1, 1) with rh−1 ≥ 1 or of type (0, 2). When the type is (rh−1, 1), we
conclude by Theorem 2 that ϕh−1


∼= ξ ⊥ [c] with ξ ∈ Wq(Fh−1) and c ∈ F ∗
h−1


such that cξ ⊥ [1,4(ξ)] is a Pfister form that we call also the leading form of ϕ [8].


If ϕ is a split form (resp. dimϕan = 1), we set the degree of ϕ as ∞ (resp. we
set the degree of ϕ as 0).


We denote by deg(ϕ) the degree of ϕ, Jn(F ) the set of all quadratic forms of
degree at least n. Clearly, GPnF ⊂ Jn+1(F ) and Wq(F ) = J1(F ).


As in [8], we have the following proposition.


Proposition 17. (1) Let τ ∈ PnF anisotropic and a ∈ F∗. Let ϕ be a quadratic
form of degree ≥ n+ 2. Then, the quadratic form aτ ⊥ ϕ is of degree n+ 1.
(2) For n ≥ 0, the set Jn(F ) is closed under addition. In particular, Jn(F ) is a
subgroup of Wq(F ) for n ≥ 1, and InWq(F ) ⊂ Jn+1(F ).


Proof. We use the same proof as in [8, Theorem 6.3 and 6.4].


The following proposition allows us to define the complementary form of a Pfis-
ter neighbor in characteristic 2.


Proposition 18. Let ξ ∈Wq(F ) and c1, · · · , cs ∈ F such that


ϕ := ξ ⊥ [c1] ⊥ · · · ⊥ [cs]


is a Pfister neighbor. Let δ ∈Wq(F ) and d1, · · · , ds ∈ F such that


ξ ⊥ [c1, d1] ⊥ · · · ⊥ [cs, ds] ⊥ δ


is similar to a Pfister form.
(1) If F (ϕ) is well defined, then ϕF (ϕ) ∼ ([c1] ⊥ · · · ⊥ [cs] ⊥ δ)F (ϕ).
(2) The quadratic form [c1] ⊥ · · · ⊥ [cs] ⊥ δ is unique up to isometry.


Proof. Assume that 1 ∈ DF (ϕ).
(1) The form π := ξ ⊥ [c1, d1] ⊥ · · · ⊥ [cs, ds] ⊥ δ is a Pfister form. Since πF (ϕ)


is isotropic, it follows that


ξF (ϕ) ∼ ([c1, d1] ⊥ · · · ⊥ [cs, ds] ⊥ δ)F (ϕ).


In particular,


ϕF (ϕ) ∼ ([c1] ⊥ · · · ⊥ [cs] ⊥ [c1, d1] ⊥ · · · ⊥ [cs, ds] ⊥ δ)F (ϕ).


By Lemma 9 we have [ci, di] ⊥ [ci] ∼ [ci]. Hence,


ϕF (ϕ) ∼ ([c1] ⊥ · · · ⊥ [cs] ⊥ δ)F (ϕ).


(2) Let d′1, · · · , d′s ∈ F and δ′ ∈Wq(F ) such that π′ := ξ ⊥ [c1, d
′
1] ⊥ · · · [cs, d′s] ⊥


δ′ is another Pfister form. However, ϕ is a Pfister neighbor of π and π′. By [11,
Proposition 3.1] π ∼= π′. In particular,


π ⊥ [c1] ⊥ · · · ⊥ [cs] ∼= π′ ⊥ [c1] ⊥ · · · ⊥ [cs] .
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By Lemma 9 and the Witt cancellation (Proposition 8) we get the desired conclusion.


Definition 19. With the same notations and hypothesis as in Proposition 18, the
quadratic form [c1] ⊥ · · · ⊥ [cs] ⊥ δ is called the partial complementary form of
ϕ.


Obviously if ϕ is a Pfister neighbor of type (r, s), then the partial complemen-
tary form ϕ′ of ϕ is of type (r′, s) for some integer r′. In characteristic not 2, ϕ′ is
known as the complementary form of ϕ.


In characteristic 2, we extend the notion of excellent form as follows.


