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Abstract. There are several examples of groups for which any pair of
commutators can be written such that both of them have a common entry,
and one can look for a similar property for n-tuples of commutators.
We here answer, for simple algebraic groups over any field, the weaker
question, under which condition the set of n-tuples of commutators with
one common entry is Zariski dense in the set of all n-tuples of commuta-
tors. Surprisingly, there is a uniform bound on n in terms of the so called
Coxeter number of G in order to answer the question positively.
An analogoue result is proved for Lie algebras of simple and simply con-
ncected algebraic groups.
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1. Introduction

Let G be an abstract group and let Gn = G× · · · ×G (n factors). Further, let

φn : G×Gn −→ Gn

be the map given by the formula

φn((g, g1, . . . , gn)) = ([g, g1], . . . , [g, gn]).

We say that the group G satisfies the property Cn, if Imφn = [G,G]n where [G,G] is the

commutator subgroup of G, i.e., for every σ1, . . . , σn ∈ [G,G]n, there exists a sequence

g, g1, . . . , gn such that

σ1 = [g, g1], σ2 = [g, g2], . . . , σn = [g, gn].

(We define [g, h] = ghg−1h−1.)

The case n = 1 is well known in group theory and has a long history. If G is a finite

simple group, the question about the property C1 is the well-known Ore problem, whether

any element in the commutator subgroup of G is a single commutator, which is answered
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positively for (simple) alternating groups (Ore [O], 1951), for sporadic groups (Neubüser,

Pahlings and Cleuvers [NPC], 1984) and for finite simple Lie groups over fields with at

least 9 elements (see [EG]). Is is also known that in general the answer is negative, even

for groups like SLn(K) (cf. [THO, Th. 1]), or for finite groups G including perfect finite

groups (cf. [I]).

The question for n > 1 was posed several years ago by R. Keith Dennis (cf. [C,

prob. 14, p. 605]). In [AD], it was shown, among other things, that the Schur multiplier

of the group SL1(H) of the Hamilton quaternions H is generated by the image of the

Schur multiplier of the commutative subgroup of complex numbers of norm one, a result,

which allowed to determine the group K2(H). In the proof, the property C2 for the

group H∗ played an important role, and it even turned out that this group as well as the

multiplicative group of an arbitrary quaternion skew field satisfies C3. The main idea for

this is already contained in [RS, §4, proof of 4.1].

Many years ago, R. Keith Dennis and the second named author verified, by computer

and using a special purpose program (written in the programming language C), that the

alternating groups An with n = 5, 6, 7, 8, 9, 10 satisfy C2. It was also shown that A5 does

not satisfy C3.

The first named author verified C2 for the group SL2(C) by an explicit computation

using the Bruhat decomposition of that group.

Here we look at the property Cn for a simple algebraic group G defined over a field

K. It seems to be rather difficult to investigate the property Cn for the group G(K) of

K-rational points even if K is algebraically closed. If K is not algebraically closed, then

already the property C1 is a problem for G(K): In [THO], examples of elements in SLn(R)

are given which are in the commutator subgroup but no single commutators, and in [KU]

there is an example of this type in some non split group. (See also [EG].) We restrict

ourselves to a weaker condition. Namely, we say that a simple algebraic group G satisfies

the property Cn if the map φn is dominant, i.e., if the Zariski closure Imφn of Imφn in

Gn coincides with Gn. Thus, the property Cn is the “property Cn up to Zariski closure”.

The main result of this paper is the following theorem.

Theorem 1. Let G be a simple algebraic group and let h = h(G) be the Coxeter number

of the corresponding root system. Then G satisfies the property Cn if and only if n ≤ h+1.

Remark 1. Recall that the Coxeter number h of a root system is the order of special

elements of its Weyl group (Coxeter elements) (see [B]). If the root system belongs to a
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simple algebraic group G, we have

h+ 1 =
dim G

dim T

where T is a maximal torus of G. Thus, G satisfies the property Cn if and only if n ≤

dimG/ dimT .

Remark 2 At the end of this paper we show that φn is a separable morphism if n ≤ h

and that φn is not separable if n = h+1 and if the center of the corresponding Lie algebra

is not trivial.

On the basis of Theorem 1 we could propose a conjecture about the property Ck for

groups of points G(K). Say, we may suppose that C1 implies Ch+1 for such groups under

the assumption that G is an adjoint group. Since the property C1 is satisfied by a big

massive of quasisplit groups of adjoint type (see [EG]) we may suppose that the property

Ch+1 is satisfied by such groups (possibly except in the case when K is a small field). At

any rate, there is a strong hope that all groups G(K) satisfy the property Ch+1, where G

is a group of adjoint type and K is algebraically closed field.

Our example below after Remark 5 shows that C3 is satisfied by the groups GL1 and

PGL1 over any quaternion skew field: Here, the latter group is an anisotropic adjoint

simple algebraic group, and we have dimPGL1 = 3 and dimT = 1 for any maximal torus

T of PGL1.

An analogue of Theorem 1 for Lie algebras is the following result.

Theorem 2. Let L be the Lie algebra of a simple and simply connected algebraic group

defined over a field K and corresponding to an irreducible root system R. Let Ln =

L⊕ · · · ⊕ L (n summands) and let

Ψn : L⊕ Ln → Ln

be the map given by the formula

Ψn((`, `1, . . . , `n)) = ([`, `1], . . . , [`, `n]).

Let R 6= Cr, r ≥ 1, or char K 6= 2. Then the map Ψn is dominant if and only if

n ≤ h. (Note that A1 = C1, B2 = C2.)

