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ABSTRACT. There are several examples of groups for which any pair of
commutators can be written such that both of them have a common entry,
and one can look for a similar property for n-tuples of commutators.

We here answer, for simple algebraic groups over any field, the weaker
question, under which condition the set of n-tuples of commutators with
one common entry is Zariski dense in the set of all n-tuples of commuta-
tors. Surprisingly, there is a uniform bound on n in terms of the so called
Coxeter number of GG in order to answer the question positively.

An analogoue result is proved for Lie algebras of simple and simply con-
ncected algebraic groups.
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1. INTRODUCTION
Let G be an abstract group and let G™ = G x --- x G (n factors). Further, let
On G X G — G"
be the map given by the formula

on((9, 91, 5 9n) = ([9,91)5 - 5 (95 gn))-

We say that the group G satisfies the property C,, if Im ¢, = [G, G|" where |G, G] is the
commutator subgroup of G, i.e., for every oy,...,0, € [G,G|", there exists a sequence

4,91, ... , gy such that

o1 =199, o2=19,0],- . on =9, 9]
(We define [g, h] = ghg™*h™'.)

The case n = 1 is well known in group theory and has a long history. If GG is a finite
simple group, the question about the property C; is the well-known Ore problem, whether
any element in the commutator subgroup of GG is a single commutator, which is answered
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positively for (simple) alternating groups (Ore [O], 1951), for sporadic groups (Neubiiser,
Pahlings and Cleuvers [NPC], 1984) and for finite simple Lie groups over fields with at
least 9 elements (see [EG]). Is is also known that in general the answer is negative, even
for groups like SL,,(K) (cf. [THO, Th. 1]), or for finite groups G including perfect finite
groups (cf. [T]).

The question for n > 1 was posed several years ago by R. Keith Dennis (cf. [C,
prob. 14, p. 605]). In [AD], it was shown, among other things, that the Schur multiplier
of the group SL;(H) of the Hamilton quaternions H is generated by the image of the
Schur multiplier of the commutative subgroup of complex numbers of norm one, a result,
which allowed to determine the group K3(H). In the proof, the property Cy for the
group H* played an important role, and it even turned out that this group as well as the
multiplicative group of an arbitrary quaternion skew field satisfies C3. The main idea for
this is already contained in [RS, §4, proof of 4.1].

Many years ago, R. Keith Dennis and the second named author verified, by computer
and using a special purpose program (written in the programming language C), that the
alternating groups A, with n =5,6,7,8,9, 10 satisfy Cy. It was also shown that A5 does
not satisfy Cs.

The first named author verified Cy for the group SLs(C) by an explicit computation
using the Bruhat decomposition of that group.

Here we look at the property C, for a simple algebraic group G defined over a field
K. It seems to be rather difficult to investigate the property C, for the group G(K) of
K-rational points even if K is algebraically closed. If K is not algebraically closed, then
already the property C; is a problem for G(K): In [THO], examples of elements in SL,,(R)
are given which are in the commutator subgroup but no single commutators, and in [KU]
there is an example of this type in some non split group. (See also [EG].) We restrict
ourselves to a weaker condition. Namely, we say that a simple algebraic group G satisfies
the property C, if the map ¢, is dominant, i.e., if the Zariski closure Im ¢,, of Im ¢, in
G" coincides with G™. Thus, the property C, is the “property C, up to Zariski closure”.

The main result of this paper is the following theorem.

Theorem 1. Let G be a simple algebraic group and let h = h(G) be the Coxeter number
of the corresponding root system. Then G satisfies the property C,, if and only if n < h+1.

Remark 1. Recall that the Coxeter number h of a root system is the order of special
elements of its Weyl group (Cozeter elements) (see [B]). If the root system belongs to a
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simple algebraic group G, we have

_ dim G

h+1 =
+ dim T

where T is a mazimal torus of G. Thus, G satisfies the property C,, if and only if n <
dimG/dimT.
Remark 2 At the end of this paper we show that ¢, is a separable morphism if n < h
and that ¢, is not separable if n = h+1 and if the center of the corresponding Lie algebra
15 not trivial.

On the basis of Theorem 1 we could propose a conjecture about the property C; for
groups of points G(K). Say, we may suppose that C; implies Cj; for such groups under
the assumption that G is an adjoint group. Since the property C; is satisfied by a big
massive of quasisplit groups of adjoint type (see [EG]) we may suppose that the property
Chy1 is satisfied by such groups (possibly except in the case when K is a small field). At
any rate, there is a strong hope that all groups G(K) satisfy the property Cj.1, where G
is a group of adjoint type and K is algebraically closed field.

Our example below after Remark 5 shows that Cj is satisfied by the groups GL; and
PGL; over any quaternion skew field: Here, the latter group is an anisotropic adjoint
simple algebraic group, and we have dim PGL; = 3 and dim 7" = 1 for any maximal torus
T of PGL;.

An analogue of Theorem 1 for Lie algebras is the following result.

