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Abstract. —

The article describes the one-to-one correspondence between central simple al-
gebras and Brauer-Severi varieties over a field. Non-abelian group cohomology is
recalled and Galois descent is worked out in detail. The classifications of central
simple algebras as well as of Brauer-Severi varieties by one and the same Galois
cohomology set are explained. A whole section is devoted to the discussion of func-
toriality. Finally, the functor of points of the Brauer-Severi variety associated with a
central simple algebra is described in terms of the central simple algebra thus giving
a link to another approach to the subject.

Introductory remarks

This article is devoted to the connection between central simple algebras and
Brauer-Severi varieties.

Central simple algebras were studied intensively by many mathematicians at the
end of the 19th and in the first half of the 20th century. We refer the reader to N.
Bourbaki [Bou, Note historique] for a detailed account on the history of the sub-
ject and mention only a few important milestones here. The structure of central
simple algebras (being finite dimensional over a field K) is fairly easy. They are
full matrix rings over division algebras the center of which is equal to K. This was
finally discovered by J. H. Maclagan-Wedderburn in 1907 [MWe08] after several
special cases had been treated before. T. Molien [Mo] had considered the case
of C-algebras already in 1893 and the case of R-algebras had been investigated
by E. Cartan [Ca]. J. H. Maclagan-Wedderburn himself had proven the structure
theorem for central simple algebras over finite fields in 1905 [MWe05, Di].

In 1929, R. Brauer ([Br], see also [De], [A/N/T]) found the group structure on the
set of similarity classes of central simple algebras over a field K using the ideas of
E. Noether about crossed products of algebras. He proved, in today’s language,
that it is isomorphic to the Galois cohomology group H*(Gal(K*P /K), (KP)).
Further, he discusses the structure of this group in the case of a number field.
Relative versions of central simple algebras over base rings instead of fields were
introduced for the first time by G. Azumaya [Az] and M. Auslander and O.
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Goldmann [A/G]. The case of an arbitrary base scheme was considered by A.
Grothendieck in his famous Bourbaki talks “Le groupe de Brauer” [GrBrl, GrBrII,
GrBrlIII]. Using the étale topology there is given a cohomological description of
the Brauer group in the case that the base is not necessarily a field.

Central simple algebras over fields should be a subject in any course on algebra.
For that reason, there is a lot of literature on them and the information necessary
to follow this article can be found in many different sources. Among them there
are the standard textbooks on algebra as S. Lang’s book [La, section XVII, Corol-
lary 3.5 and section 5] or N. Bourbaki [Bou, §5 and §10] but also more specialized
literature like I. Kersten’s book [Ke] on Brauer groups.

Brauer-Severi varieties are twisted forms of the projective space. The term “va-
rieté de Brauer” appeared for the first time in 1944 in the article [Ch44] by F.
Chatelet. Nevertheless, F. Severi had proven already in 1932 that a Brauer-Severi
variety over a field K admitting a K-valued point is necessarily isomorphic to the
projective space.

It should be mentioned that Brauer-Severi varieties are important in a number of
applications. The first one that has to be mentioned and definitely the most strik-
ing one is the proof of the theorem of Merkurjev-Suslin [M/S82b] (see also [So],
[Sr], [Ke]) on the cotorsion of K; of fields. One has to adopt the point of view in-
troduced by S. A. Amitsur in his work on generic splitting fields of central simple
algebras [Am55] and applies the computation of the Quillen K-theory of Brauer-
Severi varieties which was done by D. Quillen himself in his ground-breaking
paper [Qu]. With that strategy one proves the so-called theorem Hilbert 90 for
K. The remaining part of the proof is more elementary but it still requires work.
Clearly, this looks like a very indirect approach. It would definitely be desirable
to have an elementary proof for the Merkurjev-Suslin theorem, i.e. one that does
neither use Brauer-Severi varieties nor Quillen’s K-theory.

The Merkurjev-Suslin theorem has an interesting further application to a better
understanding of the (torsion part of the) Chow groups of certain algebraic va-
rieties. The reader should consult the work of J.-L. Colliot-Thélene [CT91] for
information about that.

One should notice that M. Rost [R098, Ro99] found a proof for the general Bloch-
Kato conjecture on the cotorsion of K, of fields. It depends on V. Voevodsky’s
construction of motivic cohomology [V, V/S/E, S/V] as well as on his unpublished
work on homotopy theory of schemes. M. Rost does no more work with Brauer-
Severi varieties but more general norm varieties play a prominent role instead.
This work should include a new proof for the Merkurjev-Suslin theorem. Surely,
it cannot be an elementary one.

As a second kind of application, Brauer-Severi varieties appear in complex alge-
braic geometry when one deals with varieties being somehow close to rational
varieties. In particular, the famous example due to M. Artin and D. Mumford
[A/M] of a threefold which is unirational but not rational is a variety fibered over
a rational surface such that the generic fiber is a conic without rational points. For
more historical details, especially on the work of F. Chatelet, we refer the reader
to the article of J.-L. Colliot-Thélene [CT88].
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The connection between central simple algebras and Brauer-Severi varieties was
tirst observed by E. Witt [Wi35] and H. Hasse in the special case of quaternion al-
gebras and plane conics. To that connection in its general form there are (at least)
three approaches. Here we are going to present in detail the most elementary
one which was promoted by J.-P. Serre in his books Corps locaux [Se62, chap. X,
§§5,6] and Cohomologie Galoisienne [Se73, Remarque I1I.1.3.1] but was known
to F. Chatelet, already.

This approach is based on non-abelian group cohomology. The main observation
is that central simple algebras of dimension #n? over a field K as well as (n—1)-
dimensional Brauer-Severi varieties over K can both be described by classes in
one and the same cohomology set H!(Gal (K*P /K), PGL, (K*%P)).

A second approach is closer to A. Grothendieck’s style. One can give a direct de-
scription of a functor of points P, : {K—schemes} — {sets} in terms of data of
the central simple algebra A and prove its representability by a projective scheme
using brute force. This approach is presented explicitly in [Ke]. For a very de-
tailed account the reader can consult the Ph.D. thesis of F. Henningsen [Hen]. We
are going to prove here that these two approaches are equivalent. In fact, we will
compute the functor of points of the variety given by the first approach and show
that it is naturally isomorphic to the functor usually taken as the starting point
for the second approach.

There is a third approach which we only mention here. It works via algebraic
groups and can be used to produce twisted forms not only of the projective space
but of any homogeneous space G/P where G is a semisimple algebraic group and
P C G aparabolic subgroup. For information about that we suggest the reader to
consult the paper of I. Kersten and U. Rehmann [K/R].

The article is organized as follows. In section 1 we recall non-abelian group co-
homology. In particular, we state the exact sequence associated with a short se-
quence of G-groups. Section 2 is devoted to Galois descent which is our main
algebro-geometric tool. We decided to develop the theory in an elementary way:.
We do not aim at maximal generality and ignore A. Grothendieck’s faithful flat
descent. In sections 3 and 4 we develop the description of central simple algebras
and Brauer-Severi varieties, respectively, by Galois cohomology classes. Section
5 contains an explicit procedure how to associate a Brauer-Severi variety to a cen-
tral simple algebra based on the results presented in the sections before. In sec-
tion 6 we deal with the question how to modify this procedure in order to make
it functorial. We did not find that point in the literature but a discussion with
K. Kiinnemann convinced the author that the material presented should be well-
known among experts. Section 7 describes the functor of points of the Brauer-
Severi variety associated with a given central simple algebra. Thus, it gives the
link to the second approach mentioned above.

It is clear that a certain background from Algebraic Geometry will be necessary
to follow the text. In order to make the subject as accessible as possible for a
reader who is not an Algebraic or Arithmetic Geometer, we present the material
in such a way that the knowledge of Algebraic Geometry needed is reduced to a
minimum. For that purpose, we even decided in several cases to include a certain
statement in detail although there is a good reference for it in the literature. For
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example, Lemma 2.12 is due to A. Grothendieck and J. Dieudonné and can be
found in [EGA]. Essentially, all the results that are used can be found in the
second chapter of R. Hartshorne’s book [Ha] except for a number of facts from
Commutative Algebra which are taken from H. Matsumura [Mal].

We note finally that we will work over a base field in the entire article. We do
not consider the relative versions of central simple algebras and Brauer-Severi

varieties over arbitrary base schemes. For information about that we refer the
reader to A. Grothendieck [GrBrl, GrBrll, GrBrIII].

Notations and conventions. We will follow the standard notations and conven-
tions from Algebra and Algebraic Geometry unless stated otherwise. More pre-
cisely,

e all rings are assumed to be associative.

e If R is a ring with unit then R* denotes the multiplicative group of invertible
elements in R.

e All homomorphisms between rings with unit are supposed to respect the unit
elements.

e By a field we always mean a commutative field, i.e. a commutative ring with
unit every non-zero element of which is invertible. If K is a field then K** will
denote a fixed separable closure of it.

e Nevertheless, a ring with unit every non-zero element of which is invertible is
called a skew field.

o If R is a commutative ring with unit then an R-algebra is always understood as
a ring homomorphism j: R — A whose image is contained in the center of A.

e An R-algebra j: R — A is denoted simply by A when there seems to be no
danger of confusion.

e If 0: R — R is an automorphism of R then A” denotes the R-algebra
R % R -5 A. If M is an R-module then we put M? := M®rR?. M’ is an
R?-module as well as an R-module.

e If Ris a ring then R°P denotes the opposite ring, i.e. the ring that coincides with
R as an abelian group but where one has xy = z if one had yx = z in R.

o All central simple algebras are assumed to be finite dimensional over a base
field.

1. Non-abelian group cohomology (H° and H')

In this section we recall elementary facts about what is called non-abelian group
cohomology, i.e. cohomology with non-abelian coefficients of discrete groups. All
the results presented can be found in detail in Cohomologie Galoisienne [Se73].
Non-abelian Galois cohomology will turn out to be the central tool for the pur-
poses of this article.

Definition 1.1. — Let G denote a finite group.

i) A G-set E is a set equipped with a G-operation from the left. Following [Se73]
we will use the notation $x := g-x for x € E and g € G. A morphism of G-sets, a
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G-morphism for short, isamap i: E — F of G-sets such that the diagram

GxE——E

idxil lz‘
GxF——=F
commutes.
ii) A G-group A is a G-set carrying a group structure such that ¢(xy) = $x8y for
every ¢ € Gand x,y € A. If A is abelian then it is called a G-module.
Definition 1.2. — Let G be a finite group.

i) If E is a G-set then one puts H%(G, E) := E©, i.e. the zeroth cohomology set of G
with coefficients in E is just the subset of G-invariants in E. If E is a G-group then
H%(G, E) is a group.

ii) If A is a G-group then a cocycle from G to Aisamap G — A, g — a, such that
g, = ag-3ay, for each g, h € G. Two cocycles a, a’ are said to be cohomologous if there
exists some b € A such that a, = b~'-a,-8b for every g € G. This is an equivalence
relation and the quotient set, the first cohomology set of G with coefficients in A, is
denoted by H'(G, A). This is a pointed set as the map g — ¢ defines a cocycle, the
so-called trivial cocycle.

Remarks 1.3. — i) If a is a cocycle then a’ with a} := b~ -a,-8b for each g € G is a
cocycle, too.

ii) H(G, A) and H'(G, A) are covariant functors in A. If i: A — A’ is a morphism
of G-sets (a morphism of G-groups) then the induced map(s) will be denoted by
i.: H(G, A) — H%G, A’) (and i.: HY(G, A) — HY(G, A")).

iii) If A is abelian then the definitions above coincide with the usual group coho-
mology as one of the possible descriptions for H'(G, A) is just the cohomology of
the complex

0 — A -5 Map(G, A) -5 Map(G2, A) - ...
with the differential
dgp(g1, 78n+1) = gl‘vp(g% e 78n+1)

+ Z(_l)]@(gh < 881y 7gn+l)
=

+ D" (g 8n)-

Proposition 1.4. — Let G be a finite group.

a) If A C Bis a G-subgroup and B/ A is the set of left cosets then there is a natural exact
sequence of pointed sets

1 — HG, A) — H%G, B) — H(G, B/A) > HYG, A) — H'(G, B).

b) If A C B is even a normal G-subgroup then there is a natural exact sequence of pointed
sets

1— HG, A)— H(G, B)— H(G, B/ A) % HY(G, A)— H'(G, B)—H(G, B/ A).
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c) If A C B is a G-module lying in the center of B then there is a natural exact sequence
of pointed sets

1— H%G, A)— H(G, B)— H%G, B/ A) > HG, A)— ...
.. —HYG,B)—HYG, B/A) S H(G, A).

Here the abelian group H*(G, A) is considered as a pointed set with the unit element.

We note that a sequence (A,a) — (B b) = (C c) of pointed sets is said to be exact in
(B,b) if i(A) = j71(0).

Proof. ¢ is defined as follows. Let x € H(G, B/ A). Take a representative X € B
for x and put a, := X ' -*x. That is a cocycle and its equivalence class is denoted
by d(x). This definition is independent of the x chosen.

In the situation of c) the map ¢’ is given similarly. Let x € H(G, B/A). Choose
a cocycle (x4)scc that represents x and lift each x, to some X, € B. Put
a(g1,82) = 1%, -X;llgz ‘Xg,. That is a 2-cocyle with values in A and its equivalence
class is denoted by ¢’(x). This definition is independent of the choices.

Exactness has to be checked at each entry separately. This is not complicated at
all but very tedious. We omit it here. O

Remark 1.5. — The question what non-abelian H? and H® might mean turns out
to be substantially more difficult. The interested reader is referred to J. Giraud
[Gil].