If R = Cr, r ≥ 1 and charK = 2, then the map Ψn is a dominant map onto [L,L]n ⊂
6=

Ln for every n.
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Remark 3. Theorem 2 can be considered as an analogue of the property Cn for simple

algebraic groups. It is interesting that the bound for dominance in the case of Lie algebras

is equal to h, while in the case of groups it is h+ 1.

For a simple (abstract) group G, the property C1 follows from the stronger condition

that there exists a conjugacy class C ⊂ G such that C2 = {c1c2 | c1, c2 ∈ C} = G. Indeed,

if g ∈ C then g is a real element, i.e., g is conjugate to g−1 because 1 ∈ C2. Hence every

element of G can be written as gxg−1x−1 for some g ∈ C and therefore G has property C1.

The conjecture about the existence of such a conjugacy class C is known as Thompson’s

conjecture (see [AH]). We can generalize this question in the following way. We say that

the group G satisfies the property Tn, if there exists an element g ∈ G such that, for every

sequence σ1, . . . , σn ∈ [G,G], there exist elements x, y1, . . . , yn ∈ G with

σ1 = xgx−1y1gy
−1
1 , · · · , σn = xgx−1yngy

−1
n .

We can rewrite this condition in the following way. Let g ∈ G and let

fn,g : G×Gn −→ Gn

be the map given by the formula

fn,g((x, y1, . . . , yn)) = (xgx−1y1gy
−1
1 , · · · , xgx−1yngy

−1
n ).

Then the group G satisfies the property Tn if Im fn,g = [G,G]n for some g ∈ G.

Obviously, Tn implies Cn.

Now let G be a simple algebraic group defined over a field K and let g ∈ G(K). Then

the map fn,g is a morphism of K-varieties G×Gn and Gn. We can define a property T n

in the same way as the property Cn. Namely, we say that G satisfies the property T n if

fn,g is a dominant map for some g ∈ G(K). Here we prove that a simple algebraic group

G satisfies the property T n if and only if n ≤ h where h is the Coxeter number.

Actually, we prove a more general result. Let g̃ = (g, g1, . . . , gn) ∈ G
n+1(K) and let

fn,g̃ : Gn+1 → Gn

be the map defined by the formula

fn,g̃((x, y1, . . . , yn)) = (xgx−1y1g1y
−1
1 , . . . , xgx−1yngny

−1
n ).

Theorem 3. Let G be a simple algebraic group defined over a field K and let

g, g1, . . . , gn ∈ G(K) be a sequence of semisimple regular elements. Then the map fn,g̃ is

dominant if and only if n ≤ h where h is the Coxeter number of G.
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Remark 4. This theorem shows the bound for the property T n. This bound is the Coxeter

number h and it is the same as the corresponding bound in Theorem 2 for Lie algebras

but it is smaller than the bound h+ 1 for the property Cn in Theorem 1.

Remark 5. The property T n does not imply the property Cn, because an element g can

be non-real. However, in Theorem 3 we can take a real element g or g1 = g2 = · · · = gn =

g−1.

An Example. The groups GL1,D(K) and PGL1,D(K) associated with a quaternion skew

field D over a field K satisfy C3.

This fact was observed, for GL1,D, by R. Alperin and R. K. Dennis as well as by the

second named author many years ago, some ideas concerning the proof can be found for

the case of the real Hamilton quaternions in [AD] and for general fields K in [RS].

Proof. Let D be some quaternion skew field over some field K of any characteristic. The

case char K 6= 2 is very well known, the case char K = 2 is classical as well. For a uniform

discussion, we refer to [KMRT, chap. I, §2, 2.C, p. 25 ff.] or [KR, p. 52].

We fix some notations:

Let x 7→ x̄ (x ∈ D) denote the canonical involution of D. The reduced trace T :D →

K is a K-linear map and obtained by T(x) = x + x̄. The reduced norm N :D → K is

a quadratic form on the 4-dimensional K-vector space D and given by N(x) = xx̄. Its

associated bilinear form is given by (x, y) := N(x + y) − N(x) − N(y) = T(xȳ). From

the explicit formulae in [KMRT, l.c.] it is easily checked that this bilinear form is non-

degenerate.

Hence, for any three elements xi ∈ [D∗, D∗], i = 1, 2, 3, the orthogonal complements

of the three subspaces K(1 − x̄i) of D are of dimension 3 and therefore have a non-

trivial intersection. If w is a non-zero element of this intersection, this means that 0 =

(w, 1 − x̄i) = T(w(1 − xi)), hence T(w) = T(wxi). But we also have N(w) = N(wxi),

since N(xi) = 1.

It follows that the minimal polynomials of w and of all three elements wxi coincide,

thus, the K-subalgebras K(w), K(wxi) of D are pairwise K-isomorphic, and the theorem

of Skolem-Noether [VDW, p. 105] yields the existence of x′i ∈ D
∗ such that x′iwx

′
i
−1 = wxi,

and hence xi = [w−1, x′i] for i = 1, 2, 3. This proves the statement for GL1,D.

To handle the case of PGL1,D, we observe that we have an exact sequence of linear

algebraic K-groups

0→ Gm → GL1,D → PGL1,D → 0,
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where Gm is the multiplicative group over K, which is mapped to the center of GL1,D.

This yields, by [S, ch. I, prop. 43, p. I-71], a long exact Galois-cohomology sequence

0→ Gm(K)→ GL1,D(K)→ PGL1,D(K)→ H1(K,Gm)→ . . . .