Theorem 2. Let L be the Lie algebra of a simple and simply connected algebraic group
defined over a field K and corresponding to an irreducible root system R. Let L™ =
L& &L (n summands) and let

v, : LpL"— L"
be the map given by the formula
U (00, ... 0) = ([¢,0],...,[¢,0]).

Let R # C.,r > 1, or char K # 2. Then the map V,, is dominant if and only if
n S h. (Note that Al = Cl,Bg = CQ)
If R=C,,r > 1 and char K = 2, then the map V,, is a dominant map onto [L, L]" gﬁ

L™ for every n.
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Remark 3. Theorem 2 can be considered as an analogue of the property C, for simple
algebraic groups. It is interesting that the bound for dominance in the case of Lie algebras
is equal to h, while in the case of groups it is h + 1.

For a simple (abstract) group G, the property C; follows from the stronger condition
that there exists a conjugacy class C' C G such that C? = {cicz | ¢1, 0 € C} = G. Indeed,
if g € C then g is a real element, i.e., g is conjugate to ¢~! because 1 € C?. Hence every
element of G can be written as grg~'z~! for some g € C' and therefore G has property C;.
The conjecture about the existence of such a conjugacy class C' is known as Thompson’s
conjecture (see [AH]). We can generalize this question in the following way. We say that
the group G satisfies the property 7,,, if there exists an element g € G such that, for every

sequence oy, ... ,0, € [G,G], there exist elements x,y;, ... ,y, € G with
01 = 29T YIgYL 00 = TGT T Ya Yy
We can rewrite this condition in the following way. Let g € G and let
fng 1 GXG"— G"
be the map given by the formula

fao((@ oy, yn) = (kg 'yagyr ' -+ L zgr  yagyn ).

Then the group G satisfies the property 7, if Im f,,, = [G,G]" for some g € G.
Obviously, 7, implies C,,.

Now let G be a simple algebraic group defined over a field K and let g € G(K). Then
the map f,, is a morphism of K-varieties G x G™ and G". We can define a property 7,
in the same way as the property C,. Namely, we say that G satisfies the property 7, if
fng is a dominant map for some g € G(K). Here we prove that a simple algebraic group
G satisfies the property 7, if and only if n < h where h is the Coxeter number.

Actually, we prove a more general result. Let § = (g, 91,... ,9,) € G"™(K) and let

fng Gt gn
be the map defined by the formula
fag((@yrs- o oun)) = (@ga™ yigiyr s 2927 Yngny, -

Theorem 3. Let G be a simple algebraic group defined over a field K and let
9,91, 9n € G(K) be a sequence of semisimple regular elements. Then the map f, 5 is
dominant if and only if n < h where h is the Cozeter number of G.
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Remark 4. This theorem shows the bound for the property T ,,. This bound is the Cozeter
number h and it is the same as the corresponding bound in Theorem 2 for Lie algebras
but it is smaller than the bound h + 1 for the property C, in Theorem 1.

Remark 5. The property T, does not imply the property C,, because an element g can
be non-real. However, in Theorem 3 we can take a real element g or gy = go = -+ = g, =

gt

An Example. The groups GL; p(K) and PGL; p(K) associated with a quaternion skew
field D over a field K satisfy Cs.

This fact was observed, for GL; p, by R. Alperin and R. K. Dennis as well as by the
second named author many years ago, some ideas concerning the proof can be found for
the case of the real Hamilton quaternions in [AD] and for general fields K in [RS].

Proof. Let D be some quaternion skew field over some field K of any characteristic. The
case char K # 2 is very well known, the case char K = 2 is classical as well. For a uniform
discussion, we refer to [KMRT, chap. I, §2, 2.C, p. 25 ff.] or [KR, p. 52].

We fix some notations:

Let z — Z (x € D) denote the canonical involution of D. The reduced trace T : D —
K is a K-linear map and obtained by T(z) = z + Z. The reduced norm N :D — K is
a quadratic form on the 4-dimensional K-vector space D and given by N(z) = zz. Its
associated bilinear form is given by (z,y) := N(z +y) — N(z) — N(y) = T(zy). From
the explicit formulae in [KMRT, l.c.] it is easily checked that this bilinear form is non-
degenerate.

Hence, for any three elements x; € [D*, D*], i = 1,2, 3, the orthogonal complements
of the three subspaces K(1 — z;) of D are of dimension 3 and therefore have a non-
trivial intersection. If w is a non-zero element of this intersection, this means that 0 =
(w,1 —z;) = T(w(l — z;)), hence T(w) = T(wzx;). But we also have N(w) = N(wz;),
since N(z;) = 1.

It follows that the minimal polynomials of w and of all three elements wzx; coincide,
thus, the K-subalgebras K (w), K(wz;) of D are pairwise K-isomorphic, and the theorem
of Skolem-Noether [VDW, p. 105] yields the existence of #} € D* such that z/wz, ™" = wa;,
and hence x; = [w™!, z] for i = 1,2,3. This proves the statement for GL; p.

