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Abstract

In this paper we study some special classes of division algebras over a Laurent series
field with arbitrary residue field. We call the algebras from these classes as split-
table and good splittable division algebras. It is shown that theses classes contain
the group of tame division algebras. For the class of good division algebras a de-
composition theorem is given. This theorem is a generalization of the decomposition
theorems for tame division algebras given by Jacob and Wadsworth in [6]. For both
clases we introduce a notion of a d-map and develop a technique of §-maps for
division algebras from these classes. Using this technique we reprove several old
well known results of Saltman and get the positive answer on the period-index con-
jecture: the exponent of A is equal to its index for any division algebra A over
a Co-field F', when F = Fi((t2)), where Fj is a C;-field (see [10], 3.4.5.). The
paper includes also some other results about splittable division algebras, which, we
hope, will be useful for the further investigation of wild division algebras.

1 Introduction

In this paper we study some class of division algebras over a Laurent series field with
arbitrary residue field. Namely, we study division algebras which satisfy the following
condition: there exists a section D «— D of the residue homomorphism D — D, where
D is a central division algebra over a complete discrete valued field F' = k((t)). We say
that these division algebras are splittable. If chark = 0, all such division algebras are
tame and therefore belong to the group of tame division algebras, which was carefully
studied in the papers [6] and [10] even in a much more general situation of a henselian
field F' of arbitrary characteristic. So, we consider mostly wild division algebras.

An extensive analysis of the wild division algebras of degree p over a field F with
complete discrete rank 1 valuation with char(F) = p was given by Saltman in [11]
(Tignol in [13] analyzed more general case of the defectless division algebras of degree
p over a fild F' with Henselian valuation). Here we study splittable division algebras
of arbitrary index. This class (which is not a subgroup in Br(F)) contains a class of
good splittable division algebras (see the definition in section 2), which posess several
beautiful properties. In particular, we prove a decomposition theorem for such algebras.
This theorem is a generalization of the decomposition theorems for tame division algebras
given by Jacob and Wadsworth in [6].

For arbitrary splittable division algebras we give only several assorted results, and the
study of this class is far from to be complete. Nevertheless, we investigate here technical
tools, which are important for the study of such algebras, and prove a relation between
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the level and a higher order level for some splittable division algebras (see section 6).
We hope this technique will be applied to the study of the cyclisity question for certain
division algebras od degree p* .

As an application we get several results, which are partly well known (see proposition
6) and party not. In particular, we get the positive answer on the following conjecture:
the exponent of A is equal to its index for any division algebra A over a Cj-field
F = Fi((t2)), where Fy is a Cy-field.

Here is a brief overview of this paper.

In section 2 we give a definition of splittable and good splittable division algebras and
prove that all tame division algebras over F' = k((t)) are good splittable.

Section 3 contains the most important technical tools for the study of splittable division
algebras. We define a notion of -maps and investigate a theory of ¢-maps for such
algebras. In this section we define also the notion of a local height, which is a possible
generalization of Saltman’s level.

In section 4 we prove the period-index conjecture metioned above. This section contains
also a small history of the question known to the author. We note that the proof does not
use all the results from section 3.

In section 5 we study good splittable division algebras and prove the decomposition
theorem.

In section 6 we reprove some results of Saltman about semiramified division algebras
of index p over F' using the technique from section 3. Then we define a notion of a higher
order level and prove several general properties of splittable division algebras satisfying
the following condition: Z(D)/F is a simple extension. At the end of section we put
several open questions.

We use the notation of [6]. We always denote by D a division algebra finite dimensional
over its center F' = k((t)) = Z(D). Recall that any Henselian valuation on F' has a
unique extension to a valuation on D . We denote the valuation on F' by v and its
unique extension on D by w.

Given a valuation w on D, we denote by I'p its value group, by Vp its valuation
ring, by Mp its maximal ideal and by D = Vp/Mp its residue division ring.

By [12], p.21 one has the fundamental inequality

[D:F)>|lp:Tg|-[D:F).

D is called defectless over F' if equality holds and defective otherwise. It is known that
D is defectless if it has a discrete valuation of rank 1.
Jacob and Wadsworth in [6] introduced the basic homomorphism

induced by conjugation by elements of D . They showed that 6p is surjective and Z(D)
is the compositum of an abelian Galois and a purely inseparable extension of F'.

We say D is tame division algebra if char(F) = 0 or char(F) = q # 0, D is
defectless over F', Z(D) is separable over F',and q [|ker(6p)|. Wesay D is wild division
algebra if it is non tame.