Definition 20. Any form of dimension ≤ 1 is called excellent. A quadratic form of
dimension ≥ 2 is called excellent if it is a Pfister neighbor and its partial comple-
mentary form is excellent.


In collaboration with Mammone [12] we extended in characteristic 2 a theorem
of Hoffmann on the isotropy of quadratic forms [5]. Here is our result.


Theorem 21. ([12]) Let F be a field of characteristic 2, and let ϕ, ψ be anisotropic
quadratic forms over F . Assume that:
(1) If ϕ is nonsingular, then dimϕ ≤ 2n < dimψ for some integer n ≥ 1.
(2) If ϕ is singular of type (r, s), then 2r + 2s ≤ 2n < dimψ for some n ≥ 1.
Then, ϕ remains anisotropic over F (ψ).


As a corollary of Theorem 21, we have:


Corollary 22. Let ϕ be an anisotropic Pfister neighbor of π ∈ PnF and ψ be its
partial complementary form. Then, we have (ϕF (ϕ))an ∼= ψF (ϕ) in the following
cases:
(1) ϕ is nonsingular.
(2) ϕ is singular of type (r, s) such that the type (r′, s) of ψ satisfies 2r′+2s ≤ 2n.
(3) ψ is a Pfister neighbor.


Proof. Let (r, s) be the type of ϕ and (r′, s) be the type of ψ. We have dimψ =
2r′ + s and ϕF (ϕ) ∼ ψF (ϕ) (Proposition 18). Since dimϕ > 2n, it follows that
dimψ < 2n. The form ϕF (π) is isotropic. Hence, F (π)(ϕ)/F (π) is a purely
transcendental extension [11, Corollaire 3.4].
• Assume that ϕ satisfies the case (1) or (2). If ψF (ϕ) is isotropic, then ψF (π) is
isotropic, a contradiction with Theorem 21. Hence ψF (ϕ) is anisotropic.
• Assume that ψ is a Pfister neighbor of a k-fold Pfister form ρ. Since dimψ > 2k,
we obtain k < n, that means, dim ρ < dimπ. If ψF (ϕ) is isotropic, then ψF (π)


is isotropic. Consequently, ρF (π) is isotropic and thus hyperbolic, a contradiction
with Proposition 5.


Definition 23. For a field extension K/F , we say that a quadratic form ϕ over K
is defined over F if there exists a quadratic form ψ over F such that ϕ∼= ψK .


For an excellent quadratic form, we prove a general result which generalizes a
known result of Knebusch on such a form in characteristic not 2, and we prove that
an anisotropic singular excellent form has a particular type.
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Proposition 24. Let ϕ be an anisotropic excellent form of dimension ≥ 3, and let
(Fi, ϕi)0≤i≤h(ϕ) be its generic splitting tower.
(1) If ϕ is singular, then ϕ is of type (r, 1) for some integer r > 0. In particular, all
quadratic forms ϕi are of type (ri, 1).
(2) All quadratic forms ϕi are defined over F .


Proof. (1) Let ψ be the partial complementary form of ϕ. Since ϕ is a Pfister
neighbor, it follows from [11, Proposition 3.1] that ϕ is not totally singular. We
will proceed by induction on h(ϕ). If h(ϕ) = 1, then the result is an immediate
consequence of Theorem 2. Now assume that the result is true for any anisotropic
excellent singular form of height < h(ϕ). By Corollary 22 (3) (ϕF (ϕ))an ∼= ψF (ϕ).
Hence, ψF (ϕ) is excellent of height h(ϕ) − 1. Since ψF (ϕ) is singular, we get by
the induction hypothesis that ψF (ϕ) is of type (r′, 1) for some integer r′. If r′ = 0,
then h(ϕ) = 1 and the result is true by Theorem 2. If r′ > 0, then by Theorem 15
(5) ϕ is of type (r, 1) for some integer r > 0.
(2) A consequence of Proposition 18 and Corollary 22 (3).


Now we give some partial results on quadratic form of height 2 and degree 1 or
2.