By [S, ch. II, prop. 1, p. II3], we have H1(K,Gm) = 0 and hence the map GL1,D(K) →

PGL1,D(K) is surjective. Given three commutators [xi, yi], i = 1, 2, 3 from PGL1,D(K),

we may lift their entries xi, yi to preimages x̃i, ỹi ∈ GL1,D(K). By the preceding result we

find w̃, g̃i ∈ GL1,D(K) such that [w̃, g̃i] = [x̃i, ỹi], and mapping this down to PGL1,D(K)

we obtain what we want. Let us remark that, by centrality, the commutators [x̃i, ỹi] in

GL1,D(K) do not depend on the choice of the liftings, but we don’t need that here.

An Application. If C2 is satisfied by some (abstract) group G, then there is an easy

description of its Schur multiplier.

By a result of C. Miller [MI], the Schur multiplier H2(G,Z) of G can be described as

follows. Let U(G) denote the group generated by symbols c(x, y), x, y ∈ G subject to

just the “formal commutator relations” which are generated by

• c(x, x) = 1, c(x, y)c(y, x) = 1,

• c(xy, xz)c(x, z) = c(xy, z),

• c(xy, xz)c(z, x) = c(x, [y, z]).

Here xy = xyx−1. Then the map induced by c(x, y) 7→ [x, y] is a central extension

of [G,G], and its kernel is canonically isomorphic to H2(G,Z), so that we have an exact

sequence

0→ H2(G,Z)→ U(G)→ G→ H1(G,Z)→ 0.

It is known that, in case G is perfect, U(G) is the universal central extension of G = [G,G].

The fact we want to mention here is the following:

If G satisfies C2, then the Schur multiplier is generated by all elements c(x, y)c(x′, y′)

such that [x, y] = [y′, x′].

That is, the Schur multiplier is generated by relations induced from Abelian subgroups

of G (these are the length 1 relators) and from relators of length 2. In many cases, for

example for the group of invertible elements of quaternions [AD,RS], but also for SLn(K)

and other almost simple split linear groups, it is even true that the relators of length 1

are sufficient to generate the Schur multiplier, so the length 2 relations are not necessary.

This follows directly from Matsumoto’s theorem on the presentation of K2(K) by symbols

[M]. Analogous results hold also for SLn(D), n ≥ 2, for any skew field D over K [R1,

R2], and for Kac-Moody groups [MR].
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Proof of the fact mentioned above: Let xi, yi, i = 1, . . . , n be elements in G such that

[x1, y1] · · · · · [xn, yn] = 1. By C2, we may find elements u, v, z ∈ G such that [xn−1, yn−1] =

[u, z] and [xn, yn] = [z, v].

From the relations above we obtain [u, z][z, v] = [uv−1, vzv−1].

That is, any element c(x1, y1) · · · · · c(xn, yn) ∈ H2(G,Z) can be replaced, modulo

products of length at most 2, in H2(G,Z) by a product of length n−1. An induction now

gives the result.

Acknowledgments: The proof of Theorem 2 was obtained by E. B. Vinberg for

fields of characteristic zero, using the fact that the Killing form is non-degenerate. It was

communicated by him to the first author in the discussion of this topic. The authors are

grateful to E. B. Vinberg for his kind permission to use his result here.

The authors are also grateful to Roger Alperin and Keith Dennis for valuable comments.

2. Notation and Terminology

2.1. R denotes an irreducible root system generated by a simple root system ∆ =

{α1, α2, . . . , αn},

W = W (R) is the Weyl group of R;

wα ∈W is the reflection corresponding to α ∈ R;

wc = wα1
wα2

. . . wαn
is a fixed Coxeter element of W ;

Γ = 〈wc〉; h = |Γ| is the Coxeter number of R.

2.2. G denotes a simple algebraic group defined over the field K corresponding to the

system R;

T ≤ G is a maximal torus (also defined over K); we identify the set R with a subset

of characters of T , and for our purposes we may assume that T and hence G is split over

K, that is, all characters are defined over K.

N is the normalizer of T in G; thus N/T ∼= W ; by ẇ we denote an element of N with

the image w ∈W ;

B is a Borel subgroup of G (below we assume T ≤ B);

φn, fn,g, fn.g̃ are the functions defined in the Introduction.

An element g ∈ G is called regular if dimCG(g) = dimT .

2.3. L denotes the Lie algebra of a simple and simply connected algebraic group G

defined over a field K and corresponding to the root system R.
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If K is an algebraically closed field then L = H +U is a Cartan decomposition where

H is a Cartan subalgebra and

U =
∑

α∈R

Uα

where Uα is the one-dimensional subspace of L corresponding to a root α ∈ R. Since G

is simply connected one can chose a Chevalley basis hα1
, · · · , hαr

, {uα} of L (see [St1])

where {hαi
} is a basis of H and {uα} is a basis of U . Note that, for every k = 1, · · · , r,

we have hαk
= [uαk

, u−αk
].([St1, Lemma 2]). Further, for every root α ∈ R one can define

hα = [uα, u−α].

The adjoint action of G(K) on L will be denoted by g(`) where g ∈ G(K), ` ∈ L. We

assume that LT = H, where LT denotes the invariant elements of L under the (adjoint)

T -action.

A semisimple element l ∈ L is called regular if dimCL(l) = dimCL(H).

2.4. Let f : X → Y be a morphism of irreducible affine k-varieties. We say that f

is dominant if the comorphism f ∗ : K[Y ] → K[X] is an injection. Obviously, this is

equivalent to the condition f(X(K̄)) = Y (K̄) where K̄ is the algebraic closure of K and

f(X(K̄)) is the Zariski closure of f(X(K̄)) in Y (K̄).

Thus we may assume in the proofs of theorems 1, 2, 3 that K is an algebraically

closed field. Also, it is enough to prove theorems 1 and 3 for the cases where G is a

simply connected group.