Definition 1.6. — Let h: G’ — G be a homomorphism of finite groups. Then for
an arbitrary G-set E one has a natural pull-back map h*: H(G,E) — H(G', E). If E
is a G-group then the pull-back map is a group homomorphism. For an arbitrary
G-group A there is the natural pull-back map h*: H(G, A) — H(G', A) which is a
morphism of pointed sets.

If h is the inclusion of a subgroup then the pull-back resS := h* is usually called
the restriction map. If h is the canonical projection on a quotlent group then
1nfg := h* is said to be the inflation map. The composmon of res¢ or inf with
some extension of the G'-set E (the G’-group A) is usually called the restriction,
respectively inflation, as well.

Remark 1.7. — Non-abelian group cohomology can easily be extended to the
case where G is a profinite group and A is a discrete G-set (respectively G-group)
on which G operates continuously. Indeed, put fori =0 (i = 1)

HI(G, A) := lim H'(G/G', A%)
G/

where the direct limit is taken over the inflation maps and G’ runs through the
normal open subgroups G’ of G such that the quotient G/G is finite.

2. Galois descent

Definition 2.1. — Let L be a field and K C L be a subfield such that L/K is a finite
Galois extension. Let m;: X; — SpecL and m,: X, — SpecL be two L-schemes.
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Then, by a morphism from 7 to 7, that is twisted by o € Gal(L/K) we will mean
a morphism f: X; — X, of schemes such that the diagram

X1 Xs

Spec L %) SpecL

commutes. Here S(0): Spec L — Spec L denotes the morphism of affine schemes
induced by o~ ': L — L.

Theorem 2.2. — Let L/K be a finite Galois extension of fields and G := Gal (L/K) be
its Galois group. Then

a) there are the following equivalences of categories,

L—vector spaces
{K—vector spaces} —— ( with a G—operation from the left
where each o € G operates o —linearly

L—algebras
{K—algebras} — { with a G—operation from the left
where each o € G operates o—linearly

algebras — ¢ with a G—operation from the left ,
over K where each o € G operates o —linearly
commutative commutative L—algebras

{ K—algebras } — ¢ with a G—operation from the left ,

where each o € G operates o —linearly

commutative commutative L—algebras with unit
K—algebras — ¢ with a G—operation from the left
with unit where each o € G operates o —linearly

A — A®KL7

central simple central simple algebras over L }

b) there is the following equivalence of categories,

quasi — projective L—schemes
with a G—operation from the left

} by morphisms of K—schemes )
where each o € G operates
by a morphism twisted by o

quasi — projective
K—schemes

X — X Xspeck Spec L.
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c) Let X be a K-scheme and r be a natural number. Then there are the following equiv-
alences of categories,

( quasi — coherent sheaves .#
on X Xgpeck Spec L

{quasi — Coherent} _, ) together with a system (.5)sec
sheaves on X of isomorphisms ¢,: x;. M4 — A
satisfying ¢, 0x%(ty) = Lor

(forevery o, 7€ G )

(locally free sheaves .# of rank r )
on X Xgpeck Spec L
{locally free sheaves} _, ) together with a system (.5)sec
of rank r on X of isomorphisms ¢,: x; M — A
satisfying ¢, 0x%(ts) = tor
(forevery o, 7€ G )
F — M =TT

Here the morphisms in the categories are the obvious ones, i.e. those respecting all
the extra structures. m: X Xgpeck SpecL — X is the canonical morphism and
Xg: X Xspeck SpecL — X Xgpeck SpecL denotes the morphism that is induced by
S(o): SpecL — Spec L.

Proof. In each case we have to prove that the functor given is fully faithful and
essentially surjective. Full faithfulness is proven in Propositions 2.7, 2.8 and 2.9,
respectively. Propositions 2.3, 2.5 and 2.6 show essential surjectivity. O

Proposition 2.3 (Galois descent-algebraic version). — Let L/K be a finite Galois
extension of fields and G := Gal (L/K) be its Galois group. Further, let

W be a vector space (an algebra, a central simple algebra, a commutative algebra, a
commutative algebra with unit, ... ) over L together with an operation
T: GXW — W of G from the left on W respecting all the extra structures such
that for each o € G the action of o is a o-linear map T,: W — W

Then there is a vector space V (an algebra, a central simple algebra, a commutative alge-
bra, a commutative algebra with unit, ... ) over K such that there is an isomorphism

V@xL—— W

where V @k L is equipped with the G-operation induced by the canonical one on L and b
respects all the algebraic structures including the operation of G.

Proof. Define V := WC. This is clearly a K-vector space (a K-algebra, a commu-
tative K-algebra, a commutative K-algebra with unit). If W is a central simple
algebra over L then V is a central simple algebra over K. This can not be seen
directly but it follows immediately from the formula W ®yL = W which will be
proven below. For that let {/;,...,l,} be a K-basis of L. We have to show the
following claim. O

Claim 2.4. — There exist an index set A and a subset {x,|a € A} C WC such that
{lixo|i€e{1,... ,n},a € A} isa K-basis of W.
Proof. By Zorn’s Lemma there exists a maximal subset {x,|a € A} C W® such
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that {lix,|i € {1, ... ,n}, a € A} C Wis a system of K-linearly independent vec-
tors. Assume that system is not a basis of W. Then (lix,|i € {1, ... ,n}, a € A)k
is a proper G-invariant L-sub-vector space of W and one can choose an element
xe W\(lix,|ie{1, ... ,n},a € A)k. For every | € L the sum

S T.09) = 3 o) T,(x)

oeG oeG

is G-invariant. Further, by linear independence of characters, the matrix
oi(ly) ... ouly)

on(l)) ... ou(ly)
is of maximal rank. In particular, there is some I € L such that the image of

X = Z o(l)-o(x)

oeG
in W/(lix,|i€{1,...,n}, a € A)g is not equal to zero. Therefore,
{lixa|i€ {1, ,TZ}, OéEA}U{liX/)’“E {1, ,1’1}}
is a K-linearly independent system of vectors contradicting the maximality of
{xo| v € A} O

Proposition 2.5 (Galois descent-geometric version). — Let L/K be a finite Galois
extension of fields and G := Gal (L/K) its Galois group. Further, let

Y be a quasi-projective L-scheme together with an operation of G from the left by
twisted morphisms, i.e. such that the diagrams

T,

Y Y
SpecL @ SpecL

commute, where S(o): Spec L — SpecL is the morphism of schemes induced by
o' L—L.
Then there exists a quasi-projective K-scheme X such that there is an isomorphism of

L-schemes
f

X Xspeck Spec L —Y

where X X speck Spec L is equipped with the G-operation induced by the one on Spec L
and f is compatible with the operation of G.

Proof. Affine Case. Let Y = Spec B be an affine scheme. The G-operation on Spec B
corresponds to a G-operation from the right on B where each o € G operates o'~
linearly. Define a G-operation from the left on B by o-b := b-o~'. The assertion
follows immediately from Proposition 2.3.

General Case. By Lemma 2.10 there exists an affine open covering {Y1, ... ,Y,}
of Y by G-invariant schemes. Galois descent yields affine K-schemes Xj, ..., X,

such that there are isomorphisms

X; X SpecK Spec L i Yl'
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and affine K-schemes X;;,1 <i < j < n, such that there are isomorphisms

Xl']' XSpecK Spec L i Yi N Y]

It remains to be shown that every X;; admits canonical, open embeddings into X;
and X;.

In eacﬂ case on the level of rings we have a homomorphism A®xL — B®gL
and an isomorphism B&kL — (A®xL)s such that their composition is the local-
ization map. Clearly, f can be assumed to be G-invariant, i.e. we may suppose
f € A. Consequently, B&xL = A;®yL and, by consideration of the G-invariants
on both sides, B = Ay.

The cocycle relations are clear. Therefore, we can glue the affine schemes
Xi, ..., X, along the affine schemes X;;,1 <i < j < n, to obtain the scheme X
desired. Lemma 2.12.ix) below completes the proof. 0J

Proposition 2.6 (Galois descent for quasi-coherent sheaves)
Let L/K be a finite Galois extension of fields and G := Gal (L / K) be its Galois group. Fur-
ther, let X be a K-scheme, m: X Xgpeck SpecL — X the canonical morphism
and  x, : X Xgpeck SpecL — X Xgpeck SpecL  be the morphism induced by
S(o): SpecL — SpecL. Let
A be a quasi-coherent sheaf over X X speck Spec L together with a system (ty),cc of
isomorphisms v, x,.# — . that are compatible in the sense that for each o, 7 € G
there is the relation v, ox:(ty) = Lor-

Then there exists a quasi-coherent sheaf & over X such that there is an isomorphism

W*y%%

under which the canonical isomorphismi,: x,m"% = (1x,)"¥ =1"F M T F is iden-
tified with v, for each o, i.e. the diagrams

“ (b
X F *®) xXi M
i(,l \LL”
b
TF M

commute. .
Proof. Assume X = Spec A to be an affine scheme first. Then .# = M for some
(A®kL)-module M. We have

—_— —_—

x:‘,//l = M®(A®KL)(A®KL071) = M®LL‘771.

Hence x*.# = M? ' where M” ' coincides with M as an A-module, but its struc-
ture of an L-vector space is given by

[ o mi= o {(1) -ym.

Consequently, the isomorphism ¢, : x},.# — .# is induced by an A-module iso-
morphism j,: M — M being o~ !-linear. The compatibility relations required
above translate simply into the condition that the maps j, form a G-operation
on M from the right. Define a G-operation from the left on M by o-m := j,-1(m).
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By Galois descent for vector spaces the K-vector space M of G-invariants satis-
fies M® ®xL = M. This is also an isomorphism of A-modules as the G-operation
on M is compatible with the A-operation. Putting .# := M® we obtain a quasi-
coherent sheaf over X such that 7% = .#. The commutativity of the diagram is
a consequence of Proposition 2.3.

Now let X be a general scheme. Consider an affine open covering

{X, = SpecR,|a € A}

of X where A is an arbitrary index set. For every intersection X,, N X,,, we again
consider an affine open covering

{XCVMYzﬁ = Spec Rahazﬂ | ﬁ S B@haz}‘

By the affine case we are given R,-modules M, for each o € A satisfying
M, = A X X speckSpec L and R, , s-modules M,,, ., 3 for each triple (ov,a,3) with
a1, € Aand € By, o, satisfying m*M,, o, 3 = A | Xa, 0,9 ¥speckSpecL- LN construc-
tion of these modules is compatible with restriction to affine subschemes. There-
fore, by Proposition 2.9 below, we get isomorphisms

i@h@zﬂ: Mal ®Ra1 Rahazﬂ — Maz ®Ra7_ Rahazﬂ'

It is clear that for every a;, an, a3 € A and every (31 € By, a,, 52 € Bas.ay, 85 € Bayay
these isomorphisms are compatible on the triple intersection
Xoy a8 N &s\,a)ﬁz N Xa,.05,8, 1.6, we can glue the quasi-coherent sheaves M,

along the M, ., s to obtain the quasi-coherent sheaf .# desired. O

Proposition 2.7 (Galois descent for homomorphisms). — Let L/K be a finite Ga-
lois extension of fields and G := Gal(L/K) be its Galois group. Then it is equivalent

i) to give a homomorphismr: V — V' of K-vector spaces (of algebras over K, of cen-
tral simple algebras over K, of commutative K-algebras, of commutative K-algebras
with unit, ... ),

ii) to give a homomorphism r,: V@xL — V'®xL of L-vector spaces (of algebras
over L, of central simple algebras over L, of commutative L-algebras, of commutative
L-algebras with unit, ... ) which is compatible with the G-operations, i.e. such that
foreach o € G the diagram

L

VL V'@kL
VgL i V'@kL

commautes.

Proof. If r is given then one defines r; := r®gL. Clearly, if r is a ring homo-
morphism then r; is, too. Conversely, in order to construct r from r; note that
the commutativity of the diagrams above implies that r; is compatible with the
G-invariants on both sides. But we know (V®x L)¢ = V and (V'®x L)° = V’, al-
ready, so we obtain a K-linear map r: V — V'. If r; is a ring homomorphism
then its restriction 7 is, too. It is clear that the two processes described are inverse
to each other. O
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Proposition 2.8 (Galois descent for morphisms of schemes)
Let L/K be a finite Galois extension of fields and G := Gal(L/K) be its Galois group.
Then it is equivalent
i) to give a morphism of K-schemes f: X — X/,
ii) to give a morphism of L-schemes f1: X Xgpeck Spec L — X' X gpeck Spec L which
is compatible with the G-operations, i.e. such that for each o € G the diagram

X Xspeck Spec L I X' Xspeck Spec L

X Xgpeck Spec L _f, X' Xgpeck SpecL

commutes.

Proof. If f is given then one defines f; := f Xgpeck Spec L. Conversely, in order to
construct f from f;, the question is local in X’ and X. So one has a homomorphism
rp: A/®@xL — A®kL of L-algebras with unit making the diagrams

A @y L —= A®xL

& §

A @y L n A®yL

commute. That is exactly the situation covered by the proposition above. It is
clear that the two processes described are inverse to each other. O

Proposition 2.9 (Galois descent for morphisms of quasi-coherent sheaves)

Let L/K be a finite Galois extension of fields and G := Gal(L/K) be its Galois group.
Further, let X be a K-scheme and 7: X Xspeck Spec L — X be the canonical morphism.
Then it is equivalent

i) to give a morphism r: F — & of coherent sheaves over X,

ii) to give a morphism vy : ™F — TG of quasi-coherent sheaves over
X Xspeck Spec L which is compatible with the G-operations, i.e. such that for each
o € G the diagram

rL

T T
l l
rL
T ™Y

commautes.