Theorem 25. Let F be a field of characteristic 2, and let ϕ be an anisotropic
nonsingular quadratic form over F .
(1) ϕ is of height 2 and degree 1 if and only if ϕ is one of the following types:
• ϕ is excellent of codimension 2;
• ϕ is of dimension 4 with non trivial Arf invariant.
(2) ϕ is excellent of height and degree 2 if and only if ϕF (ϕ) is not hyperbolic and
(ϕF (ϕ))an ∈ GP1F (ϕ) is defined over F .
(3) ϕ is of height and degree 2 whose leading form is not defined over F if and
only if ϕ is an Albert form, i.e. a nonsingular quadratic form of dimension 6 with
trivial Arf invariant.


The characterization of anisotropic quadratic forms of height 2 and degree 1 or
2 is complete in characteristic not 2. Here, we can’t settle the case when ϕ is of
height and degree 2 such that (ϕF (ϕ))an is not defined over F and the leading form
of ϕ is defined over F .


Proposition 26. Let F be a field of characteristic 2, and let ϕ be an anisotropic
nonsingular quadratic form of dimension 4 with non trivial Arf invariant, or an
Albert form. We have the following statements:
(1) If dimϕ = 4, then ϕ is of height 2, degree 1 and (ϕF (ϕ))an is not defined over
F .
(2) If ϕ is an Albert form, then ϕ is of height and degree 2 with leading form not
defined over F . In particular, (ϕF (ϕ))an is not defined over F .


Proof. (1) Since dimϕ = 4 and4(ϕ) 6= 0, we have ϕ 6∈ GP1F and dim(ϕF (ϕ))an =
2. Hence h(ϕ) = 2 and deg(ϕ) = 1. Assume that (ϕF (ϕ))an is defined over
F and let α ∈ F∗ such that ϕF (ϕ) ∼ (α [1,4(ϕ)])F (ϕ). Hence, µ := ϕ ⊥
α [1,4(ϕ)] is hyperbolic over F (ϕ). Let ρ be a 3-dimensional quadratic form
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dominated by ϕ. Clearly, ρ is a Pfister neighbor of some 1-fold Pfister form τ ∈
P1F . The forms ϕF (ρ) and ρF (τ) are isotropic, thus the extensions F (ρ)(ϕ)/F (ρ)
and F (τ)(ρ)/F (τ) are purely transcendentals [11, Corollaire 3.4]. Consequently,
µF (τ) ∼ 0. The form µ is not hyperbolic because ϕ is anisotropic. By Corollary
6 we deduce that µ is isotropic and µan is similar to τ . Therefore, τF (ϕ) ∼ 0. By
Proposition 5 ϕ is similar to τ , a contradiction.
(2) Assume that ϕ is an Albert form. By Theorem 2, we have h(ϕ) ≥ 2. Since
4(ϕ) = 0, we conclude that (ϕF (ϕ))an ∈ GP1F (ϕ). Hence, h(ϕ) = 2. Let
τ ∈ P1F (ϕ) be the leading form of ϕ. Assume that τ is defined over F . Conse-
quently, ϕF (τ)(ϕ) ∼ 0. If ϕF (τ) is anisotropic, then ϕF (τ) is of height 1, a con-
tradiction with Theorem 2. Hence ϕF (τ) is isotropic and thus F (τ)(ϕ)/F (τ) is a
purely transcendental extension [11, Corollaire 3.4]. We conclude that ϕF (τ) ∼ 0
and by Corollary 6 ϕ is isotropic, a contradiction.


Proposition 27. Let F be a field of characteristic 2, and let ϕ, η ∈ Wq(F ) be
anisotropic forms such that (ϕF (ϕ))an ∼= ηF (ϕ) and dim η = 2 or η ∈ GP1F .
Then, ϕ is an excellent form of partial complementary form η.


Proof. Set 4 = 4(ϕ) and µ = ϕ ⊥ η. We have 2 dimϕ > dimµ. The form µ
is not hyperbolic because ϕ is anisotropic, and we have µF (ϕ) ∼ 0. We have to
prove that µ is similar to an anisotropic Pfister form.