Below, we suppose that K is algebraically closed and G is simply connected. From

the context, it will be clear, that some of the statements hold under weaker assumptions,

e.g., in the case that G is split over K, or in the case that K is sufficiently large.

3. Some technical results

3.1. Let

R = S1 ∪ S2 · · · ∪ Sr

be the decomposition of R into the union of Γ-orbits. Then r = rankR and there exists

a sequence of representatives

θ1 ∈ S1, θ2 ∈ S2, . . . , θr ∈ Sr

which is a basis of the group Q(R) ([B, IV, 21, Proposition 33, p. 170]). (Recall that

Q(R) is the lattice generated by the roots.)
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The roots θ1, . . . , θr are defined in the following way

θi = wαr
wαr−1

· · ·wαi+1
(αi) (1)

(see [B, l.c.]), and we have

θi > 0

for every i = 1, . . . , r. Moreover, in [St2, Lemma 7.2.c, p. 298] it is proved that θi+θj /∈ R

for every i, j. The following lemma is proved by the same arguments (which was essentially

don in [St2] as well):

Lemma 1. Let k1, . . . , kr be non-negative integers such that k1 + · · ·+ kr > 1. Then

θ = k1θ1 + · · ·+ krθr /∈ R.

Proof. Let i = max{m | km 6= 0}. From (1) we have

θ′ = wαi
wαi+1

. . . wαr
(θ) = −kiαi + ki−1αi−1 +

∑

j<i−1

kjwαi−1
wαi−2

. . . wαj+1
(αj)

Applying formulas (1) to the irreducible root system generated by roots {α1, . . . , αi−1}

we get

wαi−1
wαi−2

. . . wαj+1
(αj) =

∑

s≤i−1

`sαs

where `s ≥ 0 for every s ≤ i− 1 (indeed, all θi in (1) are positive). Now we have

θ′ = −kiαi +
∑

s≤i−1

msαs

where ms ≥ 0 for every s ≤ i − 1. Since {α1, . . . , αi} is a simple root system the vector

θ′ belongs to R only if m1 = m2 = · · · = mi−1 = 0 and ki = 1. But in this case kj = 0

for every j < i and, therefore, k1 + · · ·+ kr = 1. This contradicts to the condition of the

lemma.

3.2.

Lemma 2. {hθ1 , . . . , hθr} is a basis of H.

Proof. If r = 1 then θ1 = α1 and {hα1
} is a basis of H. Suppose our assertion holds

for root systems of rank < r. Let ε1 = wαr
(θ1), . . . , εr−1 = wαr

(θr−1). It follows from

(1) that ε1, . . . , εr−1 belong to the root system generated by {α1, . . . , αr−1}. Moreover,

the elements ε1, . . . , εr−1 are defined in the same way as θ1, . . . , θr for the root system

R. Therefore the assumption of the induction implies that {hε1 , . . . , hεr−1
} is a basis of
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subspace H ′ ⊂ H generated by {hα1
, . . . , hαr−1

}. Further, θr = αr and εr = wαr
(θr) =

wαr
(αr) = −αr. Hence hεr = −hαr

. Thus, {hε1 , . . . , hεr−1
, hεr} is a basis of H. But

hεi = wαr
(hθi) and therefore {hθ1 , . . . , hθr} is also a basis of H.

3.3. For every reflection wα ∈ W we can find a preimage ẇα ∈ N such that ẇα(uβ) =

±uwα(β) for every root β ∈ R ([St1, Lemma 19, (a)]). Now we fix such preimages ẇα and

put

ẇc = ẇα1
ẇα2

· · · ẇαr
.

Let xα(s) = exp(suα) ∈ G(K) be the corresponding root element where s ∈ K. Put

γ = xθ1(1)xθ2(1) . . . xθr(1), γj = ẇj−1
c γẇ−j+1

c for i = 1, . . . , h (2)

Further, put

θij = wj−1
c θiw

−j+1
c for i = 1, . . . , h. (3)

Lemma 3. γm(u−θij) ≡ 0 (modU) if m 6= j and γj(u−θij) ≡ ±hθij (modU).

Proof. Let g ∈ G(K). From the definition of ẇc we have

ẇc(g(uα)) = ẇcgẇ
−1
c (±uwc(α)) (4)

for every α ∈ R. Moreover, ẇc(U) = U and ẇc(0) = 0. Acting on both sides of the

congruences by an appropriate power of ẇc and using (2), (3), (4) we can get the equivalent

congruences

γ1(u−θij) ≡ 0 (modU) for j 6= 1,

γ1(u−θi1) ≡ ±hθi1 (modU).
(5)

Thus, it is enough to prove (5).

Let ε, δ ∈ R. If ε 6= −δ then

xε(1)(uδ) = uδ +
∑

δ+iε∈R

`iuδ+iε (6)

where `i ∈ K and

xε(1)(u−ε) = u−ε ± hε ∓ uε. (7)

Equations (6) and (7) follow from [St1, Lemma 72, p. 209].

Further, if k1, . . . , kr are non-negative integers then for every i = 1, . . . , r and for

every β ∈ R the equality

−θi = −β + k1θ1 + · · ·+ krθr

is possible only for k1 = k2 = · · · = kr = 0. This follows from Lemma 1. For β ∈ R put

Mβ = {−β + k1θ1 + · · ·+ krθr ∈ R | ki ≥ 0, k1 + k2 + · · ·+ kr ≥ 1}.
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Thus, for every i = 1, . . . , r the set Mβ does not contain the root −θi.