To handle the case of PGL; p, we observe that we have an exact sequence of linear
algebraic K-groups

0— Gm — GLLD — PGLLD — O,
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where G,, is the multiplicative group over K, which is mapped to the center of GL; p.
This yields, by [S, ch. I, prop. 43, p. I-71], a long exact Galois-cohomology sequence

0 — G,(K) — GL; p(K) — PGL, p(K) — HY(K,G,,) — ....

By [S, ch. II, prop. 1, p. I13], we have H'(K,G,,) = 0 and hence the map GL; p(K) —
PGL; p(K) is surjective. Given three commutators [z;,v;],7 = 1,2,3 from PGLy p(K),
we may lift their entries x;, y; to preimages 7;, J; € GL; p(K). By the preceding result we
find w, g; € GLy p(K) such that [@, §;| = [Z;, 9;], and mapping this down to PGL; p(K)
we obtain what we want. Let us remark that, by centrality, the commutators [Z;, g;] in
GL; p(K) do not depend on the choice of the liftings, but we don’t need that here. [

An Application. If C, is satisfied by some (abstract) group G, then there is an easy
description of its Schur multiplier.

By a result of C. Miller [MI], the Schur multiplier Hy(G,Z) of G can be described as
follows. Let U(G) denote the group generated by symbols ¢(x,y), =,y € G subject to
just the “formal commutator relations” which are generated by

o ¢(z,x) =1, c(z,y)c(y,x) =1,
o c(*y,"z)c(x, 2) = c(zy, 2),
o c(*y,"2)c(z,x) = c(x, [y, 2]).

Here *y = xyx~!.

Then the map induced by c(x,y) — [z,y] is a central extension
of [G,G], and its kernel is canonically isomorphic to Ho(G, Z), so that we have an exact
sequence

0— Hy(G,Z2) - U(G) — G — H{(G,Z) — 0.

It is known that, in case G is perfect, U(G) is the universal central extension of G = [G, G].
The fact we want to mention here is the following:

If G satisfies Co, then the Schur multiplier is generated by all elements c(x,y)c(z’,y')
such that [z,y] = [y, 2'].

That is, the Schur multiplier is generated by relations induced from Abelian subgroups
of G (these are the length 1 relators) and from relators of length 2. In many cases, for
example for the group of invertible elements of quaternions [AD,RS], but also for SL,,(K)
and other almost simple split linear groups, it is even true that the relators of length 1
are sufficient to generate the Schur multiplier, so the length 2 relations are not necessary.
This follows directly from Matsumoto’s theorem on the presentation of Ko(K) by symbols
[M]. Analogous results hold also for SL, (D), n > 2, for any skew field D over K [R1,
R2], and for Kac-Moody groups [MR].
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Proof of the fact mentioned above: Let x;,v;, i = 1,...,n be elements in GG such that
[Ty, 91] - [, yn] = 1. By Cy, we may find elements u, v, z € G such that [z, _1,y,-1] =
[u, z] and [z, y,] = [z, v].

From the relations above we obtain [u, z][z,v] = [uv™!, vzv™1].

That is, any element c(zq,y1) - - - ¢(Tn,yn) € Ha(G,Z) can be replaced, modulo
products of length at most 2, in Hy(G,Z) by a product of length n — 1. An induction now
gives the result.

Acknowledgments: The proof of Theorem 2 was obtained by E. B. Vinberg for
fields of characteristic zero, using the fact that the Killing form is non-degenerate. It was
communicated by him to the first author in the discussion of this topic. The authors are
grateful to E. B. Vinberg for his kind permission to use his result here.

The authors are also grateful to Roger Alperin and Keith Dennis for valuable comments.

2. NOTATION AND TERMINOLOGY

2.1. R denotes an irreducible root system generated by a simple root system A =
{ag,0,... ,a,},

W = W(R) is the Weyl group of R;

w, € W is the reflection corresponding to o € R,

We = Wey Wa, - - - Wy, 1S a fixed Coxeter element of W;

I' = (w.); h =|T"| is the Coxeter number of R.

2.2. G denotes a simple algebraic group defined over the field K corresponding to the
system R;

T < G is a maximal torus (also defined over K); we identify the set R with a subset
of characters of T', and for our purposes we may assume that 7" and hence G is split over
K, that is, all characters are defined over K.

N is the normalizer of T in G; thus N/T = W; by w we denote an element of N with
the image w € W;

B is a Borel subgroup of G (below we assume 7' < B);

®n, fng, fng are the functions defined in the Introduction.

An element g € G is called regular if dim Cg(g) = dim 7.

2.3. L denotes the Lie algebra of a simple and simply connected algebraic group G

defined over a field K and corresponding to the root system R.
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If K is an algebraically closed field then L = H + U is a Cartan decomposition where

U=> U,

aER

H is a Cartan subalgebra and

where U, is the one-dimensional subspace of L corresponding to a root o € R. Since G
is simply connected one can chose a Chevalley basis ha,, -, ha,, {ta} of L (see [St1])
where {h,,} is a basis of H and {u,} is a basis of U. Note that, for every k =1,--- | r,
we have ha, = [Uq,, U_q,].([St1, Lemma 2]). Further, for every root & € R one can define

ha = [Ua, U_q].