We call a division algebra D inertially split if Z(D) is separable over F', the map
fp is an isomorphism, and D is defectless over F'.
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2 Cohen’s theorem

Recall one definition from [14].

Definition 1 A division algebra D s said to be splittable if there is a homomorphism
D — Op C D that is a section of the map Op — D .

There is a natural question if there exists a generalization of Cohen’s theorem, i.e. is
any central division algebra splittable or not. It is not true if a division algebra is not
finite dimensional over its centre, as Dubrovin’s example in [14] shows. It is not true also
for some finite dimensional division algebras, as the example to theorem 2.7. in [11] shows.
But it is true for tame division algebras over complete discrete valued fields. This easily
follows from results of Jacob and Wadsworth [6] (compare with [14], Th.1).

Theorem 1 Let (F,v) be a valued field which is complete with respect to a discrete rank 1
valuation v . Suppose charF = charF . Let D be a tame division algebra with Z(D) = F
and [D: F] < o0.

Then there exists a section D — D of the residue homomorphism D — D .

Proof. Since F' is a complete field, F' is a Henselian field and v extends uniquely to
a valuation w on D. Since D is tame, Z(D)/Z(D) is a cyclic Galois extension. There
exists an inertial lift Z of Z(D) over F, Z is Galois over F, and by classical Cohen’s
theorem there exists a section Z(D) — Z .

Consider the centraliser C' = Cp(Z) of Z in D. Then we have C = D.

Indeed, by Double Centraliser Theorem we have [D : F| = [C' : F|[Z : F| and [Z :
F) = |Gal(Z(D)/F)|. By [6], prop.1.7 a homomorphism 6p : I'p/Tr — Gal(Z(D)/F) is
surjective, so for any parameter z we have 0p(w(z)) = o, where < o >= Gal(Z(D)/F).
It is clear that z ¢ C'. Now let wuy, ... ,ujc:r) be a F-basis of C'. It is easy to see that
the elements uj, zuj,...,2" tu;, j=1,...,[C : F], where n = ord(c), the order of o,
are linearly independent, so form a basis for D over F'. Since

w(F{zuj,...,2" u,j=1,...,[C: F)))NT¢c =0,

where F(zuj,...,2" 'uj,j =1,...,[C : F]) denote a vector space in D over F gener-
ated by elements u;z", this implies that for any element z € D with w(z) =0 we can
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find elements ry,...7c.;) € F' such that o = ryu; +...+7rc.puec.ry mod  Mp. Hence
C=D.

Note that C' is an unramified division algebra. Indeed, by [6], th.2.8, th.2.9 C' contains
a copy of the inertial lift of a maximal separable subfield in C', say C . Then the centralizer
Ceo(C) must be a totally ramified division algebra, i.e. it is trivial and C' is a maximal
subfield. So, C' must be unramified.

Fix an embedding i : F — F. It can be extended to the embedding ' : Z — Z,
i'|p = i by Hensel lemma. Now consider the algebra A = C' ®; Z(C). It is easy to see
that A is an unramified division algebra with A = C' = D. Therefore by [3], Th.31,
A= (C'; so there exists a section D — C'.

The theorem is proved.

O

Later we will see that much more can be said about good splittable algebras:

Definition 2 A division algebra D is called good spliltable if there exists a section s :
D — D compatible with an embedding i : Z(D) — Z(D), i.e. s(Z(D)) = i(Z(D)) C
Z(D).

It’s easy to see that all tame division algebras are good splittable, because by Hensel
lemma any embedding W — Z(D) can be uniquely extended to any separable exten-
sion of Z(D).

It is interesting to know what kind of splittable division algebras are good splittable.

By theorem 3.9. in [11] even a splittable division algebra D of degree p = charD is
not a good splittable algebra if the level of D (the notion of level we will recall in section
3, see remark to lemma 7) is divisible by p. Nevertheless, it is an open question whether
it is true or not, for example, for division algebras with D = Z(D) such that D/F is
a simple extension and the local height (see the definition in the same remark) is not

divisible by p. We will discuss this question in section 6.

3 Delta-maps of splittable algebras

In this section we develop some ideas from [14], where some properties of ¢-maps for
special kind of local skew fields were studied. Technical properties of §-maps play the
main role in all our results. Here we will give a list of these properties.