Proof. If r is given then one defines r; := 7w*r. Conversely, if 7, is given, the
question to construct r is local in X. So assume A is a commutative ring with unit
and M and N are A-modules. We are given a homomorphism r;: M®gL — N®gL
of A®kL-modules such that the diagrams

L

M®kL N®gL

ML e N®xL
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commute for each 0 € G. We get a morphism r: M — N as M and N are the
A-modules of G-invariants on the left and right hand side, respectively. The two
procedures described above are inverse to each other. O

Lemma 2.10. — Let L be a field and Y be a quasi-projective L-scheme equipped with an
operation of some finite group G acting by morphisms of schemes. Then there exists a
covering of Y by G-invariant affine open subsets.

Proof. Let y € Y be an arbitrary closed point. Everything that is needed is
an affine open G-invariant subset containing y. For that we choose an embed-
ding i: Y — P}. By Sublemma 2.11, there exists a hypersurface H, such that
H,D i(Y)\i(Y) and i(o(y)) € H, for every o € G. Here i(Y) denotes the closure of
i(Y) in PY. By construction, the morphism

ilY\i‘l(Hy): Y\iil(Hy) — PIL\]\Hy

is a closed embedding. As PY\ H, is an affine scheme, Y\ i '(H,) must be affine,
too. Hence,
Oy:= (o '(Y\i''(Hy))CY
oeG
is the intersection of finitely many affine open subsets in a quasi-projective, and
therefore separated, scheme. Thus, it is an affine open subset. By construction,
O, is G-invariant and contains y. O

Sublemma 2.11. — Let L be a field and Z S P} be a closed subvariety of some projective
space over L. Further, let p1, ... ,pn, € PV be finitely many closed points not contained
in Z. Then there exists some hypersurface H C PY that contains Z but does not contain
any of the points p1, ..., pa.

Proof. We will give two proofs, an elementary one and the natural one that uses
cohomology of coherent sheaves.

Ist proof. Let S := L[Xy, ..., Xn] be the homogeneous coordinate ring for the
projective space P}. It is a graded L-algebra. For d € N we will denote by S, the
L-vector space of homogeneous elements of degree d.

We proceed by induction the case n = 0 being trivial. Assume the statement is
proven for n — 1 and consider the problem for n points py ,. .., p,. By induction
hypothesis there exists a homogeneous element s € S, i.e. some hypersurface
H:=V(s),suchthat H D Zand py, ... ,p,—1 € H. Let d denote the degree of 5, i.e.
H is a hypersurface in PY of degree d. We may assume p, € H as, otherwise, the
proof would be finished.

ZU{p1}U ... U{p,_1} is a Zariski closed subset of PN not containing p,. There-
fore, there exists some d' € N and some homogeneous s’ € S; such that
V()2 ZU{p1} U ... U{p,1} but p, € V(s'). Any hypersurface V(a-s'*+b-s")
for non-zero elements a,b € L contains Z but neither p, ..., p,—1 nor p,.

2nd proof. Tensoring the canonical exact sequence

0 - j{plv"'vpn} - ﬁX - ﬁ{P17---7Pn} - 0
with the ideal sheaf .#; yields an exact sequence

00— Ippyuz — Iz — Oy py — 0
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of sheaves on PN as one has Iipr ot Qoy Iz = gy pyuz  and
ﬂoriﬁ (O, ... p1»Pz) = 0. For that note that locally at least one of two sheaves
occurring in the products is free. For each [ € Z we tensor with the invertible
sheaf £(I) and find a long cohomology exact sequence

FPy, 72(0) — TP, Oy, D) — H'(PY, Iy py (D).

By Serre’s vanishing theorem [Ha, Theorem I11.5.2], H'(PY, Ity .o (D) =0 for
[ > 0. Hence, there is a surjection

MRy, I2(D)) — TP, O,y (D) Z E(p1) © ... B K(pa)-

That means that there exists a global section s of .#(I) that does not vanish in any
of the points p1, ..., p,. s defines a hypersurface of degree I in PY that contains
Z and does not contain any of the points py, ..., p,. O

Lemma 2.12 (A. Grothendieck and J. Dieudonné). — Let L/K be a finite field exten-
sion and X be a K-scheme such that X X gpeck Spec L is

i) reduced,

ii) irreducible,

iii) quasi-compact,

iv) locally of finite type,
V) of finite type,

vi) locally Noetherian,
vii) Noetherian,

viii) proper,

ix) quasi-projective,

X) projective,

xi) affine,

or

xii) regular.

Then X admits the same property.

Proof. Let m: X Xgpeck SpecL — X denote the canonical morphism. For iii)
through xi) we may assume L/K to be Galois. Put G := Gal (L/K).

i) If s € (U, Ox) would be a nilpotent non-zero section of the structure sheaf 0
over some open subset U C X then 7(s) € (U X speck SpecL, ﬁXxSpecKSpec 1) would
be a nilpotent non-zero local section of the structure sheaf of X Xspecx SpecL.

ii) If X = X; U X, would be a non-trivial decomposition into two closed sub-
schemes then X Xgpeck Spec L = X; Xspeck Spec L U X5 Xspeck Spec L would be the
same for X Xgpeck Spec L.

iii) Let {U,|a € A} be an arbitrary affine open covering of X. Then
{U, Xspeck SpecL|ac € A} is an affine open covering of X Xgpeck Spec L. Quasi-
compactness  guarantees the existence of a finite sub-covering
{U, Xspeck SpecL | e € Ag}. But then {U, | € Ap} is a finite affine open covering
for X.
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iv) We can assume X = Spec A to be affine. So A®xL is a finitely generated L-
algebra. Let {by,...,b,} be a system of generators for A®xL. As one could
decompose into elementary tensors, if necessary, we may assume without restric-
tion that all b; = 4;®/; are elementary tensors. Consider the homomorphism of
K-algebras

K[Xl, . ,Xn] — A, Xi = a;.
It induces a surjection after tensoring with L and, therefore, is surjective itself as
®kL is a faithful functor.
v) This is just the combination of iii) and iv).
vi) Let X, = Spec A, be an affine open subscheme of X. We have to show that A,
is Noetherian under the hypothesis that A,®xLis. Soassume ; C, C I3 C ... is
an ascending chain of ideals in A, that does not stabilize. It induces an ascending
chain [®xL C L®xL C ®kxL C ... of ideals in A, ®xL that does not stabilize,
either. This is a contradiction to our hypothesis.
vii) This is the combination of iii) and vi).

viii) That is v) together with a direct application of the valuation criterion for
properness [Ha, Theorem 4.7]. So consider a commutative diagram

u X
T Spec K

where T = Spec R is the spectrum of a valuation ring, U = Spec F is the spectrum
of its quotient field and i is the canonical morphism. Taking the base change of
the whole diagram to Spec L we find

U Xspeck Spec L X Xspeck Spec L

T X speck SpecL SpecL

where the diagonal morphism ¢ is the unique one making the diagram commute.
Note that U X gpeck Spec L = Spec (F®kL) is no more the spectrum of a field but the
union of finitely many spectra of fields. Similarly, T Xspeck Spec L = Spec (R®xL)
is a finite union of spectra of valuation rings. Nevertheless, the valuation criterion
implies existence and uniqueness of the diagonal arrow. Further, there is a canon-
ical G-operation on the whole diagram without ¢. As ¢ is uniquely determined by
the condition that it makes the diagrams above commute, the diagrams

L

T Xspeck Spec L X Xspeck Spec L

T Xspeck Spec L : X Xspeck Spec L

must be commutative for each o € G. ¢ is the base change of a morphism T — X
by Proposition 2.8.



16 JORG JAHNEL

ix) and x) Taking v) and viii) into account everything left to be shown is the exis-
tence an ample invertible sheaf on X. By assumption there is an ample invertible
sheaf ./ on X Xgspeck SpecL. For o € G let x,: X Xspeck Spec L — X Xgpeck SpecL
be the morphism of schemes induced by S(o): SpecL — SpecL, i.e. by o' on
coordinate rings. The invertible sheaves x;.# are ample, as well, and, therefore,

M = Q x; A is an ample invertible sheaf. For each o € G there are canonical
identifications
JES— ‘d JE—
Lot Xo Ml = ®x’;x;’;// = ®xig//l = ®xi//: M
veG veG veG

and it is trivial that they are compatible in the sense that for each 0,7 € G there
is the relation ¢, ox}(¢,) = t,r. By Galois descent Er locally free sheaves there is
an invertible sheaf . € Pic (X) such that 7°.¢ = .#. By Lemma 2.13 below . is
ample.

xi) If X Xgpeck Spec L = Spec B is affine the isomorphism defines a G-operation
from the right on the L-algebra B where each o € G operates o '-linearly. Define

a G-operation from the left on B by o-b:=b-o~!. By the algebraic version of

descent, Proposition 2.3, we find a K-algebra A such that there is an isomorphism

X Xspeck Spec L =, Spec B = Spec(A®xL) =, Spec A Xgpeck Spec L
being compatible with the G-operations. Proposition 2.5 implies X = Spec A.
xii) Let (A, m) be the local ring at a point p € X. By vi) we may assume (A, m)
is Noetherian. We have to show it is regular. Let us give two proofs for that,

the standard one using Serre’s homological characterization of regularity and an
elementary one.

Ist proof. Assume (A, m) would not be regular. By [Ma, Theorem 19.2] one would
have gl.dim A = oc. Then, [Ma, §19, Lemma 1] implies proj.dim , A/m = oo and
sup{i| Tor{'(A/m, A/m) # 0} = cc.

On the other hand, we have
Tor(A/m,A/m)®@xL = Tor’(A/m, A/m)@4(ARxL)
Tor(A/m,(A®kL/m®gL))
= Tor/“""((A®kL/m®xL),(A®xL/m@kL))
=0

for i > dim A®xL by [Ma, Theorem 19.2] as A®QkL is regular. This is a contradic-
tion. Note that everything we needed was that 7 is faithfully flat.

2nd proof. Put d := dim A. The ring A®xL is not local in general. But the quotient
(A®kL)/(m®kL) = A/m®kL is a direct product of finitely many fields since L/K
is a finite, separable field extension. The quotients (A®kL)/(m" ®kL) are Artin
rings as they are flat of relative dimension zero over A/m". Consequently, they
are direct products of Artin local rings,

(A®kL)/(m"@kL) — A" x ... x AW,
Under this isomorphism (m®xL)/(m"®kL) is mapped to the product of the max-
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imal ideals m{" x ... x mgn) as it is a nilpotent ideal and the quotient has to be a

direct product of fields. For eachi € {1, ... ,I} let f; € A®kL be chosen such that
its image has a non-zero component in A", only, and that be the unit element.
Then

AP 2 (A®kL)/(m' @k L))y = (A@kL)y, /m"(A®kL)y,.

By our assumptions (A®xL), is a regular local ring and m(A®xL)y, is its maximal
ideal. (A®kL)y, is of dimension d since it is flat of relative dimension zero over
A. By the standard computation of the Hilbert-Samuel function of a regular local
ring we have

length (A§">) — length (A®«L); /m"(A®kL);)
= length ((A®xL);/(m(A@xkL);)")

_ (n+d-1
= p )
Consequently, for the function Hy with H,(n) := dimg (A/m") one gets

Ha(n) = dim; (A®xL/m"@xL) = dim; (A(l”)x ><A§”>>
1

1=1

I
= A" /m):L|length( A",
3 [ (477 /mi) 1 rengen (A7)
so H, has to be some multiple of n — (”ﬁ‘l) by a constant. Therefore, the Hilbert-
Samuel function of A is exactly that of a regular local ring of dimension d. Note
its value H4(1) is necessarily equal to 1, so there is no ambiguity about constant
factors. A is regular. O

Lemma 2.13. — Let L/K be an arbitrary field extension, X a K-scheme of finite type,
7 X Xspeck Spec L — X the canonical morphism and £ € Pic (X) be an invertible sheaf.
If the pull-back 7*Z € Pic (X Xspeck Spec L) is ample then £ is ample.

Proof. We have to prove that for every coherent sheaf .# on X and each closed
point x € X for n > 0 the canonical map p}: (X, # @ L") — F, QL
is surjective. For that it is obviously sufficient to prove surjectivity for
pi@kL: (X, Z L") QkL — (F: QL") @k L. But it is easy to see that

M(X, 7L @kL = (X Xsgpeck SpecL, m°F @m L")

while (Z#, 0 Z"@kL = [(71(x), 7"F @*.L*"). Here 7 !(x) denotes the fiber of
7 above x. Note it may be a non-reduced scheme in the case that L/K is not
separable. For n >> 0 the map p}®kL is surjective as 7°.Z is ample. O

Lemma 2.14. — Let R be a ring, F a free R-module of finite rank and M an arbitrary
R-module. If M®gF is a locally free R-module of finite rank then M is locally free of
finite rank, as well.

Proof. M is a direct summand of the locally free R-module M ®gF being of fi-
nite rank. Therefore, there is some affine open covering {SpecRy,, ... ,Spec Ry, }
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of SpecR such that each (M®rF)®r Ry, = (M®rRf)®rF is a free Rg-module.
M®gRy, = My, is a direct summand and, therefore, a projective R¢-module. There
exists a surjection (M®rF) ®r Rf, — My, whose kernel K has to be a direct sum-
mand of (M®grF)®gr Ry, as well. In particular, K is a finitely generated Rg-
module. Thus, My, is finitely presented and, therefore, locally free by [Ma, Theo-
rem 7.12 and Theorem 4.10]. O

Remark 2.15. — Galois descent is the central technique in André Weil’s founda-
tion of Algebraic Geometry. The Grothendieck school gave a far-reaching gen-
eralization of it, the so-called faithful flat descent. It turns out that we will not
need faithful flat descent in its full generality later on here. For that reason we
decided to present the more elementary Galois descent in detail. The reader who
is interested in faithful flat descent can find detailed information in [K/O].