The adjoint action of G(K) on L will be denoted by g(¢) where g € G(K), ¢ € L. We
assume that L7 = H, where LT denotes the invariant elements of L under the (adjoint)
T-action.

A semisimple element [ € L is called regular if dim C(l) = dim C(H).

24. Let f: X — Y be a morphism of irreducible affine k-varieties. We say that f
is dominant if the comorphism f* : K[Y] — K[X] is an injection. Obviously, this is
equivalent to the condition f(X(K)) = Y (K) where K is the algebraic closure of K and
f(X(K)) is the Zariski closure of f(X(K)) in Y(K).

Thus we may assume in the proofs of theorems 1, 2, 3 that K is an algebraically
closed field. Also, it is enough to prove theorems 1 and 3 for the cases where G is a
simply connected group.

Below, we suppose that K is algebraically closed and G is simply connected. From
the context, it will be clear, that some of the statements hold under weaker assumptions,

e.g., in the case that G is split over K, or in the case that K is sufficiently large.

3. SOME TECHNICAL RESULTS

3.1. Let
R=SUSy---US,

be the decomposition of R into the union of I'-orbits. Then r = rank R and there exists
a sequence of representatives

01651,92652,... ,QTEST

which is a basis of the group Q(R) ([B, IV, 21, Proposition 33, p. 170]). (Recall that
Q(R) is the lattice generated by the roots.)



On Multicommutators for Simple Algebraic Groups 9

The roots 64, ... , 0, are defined in the following way

62' = Wa, Wq,._q *** Way (OJZ) (1)
(see [B, l.c.]), and we have

for every i = 1,... ,r. Moreover, in [St2, Lemma 7.2.c, p. 298] it is proved that 0,+6; ¢ R
for every i, 7. The following lemma is proved by the same arguments (which was essentially
don in [St2] as well):

Lemma 1. Let ky, ... , k. be non-negative integers such that ky + ---+ k. > 1. Then
0=kt + - +kb, ¢R.
Proof. Let i = max{m|k,, # 0}. From (1) we have
6/ — waiwam < W, ((9) = _kiai + ]{71',10&7;,1 + Z kjwaiflwai% C.. U)aj+1 (aj)
j<i—1
Applying formulas (1) to the irreducible root system generated by roots {aq,... ,a;_1}
we get

Wey_ Way_y - - - Wayy, () = E lyoug

s<i—1

where (5 > 0 for every s <1i — 1 (indeed, all §; in (1) are positive). Now we have

0 = —ko,; + Z MOl

s<i—1
where mg > 0 for every s < i — 1. Since {a1,...,q;} is a simple root system the vector
¢’ belongs to R only if m; = my =--- =m;_; = 0 and k; = 1. But in this case k; = 0
for every j < ¢ and, therefore, k; + - -- + k. = 1. This contradicts to the condition of the
lemma. O
3.2.

Lemma 2. {hy,,... ,hy.} is a basis of H.

Proof. If r = 1 then 6, = ay and {h,,} is a basis of H. Suppose our assertion holds

for root systems of rank < r. Let &1 = wq, (61),...,6,-1 = Wa,(0,—1). It follows from
(1) that e1,... ,e,_1 belong to the root system generated by {aq,...,a,._1}. Moreover,
the elements eq,... ,&,_1 are defined in the same way as 64,... ,0, for the root system

R. Therefore the assumption of the induction implies that {h.,,... ,h. _,} is a basis of
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subspace H' C H generated by {ha,,... ,ha, , . Further, 6, = o, and &, = w,,.(0,) =
Wa, (ay) = —a,.. Hence h., = —h,,.. Thus, {he,... , he_,,h..} is a basis of H. But
he, = wa, (hy,) and therefore {hg,, ..., hy.} is also a basis of H. O

3.3. For every reflection w, € W we can find a preimage w, € N such that w,(ug) =
Fuy, (g) for every root € R ([Stl, Lemma 19, (a)]). Now we fix such preimages 0, and
put

We = Uy ey - - - U,

Let z4(s) = exp(sus) € G(K) be the corresponding root element where s € K. Put
v =xg, (D, (1) ... 20, (1), ;=) 'y fori=1,... h (2)
Further, put
0;; = wl 0w 7T for i =1,... k. (3)
Lemma 3. v,,(u_g,;) = 0(modU) if m # j and v;(u_g,,) = £hg,, (modU).
Proof. Let g € G(K). From the definition of w,. we have

We(g(ua)) = Wegi, " (Ftu, (o)) (4)

for every @ € R. Moreover, w.(U) = U and w.(0) = 0. Acting on both sides of the

congruences by an appropriate power of w. and using (2), (3), (4) we can get the equivalent
congruences

Vi (u

Y1 (u

Thus, it is enough to prove (5).