(1) If dim η = 2: In this case 4 6= 0. Let α ∈ F∗ such that η = α [1,4].
(1.1) Assume that µ is isotropic. Hence,


ϕ ∼= e [1, f ] ⊥ ϕ′


and
α [1,4] ∼= e [1,4]


for some quadratic form ϕ′ and e, f ∈ F ∗. It follows that


(ϕ′ ⊥ e [1, f +4])F (ϕ) ∼ 0 (3)


The forms ϕ′ ⊥ e [1, f +4] and ϕ have the same dimension.
• If ϕ′ ⊥ e [1, f +4] is isotropic, it follows from Proposition 5 and equation (3)


that ϕ′ ⊥ e [1, f +4] ∼ 0. Since ϕ′ is anisotropic, we deduce ϕ′ ∼= e [1, f +4].
Hence ϕ is isotropic, a contradiction.
• If ϕ′ ⊥ e [1, f +4] is anisotropic, then Proposition 5 implies that ϕ and


ϕ′ ⊥ e [1, f +4] are similar. In particular, ϕF (ϕ) ∼ 0, a contradiction.
Hence, µ is anisotropic.
(1.2) Assume that µF (µ) is not hyperbolic and let µ1 = (µF (µ))an. As in case


(1.1) we have ϕF (µ)
∼= βµ1 for some β ∈ F (µ)∗, and thus dimϕ < dimµ and


ϕF (ϕ)(µ) ∼ 0. Therefore by Proposition 5 ϕF (ϕ) ∼ 0, a contradiction.
Hence, µF (µ) is hyperbolic, and thus µ is similar to a Pfister form.


(2) If dim η = 4: We may assume η ∈ P1F . Set η = [1, y] ⊥ z [1, y].
(2.1) If µ is isotropic, then


ϕ ∼= r [1, x] ⊥ ϕ′′
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and
η ∼= r [1, y] ⊥ rz [1, y] ,


for some quadratic form ϕ′′ and r ∈ F ∗. In particular,


(ϕ′′ ⊥ r [1, x+ y] ⊥ rz [1, y])F (ϕ) ∼ 0.


Since ϕ is anisotropic, it follows that ϕ′′ ⊥ r [1, x + y] ⊥ rz [1, y] is not hyper-
bolic.


(i) If ϕ′′ ⊥ r [1, x+ y] ⊥ rz [1, y] is anisotropic, then Proposition 5 implies that


ϕ′′ ⊥ r [1, x+ y] ⊥ rz [1, y] ∼= uϕ ⊥ ξ


for some 2-dimensional form ξ and u ∈ F∗. By comparing Arf invariant we deduce
that ξ ∼= H, a contradiction.


(ii) If ϕ′′ ⊥ r [1, x+ y] ⊥ rz [1, y] is isotropic, then dim(ϕ′′ ⊥ r [1, x+ y] ⊥
rz [1, y])an ≤ dimϕ. By Proposition 5 we get that ϕ is similar to (ϕ′′ ⊥
r [1, x+ y] ⊥ rz [1, y])an. In particular, ϕF (ϕ) ∼ 0, a contradiction.


Hence, µ is anisotropic.
(2.2) If ϕF (µ) is isotropic, then F (µ)(ϕ)/F (µ) is a purely transcendental ex-


tension [11, Corollaire 3.4]. Hence, µF (µ) ∼ 0 and thus µ is similar to a Pfister
form.


(2.3) If µF (µ) is not hyperbolic, then by case (2.2) ϕF (µ) is anisotropic. Let
µ1 = (µF (µ))an. We have (µ1)F (µ)(ϕ) ∼ 0 and dimµ1 ≤ dimϕ+ 2. By the same
arguments as in cases (i) and (ii) we obtain that ϕF (µ) is similar to µ1. In particular,
dimϕ < dimµ and ϕF (ϕ)(µ) ∼ 0. It follows from Proposition 5 that ϕF (ϕ) ∼ 0, a
contradiction.


Hence, µF (µ) is hyperbolic and thus µ is similar a Pfister form.


Proof of Theorem 25. Let ϕ be an anisotropic nonsingular quadratic form. Set
4 = 4(ϕ).