3. Central simple algebras and non-abelian H'

We are going to make use of the following well-known facts about central simple
algebras.

Lemma 3.1 (J. H. Maclagan-Wedderburn, R. Brauer). — Let K be a field.

a) Let A be a central simple algebra over K. Then there exist a skew field D with center
K and a natural number n such that A = M, (D) is isomorphic to the full algebra of
n X n-matrices with entries in D.

b) Let L be a field extension of K and A be a central simple algebra over K. Then A®kL
is a central simple algebra over L.

c) Assume K to be separably closed. Let D be a skew field being finite dimensional over K
whose center is equal to K. Then D = K.

Proof. See the standard literature, for example S. Lang [La] or N. Bourbaki [Bou],
or the book of I. Kersten [Ke]. O

Remarks 3.2. — a) Let A be a central simple algebra over a field K.

i) The proof of Lemma 3.1.a) shows that in the presentation A = M,,(D) the skew
field D is unique up to isomorphism of K-algebras and the natural number 7 is
unique.

ii) A®gK*P is isomorphic to a full matrix algebra over K*®P. In particular, dimg A

is a perfect square. The natural number ind(A) := \/dimg(D) is called the index
of A.

b) Let A, A; be central simple algebras over a field K. Then A;®xA, can be
shown to be a central simple algebra over K. Further, if A is a central simple
algebra over a field K then A®g AP = Autg_vet(A), ie. it is isomorphic to a
matrix algebra.

c) Two central simple algebras A; = M, (D,), A» = M,,(D») over a field K are
said to be similar if the corresponding skew fields D; and D, are isomorphic as
K-algebras. This is an equivalence relation on the set of all isomorphy classes of
central simple algebras over K. The tensor product induces a group structure on

the set of similarity classes of central simple algebras over K, this is the so-called
Brauer group Br(K) of the field K.
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Definition 3.3. — Let K be a field and A be a central simple algebra over K. A
field extension L of K admitting the property that A ®xL isomorphic to a full
matrix algebra is said to be a splitting field for A. In this case one says A splits over
L.

Lemma 3.4 (Theorem of Skolem-Noether). — Let R be a commutative ring with unit.
Then GL,(R) operates on M,,(R) by conjugation,

(g,m) — gmg .
If R = L is a field then this defines an isomorphism

PGL, (L) := GL,(L)/L* — Aut,(M,(L)).

Proof. One has L = Zent(M,,(L)). Therefore, the mapping is well-defined and
injective.
Surjectivity. Let j: M, (L) — M, (L) be an automorphism. We consider the algebra
M = M, (L)@ M, (L)°? (= M,2(L)). M,,(L) gets equipped with the structure of a
left M-module in two ways.

(AB)e;C = A-C-B

(A®B)e,C = j(A)-C-B
Two M,»(L)-modules of the same L-dimension are isomorphic, as the n*-dimen-
sional standard L-vector space equipped with the canonical operation of M, 2(L) is
the only simple left M,»(L)-module and there are no non-trivial extensions. Thus,
there is an isomorphism #: (M, (L), ;) — (M,(L),®,). Let us put I := h(E) to be
the image of the identity matrix. For every M € M, (L) we have

h(M) = h(EQ M)eE) = (EQ M)e,h(E) = h(E)-M = I- M.
In particular, I € GL,(L). Therefore,
I-M =h(M) =h(M®E)® E) = (M®E)®,h(E) = j(M)-I
for each M € M,,(L) and j(M) = IMI . O

Definition 3.5. — Let n be a natural number.

i) If K is a field then we will denote by Az, the set of all isomorphy classes of
central simple algebras A of dimension 7n* over K.

ii) Let L/K be a field extension. Then Az./X will denote the set of all isomorphy
classes of central simple algebras A which are of dimension #n* over K and split

over L. Obviously, Az\ := | AzL/K,
L/K

Theorem 3.6 (cf. ].-P. Serre: Corps locaux [Se62, chap. X, §5])
Let L/K be a finite Galois extension of fields, G := Gal (L/K) its Galois group and n be
a natural number. Then there is a natural bijection of pointed sets
a=al/*: Az’ — H'(G,PGL,(L)),
A — aas.
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Proof. Let A be a central simple algebra over K that splits over L,
A®gL % M,(L).

The diagrams
AL M, (L)
A®xL ——M,(L)

for o € G do not commute in general. Put (foo) = a,o(oof) where a, € PGL,(L)
for each o. It turns out that

foor = (foo)or

aso(cof)or

a,ooo(for)
a,000(,0(rof))
— aaOUaTO(UTOf)v

ie. a,, =a,-%, and (a,),cc is a cocycle.
If one starts with another isomorphism f': A®xL — M, (L) then there exists
some b € PGL,(L) such that f = bof’. The equality (foo) = a,o(cof) implies

floo=blofoo=b"la,o(co(bof’))=b"a,b o(cof’).

Thus, the isomorphism f’ yields a cocycle being cohomologous to (4,),cc. The
mapping a is well-defined.

Injectivity. Assume A and A’ are chosen such that the construction above yields
the same cohomology class a, = as € H'(G,PGL,(L)). After the choice of
suitable isomorphisms f and f’ one has the formulas (foo) = a,0(oo f) and
(f'oo) =a,0(cof’) in the diagram

A®xL —L= M, (L) <2— A'@¢L

A@yL —= M,(L) <1~ ey L.
Consequently, fooof oo™ = flogof'"loo™! and, therefore,
fooof toflootof "t =id.

The outer part of the diagram commutes. Taking the G-invariants on both sides
gives A= A'.

Surjectivity. Let a cocycle (4,),ec for H(G,PGL,(L)) be given. We define a new
G-operation on M,,(L) by letting o € G operate as

a,00: My(L) — M, (L) - M, (L).
Note that this is a o-linear mapping. Further, one has

((,ZJOO')O({/'ITOT) - LIUOULZTOO'T =05;700T,
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i.e. we constructed a group operation from the left. Galois descent yields the
desired algebra. O

Lemma 3.7. — Let L/K be a finite Galois extension of fields and n be a natural number.
a) Let L' be a field extension of L such that L' /K is Galois again. Then the following
diagram of morphisms of pointed sets commutes,

I

AzL/K H'(Gal(L/K),PGL,(L))
nat. incl. infgi EE%?
L'/K
Azb/K " H'(Gal(L'/K),PGL,(L")).

b) Let K' be an intermediate field of the extension L/K. Then the following diagram of
morphisms of pointed sets commutes,

L/K

AzL/K —" HY(Gal(L/K),PGL,(L))
S rescal )
uL/K’
AzL/K — H'(Gal (L/K'"), PGL,(L)).

Proof. These are direct consequences of the construction of the bijections a,. [J

Corollary 3.8. — Let K be a field and n be a natural number. Then there is a unique
natural bijection

a=aX: AzX — HY(Gal(K**P/K), PGL,(K*P))

such that ay |, 1« = aﬁ/Kfor each finite Galois extension L /K in K>,

Proof. In order to get connected with the definition of cohomology of profinite
groups the only technical point to prove is the formula

PGL,,(K*P)(KF/K) — PGL,,(K")
for every intermediate field K C K’ C K*P. For that the exact sequence
1 — (K**?)* — GL,(K**) — PGL,(K*¥) — 1
induces the cohomology exact sequence
1 — (K')* = GL,(K') — PGL,(K*®)Sa &*/K) —, HY(Gal (K*P /K'), (K*P)")

whose right entry vanishes by Hilbert’s Theorem 90 (cp. Lemma 4.10 below). [
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Proposition 3.9. — Let K be a field and m and n be natural numbers. Then the diagram

aK
AzK - H'(Gal (K*¢P /K), PGL,,(K*P))

n

A—M,,(A) ()

K

AzK " HY(Gal (KP /K), PGL,y (K*P))

commutes where (i};,,,). is the map induced by the block-diagonal embedding

i" : PGLy(K*F) — PGLy(K*P)

_ 0O E --- 0
E — .

Proof. let A € Az\. By the construction above, a cycle representing the
cohomology class ak(A) is given as follows. Choose an isomorphism
f: AQgK*P — M, (K*P) and put 4, := (foo)o(oof)~! € Aut(M,(K*P)) for each
o € Gal(K*P/K). On the other hand, for M,,(A) € Aszm one may choose the iso-
morphism

Mm(f) M,,(A) @k K*P = M,,(A@k K*P) — M,,,(M,,(K*P)) = M,,,,,(K*P).

For each o € Gal(K*®P /K) this yields the automorphism a,, of M,,,(M,,(K*%)) which
operates as a, on each block. If 4, is given by conjugation with a matrix A, then
a, is given by conjugation with

A, 0 -+ 0
0 A, --- 0
0 0 - A,
This is exactly what was to be proven. O
Remark 3.10. — The proposition above shows

Br(K) = lim H'(Gal (K*F /K), PGL, (K*F)).

Further, for each m and n there is a commutative diagram of exact sequences as
follows,
1 — (K**P)* —— GL,(K**?) —— PGL,(K*f) —— 1

| [

1 — (K*P)* — GL,;,(K*P) —— PGL,,,,(K*?) — 1.

We note that (K°P)* is mapped into the centers of GL,(K*?) and GL,,,(K*¥), re-
spectively. Therefore, there are boundary maps to the second group cohomology
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group and they all fit together to give a map
lim H"(Gal (K** /K), PGL,(K*P)) — H*(Gal (K** /K), (K*P)*).

It is not complicated to show that this map is injective and surjective [SGA4;,
Arcata, II1.1], [Se62, chap. X, §5], [Bou, §10, Prop. 7].

4. Brauer-Severi varieties and non-abelian H!

Definition 4.1. — Let K be a field. A scheme X over K is called a Brauer-Severi
variety if there exists a finite, separable field extension L/K such that X Xgpeck
Spec L is isomorphic to a projective space PY. A field extension L of K admitting
the property that X Xgpecx Spec L = PY for some 1 € N is said to be a splitting field
for X. In this case one says X splits over L.

Proposition 4.2. — Let X be a Brauer-Severi variety over a field K. Then
i) X is a variety, i.e. a reduced and irreducible scheme.

ii) X is projective and regular.

iii) X is geometrically integral.

iv) One has ' (X, Ox) = K.

v) K is algebraically closed in the function field X(K).

Proof. We will denote the dimension of X by N.
i) and ii) are direct consequences of Lemma 2.12.i),ii), x) and xii).

iii) is clear from the definition.
iv) We have

M(X, 0%) @k K*% = T (X XspeckSpec K%, O speckr) = T (PR, Oy ) = K*P.

Consequently, I'(X, Ox) = K.

v) Assume g € K(X) is some rational function being algebraic over K. We choose
an algebraic closure K of K. The pull-back gy is a rational function on P¥ be-
ing algebraic over K. Thus, ¢z is a constant function. Consequently, ¢ itself has
definitely no poles, i.e. g is a regular function on X. By iv) we have g € K. O

Lemma 4.3. — Let R be a commutative ring with unit.

a) Then GL,(R) operates on P%~! by morphisms of R-schemes as follows: A € GL,(R)
gives rise to the morphism given by the graded automorphism

R[Xo, ..., X1l — R[Xo, ..., Xy1]
f(Xo, - ,Xn,l) = f((X(), X], e ,anl)'At)

of the coordinate ring.

b) If R = L is a field then this induces an isomorphism

PGL,(L) = Autr_schemes (Pfl)-
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Proof. Note that in projective coordinates the definition above yields the naive
operation

an 1
Ap1 ... Aup
(xX0: oot xp1) = ((Anxo+ ... Fa1aXp-1) oo 2 (@nX0 -+ e C AunX1))

of GL,(S) on the set P} (S) of S-valued points on P%! for every commutative
R-algebra S with unit.

a) is clear. For b) see [Ha, Example I1.7.1.1]. The proof given there works equally
well without the assumption on L to be algebraically closed. O

Definition 4.4. — Let r be natural number.

i) If K is a field then we will denote by BSX the set of all isomorphy classes of
Brauer-Severi varieties X of dimension r over K.

ii) Let L/K be a field extension. Then BSY/X will denote the set of all isomorphy
classes of Brauer-Severi varieties X over K which are of dimension r and split

over L. Obviously, BSK := (J BSL/K,
L/K

Theorem 4.5 (cf. ].-P. Serre: Corps locaux [Se62, chap. X, §6])
Let L/K be a finite Galois extension, G := Gal (L/K) its Galois group and n be a natural
number. Then there exists a natural bijection of pointed sets

a =l Bs® =, HY(G,PGL,(L)),
X — ay.

Proof. Let X be a Brauer-Severi variety over K that splits over L,

X Xspeck Spec L % PZ’l.

On X Xspeck SpecL, as well as on P’E‘l, there are operations of G from
the left by morphisms of K-schemes. The action of o € G is induced by
S(o): SpecL — SpecL in both cases. Unfortunately, the diagrams

X Xspeck Spec L S P’Z—l

X X speck Spec L —L—— pr-1
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with 0 € G do not commute in general. We put (foo) = a,o(cof) with
o, € PGL,(L). (as)scc is a cocycle by the same calculation as above:

foor = (foo)or

agso(oof)oT

a,000(for)

as000(a;0(rof)

a0 0(oTof).

If one starts with another isomorphism f": X Xgpeck Spec L — P’Z’l then there
exists some b € PGL,(L) such that f = bof’. The equality (foo) = a,o(cof)
implies

floo=blofooc=b"a,o(co(bof’))=b"a,b o(aof).

Thus, the isomorphism f’ yields a cocycle being cohomologous to (o, )scc. Con-
sequently, the mapping « is well-defined.