Let €,0 € R. If ¢ # —¢ then

vo(1)(ug) = us + Y littgie (6)

;) = 0(modU) for j # 1,

2) = the, (modU). (5)

—0
-0

S+ic€R
where ¢; € K and
Te(1)(u_e) = u_c £ he F ue. (7)
Equations (6) and (7) follow from [St1, Lemma 72, p. 209].
Further, if k1,... ,k, are non-negative integers then for every ¢ = 1,... ,r and for

every 0 € R the equality
—0; = =0+ k161 + - - + k.0,
is possible only for k; = ko = -+ = k. = 0. This follows from Lemma 1. For g € R put

Mg ={-B+Fki01+---+ kb0, € R|ki >0,k +ky+---+ k. > 1}.
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Thus, for every i = 1,... ,r the set Mg does not contain the root —0;.
Let 8 = 0;; where j > 1. Since the group I' = (w,) acts free on the I'-orbits Si,... , S,
we have 3 # 0y,...,0,. From the definition ; = v and (6) we get

M(ug) =t g+ Y Llalia (8)

aEM,g

where /, € K.
Let §=0;; =0; and My ={6;,i=1,...,h}. From (6) and (7) we obtain

Nu_p) =u_pthsg+ > Llala (9)

OéEMgUMg

where ¢, € K. Now (8) and (9) imply (5). O

3.4.  We define the subspace U of L" = L@ --- & L by
—_—
h—times

U:= {(P)/l(u) + u1772<u> + Uz, . .. 77h(u) + uh) ’uaui € U}
Lemma 4. U = Lh.

Proof. Obviously, U" = U @ ---® U C U. Since H"+U" = L" we have to prove H" C U.
———

h—times
Let u = u_g,;. By Lemma 3 we have v,,(u) € U if m # j and v;(u) = £he,, + ' for

some v’ € U. Thus, for every i, j, the element

(0,0,... ,he,,0,...,0) (10)

157

belongs to U. Since hg,, ..., he, is a basis of H (Lemma 2), the sequence hg, ;, ha,, - .. , ho

is also a basis of H and, therefore, the set of r x h elements of the form (10) is a basis of
H". O
Now let us fix the sequence of elements 6, € Ty T,... 0, € Tv,T and let us define
U={6 -1 4uy,...,0,—D)O)4+u,) | l€L,u; €U}

The same arguments as in the proof of the previous lemma give

Lemma 5. U’ = L"
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3.5. Now we formulate an analogue for lemma 4 for the action of Lie algebra on itself.

Namely, let
Y = Ug, + Up, + -+ Us,
and
y1=1y, o = we(y), ..., y» = wl ' (y).
We define, similarly to U, the set
U = {U?yl] +U1,"' 7[l7yh] + up, ‘ le L7 u; € U}

It is easy to see that the congruences of Lemma 3 also hold if we use elements y,,, y;

instead of 7,,,, 7;. Thus, the same arguments as in the proof of Lemma 4 give
Lemma 6. U = L.
3.6.

Lemma 7. 1.Assume char K # 2 if R = C,, r > 1. Then there exists an element
h € H such that Cr(h) = H.

2. Let R=C,, r > 1 and char K = 2. Further, let R; be the set of all long roots of
R. Then there exists an element h € H such that

Cr(h)=Cr(H)={H+ Y U}

aER;

Proof. 1. If char K # 2 or R # C, then for every root o € H the corresponding linear
function o : H — K is not trivial. Since K is an algebraically closed field it is infinite
and therefore the set

H\ (UperKera)

is not empty.
2. f R=C, and char K =2 amap a: H — K , a € R is trivial if and only if
a € R;. Thus we can get the assertion in the same way as above. O

4. PROOF OF THEOREM 2

Let char K #2it R=C,, r > 1.
Obviously, if ¥,, is dominant, then Wy, ¥y, ... ¥, 4 is also dominant. Thus we have
to prove that W is dominant but W, is not. Let (¢,¢y,...,¢,) € L @& L". Assume that
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[ € H is a regular element. Since for every regular element h € H we have [h, L] = U
(Lemma 7) then for every regular element I’ € H there exist [1,--- ,l/, € L such that
[l/> lll] = U? ll]’ B [l/> lv,z] = [l’ ln] (11)

Further, in (11) we can replace every element [} by I + x; where z; is an element
of the centralizer of I’, ie., an element of H. Thus, the dimension of the fiber
(0, (L1, ,1,))) > (n+1)dim H and therefore

n

dim W (Whpr (6, 61, - .. lhy1))) > (h+2)rank L > dim L (12)