Let D be a finite dimensional division algebra over a complete valued field F' = k(()) .
Let w be a unique extension of the valuation v to D . We will denote by z any parameter
of D, i.e. any element with (w(z)) =I'p. Consider the ring Z(«,d) of noncommutative
polinomials in two variables. Define the map

o:Z{a,0) — Z{a,6,6;1 > 1),
o(a™ . a™etn) = a6y, ... 0y, a0

where a1,b, >0, a;,b; >1, i>1, j <n for every word in Z({«,0) .
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Let SF € Z{a,d), i >k, i > 1 be polynomials given by the following formula:

SF= 3 r(a...ad...d),

Z T€S; /G i—k k
where S; is a permutation group and G is an isotropy subgroup.
Lemma 1 (/14], lemma 2) The polynomials S¥ satisfy the following property:
Si=4¢", S)=a', SH!'=aSF! 5S¢
For any splittable division algebra can be defined a notion of §-maps:

Proposition 1 (/14/, prop. 1,2) Let D be a splittable division algebra. Fiz some param-
eter z and some embedding v : D — D . Then D is isomorphic to a division algebra
D((2)), which is defined to be the vector space of series with multiplication defined by the
formula

zaz™t = afa) + §i(a)z + dx(a)z* + ..., a€ D,

where o : D — D is an automorphism and §; : D — D are linear maps such that the

map 0; satisfy the identity

d;(ab) = ZZ: o(6 % a)(a)a(SFa)(b), a,be D

k=0

Remark Note that the values o(SFa) and o(§°"*a) belong to the subring Z({a, §;,7 >
1), so the formula is well defined.

Note that §-maps depend on the choice of a parameter and an embedding. The auto-
morphism «, as it easy to see, depend only on the choice of a parameter. In the proposition

we identify D with u(D).
Corollary 1 ([14], corol. 1) Suppose o = Id. Then
di(ab) = 6;(a)b+ Y dik(a) D Cipdj - 05(b),
k=1 (J15esit)

where 6y = a and the second sum is taken over all the vectors (ji,...,7) such that
O<i<min{i—k+1,k}, jm>1, Xjm=F.

Further we will need even more general definition.

Definition 3 In the situation of proposition 1 let us define maps *9o; : D — D,
méeZ, i €N as follows.

2Maz™ = u(Pa™(@) + u(GV6,(a))z + u(FW6(a)22 + ..., a€u(D).

If m=0, put 95 =0.



Note that *)a/ z(py does not depend on the choice of z.
Note that if ®)a = id, then "§; = 0 for m = p*, where k is sufficiently large, k
depends on i. Moreover, (#%§; = if;kéi for k sufficiently large. We will use also the

following notation:
(z,u)g' _ (zvu)é. (27“)5i _ (z,U)éi

Sometimes, we will write ,,6; instead of (*%4; and (*%d;(a) instead of u((Z™"§;(a))
whenever the context is clear.
Immediately from the definition follows

Lemma 2 In the situation of definition 3 we have
(i) for |m| > 1

(z,u)di(a) _ (z)asign(m)<(?,u) )(|m|—1)51(a)) + (z,u) )é‘i((z)asign(m)ﬂmkl) (a))+

sign(m sign(m

i—1

(z,u) (z)u)
Zl sign(m)éj (sign(m)(|m|—1)5’i—j ((l)),
]:

where sign(m) =m/|m|, a € D;
(i1) for any m # 0

(z)a—m(%,u)(;z)_i_(_zn?; z (2) m Z(zu)5 (zu z j) 0

Proposition 2 For fized z,u from proposition 1 we have
(i) The maps #W§; satisfy the following identities:

m

m0i(ab) = ,0;(a)a™(b) + (@) 0:(b) + Zi: m0i—k(@)i—k+mOx(D)

k=1

(zu) 5. satisfy the following identities:

m

(11) Suppose o =id. Then the maps
m0i(ab) = m6i(a)b + amdi( +Z mOi—x(a) > CL.0i ... 5;,(b)

where the second sum is taken over all the vectors (ji,...,5) such that 0 <1 < min{i—
k4+m,k}, jm>1, Yjm=Fk; C’]’?:() if =0, and Cf:C]’-erq for ¢ >>0 i j<0.
Proof. For any a,b € D we have
a™(ab)z™ + 01 (ab)2™ M 4 00 (ab) 2™ = 2" (ab) =
(@™(a)z™ 4 o1 (a) 2™ + 6a(a)z™ 2 + .. )b (1)

If we represent the right-hand side of (1) as a series with coeffitients shifted to the left and
then compare the corresponding coeffitients on the left-hand side and right-hand side, we



get some formulas for ,,0;(ab). We have to prove that these formulas are the same as in
our proposition.