Injectivity. Assume X and X' are chosen such that the same cohomology class
ax = ax € HY(G,PGL,(L)) arises. After the choice of suitable isomorphisms f
and f’ one has the formulas (foo) = a,o(0of) and (f'o0) = a,0(cof’) in the
diagram

X X SpecK SPGC L ! P’Zil / X/ X Speck Spec L

| P

X Xspeck Spec L ! p-1 S ox X gpeck SpecL.

Therefore, fooof oo™ = flogof'loo™! and, consequently,
foaoftoflos lof' ! =id.
The outer part of the diagram commutes. Galois descent yields X = X'.

Surjectivity. Let a cocycle (a,),ec for HY(G,PGL,(L)) be given. We define a new
G-operation on P/ ~! by letting o € G operate as

— o — Q, —
azo0: P} 1—>PZ ! — P 1

This is a group operation as (a,),cc is a cocycle. The geometric version of Galois
descent yields the desired variety. O

Lemma 4.6. — Let L/K be a finite Galois extension of fields and n be a natural number.

a) Let L' be a field extension of L such that L' /K is Galois again. Then the following
diagram of morphisms of pointed sets commutes.
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L/K
Q1

L/K
Bsnil

HY(Gal (L/K),PGL,(L))

. . (Gal(L//K)
nat.incl. mfgal /K

L'/K

BSL/K — " H'(Gal(L'/K), PGL,(L)

b) Let K’ be an intermediate field of the extension L/K. Then the following diagram of
morphisms of pointed sets commutes.

L/K

Bst/K — . H(Gal(L/K),PGL,(L))

Gal(L/K')

!
XsgpeckSpecK TeSGal (L/K)

L/K'

BS,/\ ———— H'(Gal(L/K), PGL,(L))
Proof. These are direct consequences of the construction of the mappings ¢, _;.0]

Corollary 4.7. — Let K be a field and n be a natural number. Then there is a natural
bijection

a=ak i BSK | — HYGal(K*P/K), PGL,(K*P))

such that aX | |pgi/x = aﬁf If for each finite Galois extension L/K in KP.
Proof. The prooﬂollows the same line as the proof of Corollary 3.8. O

Proposition 4.8 (F. Severi, cf. ]J.-P. Serre: Corps locaux [Se62, chap. X, §6, Exc. 1])
Let r be a natural number. If X is a Brauer-Severi variety of dimension r over a field K
and X(K) # () then, necessarily, X = P%.

Proof. Let L /K be a finite Galois extension being a splitting field for X. Denote its
Galois group by G. Choose an isomorphism X Xspeck Spec L — P7. One may as-
sume without restriction that the L-valued point x; € X Xgpeck Spec L (L) induced

by the K-valued point x € X(K) is mapped to (1:0: ... :0) € P;(L). Therefore,
the cohomology class ay € H'(G,PGL,.1(L)) is given by a cocycle (o) ec where
every o, admits (1:0: ... :0) as a fixed point.

Consequently, ax belongs to the image of H' (G, F/L*) under the natural homo-
morphism where

an ... A1pa
F:= : : €eGL (L) |an=an= ... =a,11=0 ).
Ara1 -+ Arden
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But it is obvious that

1 ap ... ayen
F/L*=F := . ) ) C GL,44(L)
0 a2 - Gpan
and the natural homomorphism HY(G,F’) — HY(G,PGL,;;(L)) factors via
HY(G,GL,.1(L)). The assertion follows from Lemma 4.10 below. O

Remark 4.9. — One can easily show that even H(G, F’) = 0. Indeed,
F = {@ijh<ijcr+1]a;j=0fori>2i# jan =an = ... =1, =1}

is a normal G-subgroup of F'. So F’' admits a filtration by G-subgroups, each
one being normal in the next one, such that all the subquotients occurring are
isomorphic either to GL,(L) or to (L, +).

Lemma 4.10. — Let L/K be a finite Galois extension of fields, G := Gal(L/K) its Ga-
lois group and n € N. Then H'(G,GL,(L)) = 0.

Proof. Let (a,),cc be a cocycle with values in GL,(L). We define a G-operation
from the left on L" by the declaration that o € G acts as

a,00: L" -2 " 225 [,

Clearly, a, o0 is a o-linear map. Galois descent yields a K-vector space V such
that one has an isomorphism

V®KL%>L”

making the diagrams

V&gL L"

O’T Trzgoa
b

V®xkL L"

commute. In particular, one has dimg V' = n. The choice of an isomorphism

Vv = K"

yields b € GL,(L) such that boo =a,o000b,ie. a, = booob loo™! = bo%b?) for
all o € G. (a,),¢c is cohomologous to the trivial cocycle. O

Definition 4.11. — Let K be a field, r a natural number and X be a Brauer-Severi
variety of dimension r. Then a linear subspace of X is a closed subvariety Y C X
such that Y Xgpeck Spec K*P C X Xgpeck Spec K*P = Py, is a linear subspace of the
projective space. This property is independent of the isomorphism chosen.

Remark 4.12. — A K-valued point would be a zero-dimensional linear subspace
but except for the trivial case X = P} there are none of them. Nevertheless, it may
happen that there exist linear subspaces Y & X of higher dimension. They can be
investigated by cohomological methods generalizing the argument given above.
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Proposition 4.13 (F. Chdtelet, M. Artin). — Let K be a field, v and d be natural num-
bers, X be a Brauer-Severi variety of dimension r and Y a linear subspace of
dimension d.  Then the natural boundary maps send the cohomology classes
aX(X)e H (Gal(K*P /K), PGL, 1 (K*P)) and o5 (Y) € H'(Gal(K*% /K), PGL;1(K*P))
to one the same class in the cohomological Brauer group H*(Gal(K*P / K), (K¢P)*).
Proof. Let L/K be a finite Galois extension being a common splitting field for
X and Y. Denote its Galois group by G. Choose an isomorphism
X Xspeck SpecL — P;. One may assume without restriction that the linear
subspace Y Xgpeck SpecL C X ><spec1< SpecL = P; is given by the homo-
geneous equations X1 = ... = X, = 0. Therefore, the cohomology class
L/ K(X) € Hl(G PGLrH(L)) is glven by a cocycle (o,)scc Where every «, fixes
that linear subspace.
Consequently, o ot *(X) belongs to the image of H'(G,F/L*) under the natural
homomorphism where

Ei| H
Fim {( 28k ) € GLyx(L) ‘ Fy € GLyyi(1), F2 € GL, (L), H € M(dﬂ)x(r_d)(L)}.

F comes equipped with the homomorphism of G-groups

p: F — GLg(L),
Ei| H
( 0 [E: ) = E

Thus, we obtain a commutative diagram that connects the three central inclusions

L GL441(L)
| k
L* F
L* GL7’+1(L)7

and, therefore, the following commutative diagram that unites the boundary
maps,

H'(G,PGL44(L)) H*(G, L")
P

Hl(G,T F/L%) H2(G, L")

Hl(G,I:(l}L,H(L)) H2(G, LY.

But we know there exists a € HY(G,F/L*) such that i,(a) = ak/ (X) and
p(a) = ag/ ().
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5. Central simple algebras and Brauer-Severi varieties

Theorem 5.1. — Let n be a natural number, K a field and A a central simple algebra
over K of dimension n?.

a) Then there exists a Brauer-Severi variety X, of dimension n — 1 over K satisfying
condition (+) below. (+) determines X uniquely up to isomorphism of K-schemes.

(+) If L/K is a finite Galois extension being a splitting field for A then is a splitting field

for X 4, too, and there is one and the same cohomology class

as = ax, € H'(Gal(L/K),PGL,(L))

associated with A and X 4.
b) The assignment X: A — X, admits the following properties.
i) It is compatible with extensions K' /K of the base field, i.e.

XA®KK’ = XA XSpecK Spec K.

ii) L/K is a splitting field for A if and only if L/ K is a splitting field for X 4.
Proof. a) Uniqueness is clear from the results of the preceding sections.
Existence. Choose a finite Galois extension L/K being a splitting field for A and
take condition (+) as a definition for X,4. This is independent of the choice of L by

Lemmas 3.7.a) and 4.6.a).
b) i) Let K'/K be an arbitrary field extension. We have the obvious diagram of

field extensions

and the canonical inclusion Gal (LK'/ K’ ) € Gal(L/K). Under the constructions
given above one assigns to the central simple algebra A®xK’ and the Brauer-
Severi variety X Xgspeck Spec K’ the restrictions of the cohomology classes assigned
to A, respectively X,

Gal(LK'/K’

_ )

AAazkK) = T€8qa1/K) (@4),
Gal(LK'/K)

O(XxgpeckSpeck’) = T€S GZI(L/K/) (o).

ii) The two statements above are equivalent to

resc K/Ka,) € H' (Gal (LK'/K"), PGL,(LK")) =0

Gal(L/K)
and
escairi (ex,) € H'(Gal (LK'/K'), PGL,(LK')) =0,
respectively. As we have a4 = ayx,, the assertion follows. O

Corollary 5.2. — Let K be a field and A a central simple algebra over K. Then K' is a
splitting field for A if and only if X(K') # ().

Proof. “="is trivial and “<=" is an easy consequence of Proposition 4.8. [
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Corollary 5.3. — i) Let K be a field and n a natural number. Then X induces a bijection

XK. AzK —BSK .

ii) Let L/K be a field extension. Then X induces a bijection

XL/K: Az/K . BsL/K,

iii) These mappings are compatible with extensions of the base field, i.e. the diagram

XK

K n K
Az, BS,_;
®KK/ \L l ><SpecKSpeC K,
K/
AzN © - BsK
Zn n—1

commutes for every field extension K’ /K.

Proof. i) follows immediately from Theorem 5.1.a). ii) is a consequence of Theo-
rem 5.1.a) together with Theorem 5.1.b.ii). iii) is simply a reformulation of Theo-
rem 5.1.b.i). O

Remark 5.4. — It may happen that two Brauer-Severi varieties X;, X, over some
field K are birationally equivalent but not isomorphic. S. A. Amitsur [Am55]
proved that in this case the corresponding central simple algebras A; and A,
generate the same subgroup of the Brauer group Br(K). It is still an open ques-
tion whether the converse is true although interesting partial results have been
obtained by P. Roquette [Roq64] and S. L. Tregub [Tx].

Proposition 5.5. — Let K be a field, n be a natural number and A a central simple
algebra of dimension n® over K. Then there is an isomorphism

XA AUtK(A) i) AUtK—schemes(XA)'

Proof. Let L/K be a finite Galois extension such that L is a splitting field for A
and put G := Gal(L/K). Choose an isomorphism A®yL — M, (L). Then there
are commutative diagrams

A@KL ——~ M,(L)
A®xL M, (L)

for each o € G where (4,),¢c is a cocycle for ay € H(G,PGL,(L)). By Galois
descent, it is equivalent to give an element of Autg(A) or to give an element of
PGL, (L) being invariant under a, o0 for every o € G.
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As ax, = a,s we find an isomorphism X Xgpecx Spec L — P71 such that the dia-
grams

!

X Xspeck Spec L 4f> P'Z*l

Ul luﬂoa
/

X Xspeck Spec L ——— P’Z—l

commute. Therefore, by Galois descent for morphisms of schemes, it is equiva-
lent to give an element of Autx_gchemes(Xa) Or to give an element of PGL, (L) being
invariant under a,00 for every o € G. O

Proposition 5.6 (F. Chdtelet, M. Artin). — Let K be a field, n and d be natural num-
bers, and A be a central simple algebra of dimension n? over K. Then the Brauer-Severi

variety X4 associated with A admits a linear subspace of dimension d if and only if
d<n-—1and

= —1(mod ind(A)).

Proof. We write A = M,,(D) with a skew field D and put e := ind(A). Clearly,
n = me.

“=" Let H C X, be a linear subspace of dimension d. By Proposition 4.13
we know H = X, for some central simple algebra A" which is similar to A4, i.e.
A’ = My(D) for a certain k € N. It follows that dim A’ = k*-dim D = k*-¢? and
dimH = dim X, = k-e — 1. This implies the congruence desired. Further, we
have dim X, = n — 1. Consequently, d = dim H <dim X, =n — 1.

“«<=" Let L/K be a finite Galois extension such that L is a splitting field for A
and denote its Galois group by G. Further, let k be the natural number such that
d =k-e—1. By assumption, k-e —1=d <n—1=m-e—1, hence k <m.

We consider the cohomology class ap € H'(G,PGL,(L)) associated with D. By
Proposition 3.9, a4 = (i%,)(ap) where ¢, : PGL,(L) — PGL,,(L) is the block-
diagonal embedding. Let (4,),cc be a cocycle representing the cohomology class
ap. Then (&},.(a,)),cc is a cocycle that represents a,4.

We define a G-operation on P! by letting o € G operate as

g ifne (a(, )

i.(a,)o0: Pt — 2 pre-l pret,

This is a group operation as (i},.(4,)),cc is a cocycle. The geometric version
of Galois descent yields the Brauer-Severi variety X,. Further, the G-
operation fixes the linear subspace defined by the homogeneous equations
Xie = Xiey1 = ... = Xpe—1 = 0. So Galois descent can be applied to this sub-
space, as well. It gives a variety Y of dimension ke — 1 = d. Galois descent for
morphisms of schemes, applied to the canonical embedding, yields a morphism
Y — X,. This is a closed immersion as that property descends under faithful
flat base change. Consequently, Y is a linear subvariety of X, of the dimension
desired. O
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6. Functoriality

Remark 6.1. — The preceding results suggest that X: A — X, should somehow
be a functor. This is indeed the case but for that the construction of the Brauer-
Severi variety associated with a central simple algebra given above is not suftfi-
cient. The problem is that X, is determined by its associated class in group coho-
mology only up to isomorphism and not up to canonical isomorphism. Thus, in
order to make X into a functor, it would still be necessary to make choices. For
that reason we aim at a more natural description of X,.