(recall, dim L = (h + 1)rank L). Since the set of regular semisimple elements is dense in
L the inequality (12) holds for a “generic fiber” of W, ;. Hence

dimIm ¥, < dim L'

and therefore W, cannot be dominant.
Consider now ¥,. Let @ = (ay,... ,ay), b= (a,ay,...,a,) € L@ L" be fixed points
and let ¢ = W,,(b) € L" . Consider the differential d,¥;, of ¥;, at the point b

db\Ifh . Tb — Tc

where Ty, T, are the corresponding tangent spaces. We identify T}, with L @ L" and T,
with L". Then we have
AWy, : Lo L — L"
and
Im d, V), = [a, L"] + [L, ). (13)
(Here we used the rules for the differential of the map ¥, at the point b = (a,a) in the
following sense: d(q.q,)[2,y](l1,l2) = [a,ls] + [l1, a;] where x,y € L are variables and [y, [,
are elements in the tangent space T,,7T,, of L at the points a, a;, which we identify with
L.
Let a € H be a regular element and let a; = v, ... ,a, = y, be the sequence defined
in 3.5. We have [a, L"] = U" (Lemma 7) and, therefore,

la, L' + [L,a] = {([6, 0] + un, [, ya] + sy [byyn] +un)| €€ L, i €Uy = U

By Lemma 6,
la, L") + [L,a] = L"
for these particular @ and a@. Hence there exists a point b € L @ L" where the rank

of differential is equal dim L" and therefore it holds for points from some open subset
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X C L® L" We can find the point * € X such that W,(z) is a regular point of
U, (L ® L"). Since the tangent space at the point Wj(z) has rank = dim L" we have
dim ¥, (L @ LF) = dim L".
Let R=C,, r > 1 and char K = 2.
Denote by R, the set of all short roots in R. It is easy to check
LL=H+ Y U,.

aERg,

l:h‘l—Zl%,

+
BER;

Further, let

where h € H is an element satisfying the condition Cf(h) = C(H) (Lemma 7), and ug
are elements of the Chevalley basis. We have [l, L] = [L, L].( One can check this using
the definition of h, [ and Lemma 7.) This implies our assertion.

Theorem 2 has been proved.

5. PROOF OF THEOREM 3

Let Cy, C,, be the conjugacy classes of the regular semisimple elements g, g;. Then
dim C,; = dimCy, = dim G — rank G. We assume n > 1 and define the subset of G"

Mg = (919197, 9ynguy ) lyi € G
Obviously dimM,; = ndimC, = n(dimG — rankG) and GM,; =
{(xmaz™, ... ampa™) [ (ma, ... ,my) € My, 5} = Im f,, 5. Since a “generic point” m €
M,, ; has a stabilizer which is equal to Z(G) (because n > 1) and dim(M,, ;nGm) > rank G

we have
dim GM,, , < n(dim G — rank G) + (dim G — rank G) =
=ndimG + (dim G — (n + 1)rank G). (14)
If Im f,, 5 = G™ then (14) implies (n 4 1)rank G < dim G and therefore n < h.

Now we prove that inequality n < h implies Im f,, ;5 = G™. Obviously, it is enough to
prove this for n = h.

We may assume g, g1, . .. ,gn € T. Also we may assume that (goi1gi0; ", ... ,gahghagl)
is a regular point of Im f, ; for some oy,... .0, € G(K). Moreover, the set of such
sequences (oy,... ,0) contains a non-empty open set of G". Put

—1 -1
81 = 019101 ... ,Sh = Ongn0y,
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and consider the map
U: GxGh—Gh
given by the formula
U(z,y1, - yn) = (@92~ yisayy sy 29 YnshYy s, g -
The definitions of ¥ and sy, ... , s, imply
dimIm ¥ = dimIm f; 5. (15)

Moreover, ¥((1,...,1)) is a regular point of ImW¥. (Indeed, ImV¥ = (Im f} 3)s) where
s=(sy'g7%, ..., 8,97 1). The differential d¥ at the point (1,... ,1) gives the linear map

av: L x L' — L"
which is
dV (0,01, ) = ((1=g)l+g(1 —s1)br,...,(L=g)l+g(1 —sp)l1) (%)

(this follows from the standard formulas for differentials).

Now we want to prove, that for some sequence sq, ... , s, defined above
Imd¥ = L". (16)

Then (16) with (15) give us our statement.
Since g € T is a regular element, we get

(1—g)L="U. (17)
Further,
g(1 =)L =g(1 —si)g~ gL = (1 — gsig™")gL = (1 — gsig™") L. (18)
Recall that s; = 0;9,0, Vand ¢; € T. Since g, is a regular element of T'
(1—g)L="U. (19)
Put 0; = go;. Then (17), (18), (19) imply
g(1 —s)L = (1 —8;9:6; )L = 6;(1 — ¢:)0; 'L = 6;(1 — g;) L = 6;(U). (20)
From (%), (17) and (20) we obtain
ImdV = {(u+61(u1),... ,u+0p(up))|u; € U}.
Put § = (d1,...,0p). Then
S Imd®) = {(67 " (v) + ur, ..., 65, (u) +up | u; € U} (21)
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Let 7= (11,... ,7,) € G" and let
0, UaU"— L"
be the map
O ((uyug, ... ,up)) = (m(u) +ury ..., m(uw) + up).

The set of 7 € G" such that dim Im ©, < dim L" is closed in G*. By Lemma 4, Im©, = L"
where 79 = (71,... ,7,). Hence the set

X={reG"|Imo, =L"}

is a non-empty open subset of G". Further, the set of sequences Y = {0 = (0y,... ,04,) €
G"}, such that (goigi0;?,. .. ,90ngno, ") is a regular point of Im fy 5, contains a non-
empty open subset of G*. Since 0; ' = 0; '¢g~! we find an element

steXxny gt (22)
Now, from (21) and (22) we get (16).