Let β = θij where j > 1. Since the group Γ = 〈wc〉 acts free on the Γ-orbits S1, . . . , Sr

we have β 6= θ1, . . . , θr. From the definition γ1 = γ and (6) we get

γ1(u−β) = u−β +
∑

α∈Mβ

`αuα (8)

where `α ∈ K.

Let β = θi1 = θi and Mθ = {θi, i = 1, . . . , h}. From (6) and (7) we obtain

γ1(u−β) = u−β ± hβ +
∑

α∈Mβ∪Mθ

`αuα (9)

where `α ∈ K. Now (8) and (9) imply (5).

3.4. We define the subspace Ũ of Lh = L⊕ · · · ⊕ L
︸ ︷︷ ︸

h−times

by

Ũ := {(γ1(u) + u1, γ2(u) + u2, . . . , γh(u) + uh) |u, ui ∈ U}.

Lemma 4. Ũ = Lh.

Proof. Obviously, Uh = U ⊕ · · · ⊕ U
︸ ︷︷ ︸

h−times

⊂ Ũ . Since Hh+Uh = Lh we have to prove Hh ⊂ Ũ .

Let u = u−θij . By Lemma 3 we have γm(u) ∈ U if m 6= j and γj(u) = ±hθij + u′ for

some u′ ∈ U . Thus, for every i, j, the element

(0, 0, . . . , hθij , 0, . . . , 0) (10)

belongs to Ũ . Since hθ1 , . . . , hθr is a basis of H (Lemma 2), the sequence hθ1j , hθ2j . . . , hθrj

is also a basis of H and, therefore, the set of r× h elements of the form (10) is a basis of

Hh.

Now let us fix the sequence of elements δ1 ∈ Tγ1T, . . . , δh ∈ TγhT and let us define

Ũ ′ = {(δ1 − 1)(l) + u1, . . . , (δh − 1)(l) + uh) | l ∈ L, ui ∈ U}.

The same arguments as in the proof of the previous lemma give

Lemma 5. Ũ ′ = Lh
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3.5. Now we formulate an analogue for lemma 4 for the action of Lie algebra on itself.

Namely, let

y = uθ1 + uθ2 + · · ·+ uθr

and

y 1 = y, y2 = wc(y), . . . , yh = wh−1
c (y).

We define, similarly to Ũ , the set

Û = {[l, y1] + u1, · · · , [l, yh] + uh | l ∈ L, ui ∈ U}.

It is easy to see that the congruences of Lemma 3 also hold if we use elements ym, yj

instead of γm, γj. Thus, the same arguments as in the proof of Lemma 4 give

Lemma 6. Û = Lh.

3.6.

Lemma 7. 1.Assume charK 6= 2 if R = Cr, r ≥ 1. Then there exists an element

h ∈ H such that CL(h) = H.

2. Let R = Cr, r ≥ 1 and charK = 2. Further, let Rl be the set of all long roots of

R. Then there exists an element h ∈ H such that

CL(h) = CL(H) = {H +
∑

α∈Rl

Uα}.

Proof. 1. If charK 6= 2 or R 6= Cr then for every root α ∈ H the corresponding linear

function α : H −→ K is not trivial. Since K is an algebraically closed field it is infinite

and therefore the set

H \ (∪α∈RKerα)

is not empty.

2. If R = Cr and charK = 2 a map α : H −→ K , α ∈ R is trivial if and only if

α ∈ Rl. Thus we can get the assertion in the same way as above.

4. Proof of Theorem 2

Let charK 6= 2 if R = Cr, r ≥ 1.

Obviously, if Ψn is dominant, then Ψ1,Ψ2, . . . ,Ψn−1 is also dominant. Thus we have

to prove that Ψh is dominant but Ψh+1 is not. Let (`, `1, . . . , `n) ∈ L⊕ Ln. Assume that
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l ∈ H is a regular element. Since for every regular element h ∈ H we have [h, L] = U

(Lemma 7) then for every regular element l′ ∈ H there exist l′1, · · · , l
′
n ∈ L such that

[l′, l′1] = [l, l1], · · · , [l
′, l′n] = [l, ln]. (11)

Further, in (11) we can replace every element l′i by l′i + xi where xi is an element

of the centralizer of l′, i.e., an element of H. Thus, the dimension of the fiber

Ψ−1
n (Ψn((l, l1, · · · , ln))) ≥ (n+ 1) dimH and therefore

dimΨ−1
h+1(Ψh+1((`, `1, . . . , `h+1))) ≥ (h+ 2)rankL > dimL (12)

(recall, dimL = (h + 1)rankL). Since the set of regular semisimple elements is dense in

L the inequality (12) holds for a “generic fiber” of Ψh+1. Hence

dim ImΨh+1 < dimLh+1

and therefore Ψh+1 cannot be dominant.

Consider now Ψh. Let ã = (a1, . . . , ah), b = (a, a1, . . . , ah) ∈ L⊕ Lh be fixed points

and let c = Ψh(b) ∈ L
h . Consider the differential dbΨh of Ψh at the point b

dbΨh : Tb → Tc

where Tb, Tc are the corresponding tangent spaces. We identify Tb with L ⊕ Lh and Tc

with Lh. Then we have

dbΨh : L⊕ Lh → Lh

and

Im dbΨh = [a, Lh] + [L, ã]. (13)

(Here we used the rules for the differential of the map Ψh at the point b = (a, ã) in the

following sense: d(a,ai)[x, y](l1, l2) = [a, l2] + [l1, ai] where x, y ∈ L are variables and l1, l2

are elements in the tangent space Ta, Tai of L at the points a, ai, which we identify with

L.)