Lemma 6.2 (A. Grothendieck). — Let n be a natural number and R a commutative
ring with unit. Then there is a bijection

submodules M in R" such that R" /M }

. pr-1 -
rir: P (R) — G(R) == {is a locally free R—module of rank 7 — 1

subject to the conditions given below.
i) kg is natural in R, i.e. for every ring homomorphism i: R — R’ the diagram

KR

P (R) G(R)
P”‘l(i)l ic(i) M—MggR’
P, (R) ——— G(R))

commutes.

ii) For every a € PGL,(R) the canonical actions of a on P *(R) and G(R) are compatible
with kr. That means that the diagrams

KR

Py (R) G(R)

P% ' (R) ——— G(R)

commute where a € PGL,(R) acts on a submodule M C R" by matrix multiplication
from the left, i.e. by M +— a-M. Here a € GL,(R) is a representative of a.

Proof. A submodule M C R" such that the quotient R"/M is locally free of rank
n — 1 defines an R-valued point in P’]{l. To see this, let first m C R be an arbitrary
maximal ideal. Then R} /M, is a free R,-module of rank n—1. In particular, it
is projective. Hence, M,, is a direct summand of R}, and, therefore, projective
and of finite presentation. Consequently, by [Ma, Theorem 7.12], M,, is a free
R-module of rank one. As R"/M is R-flat, there is an exact sequence

0 — M®g(R/m) — R"/mR" — R"/(M+mR") — 0.

So the canonical map M/mM — R"/mR" is injective, i.e. mM = mR"N M. In
particular, M can not be contained in mR" and the free rank-1 R,,-module M, is
not contained in mRY,. Consequently, if My, = ((ro, ... ,7,_1)) then there is some
a €{0,...,n—1} such thatr, € R is a unit. This is equivalent to

Ry /(Mpm+eyRn+ ... +ea-1"Rn+eai1Ru+ ... +€,-1:Ryy) =0
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where ey, ... ,e,_1 € R}, denote the standard elements with an index shift by —1.
The latter is an open condition on m by [Ma, Theorem 4.10]. Therefore, there
exists some f € R\m such that

R?:Mf—l—elRf—l— +€a—1Rf+€a+lRf+ —{—6an,

i.e. such that the (a+1)-th projection My — Ry is surjective. As there are lo-
cally free modules of rank 1 on both sides, that must be an isomorphism. Conse-
quently, M is free and there is a generator of type (ro, ... ,7a-1, 1,701, - -+, T01).
Taking the entries as homogeneous coordinates we get a morphism
SpecR; — Py ', It is easy to see that all these can be glued together to give a
morphism of R-schemes Spec R — P% ™.
Conversely, an R-valued point Spec R — P% ! defines a quotient module of R" of
rank n — 1 as follows. Cover Spec R by affine, open subsets

n—1

SpecR = U SpecR,

a=0
such that for each o the image i(Spec R,) is contained in the standard affine set
“Xo #0”. Then i|5pec R,, Can be given in the form

(ro:ri: oo i1 Lirgq: ool i),
But R /(ro,71, -+ y¥Ta-1,1,7a11, --- ,74_1) iS a free R,-module of rank n — 1 for
trivial reasons.

The compatibility stated as i) follows directly from the construction given above.
ii) is clear. U

Definition 6.3. — Let R be a commutative ring with unit.
i) Let X be a R-scheme. Then by

Px: {R — schemes}°? — {sets}
we will denote the functor defined by
T— MorR—schemes(Ta X)

on objects and by composition on morphisms. The various functors Px depend
on X in a natural manner, i.e. if p: X — X’ is a morphism of R-schemes then there
is a morphism of functors i,: Px — Px given by composition with i. Therefore,
there is a covariant functor

P: {R—schemes} — Fun ({ R—schemes}°P, {sets})

described by X — Px on objects.

The functor Px induced by a R-scheme X is exactly what in category theory is
usually called the Hom-functor. Nevertheless, we will follow the standards in
Algebraic Geometry and refer to it as the functor of points. Note that Px(T) is the
set of T-valued points in X.

ii) Let F: {R —schemes}°P — {sets} be any functor. If for some R-scheme X there
is an isomorphism F — Px then we will say F is represented by X. Having fixed

the isomorphism of functors, then, by Yoneda’s Lemma, the K-scheme represent-
ing a functor is determined up to unique isomorphism.
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Corollary 6.4 (A. Grothendieck). — Let n be a natural number and R a commutative
ring with unit. Then the functor

P} ': {R—schemes} — {sets}
subsheaves .# in 07 such that

T — PyNT):={ 0% isalocally free
Or—module of rank n — 1

is represented by the R-scheme P!,

Proof. It is clear that both functors satisfy the sheaf axiom for Zariski coverings.
Therefore it is sufficient to construct the isomorphism on the full subcategory of
affine R-schemes. This is exactly what is done in Lemma 6.2. O

Corollary-Definition 6.5. — Let L be a field, n a natural number and F an L-
vector space of dimension . Put .# := F to be the coherent sheaf being associated
with F on Spec L. Then the functor

P(F): {L—schemes} — {sets}
subsheaves .# in 7% such that

(m: T — SpecL) +— P(F)(m):=( 7"%/# is alocally free
Or—module of rank n — 1

is representable by an L-scheme being isomorphic to Pf~!. We will denote that
scheme by P(F) and call it the projective space of lines in F.

Remark 6.6. — If L' is a field containing L then P(F®; L’) is naturally isomorphic
to the functor P(F)|_schemes- Therefore, there is a canonical isomorphism

P(F®L') — P(F) Xspec. Spec L

between the representing objects such that for each L'-scheme U the diagram of
natural mappings

MorL/—schemes(ua P(F)) {% - Way}

| |

MorL’fschemes(ua P(F®LL,)) - {// C Wﬁﬁ}

commutes. Consequently, for each L-scheme T there is a commutative diagram

MorL—schemes(T7 P(F)) {%/ C 7{'3‘12}

comp. with projectionl
MorL’fschemes(T X Specl. SPeC Ll) P(F)) pull—back
MorL’fschemes(T ><SpecL SPeC le P(F®L L,)) - {% - ﬂ-;xspecLSpec L’y}'

We note explicitly that in the column on the left, there is, up to the canonical iso-
morphism obtained above, exactly the base extension map from Spec L to Spec L.
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Definition 6.7. — Let L be a field and K C L be a subfield such that L/K is a finite
Galois extension. Denote its Galois group by G.

i) By L— Vect® we will denote the category of all finite dimensional L-vector
spaces where as morphisms there are allowed all injections being o-linear for
a certain 0 € G.

ii) L—Vect) is the subcategory of L—Vect" that consists of the same class of objects
but allows only bijections as morphisms.

Definition 6.8. — i) Let H be a group. Then, by ﬂ we will denote the category
consisting of exactly one object * with Mor(x, *) =

ii) Let L be a field and K C L be a subfield such that L / K is a finite Galois exten-
sion. Denote its Galois group by G. By Sch™/* we will denote the categor%l of all
L-schemes with morphisms twisted by any element of G. We note that Sch™/ has
a canonical structure of a flbered category over G. The pull-back under o € G is
given by X — X Xgpecr Spec Lo

Lemma 6.9. — Let L be a field and K C L a subfield such that the extension L/K is
finite and Galois. Denote the Galois group Gal(L/K) by G.

i) Then P is a covariant functor from L—Vect" to Sch™X. Herea o-linear monomorphism
i: F — F with o € G induces a morphism

i, = P(>i): P(F) — P(F')
of schemes that is twisted by o.

ii) Let F be an L-vector space and i: F — F be the multiplication map with an element of
L. Then i,: P(F) — P(F) is equal to the identity morphism.

Proof. i) Leti: F — F' be a o-linear monomorphism. We have to consider the
diagram

P(F) P(F)
SpecL G SpecL.

By Yoneda’s Lemma, there has to be constructed a natural transformation
ir: P(F) — P(F')(S(0)0-),
i.e. for each L-scheme 7: T — SpecL there is a mapping
i (m): P(F)(m) — P(F')(S(0) o)
to be given such that for each morphism p: m — m, of L-schemes the diagram

P(F)(m2) — 2L P(F')(S(0)om2)

P(F)(P)l J{P(F’)(P)
P(F)(m) ——~ P(F)(S(0)om)
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commutes. We construct i, () as follows: There is the description
P(F)(m) = {# C 77 |n"F /M islocally free of rank dimF — 1}

M C (S(o)om)*S(c~ )T |
(S(o)om)*S(o~Y)F /M islocally free of rank dim F — 1

where S(o71)*Z = F°. Here I’ is nothing but F equipped with the ordinary struc-
ture of an abelian group and the multiplication by a scalar given by
- f:=o(l)f. Therefore, i gives rise to an L-linear monomorphism i: F — F’ and
to a morphism i: S(c™)*# — Z' of sheaves over SpecL. If ./# is a subsheaf of
(S(0)om)*S(oc1)*Z such that (S(o)om)*S(o~)'F /.4 is locally free of rank dim F—1
then ((S(a) om)* (i) )(A) is a subsheaf of (S(o)om)“#’ such that the quotient
is locally free of” rank dimF — 1. This gives rise to a morphism of
functors i : P(F) — P(F')(S(o)o -) as desired. Consequently, there is a morphism
i.: P(F) — P(F’) of schemes that makes commute the diagram considered above.
ii) This is clear from the construction. OJ

Corollary 6.10. — Let L be a field and K C L a subfield such that the extension L/K is
finite and Galois. Denote the Galois group Gal(L/K) by G.

i) Then P can as well be made into a contravariant functor from L— Vect) to Sch/X,
Here a o-linear isomorphism i: F — F' with o € G induces a morphism

i*: P(F') — P(F)
of L-schemes being twisted by o'
ii) Let F be an L-vector space and i: F — F be the multiplication with an element of L.
Then i*: P(F) — P(F) is equal the identity morphism.
Proof. For an isomorphism i: F — F puti*:=i'. O

Remark 6.11. — The morphisms i* can also be constructed directly, in a manner
being completely analogous to the construction of i, given above. Indeed, the
task is to give a natural transformation i*: P(F') — P(F)(S(c!)o -). There are the
descriptions

P(F')(m) = {4 C ' F | n'F'|# islocally free of rank dimF' — 1}
and
1 B M C S0 YT |
B(E)(S(o™)om) = {71'*5(0_1)* 7 /.4 is locally free of rank dimF — 1 -

If .# is a subsheaf of 7%#' such that 7°%'/.# is locally free of rank
dim F’' — 1 = dim F — 1 then 7*(i) }(.#) is a subsheaf of 7*S(c1)*Z such that the
quotient is locally free of rank dim F — 1. This gives rise to a morphism of func-
tors i": P(F') — P(F)(S(c~1)o -) as desired. Consequently, there is a morphism
i*: P(F') — P(F) of schemes making commute the diagram above.

Remark 6.12. — Let us mention the following observation explicitly. If L is a
field and A is a central simple algebra of dimension n? over L then all the non-
zero, simple, left A-modules are isomorphic to each other. Further, if [ is a non-
zero, simple, left A-module then each automorphism of [ is given by multiplica-
tion with an element from the center of A. Hence it induces the identity morphism
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on P(I). Therefore, two arbitrary isomorphisms i1, i,: [ — ' between non-zero,
simple, left A-modules induce one and the same isomorphism i} = i3: P(I') — P(I).
Consequently, A determines P(I) not only up to isomorphism, but up to unique
isomorphism. We will formulate this in a more sophisticated manner below.

Definition 6.13. — Let L/K be a finite Galois extension of fields and r be a natural
number. Denote the Galois group Gal(L/K) by G.

i) By Mat"/* we will denote the category of all split central simple algebras of
dimension 7% over L, i.e. of all algebras being isomorphic to M,(L), where as
morphisms we take all homomorphisms of K-algebras which are o-linear for a
certain o € G and preserve the unit element. Note that in Mat\ every morphism
is an isomorphism and every two objects are isomorphic.

ii) E,L/ K will denote the subcategory of @L/ K which consists of all L-schemes
isomorphic to the projective space P; and which allows all isomorphisms as mor-
phisms.

Proposition 6.14. — Let L/K be a finite Galois extension of fields and n be a natural
number. Denote the Galois group Gal(L/K) by G.

i) There is an equivalence of categories =L/K, : Math/% — PL/ R, On objects it is given by
A — P(l) where | C A is a non-zero, szmple left A- module Ifi: A — A’ is a mor-
phism in Mat"/* then = =LK (i) is the morphism of schemes being induced by the canonical
homomorphzsm [— A’ ® Al

ii) If the morphismi: A — A’ is o-linear for o € G then = YKy is a morphism twisted
by o.