Theorem 3 has been proved.

6. PROOF OF THEOREM 1

Obviously, the property C,, implies the property C,_;. Thus we have to prove Cp1
for the group G and we need to show that Cp4s does not hold for G. The latter follows
from the inequality

dim ¢, {5 (dn42((9, 91, - - - » gns2))) > (b +2) dim (Ce(g)) >

> (h 4+ 2)rank G > (h + 1)rank G = dim G.

Now we will prove the property Cj,41 for the group G. Recall, that we assume that G
is simply connected.

Lemma 8. Let vy,... v, be the sequence defined in (2). Then for every regular element
t €T and for everyi=1,--- , h there exists an element t; € T such that

t, tvit; '] =i

Moreover, for every reqular t there is only a finite number of such t;.
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Proof. Obviously it is enough to prove the statement only for v, = ~.
Since t is a regular element 6;(¢) # 1 for every j =1,...,r. Put

v = (6;(t) = 1)~ (23)
Further, there exists an element ¢; € T such that
Qj(tl) = Uj (24)

for every j. Indeed, every element x € T can be presented in the form z =
hoy (1) ... o, (z,) where z; € K* and h,,(x;) is the corresponding semisimple element
of the a;- root subgroup ([St1], Lemma 28). The system of equations 6;(x) = v; can be

written in the form
[T = (25)
k=1

where n(k, j) = 2(ag, 8;)/ (o, o). Since b4, ... , 0, is a basis of the group Q(R) the matrix

Shv>lhl>) >

we can find the solution of (25) which gives us the element ¢; € T satisfying (24).
From (24)

iyt = x4, (v1) ... 20, (v,). (26)
Now [t, tiyt;'] = v = 1 follows from (23) ,(26) and the Chevalley commutator for-
mula. (Note that, by Lemma 1, the sum §; + 6, is not a root for every 4, j and therefore
wg,(a)zg, (b) = wg,(b)xe,(a) for every a,b.) On the other hand, the commutator equation
for t; implies the equation (26) which in turn leads us to (25). Since (25) has only a finite
number of solutions (because the rank of the matrix {ny ;} is equal to r) we obtain that
only finitely many ¢; are possible. O

Let
X ={(t,timty" . s tety ) | Gt € T, [t tiyit; ') = i for every i = 1,... ,h}.

The set X is a constructible subset of G"*!. Indeed, X is the image of a closed subset of

T"*! (which is defined by commutator equations) under the morphism
(t7 tl? s Jth) - (t7 tlletI17 s 7th7htﬁl)-

Let Xy be an irreducible component of X such that dim Xy = dim X. Lemma 8 implies
dim X = dim T = rank G. Hence

dim Xy = rank G (27)
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Moreover, Lemma 8 implies that the projection of X on the first coordinate contains an
open subset of T
Further, let (1,7") be the subset of T"*! consisting of the elements which have the

first coordinate 1. Then we consider (1,7") as a subset of G"*! and put
Y = Xo(1,T") = {(t, tamut My, oo sttt |ttt € TY (28)

(note that the elements t; in (28) depend on the first coordinate ¢, while elements ¢, run
independently through the set T'). Since Xj is an irreducible locally closed subset of G"
the same is Y and (27),(28) imply

dimY = (rank G)"*! = dim G. (29)
Further, the definition of the set X, and (28) imply

Y C ot ((ns-e o)) (30)

Lemma 9. The Zariski closure Y of the set Y coincides with an irreducible component

of the pre-image ¢~ (1, ,7n))-
Proof. Let y = (t,dy, ... ,dy) €Y where d; = tyy;t; 't) (see (28)). Consider the map
Xy : GMl— G
given by the formula
Xy((z, 21, ... xn)) = ([t xadi][da, B, . .. [2t, 2pdy][dn, T]).
The differential of x, at the point (1,...,1) gives the linear map
d0xy) s L — I

This map can be easily calculated using usual differentiation formulas. Namely, writing

the first component as

(z,21) — wt(zpdit™ (27 dy ey ) td )
we obtain for its differential:
(1) = (L4t 4+ dit (=1 —d7M (1)) = (1 — tdit™) (1) + (1 — dyt~Hd (1)
and therefore for the whole map:
d(Xy)((la lla s 7lh)) =
(1 —=tdit™") (1) + (1 — dyt 7 dy ) (1), (T —tdpt™ ) (1) + (1 — dpt ™', ) (1))
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(recall that, for g € G and [ € L, we write g(I) for ad g(1)). Put u; = (1—t"1)d; ' (I;),I' =
t=3(1). Then u; € U. Applying the invertible linear operator (d;'t~, ... d;'t7!) to the
image of d(x,) we get the linear space