Let a ∈ H be a regular element and let a1 = y1, . . . , ah = yh be the sequence defined

in 3.5. We have [a, Lh] = Uh (Lemma 7) and, therefore,

[a, Lh] + [L, ã] = {([`, y1] + u1, [`, y2] + u2, . . . , [`, yh] + uh)| ` ∈ L, ui ∈ U} = Û

By Lemma 6,

[a, Lh] + [L, ã] = Lh

for these particular a and ã. Hence there exists a point b ∈ L ⊕ Lh where the rank

of differential is equal dimLh and therefore it holds for points from some open subset
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X ⊂ L ⊕ Lh. We can find the point x ∈ X such that Ψh(x) is a regular point of

Ψh(L⊕ Lh). Since the tangent space at the point Ψh(x) has rank = dimLh we have

dimΨh(L⊕ Lh) = dimLh.

Let R = Cr, r ≥ 1 and charK = 2.

Denote by Rsh the set of all short roots in R. It is easy to check

[L,L] = H +
∑

α∈Rsh

Uα .

Further, let

l = h+
∑

β∈R+

l

uβ ,

where h ∈ H is an element satisfying the condition CL(h) = CL(H) (Lemma 7), and uβ

are elements of the Chevalley basis. We have [l, L] = [L,L].( One can check this using

the definition of h, l and Lemma 7.) This implies our assertion.

Theorem 2 has been proved.

5. Proof of Theorem 3

Let Cg, Cgi be the conjugacy classes of the regular semisimple elements g, gi. Then

dimCg = dimCgi = dimG− rankG. We assume n > 1 and define the subset of Gn

Mn,g̃ = {(gy1g1y
−1
1 , . . . , gyngny

−1
n ) | yi ∈ G}.

Obviously dimMn,g̃ = n dimCg = n(dimG − rankG) and GMn,g̃ =

{(xm1x
−1, . . . , xmnx

−1) | (m1, . . . ,mn) ∈ Mn,g̃} = Im fn,g̃. Since a “generic point” m ∈

Mn,g̃ has a stabilizer which is equal to Z(G) (because n > 1) and dim(Mn,g̃∩Gm) ≥ rankG

we have

dimGMn,g ≤ n(dimG− rankG) + (dimG− rankG) =

= n dimG+ (dimG− (n+ 1)rankG). (14)

If Im fn,g̃ = Gn then (14) implies (n+ 1)rankG ≤ dimG and therefore n ≤ h.

Now we prove that inequality n ≤ h implies Im fn,g̃ = Gn. Obviously, it is enough to

prove this for n = h.

We may assume g, g1, . . . , gh ∈ T . Also we may assume that (gσ1g1σ
−1
1 , . . . , gσhghσ

−1
h )

is a regular point of Im fn,g̃ for some σ1, . . . , σh ∈ G(K). Moreover, the set of such

sequences (σ1, . . . , σh) contains a non-empty open set of Gh. Put

s1 = σ1g1σ
−1
1 , . . . , sh = σhghσ

−1
h
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and consider the map

Ψ : G×Gh → Gh

given by the formula

Ψ(x, y1, . . . , yh) = (xgx−1y1s1y
−1
1 s−1

1 g−1, . . . , xgx−1yhshy
−1
h s−1

h g−1).

The definitions of Ψ and s1, . . . , sh imply

dim ImΨ = dim Im fh,g̃. (15)

Moreover, Ψ((1, . . . , 1)) is a regular point of ImΨ. (Indeed, ImΨ = (Im fh,g̃)s) where

s = (s−1
1 g−1, . . . , s−1

h g−1). The differential dΨ at the point (1, . . . , 1) gives the linear map

dΨ : L× Lh → Lh

which is

dΨ((`, `1, . . . , `h)) = ((1− g)`+ g(1− s1)`1, . . . , (1− g)`+ g(1− sh)`1) (∗)

(this follows from the standard formulas for differentials).

Now we want to prove, that for some sequence s1, . . . , sh defined above

Im dΨ = Lh. (16)

Then (16) with (15) give us our statement.

Since g ∈ T is a regular element, we get

(1− g)L = U. (17)

Further,

g(1− si)L = g(1− si)g
−1gL = (1− gsig

−1)gL = (1− gsig
−1)L. (18)

Recall that si = σigiσ
−1
i and gi ∈ T . Since gi is a regular element of T

(1− gi)L = U. (19)

Put δi = gσi. Then (17), (18), (19) imply

g(1− si)L = (1− δigiδ
−1
i )L = δi(1− gi)δ

−1
i L = δi(1− gi)L = δi(U). (20)

From (∗), (17) and (20) we obtain

Im dΨ = {(u+ δ1(u1), . . . , u+ δh(uh)) |ui ∈ U}.

Put δ = (δ1, . . . , δh). Then

δ−1(Im dΨ) = {(δ−1
1 (u) + u1, . . . , δ

−1
h (u) + uh |ui ∈ U}. (21)
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Let τ = (τ1, . . . , τh) ∈ G
h and let

Θτ : U ⊕ Uh → Lh

be the map

Θτ ((u, u1, . . . , uh)) = (τ1(u) + u1, . . . , τh(u) + uh).

The set of τ ∈ Gh such that dim ImΘτ < dimLh is closed inGh. By Lemma 4, ImΘτ = Lh

where τ0 = (γ1, . . . , γh). Hence the set

X = {τ ∈ Gh | ImΘτ = Lh}

is a non-empty open subset of Gh. Further, the set of sequences Y = {σ = (σ1, . . . , σh) ∈

Gh}, such that (gσ1g1σ
−1
1 , . . . , gσhghσ

−1
g ) is a regular point of Im fh,g̃, contains a non-

empty open subset of Gh. Since δ−1
i = σ−1

i g−1 we find an element

δ−1 ∈ X ∩ Y −1g−1. (22)

Now, from (21) and (22) we get (16).