Let

R () P A R R A

and
(@™(a)2™ + no1(a)2™ ™ + 02 (a) 2™ + .. )b = ™ (ab)2™ + Yms12™ T A+ Yoz L
Then we have .
Yirm = o™ (a)z] + kZ m0i—r (@)},
In the proof of [14], prop.2 we have shown that
2Ry = o TR () 2R o (SFa)(B) 2T A
Hence zj, = o(SF.,,_1a)(b) for k < i. It is easy to see that z} = ,,8;(b), zf{ = '™ (b)

and o(SF.,,_1a) = im—k0k , which proves (i).
For a =id, by corollary 1,

O(Stm10)®) = 3 Cippmbs -0 (b),

where [, j1,...,j; were defined in our proposition. This proves (ii).
The proposition is proved.
O

Lemma 3 ([14/, lemma 3 )
In the situation ofp'mpositz'on 1 suppose Ez’u)éj is the first map such that s di(a) #0

for given a € D, i € Z\{0}, i.e. ¥"61(a) = ... = P8, 1(a) =0, F6;(a) £ 0 (s0
we have a map i l—>j( ) ). Then

(i) for 2 = z+u(b)z1", be D we have Fai(a) = Dai(a), F6(a) = F"6i(a)
for k < q and
(=) 5,(a) + 0P ot (a) — Pl (a)l,
where V' = 0L @ak(b) .

(ii) Suppose Da"|ypy =1id, n>1, a € Z(D) and
527“)51(@)@’“(@)) =...= ﬁz’“)aj_1(<2>ak(a)) =0 for any k.

Then for 2 = z+u(b)241, b€ D we have “ai(a) = @ai(a), F™6p(a) = 64 (a)
for k<q+7 and

F6045(a) = P0,45(a) + ¥ Dat(FV65(a)) — F5(a) Dol () +

B3 OatoH (415, ) = 8 (0) 3 ol ),



where V' = Y0 L @ak(b) , if nlg or Pala) =a.

In particular, if Do =id and (i,p) =1, then

/

F6005(a) = F0015(a) + (g — )7 65(a)b

(iii) for 2 = u(b)z, b € Z(D), b # 0 we have “a(a) = Pa(a), #"Wé(a) =
=W§(a) for k<j and

(z/,U)(gj(a) — (w)(;j(a)(z)a(b—l) - Bad (b1
ifi=1.
Proof. (i) We have
T = (140204 ) az T (10204 )T = (Paz T Y 2 e L ) (1= 24 ) =
(Zlaz™" — Zlaz W24 ..+ V2 e ) =
(Zlaz" — [Dai(a) + F6;(a)2" + .. W20+ 62 Dai(a) + FV6(a)2 + .. ] +..) =
(Zaz"" — [Pl ()b + 76;(a) Dl ()27 + .. )29 + VPt ()20 + .. ) =
(Zaz" 4+ (=Bl (a)b + Dot (a)27 +...) = Dal(a) + ... + §z’“)5q_1(a)z’q—1+
(“5,(a) + 0P a™(a) — Dai(a)b) 2 + . ..

(ii) Put ¢ = 227" — 1 = ¥/29" . So, w(c) > ¢+ i. Note that ¢Da*(a) = Fa*(a)c,
since n|qg or Pa(a) =a and a € Z(D). We have

Zlaz " = (14 294c)2'az (14 20+c) = (Zlaz "+ 2% az " +ezlaz ) (140 294¢) ! =

(Do (a)+7"6(a) 27 +. . A58 ()27 4. 48 29(Dai (a)+7"6;(a) 2 +. . )) (14 204¢) ' =
(Pai(a) + b a®(a) 2! + PDai(a)e + Ez’u)(Sj(a)zj +...+ EZ’“)aqH(a)zqﬂ‘ +...+

q
V'Y (Pat™H(M5,(Dat 7 a))) 2 + 0 (Pat (76;(a)2 4+ )L+ 120+ 0) 7 =
k=1

q
(Z)O/(a)—i—[l(-z’")éj(a)zﬂ—. . -+Z(-Z’u)(5q+j(a)2qﬂ+- 4 Z((Z)Oéqfk((z,U)(;j((Z)Oékﬂfl(a))))zq+1+
k=1