(7 = D))+, (7 = D)) +ws) | U € Ly € U

which, according to Lemma 5, coincides with L". Thus the differential of the map Y,
at the point (1,...,1) has rank = dim L". Note that the map Y, is the composition of
two translations and the map ¢;. This implies that the differential of ¢, at the point y
also is of rank dim L". According to Theorem 3 the map ¢ is dominant. Hence ¢y, (y)
is a regular point of Im¢;, = G". Since the rank of the differential of ¢;, at the point ¥
is equal to dim L" = dim G”, there exists an irreducible component Y’ of the pre-image
¢, (én(y)) such that y € Y’ and dim Y’ = dim G. We may assume that a point y belongs
only to those irreducible components of ¢, (¢n(y)) = ¢, (71, ... ,7,) which contain the
whole set Y. Thus we obtain Y C Y’, and our statement will follow from (29)

[

Lemma 10. Let Y’ C G"! be an irreducible component of ¢;, ' (71, ... ,yn)) which is the

closure of the set Y. Then the projection of Y to the first component of G"*! is contained
i T

Proof. Let p; : G"*1 — G be the corresponding projection. Since Y C Y”, the set p;(Y”)
contains an open subset of T'. This follows from the definition of Y. Further, the set
p1(Y7) is an irreducible closed subset of the dimension rank G. (The latter follows from
the definitions Y and Y”.) Hence this set coincides with T O

Now let ¢ € T be a regular element and s = [t,w,] (recall that w, is a fixed Coxeter
element) and let M, = ¢, ((71,... .7, 5)). We want to chose the element ¢ satisfying
the following conditions:

I. Let Y’ be as in Lemma 10. There exists an element (t,dy, ... ,dy) € Y’ which does
not belong to any other irreducible component of ¢, ' ((71,... ,71))-

II. The set of all elements g € G such that [t,g] = s consists only of elements of the
form w.t" where ¢’ runs through 7.

Suppose we find an element ¢ satisfying conditions I. and II. Put
z=(t,dy,... ,dp,we).

From the definition of ¢, s we get the inclusion z € M. Let M,, be an irreducible
component of M, containing the element z. Further, let P = Ppf? : GM? — GM!
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be the projection to the first (h + 1) components. Then P(M,,) C ¢, (71, 7))
Since the set M,, is irreducible the set P(M,,) is also irreducible and I. implies that
P(M,,) is contained only in the irreducible component Y of ¢;'((v1,...,v)). Since

w, is a Coxeter element there is only a finite number of ' € T satisfying the condition
[t',w.] = s. Together with Lemma 10 this implies

P(Ms,) =A{(t,a1,... ,ap) € Y} (31)

(here t is a fixed element from the torus 7" but the elements a; run through the sets of
elements of the form ti%t;lt’ ; see the definition of V).

From (31) and the definition of Y we get
dim P(M,,) = (rank G)".

Further, II. implies that the dimension of every fiber of the projection M, — P(Mj,)
has dimension rank G. Hence dim M,, = (rank G)"*! = dim G. Thus we find an irre-
ducible component of a pre-image of a point in G"*! with respect to the map ¢, which
has dimension dim G. Therefore the dimension of the image of ¢;,; has the dimension
dim G"*!. This gives our assertion.

Now we have to prove the existence of a regular element ¢ € T satisfying conditions
L-11.

We can choose a point of Y which does not belong to other irreducible components
of ¢;'((71,... ,v)) and which has a regular element ¢ € T as its first coordinate. This
follows from the definition of ¥ and Lemma 10. Thus we have I.

Now we show II. for a chosen t. Let [t,g] = s for some g € G. Then g € BwB for
some w € W. Hence g = vwt'u where v,u € U (here U is the product of all positive root
subgroups (see [St1])) ¢ € T. We may assume that in u only those factors u, from root
subgroups are non-trivial which have the property wu,w=" € U~ (here U~ is the product
of all negative root subgroups) ([St1], Theorem 4°).

Consider the equality

t, 9] = towt'ut ' (#) Tw o = to(wtut T ) e e = s

The expression in brackets lies in the group B~ = TU~. This follows from the choice of
u. The elements on both sides of the brackets lie in the Borel subgroup B. Since s € T,
the expression in the bracket is in 7'. This implies

[t,u] = 1. (32)
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Since t is a regular element (32) implies v = 1. The same arguments show v = 1. Thus,
g = wt'. But the equality [t,w.] = s = [t, wt'] implies w = w, (because we assume that G
is simply connected and ¢ is a regular element of T').

Theorem 1 has been proved.

The proof of Lemma 9 shows that dim Imd,(¢,) = (dim G)" if n < h in the generic
point y. Thus, if n < h the map ¢,, is always a separated morphism. Now let n = h + 1.
We can consider the map y, : G"™ — G" which is constructed in the same way as the
corresponding map in the proof of Lemma 9 changing h to A + 1. From the definition
we have an equality of ranks of the differentials of x, at the point (1,---,1) and ¢p41
at the generic point y. The formula (*) in that lemma shows that this rank cannot be
(dim G)"*! if the center of the Lie algebra is not trivial.
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