Theorem 3 has been proved.

6. Proof of Theorem 1

Obviously, the property Cn implies the property Cn−1. Thus we have to prove Ch+1

for the group G and we need to show that Ch+2 does not hold for G. The latter follows

from the inequality

dimφ−1
h+2(φh+2((g, g1, . . . , gh+2))) ≥ (h+ 2) dim (CG(g)) ≥

≥ (h+ 2)rankG > (h+ 1)rankG = dim G.

Now we will prove the property Ch+1 for the group G. Recall, that we assume that G

is simply connected.

Lemma 8. Let γ1, . . . , γh be the sequence defined in (2). Then for every regular element

t ∈ T and for every i = 1, · · · , h there exists an element ti ∈ T such that

[t , tiγit
−1
i ] = γi

Moreover, for every regular t there is only a finite number of such ti.



On Multicommutators for Simple Algebraic Groups 17

Proof. Obviously it is enough to prove the statement only for γ1 = γ.

Since t is a regular element θj(t) 6= 1 for every j = 1, . . . , r. Put

vj = (θj(t)− 1)−1 (23)

Further, there exists an element t1 ∈ T such that

θj(t1) = vj (24)

for every j. Indeed, every element x ∈ T can be presented in the form x =

hα1
(x1) . . . hαr

(xr) where xi ∈ K∗ and hαi
(xi) is the corresponding semisimple element

of the αi- root subgroup ([St1], Lemma 28). The system of equations θj(x) = vj can be

written in the form
r∏

k=1

x
n(k,j)
k = vj (25)

where n(k, j) = 2(αk, θj)/(αk, αk). Since θ1, . . . , θr is a basis of the group Q(R) the matrix

{(αk, θj)}1≤k≤r,1≤j≤r has rank = r. Hence the matrix {n(k, j)} also has rank = r. Thus

we can find the solution of (25) which gives us the element t1 ∈ T satisfying (24).

From (24)

t1γ1t
−1
1 = xθ1(v1) . . . xθr(vr). (26)

Now [t, t1γt
−1
1 ] = γ = γ1 follows from (23) ,(26) and the Chevalley commutator for-

mula. (Note that, by Lemma 1, the sum θi + θj is not a root for every i, j and therefore

xθi(a)xθj(b) = xθj(b)xθi(a) for every a, b.) On the other hand, the commutator equation

for t1 implies the equation (26) which in turn leads us to (25). Since (25) has only a finite

number of solutions (because the rank of the matrix {nk,j} is equal to r) we obtain that

only finitely many t1 are possible.

Let

X = {(t, t1γ1t
−1
1 , . . . , thγht

−1
h ) | t, ti ∈ T, [t, tiγit

−1
i ] = γi for every i = 1, . . . , h}.

The set X is a constructible subset of Gh+1. Indeed, X is the image of a closed subset of

T h+1 (which is defined by commutator equations) under the morphism

(t, t1, . . . , th) −→ (t, t1γ1t
−1
1 , . . . , thγht

−1
h ).

Let X0 be an irreducible component of X such that dimX0 = dimX. Lemma 8 implies

dimX = dimT = rankG. Hence

dimX0 = rankG (27)
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Moreover, Lemma 8 implies that the projection of X0 on the first coordinate contains an

open subset of T .

Further, let (1, T h) be the subset of T h+1 consisting of the elements which have the

first coordinate 1. Then we consider (1, T h) as a subset of Gh+1 and put

Y = X0(1, T
h) = {(t, t1γ1t

−1
1 t′1, . . . , thγht

−1
h th

′) | t, ti, t
′
i ∈ T} (28)

(note that the elements ti in (28) depend on the first coordinate t, while elements t′i run

independently through the set T ). Since X0 is an irreducible locally closed subset of Gh

the same is Y and (27),(28) imply

dimY = (rankG)h+1 = dimG. (29)

Further, the definition of the set X0 and (28) imply

Y ⊂ φ−1
h ((γ1, . . . , γh)). (30)

Lemma 9. The Zariski closure Y of the set Y coincides with an irreducible component

of the pre-image φ−1((γ1, . . . , γh)).

Proof. Let y = (t, d1, . . . , dh) ∈ Y where di = tiγit
−1
i t′i (see (28)). Consider the map

χy : Gh+1 −→ Gh

given by the formula

χy((x, x1, . . . , xh)) = ([xt, x1d1][d1, t], . . . , [xt, xhdh][dh, t]).

The differential of χy at the point (1, . . . , 1) gives the linear map

d(χy) : L
h+1 −→ Lh.

This map can be easily calculated using usual differentiation formulas. Namely, writing

the first component as

(x, x1) 7→ xt(x1d1t
−1(x−1d−1

1 x−1
1 d1)td

−1
1 )t−1,

we obtain for its differential:

(l, l1) 7→ (l + t(l1 + d1t
−1(−l − d−1

1 (l1)))) = (1− td1t
−1)(l) + t(1− d1t

−1d−1
1 )(l1)

and therefore for the whole map:

d(χy)((l, l1, . . . , lh)) =

((1− td1t
−1)(l) + t(1− d1t

−1d−1
1 )(l1), . . . , (1− tdht

−1)(l) + t(1− dht
−1d−1

h )(lh))
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(recall that, for g ∈ G and l ∈ L, we write g(l) for ad g(l)). Put ui = (1− t−1)d−1
i (li), l