V(Pat(05(a))2 " + )1 =W — et ) =
q
@ai(a)+5"6,(a)2 4.+ 8,05(a) 2 4 S (Dt F (B0, (Dak 71 (0)))) 294 +
k=1
V(Dat(F5;(a)27 4= U65(0) Dl ()21 4 =
Dat(a) 4.+ 00 (@) (Y8 (a) + 5P (505(a)) = 05(0) ol (1)
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q ‘ Jj—1 .
+b Y Dok (En g (Eak Y (a))) — FY5(a) Y Pak (b)) 4L
k=1 k=0
since 27 = 27 + 3120 Blak (b2t 4 .. ..
(iii) We have

Zaz ™ =bzaz7 b = Pa(a) + 055 (a) Pl (b7 4L =
@a(a) + C96(a)Pa® ... Pad (b 4.,
since (Z')a]Z(D) = (Z)a]Z(D)

O

Corollary 2 In the situation of lemma 3 we have
j = w(zu(a)z™" — u(a)),

where © € D is any element with w(z) =i, if a € Z(D), ala) = a and (i,p) =1,
where p = charD .
If i =1, we will denote j by j(u,a) or by i(u,a).

Proof. Since for some parameter z we have z = b(1+x,2+...)2", where b, x5, € u(D),
the proof is easily follows from the proof of (ii) in lemma 3.
O

In the sequel we will need the following definition.

Definition 4 Let (a,3) be endomorphisms of a division algebra D . A map 6 : D —
D", where D C D' are algebras, is called a (o, B) -derivation if it is linear and satisfy
the following identity

d(ab) = d(a)a(b) + B(a)d(b)
where a,b € D .
We will say that («, 1) -derivation is an « -derivation.

Lemma 4 (¢f. [14], lemma 4) Let § be an («, () -derivation of an arbitrary division
algebra D such that «, 3 preserve Z(D) and o|zpy # Bz
Then & is an inner derivation, i.e. there exists d € D such that

d(a) = da(a) — B(a)d

forall a € D.

Proof. Put d = §(a)(a® — a®)~1, where a € Z(D) is any element such that «a(a) #
B(a). Put 6;,(7) = da(z) — B(x)d. We claim that 0 = ¢;,. Indeed, consider the map
§=06— 0. Itis an (a, 3)-derivation. Take arbitrary b € D. Then §(ab) = 6(ba) . But
we have

d(ab) = d(a)a(b) + B(a)d(b) = B(a)(b),
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and

d(ba) = d(b)a(a) + B(b)d(a) = a(a)d(b)
Therefore, §(b) = 0 for any b.
a

Proposition 3 (cf. [14], lemma 10) Let D be a splittable division algebra. Let n =
Gal(Z(D)/Z(D)) . There ezists a parameter z' such that

( ,u)(sj =0
Proof. Since for n = 1 there is nothing to prove, we will assume that n > 1. Let z
be some fixed parameter. By [6], prop. 1.7 (z)a|Z(D) has order n.
By proposition 2, =94, is a (®a?,®a)-derivation. Since n > 1, @Pa?|,p #
“)a| ;(p) . Therefore, by lemma 4, **)§; is an inner derivation and #*)¢(a) = d®a*(a)—

@a(a)d, a € D. Put 2 = z — u(d)2? By lemma 3, () we have for any o € D
(#2106, (a) =0 and @a(a )— Ea(a). So, (1W§ =0 and Pa = Fq.

By proposition 2, 14§, is a (#Va?, *1)a)-derivation. If n # 2 then it is inner and
we can apply lemma 3. By induction we get that there exists a parameter z,_; such that
(Z”*I’“)(Sj =0 for j <n and Pa = Gn-1a. Tt is easy to see that then Zn-1%§; =0 for
j <mn and all m € Z. Note that Gn-1%)§, is a (-1t (Ge-t)g) = (Gn-1)q, (n-1)q) -
derivation, i.e. (n-1w§ (-1 =1 ig a derivation.

Note that (*»-1%)§, 1 is a (#n-1)a?, rn-1)q)-derivation. This follows by proposition
2, since Sﬁ"*l’“)(% =0 for j < n and all m € Z. So, by lemma 4, G195, ., is an
inner derivation. Using lemma 3, (i) with an = 2,_1 + bz""? for an approprlate b, we
have Gn1)§, =0 for j <n+2, n fj and Pa = E+)a. Moreover, Fnr1w§; = 0 for
j<n-+2,n fj and all m € Z. This easily follows from lemma 2.

By induction we can assume that there exists a parameter z; such that %k’“)éj =0
for j<k+1, n fj andall me€Z, and Pa = a .