Proof. If [ is a non-zero, simple, left A-module then A’® 4! is a non-zero, simple,
left A’-module. Both are n-dimensional L-vector spaces. Up to isomorphism,
these modules are known to be unique. Therefore, the morphism of schemes

i, = ZLK(1): ZL/K(A) = P(1) — P(A'®,1) = ZL/K(A)
induced by the homomorphism
inl—A'®4l x—1®x
is well-defined. If i: A — A’ is a o-linear homomorphism then [ — A'®,4 [ is a
o-linear homomorphism of vector spaces. By Lemma 6.9 above the morphism

=L/ LIK(0) is twisted by o. Asiis automatlcally invertible, =, (z) must be an iso-
morphlsm of schemes. Consequently, =-/Kis a functor between the categories
described.
To prove = =% is an equivalence of Categorles we have to show it is full, faithful
and essentlally surjective. As in P, L/K "} every two objects are isomorphic to each
other, essential surjectivity is clear. For full faithfulness it will suffice to prove
that

=1/ auay: Aut(A) — Aut(X,)

is an 1som01;phlsm of groups in the case A = M,,(L). Then Aut(A) = PGL,(L) x G
and Aut(=;*(A)) = Autyx_ schemes(P7 1) = PGL,(L) x G. Thus, the functor _,I;/ Kin-
duces on Aut(A) a group homomorphism

Z: PGL,(L) x G — PGL,(L) x G.
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By Lemma 6.2.ii), the restriction of = to PGL,(L) is the identity. By statement ii)
proven above, the quotient map G — G is the identity, as well. Consequently,
/K] Aut(4) is an isomorphism. O

Corollary 6.15. — The categorzes Mat/X and PL/ X are also anti-equivalent, i.e. there
is an equzvalence of categories ZL/K, MatL/ K (PL} )P given on objects by A — P(1)
where L C Aisa non-zero simple, left A module If the morphismi: A — A’ is o-linear
for o € G then =, (z) zs twisted by o~.

Proof. Put simply =5/ X(i) := (Z&/ K(z)) 1 O

Proposition 6.16. — Let n be a natural number, K be a field and A be a central simple
algebra of dimension n? over K. Then the Brauer-Severi variety X 4 being associated with
A can be described as follows:

Let L/K be a finite Galois extension such that L is a splitting field for A. Denote the
Galois group Gal(L/K) by G. By covariant functoriality, the canonical G-operation
on A®kL induces an opemtzon of G on the projective space = =L/K(A®kL) where the
morphism induced by o € G is a morphism of L-schemes thsted by o. The geometric
version of Galois descent yields the K-scheme X 4.

Proof. Let f: A®QxL — M, (L) be an isomorphism. Then there is a cocycle (a,)scc
from G to PGL,(L) such that for each o € G the diagram

ARxL ARxL
fl lf
M, (L) — 7 M,(L)

commutes. Applying the functor =-/X to the whole situation we obtain commu-
tative diagrams

=L/K(A@kL) =LK (A@kL)
=L/ K(f)l lzﬁ/ N0
P’Z_l a,00 Pz_l

where the vertical arrows are isomorphisms. Galois descent on the lower half of
the diagram is the description of X, given in the last section. Galois descent on
the upper half of the diagram is the description claimed. O

Corollary 6.17. — Let L/K be a field extension and A be a central simple algebra over
K.

i) Then there is a canonical isomorphism of L-schemes
fz/KZ XA®KL — XA XSpecK Spec L.

ii) If L/K and L'/ L are field extensions then the isomorphisms & , L/ K, Y and fL/ K
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compatible, i.e. the diagram

XaggL
L'/K
Sa

/
e X4 Xspeck Spec L

éL/K XSpecL, Spec L

A
!
XA®KL X SpecL SPGC L

commutes.
Proof. Let n? be the dimension of A. We choose a splitting field L”
for A which contains L. Then X,, Xag,r and Xag, s are constructed from

=LK Ak L") = ZE MA@k L") = =LY (A L) by Galois descent using com-
patible descent data. O

Definition 6.18. — Let K be a field and r a natural number.

i) By Az* we will denote the category of all central simple algebras of dimension
r? over K where as morphisms we take all homomorphisms of K-algebras that
preserve the unit element. Note that in Az} every morphism is an isomorphism.

ii) Az/* will denote the category of all central simple algebras of dimension 7>
over any field extension of K where as morphisms we take all K-algebra homo-
morphisms that preserve the unit element.

iii) By BSX we will denote the category of all Brauer-Severi varieties of dimension
r over K where the isomorphisms of K-schemes are taken as morphisms.

iv) BS/X will denote the category of all Brauer-Severi varieties of dimension r over
any field extension of K. As morphisms one takes all compositions of an isomor-
phism of K-schemes with a morphism of type id x Speca: X Xgpecr SpecL’ — X
where a: L — L’ is a homomorphism of fields containing K.

Theorem 6.19. — Let K be a field and n be a natural number.
i) There is an equivalence of categories

XK AzlK — (BS/K )P,

that induces for each field extension L/K the bijection XL: Az’ — BSL_, on isomorphy
classes found in Corollary 5.3.1).

ii) In particular, for each field extension L/K the functor X/* induces an equivalence of
categories X=: Azk — (BSE ,)°P.

Proof. 1st step. Construction of the functor.

For A € Ob(Az/X) put X/X(A) := X,. Let us remark at this place that we are going
to make use of the intrinsic descri})tion of X, given in Proposition 6.16.

Ifi: A— A’isamorphism in Az/* then, by restriction to the centers, i induces a
homomorphism of fields i|z4: Z(A) — Z(A’) containing K. Therefore, there is a
unique factorization

z(A")

AL ARz Z(A") L
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. . . . . !
of i via the canonical inclusion ci(A)

isomorphism

. By Corollary 6.17, one has the canonical

Z(A)/ Z(A
fA( A, Xpw iz — Xa Xspecz(a) Spec Z(A').

Put K,ﬁK(ci(A/)) to be the morphism of schemes being induced from fi(A,)/ “4) by

projection to the first factor.

In order to construct X/X(i) as a functor on the category Az/X it remains to de-
scribe it as a functor on the full subcategories Az\' where K;/K is any field ex-
tension. That means we are left with the case that Z(A) = Z(A’) and i|z) is the
identity. In order to make sure the functoriality of X/ on the category Az/X, that
construction has to be done in a way compatible with field extensions, i.e. such
that the diagram

XM (i, Ka)

Xae K Xaoy ks
zﬁcﬁ%)l lzé"(cff)
/K (;
x5
Xar - Xa

commutes for every field K; containing K, every morphism i: A — A’ in Az}’
and every extension K,/K; of fields containing K.

For that choose a finite Galois extension L/K; such that L is a splitting field for A.
As i is automatically an isomorphism, L is a splitting field for A’, too. Thus, we
obtain a Galois invariant homomorphism i®k, L: A®k L — A'®g, L. Applying
the functor =% one gets a Galois invariant morphism of schemes

EL/Kl(i@LM): Xar X Speck; SpeC L= Ei/Kl(A/(gKl L)
— ZM(A®KL) = XaXspeck, SpecL.

Galois descent for morphisms of schemes yields the morphism
XQK(i): Xar — X4 desired. This is even an isomorphism of schemes as i is an
isomorphism. Consequently, X/ is a functor between the categories stated.

By construction, X/X is essentially surjective. It remains to show it is full and
faithful.

We note explicitly that X/Kinduces a functor XX': AzX — (B_Sfll)OP for each field
extension K’ /K. XX is automatically an equivalence of categories as soon as X/~
is. By its definition on objects the functor XX induces the bijection on isomorphy
classes found above.

2nd step. Full faithfulness on automorphisms.
Let us first deal with the following statement which is a special case of full faith-
fulness of X/X.

(*) Let K’ be a field containing K and A be a central simple algebra of dimen-
sion n? over K'. Then the functor XX induces an isomorphism of groups
XA = X;If |AutK/ (A): AutK’ (A) B AutK’fschemes (XA)

This was proven in the case A = M, (K’) in Proposition 6.14. Let A be a general
central simple algebra of dimension n? over K'. Let L/K’ be a finite Galois exten-
sion of fields such that L is a splitting field for A.
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Assume a # a’ € Autg (A) induce one and the same morphism
at=a" € AutK’fschemes (XA)

By the universal property of the tensor product there are uniquely determined
homomorphisms a;, a); : AQxL — A®gL of central simple algebras over L mak-
ing the diagrams

/

A@kL A®kL AL —~ A®¢L

L L
CAT TCA
!

A ‘ A, A A

ar,

commute. As cL is an injection, a; # ;. When one applies the functor XX to the
whole situation one obtains the commutative diagrams below:

* 1%
ar ar

XawgL XawL XawgL XaoyL
(B l l(cﬁ)* (b \L l(clg)*
X4 ¢=a X, X4 T X,

As A®gL = M, (L), we have a; # a}. On the other hand, (c})* is, up to isomor-
phism, the canonical morphism X4 Xspeck Spec L — X4 from the fiber product to
the first factor. Therefore, the morphism a*o(ch)* = a’*o(c})* admits a unique fac-
torization as a morphism of L-schemes composed with (c})*. This implies a; = af’
being a contradiction. Consequently, the homomorphism x4 is injective.

Let p: X4 — X4 be an automorphism of K'-schemes. As (c})* is, up to isomor-
phism, the canonical morphism X, Xspeck Spec L — X, from the fiber product
to the first factor, the composition po(ch)* factors uniquely via (c})*, i.e. there
exists a unique morphism p;: Xag,r — Xag,r of L-schemes such that there is a
commutative diagram

PL

XA@[(L XA@[(L
() l l(c%)*
p
X4 X4.

As A®kL = M, (L), by Proposition 6.14, there exists some b € Aut(A®xL) such
that p, = b*. For 0 € Gal(L/K') letidxo: A®xL — A®kL the corresponding
automorphism of A®xL. Clearly, (id x 0)och = c&. Therefore, the diagram

b*=p,
XaoyL XawgL
(idxo)* l l (idxo)*
XaoyL XawgL

() l l ()

Xa Xa.
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commutes, as well. Hence, b* = (idxc)* o b* o (idxo~1)* = ((idxo 1) o b o (id x 0))*.
Using the injectivity of the homomorphism (*) one gets b = (idx o) o bo (id x 0),
i.e. b is invariant with respect to the operation of Gal(L/K’). By Galois descent
for homomorphisms, there exists a homomorphism a: A — A of central simple
algebras such that the diagram

b

A®kL A®kL
T T
A ‘ A

commutes. Consequently, there is a commutative diagram on the level of Brauer-
Severi varieties as follows:

b*=py

XA®[<L XA@[(L
Gk l l (ch)y*
X4 2 Xy4.

A direct comparison with the original definition of p; shows po(ch)* = a*o(ch)*
as both these compositions are equal to (c})* o p;. Since (c})* is dominant this
implies that p = a*. The homomorphism x4 is surjective, too.

3rd step. Isomorphisms.
We note the following consequence of the results of the last step.

(**) Let K’ be a field containing K and A and A’ be central simple algebras of
dimension 1n? over K’ being isomorphic to each other. Then XX induces a
bijection Isog: (A, A") — IS0k’ —schemes (X a7, Xa).

4th step. On faithfulness.

Assume the homomorphisms i, i: A — A’ induce one and the same morphism
of schemes i} =iy: X4 — X,. Our first observation is that, necessarily, i; and 7,
give rise to the same homomorphism |74y = 2| za): Z(A) — Z(A’) on the centers.
Indeed, X4 and X, are Brauer-Severi varieties over Z(A) and Z(A’), respectively.
Further, by Proposition 4.2.iv), ['(Xa, Ox,) = Z(A) and I'(Xa/, Ox,,) = Z(A'), i.e.
one can recover the centers of A and A’ from the Brauer-Severi varieties being
associated with them. By the construction of X/ on morphisms, the pull-back on
the level of global sections

(i))F = ()1 Z(A) = T(Xa, Ox,) — [ (Xa, Ox,,) = Z(A))

is equal to the homomorphism Z(A) — Z(A’) given by i, respectively i, by re-
striction to the centers.

Consequently, i; and 7, can both be factorized via the canonical homomorphism
AN A — ARy Z(A). Let i, j2: AQza)Z(A — A’ be homomor/?hisms of
central simple algebras over Z(A’) such that j;oc A(A) = i; and jzoci(A =1i,. We
note that j; and j, are both isomorphisms as they are homomorphisms of central
simple algebras over the same base field. Furthermore, j; # j,. On the other

hand, the morphisms

jis J2t Xar — Xag,zany = Xa Xspecz(a) Spec Z(A')
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coincide as their projections to Spec Z(A’) do, both being the structural morphism,
and their projections to Xy, being equal to i} = i}, coincide by assumption. This
is a contradiction.

5th step. On fullness.

Let A, A’ € Ob(Az/X) and f: X, — X4 be a morphism in the category BS BS
Con51der1ng the associated map of global sections we obtain a homomorph1sm
Z(A) — Z(A) of fields. The canonical inclusion ci(A) A — A®za)Z(A’) induces
the canonical morphism

Z(A
AR Xawymza) = Xa Xspecz(4) Spec Z(A') — Xa.

Remembering the definition of what is a morphism in the category B_S,/f1 we see
that f gives rise to an isomorphism

f XA/ — XA XSpeCZ(A) Spec Z(A ) = XA®Z Z(A")

such that f = (cf‘(A )Y*of. As we adjusted the structural morphism in the right way
f is even an isomorphism of Z(A’)-schemes. By Corollary 5.3 the central simple
algebras A’ and A®y4)Z(A’) over Z(A') are isomorphic. Therefore, by the result
of the 3rd step, there is some homomorphism

a: A®Z(A)Z(A/) —s A’
such that f = a* Consequently, f= (ci(A,))*oa* = (aoci(A/))* is in the image of X/X
on morphisms. X/Kis full. g

Corollary 6.20. — Let K be a field and n be a natural number. Then Az~ and BSY |
are also equivalent to each other, i.e. there is an equivalence of categories

X,Ifi &5 - ﬁf—l

Proof. Compose XX with the equivalence of categories ¢: BSY | — (BSX ,)°P given
by the identity on objects and by «(g) := ¢ on morphisms. O

7. The functor of points

Remark 7.1. — This section deals with the contravariant functor on the category
of all K-schemes defined by the Brauer-Severi variety X4 associated with a central
simple algebra A. It turns out that, as for projective spaces, Graimannians and
flag varieties, this functor can be described completely explicitly. Thus, it is clear
that there is a different method to introduce X,4. One can start with the functor
and has to prove its representability by a scheme. It seems, that method is closer
to A. Grothendieck’s style in Algebraic Geometry than the approach presented
here. But, as one might expect, a direct proof of representability, avoiding all
descent arguments, is not trivial at all. It is presented in detail in [Hen] or [Ke].