′ =

t−1(l). Then ui ∈ U . Applying the invertible linear operator (d−1
1 t−1, . . . , d−1

h t−1) to the

image of d(χy) we get the linear space

{(d−1
1 − 1)(l′) + u1, . . . , (d

−1
h − 1)(l′) + uh) | l

′ ∈ L, ui ∈ U}

which, according to Lemma 5, coincides with Lh. Thus the differential of the map χy

at the point (1, . . . , 1) has rank = dimLh. Note that the map χy is the composition of

two translations and the map φh. This implies that the differential of φh at the point y

also is of rank dimLh. According to Theorem 3 the map φh is dominant. Hence φh(y)

is a regular point of Imφh = Gh. Since the rank of the differential of φh at the point y

is equal to dimLh = dimGh, there exists an irreducible component Y ′ of the pre-image

φ−1
h (φh(y)) such that y ∈ Y ′ and dimY ′ = dimG. We may assume that a point y belongs

only to those irreducible components of φ−1
h (φh(y)) = φ−1

h (γ1, . . . , γh) which contain the

whole set Y . Thus we obtain Y ⊂ Y ′, and our statement will follow from (29)

Lemma 10. Let Y ′ ⊂ Gh+1 be an irreducible component of φ−1
h ((γ1, . . . , γh)) which is the

closure of the set Y . Then the projection of Y ′ to the first component of Gh+1 is contained

in T .

Proof. Let p1 : Gh+1 −→ G be the corresponding projection. Since Y ⊂ Y ′, the set p1(Y
′)

contains an open subset of T . This follows from the definition of Y . Further, the set

p1(Y ′) is an irreducible closed subset of the dimension rankG. (The latter follows from

the definitions Y and Y ′.) Hence this set coincides with T .

Now let t ∈ T be a regular element and s = [t, wc] (recall that wc is a fixed Coxeter

element) and let Ms = φ−1
h+1((γ1, . . . , γh, s)). We want to chose the element t satisfying

the following conditions:

I. Let Y ′ be as in Lemma 10. There exists an element (t, d1, . . . , dh) ∈ Y
′ which does

not belong to any other irreducible component of φ−1
h ((γ1, . . . , γh)).

II. The set of all elements g ∈ G such that [t, g] = s consists only of elements of the

form wct
′ where t′ runs through T .

Suppose we find an element t satisfying conditions I. and II. Put

z = (t, d1, . . . , dh, wc).

From the definition of t, s we get the inclusion z ∈ Ms. Let Msz be an irreducible

component of Ms containing the element z. Further, let P = P h+2
h+1 : Gh+2 −→ Gh+1
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be the projection to the first (h + 1) components. Then P (Msz) ⊂ φ−1
h ((γ1, . . . , γh)).

Since the set Msz is irreducible the set P (Msz) is also irreducible and I. implies that

P (Msz) is contained only in the irreducible component Y ′ of φ−1
h ((γ1, . . . , γh)). Since

wc is a Coxeter element there is only a finite number of t′ ∈ T satisfying the condition

[t′, wc] = s. Together with Lemma 10 this implies

P (Msz) = {(t, a1, . . . , ah) ∈ Y } (31)

(here t is a fixed element from the torus T but the elements ai run through the sets of

elements of the form tiγit
−1
i t′; see the definition of Y ).

From (31) and the definition of Y we get

dimP (Msz) = (rankG)h.

Further, II. implies that the dimension of every fiber of the projection Msz −→ P (Msz)

has dimension rankG. Hence dimMsz = (rankG)h+1 = dimG. Thus we find an irre-

ducible component of a pre-image of a point in Gh+1 with respect to the map φh+1 which

has dimension dimG. Therefore the dimension of the image of φh+1 has the dimension

dimGh+1. This gives our assertion.

Now we have to prove the existence of a regular element t ∈ T satisfying conditions

I.-II.

We can choose a point of Y which does not belong to other irreducible components

of φ−1
h ((γ1, . . . , γh)) and which has a regular element t ∈ T as its first coordinate. This

follows from the definition of Y and Lemma 10. Thus we have I.

Now we show II. for a chosen t. Let [t, g] = s for some g ∈ G. Then g ∈ BwB for

some w ∈W . Hence g = vwt′u where v, u ∈ U (here U is the product of all positive root

subgroups (see [St1])) t′ ∈ T . We may assume that in u only those factors uα from root

subgroups are non-trivial which have the property wuαw
−1 ∈ U− (here U− is the product

of all negative root subgroups) ([St1], Theorem 4’).

Consider the equality

[t, g] = tvwt′ut−1u−1(t′)−1w−1v−1 = tv(wt′ut−1u−1(t′)−1w−1)v−1 = s

The expression in brackets lies in the group B− = TU−. This follows from the choice of

u. The elements on both sides of the brackets lie in the Borel subgroup B. Since s ∈ T ,

the expression in the bracket is in T . This implies

[t, u] = 1. (32)
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Since t is a regular element (32) implies u = 1. The same arguments show v = 1. Thus,

g = wt′. But the equality [t, wc] = s = [t, wt′] implies w = wc (because we assume that G

is simply connected and t is a regular element of T ).

Theorem 1 has been proved.

The proof of Lemma 9 shows that dim Im dy(φn) = (dimG)n if n ≤ h in the generic

point y. Thus, if n ≤ h the map φn is always a separated morphism. Now let n = h+ 1.

We can consider the map χy : Gh+2 −→ Gh which is constructed in the same way as the

corresponding map in the proof of Lemma 9 changing h to h + 1. From the definition

we have an equality of ranks of the differentials of χy at the point (1, · · · , 1) and φh+1

at the generic point y. The formula (*) in that lemma shows that this rank cannot be

(dim G)h+1 if the center of the Lie algebra is not trivial.
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