(1) If ϕ is excellent of codimension 2, it follows from Corollary 22 (3) that
h(ϕ) = 2 and degree 1. By Proposition 26, an anisotropic quadratic form of
dimension 4 with non trivial Arf invariant is of height 2 and degree 1. For the
converse, assume that ϕ is of height 2 and degree 1. In particular, dimϕ ≥ 4 and
dim(ϕF (ϕ))an = 2. Let α ∈ F (ϕ)∗ such that ϕF (ϕ) ∼ α [1,4].


(1.1) If α [1,4] is defined over F , then we get by Proposition 27 that ϕ is ex-
cellent of codimension 2.


(1.2) If α [1,4] is not defined over F . We have


C(ϕ)F (ϕ) = [4, α) ∈ Br(F (ϕ)).


Assume that dimϕ ≥ 6. By Proposition 26 (2) ϕ is not an Albert form. However,
by the reduction index theorem [13, Theorem 4] the Schur index of the algebra
C(ϕ) is less or equal to 2. Let τ = [1, r] ⊥ s [1, r] ∈ P1F such that C(ϕ) =
C(τ) ∈ Br(F ). Clearly


([1, r] ⊥ s [1, r])F (ϕ)
∼= [1,4] ⊥ α [1,4] .
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Thus ([1, r +4] ⊥ s [1, r])F (ϕ) ∼ α [1,4]. By [11, Théorème 1.3] the form
[1, r +4] ⊥ s [1, r] is isotropic. Consequently, α [1,4] is defined over F , a con-
tradiction. Hence, dimϕ = 4.


(2) A consequence of Proposition 27 and Corollary 22 (3).


(3) The sufficient condition is a consequence of Proposition 26 (2). For the
necessary condition, we follow the proof of Kahn in characteristic not 2 [6] by
using the reduction index theorem in characteristic 2 [13].


Let us finish this note with some questions. The first one is related to the case
that we don’t settle in Theorem 25.


Question 28. Let ϕ be an anisotropic quadratic form of height and degree 2 and
let τ ∈ P1F anisotropic such that (ϕF (ϕ))an is similar to τ but not defined over F .
Is ϕ of dimension 8?


It is well known that Question 28 has a positive answer in characteristic not 2
[4, 1.6].


Question 29. Let ϕ be an anisotropic form, and let (Fi, ϕi)0≤i≤h(ϕ) be its generic
splitting tower. Assume that ϕ is of type (r, ε) such that ε ≤ 1 and all forms ϕi are
defined over F . Is ϕ an excellent form?


More precisely we ask the following question.


Question 30. Let ϕ be an anisotropic form. Assume that ϕ is of type (r, ε) such
that ε ≤ 1 and (ϕF (ϕ))an is defined over F . Is ϕ a Pfister neighbor?


Proposition 27 gives a positive answer to Question 29 when dim(ϕF (ϕ))an = 2
or (ϕF (ϕ))an ∈ GP1F (ϕ).


To formulate Question 30 when ϕ is a singular form with radical of dimension
≥ 2, it is necessary to add other hypothesis on the type of ϕ. In fact, Proposition 31
gives an example of an anisotropic singular quadratic form ϕ such that (ϕF (ϕ))an
is defined over F but ϕ is not a Pfister neighbor.


Proposition 31. Let F be a field of characteristic 2, n be an integer such that
2 + 2n is not a power of 2, and X,Y,Z1, · · · , Zn some variables over F . Let ϕ =
[X,Y ] ⊥ [Z1] ⊥ · · · ⊥ [Zn] and K = F (X,Y,Z1, · · · , Zn). Then, (ϕK(ϕ))an
is defined over K but ϕ is not a Pfister neighbor. More precisely, (ϕK(ϕ))an =
([Z1] ⊥ · · · ⊥ [Zn])K(ϕ).


Proof. Let η = [Z1] ⊥ · · · ⊥ [Zn]. Assume that ϕ is a Pfister neighbor over K . A
simple computation implies that 2 + 2n is a power of 2, a contradiction. It follows
from Proposition 13 that ηK(ϕ) is anisotropic and thus ϕK(ϕ)


∼= H ⊥ ηK(ϕ), as
desired.
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