Definition 7.2. — Let K be a field, n be a natural number and A € Ob (Az"). Then
by
I4: {K — schemes}? — {sets}
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we will denote the functor given on objects by

T sheaves of right ideals ¢ in 7;.o7 such that
/[ # is alocally free Or—module of rank n* — n

and on morphisms by the pull-back. Here &/ := A denotes the sheaf of k-
algebras associated with A on SpecK and m = 7r: T — SpecK is the structural
morphism. The various functors Ia depend on A in a natural manner, i.e. if
it:A—A'isa morphlsm in AzX then there is a morphism of functors i*: In — I,
given by the inverse image / — (D) ¥ ). Thus, there exists a contravariant
functor

I: AzX — Fun ({K—schemes}, {sets})
given on objects by A — I,.
Theorem 7.3. — Let K be a field and n be a natural number. Then there is an isomor-
phism
v: ] — PoXK
between the contravariant functors

I, PoXX: AzX — Fun ({K—schemes}P, {sets}).

Remark 7.4. — For a fixed central simple algebra A of dimension n? over K the
statement of Theorem 7.3 says that there is an isomorphism

Lat IA — PXA

between the functors I, Px,: {K — schemes}°P — {sets} described above. This
means that the T-valued points in X, are in a natural bijection with the sheaves
of right ideals ¢ C m}.«7 such that 7«7/ _# is a locally free &r-module of rank
n* — n. Further, if i: A — A’ is a morphism of n?-dimensional central simple
algebras over K then the diagram

[y —2— Py,
i*t l[xm]*
[ —— P,
commutes.
Remark 7.5. — We note that I4 is canonically a subfunctor of the GrafSmann

functor Grass), , parametrizing (n* — n)-dimensional quotients of an n*-dimen-
sional vector space. Thus, there is an embedding X, — Grassnz,,1 into the Graf3-
mann scheme. We note that this is the key observation for a direct proof of repre-
sentability for 4.

Definition 7.6. — Let G be any group. By Sets; we will denote the category of
all mappings 9 — G where 91 is any set. As morphisms between f;: 9, — G
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and f,: M, — G we allow all mappings which make the diagram

A Mo,
fll lfz
G 8 G

commutative for a certain § € G where - g: G — G denotes the multiplication by
g from the right.

Definition 7.7. — Let L/K be a finite Galois extension of fields and denote its
Galois group Gal(L/K) by G.

i) By @i/ X we will denote the full subcategory of Scht/k consisting of all L-
schemes being non-empty.

ii) Let X € Ob (&L/ X). Then the contravariant Hom-functor
Homg, 1/x(-, X): @i/K — {sets}

factors canonically via the category Sets.. Indeed, for each morphism T — X in
@i/ Xthe o € G being associated with it is uniquely determined. Note for that
we need the assumption T # () while X = () may be allowed as in that case there
are no morphisms. The functor just constructed will be denoted by

P/X: Schl/X — Sets;
and called the functor of points of X. There is a covariant functor
PH/K; Sch™/* — Fun ((Sch/¥)°P, Sets,)
given on objects by X — P}L/ K

Remark 7.8. — The Hom-functor Hom,  1/x(-, X) remembers all information X
as an object of the category @i/ K. The functor of points

P)Ig/ K. @i/ R Sets

carries the additional information coming from the structure of @i/ K as a fibered
category.

Lemma 7.9. — Let L/K be a finite Galois extension of fields and n be a natural number.
Denote the Galois group Gal(L/K) by G.

i) Then there is an isomorphism of functors ],I;/ K. pL/K

— IE/X between the composition
—L/K

PYK: Matl/K —~p

=n—1

L/K embedding

L/K
Sch!/* “— Fun ((Sch’/¥)°P, Sets)
and the functor Iy /X given by

A < - |_| {sheaves of right ideals ¢ in (S(0)onr)*e such that })

= (S(o)omr)*e// # is a locally free Or—module of rank n* — n
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on objects and by the pull-back on morphisms. Here &/ := A denotes the sheaf of
O'-algebras associated with A on SpecL and mwr: T — SpecL is the structural mor-
phism. The set given on the right hand side is equipped with a map to G in the obvious
way.

ii Let L’ be a finite field extension such that L' /K is Galois again. Then the isomorphism
]n K'is compatible with the base extension from L to L', i.e. for every A € Ob (Mat"/¥)
and every T € Ob (Sch™/ %Y the diagram

Py M (AX(T)
H _ jEE AT
Morg . x(T, Z/X(A)) -5 AY(T)
XgpectSpec L’ l pull—back

Mor

(T Xspec Spec L', =5 /KA, L))

Pr/M(A®LL')(T Xspec Spec L)

Scht’ Lg//K(A(X)LL/)(TXSpeCLSpeC L/)

commutes. Here j is used as an abbreviation for j,ﬁ// NA®LL)(T Xgpecr Spec L’).

Remark 7.10. — The lemma states in particular that the ordinary functor of
points of the L-scheme = (A) for A € Ob (MatL/ Ky is isomorphic to

T sheaves of right ideals ¢ in 7}.27 such that
e/ # is alocally free Or—module of rank n? — n

i.e. for every L-algebra R the set = =L/ K(A)(R) of R-valued points in =L/ K(A) is
naturally isomorphic to the set of all rlght ideals I in A®; R such that A®_R/I is
a locally free R-module of rank n? — n.

7.11 (Proof of the lemma). — i) For each A € Ob (mcﬁ/ K) both of the two func-
tors under consideration satisfy the sheaf axiom for Zariski coverings. Therefore,
it will suffice to work with affine schemes as test objects.

Let R be a commutative L-algebra with unit. By construction we have
=L/ LK(A) = P(I) where [ is a non-zero, sunple left A-module. By Corollary-
Deflmtlon 6.5 the set of R-valued points in P(l) is in a natural bijection with the
set of all submodules M C [®, R such that the quotient [®; R/M is a locally free
R-module of rank n—1.

As an R-module A® R is isomorphic to the direct sum of n copies of (&, R. Under
this isomorphism an R-submodule M C [®; R determines a right ideal MCA®.R
by the definition

M= @M.
i=1
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This gives a natural bijection between the set of all right ideals in A®; R and the
set of all R-submodules M C [. Obviously,

AR R/M = (I R/M)" = (I, R/M)QgR"

as R-modules. So, if [®; R/M is locally free of rank n—1 then A®_R / M is locally
free of rank n*> — n. Conversely, if A®, R/M is locally free of rank #*> — n then, by
Lemma 2.14, [®; R /M is necessarily locally free. Clearly, it is of rank n—1.

We obtained the description of the ordinary functor of points of = L/ K(A) given
in the remark above. Giving a morphism of L-schemes f: T — =-/K(A) that is
twisted by some o € G is equivalent to giving a commutative diagram

id f

T T =L/K(A)
T S(U)Oﬂrl l =/ @
SpecL e SpecL 4 SpecL.

Therefore, f becomes a morphism of L-schemes in the ordinary sense if one sim-
ply changes the structural morphism of T from 7t into S(o)omr. Consequently,
the functor of points P L/ K 4 is isomorphic to functor given in the claim.

The construction just made is Compatlble with K-linear ring homomorphisms
i: A— A’ by the description of = =/X as a covariant functor glven above.

ii) Again we need the concrete description of _n/ We have _ﬁ K(A) P(I) where
[ is a non-zero, simple, left A-module and _L / K(A QL") =P(I®.L"). The claim is
a direct consequence of Remark 6.6 together with the connection of submodules
in [®; R and [®; R®; L’ with right ideals in A®xR and A®; R®.L/, respectlvely,
that was established in the proof of part i).

7.12 (Proof of Theorem 7.3). — We have to construct an 1somorphlsm
ta: Ia — Px, of functors for every A € Ob(Az}) in a way being natural in A.
We will proceed in three steps.

1st step. The case A = M,,(K).

We have A®R = M, (R) and X4 = P([) by the intrinsic description of X, given in
Proposition 6.16 above. Here [ denotes a non-zero, simple, left A-module. The
assertion is a special case of Lemma 7.9 above. We note explicitly that
P(l) = =X/ K (A) for every subfield K’ C K such that K/K' is a finite Galois exten-
sion. In partlcular, the isomorphism ¢4: Iy — Px, is compatible with the action
of automorphisms of A which are only K'-linear.

2nd step. Reduction to T-valued points for affine schemes T.

Let again A be an arbitrary central simple algebra over K of dimension 7. Then,
the functors I4 and Py, satisfy the sheaf axioms for Zariski coverings of T. Hence,
it is sufficient to consider the affine case: There is a natural isomorphism
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ta: In — Px, of functors on the full subcategory of affine schemes to be con-
structed, i.e. an isomorphism
L(R) = {right ideals | in A®kR such that A®KR/]}
" 1is a locally free R—module of rank n*> — n
LeaR)
PXA (R) = MorK—schemes(SpeC R, XA)

for each commutative ring R with unit such that for homomorphisms r: R — R’
of K-algebras the corresponding diagram

La(r)

I4(R) I4(R")
LA(R)\L lLA(R/)
Px, (r)

Py, (R) ———— Px,(R)

commutes.

3rd step. Galois descent.
Let L/K be some finite Galois extension such that L is a splitting field for A. Put
G := Gal(L/K). By Theorem 2.2 in the version for schemes, there is a bijection

Px,(R) = {

P: Spec R&xL — Xag,r |
& ¢ p morphism of L—schemes,
p compatible with the G—operations on both sides

p: SpecR — X4 |
p morphism of K—schemes

being natural in the ring R. As A®kL is isomorphic to the matrix algebra, we
have

X = =X (A®kL) = P(I)

where [ is a non-zero, simple, right A ®yL-module. Hence, there is a second
natural bijection

p morphism of L—schemes,
p compatible with the G—operations on both sides

{p: SpecR®KL—>XA®KL| }

I1C (A®kL)®L(R®kL) |
I right ideal,
~ { (A®kL)®L(R®kL)/Tlocally free R@x L—module, ;.
rkre,r (A®KL)@L(R®kL)/T = n* —n,
I invariant with respect to the G—operation
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Indeed, this is exactly the result of the first step when we note that the isomor-
phism of functors Px P Iag, 1 is compatible with K-linear ring automor-
phisms of A®gL. Finally, there is a natural bijection

'z C (A®kL)®1(R®kL)|

I right ideal,

(A®kL)®L(R@kL)/Tlocally free R@x L—module,
rKReyL (A®xL)®@L(R®@kL)/I =n*—n,

| [ invariant with respect to the G—operation

(1 C A®kR|

I right ideal,

(A®kR)/I locally free R—module,
\I‘kR (A@KR)/I = ﬂz —n

by Galois descent for right ideals, i.e. by Lemma 7.14. Indeed, everything would
be clear if there would be no assumption on the ranks of the quotients. But if
A®gR/Iis alocally free R-module of rank n? —n then

(A®kL)®L(R®xL) /T~ (A®kR/I)@r(R®kL)

is a locally free R®xL-module of the same rank. On the other hand, if
(A®k L)@ (R@kL)/T 2 (A2 R/I)®r(R®kL) is a locally free (R®gL)-module
of rank n*>—n then it is a locally free R-module, as well. By Lemma 2.14 A®xR/I
is a locally free R-module, too. Clearly, it is of rank n*—n.

112

We note finally that the construction of ¢4 given above can easily be extended
to morphisms and gives a functor in A. For that we first choose a splitting field
L4 D K for each A € Ob(Azy) in such a way that L, depends only on the iso-
morphy class of A in Az~. Ifi: A — A’ is a morphism in Az" then A and A’
are automatically 1som0rph1c and we execute the construction of L4 and ¢4 via
the splitting field chosen. The first and the third natural bijection constructed
above are applications of descent and, therefore, compatible with the morphisms
induced by i. For the second one that was proven in Lemma 7.9.i) above. The
proof is complete. O

Remark 7.13. — The isomorphism of functors ¢, is independent of the choice of
the splitting field made in the proof. Indeed, let L', D L4 be splitting fields for A.
Going through the proof given above, one sees that the two constructions for ¢4
yield the same result. The main ingredient for that is Lemma 7.9.ii).

Lemma 7.14 (Galois descent for right ideals). — Let L/K be a finite Galois exten-
sion of fields and G := Gal(L/K) be its Galois group. Further, let A be a K-algebra and
I C A®xL a right ideal being invariant under the canonical operation of G on A®gL.
Then there is a unique right ideal I C A such that I = [®xL.

Proof. I inherits from A a structure of an L-algebra and an operation of the group
G by homomorphisms of K-algebras where o € G acts o-linearly. By the alge-
braic version of Galois descent, there exists some K-algebra I such that I = I®kL.
Clearly, the canonical homomorphism of L-algebras 1 =1L — A®kL is com-
patible with the G-operations on both sides. Therefore, by Galois descent for
homomorphisms, we get a homomorphism of K-algebras I — A that induces the
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ideal 1. As the functor ®kL is exact and faithful, that morphism is necessarily
injective. Consider I C A as a subring. The multiplication -a: I — I with some
element a € A from the right is compatible with the operation of G. Hence, it de-
scends to a homomorphism I — I. That homomorphism is compatible with the
multiplication by a from the right on A. Consequently, I is a right ideal. Unique-

ness is clear.
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