So, by proposition 2, if n fk+41, then ##"§,, is an inner (#)a*+2 #+)q)-derivation.
And if nlk + 1, we can apply the same arguments and conclude that %, 5 is a
() ak+2 (k) q) -derivation. Therefore, by lemma 3 there exists a parameter z,1 = zj +
bzET? (2 +bzk+3 if n|k + 1) such that &+, =0 for j < k+2, n /j and all

m € Z, and ¢ a—(zk“) (or Grrulg, —O for j <k+3, n fj and all m € Z, and
( Do = (sx41) aif n|lk+1).

Since 21 = (14 bz")z for every [, the sequence {z}°, converges in D, which
completes the proof of the proposition.

O

Lemma 5 Let D be a splittable division algebra as in proposition 1, of characteristic
p>0. Let t € Z(D) be an element such that a(t) =t.

Let j =i(u,t) be the minimal positive mteger such that *"d;|g ) # 0 (see corollary
2), and we assume j < oo . Then the maps *¥45,,, kj <m < (k~|—1)], ke{l,...,p—1}
satisfy the following properties:
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i) there exist elements Cpm i € D such that
ng’U)ém’Fp(t) - Cn,m,15 + ...+ Cn,m,k6k7
where 6 : Fp(t) — F,(t) is a derwation such that 6(t) =1, and

ek = (R) 1G85 05(8) . S 1),050).
ii) Let ¢ = ord(‘Dalyp)) . Then (|j and
Cagjre 70 if (n,7) =1 and Da(B15;(t)) # #5;(t) ;
Cokik 7 0 if (z)a((z’“)éj(t)) = (z’“)éj(t) and n,(n+7j),...,(n+(k—=1)7) #0 mod p.
If Wa =id, then copjn 0 iff n,(n+34),...,(n+ (k—1)j) #0 mod p.

Proof. i) The proof is by induction on k. Let a,b € F,(t). For k=1, by proposition
2, (ii) we have

nOm(ab) = 0m(a)b + a,d,,(b)

because all the maps ¢,, ¢ < j are equal to zero on F,(¢). Hence, ,6,, is a derivation
on Fu(t), ndml|r, ) = cnm,10 and cpj1 = ,0;(1).
For arbitrary k, by proposition 2, (i) and by the induction hypothesis we have

q—2
20m (1)) = @b (T +,0;() O (Cntjm—jad + - -« + Copgm—ji16" )+
=0
q—2
e By (O (om0 (D). (2)
=0

Therefore, ,0,,(t") = 0, because k < p —1 and P06ttt = 0 for i < p—2.
Hence, ,0m|F,¢) = cnmad + ...+ Cnmp—10P~" and we only have to show that ¢, ., = 0
for ¢ > k.

Using (2) we can calculate ¢, ;. We have

Cnm,1 = ném (t)a

1 1
Cnm,2 = a(n(;m(#) = 2Cpmat) = §(n6j<t) (Cn-i-j,m—j,l(;(t)) + oo+ 005 (1) (Copnm—s,10(t)))

1 92

Cnm,q = a<n6j (ﬂ(Z Cnﬂ',m*j,qfléqil(tqilil)tl) Tt
: 1=0

q—2
FnOm—(g-1); (1) (D Cmtn—(g-1)j.(q-1)jq—10 (¢ 7)EY)
=0

1
= 5(77,5]- (t)Cnrjm—jg—1+ -+ n0m—(g-1);(t)Cmin—(g-1)j,(a-1)j,g—1) (3)
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Hence, cpmpt1 = ... = Comp—1 = 0 and

Cejk = @ 00 (E)Cnsjinj—gu1 = (KD E05,(0 5 5;0) .. G ,05(8).

ii) Let us prove first that ¢ divide ¢. For, if ¢ is not divisible by (, we have, by
proposition 2,

(1) = E95,(1) Do (@) + Oat)=6;(z) = @5, (at) =
g () a1 (1) + D) =915(1),
where :c € Z(D), a(x) # x. But then ®ai*l(x ) #a(z), a contradiction.
If ®a =id, the same arguments show that *%4,(¢) € Z(D).
If z € D is an arbitrary element, this formulae shows (*)aJ is an inner automorphism

ad(®9§;(t)~1) . Therefore, *)ad (& “)5](t)) = (EuWg,(t).
Assume Fa(EW§;(t)) £ #W,(t) . It’s clear then that

n+qj—1
w0 = 3 Dal(“a(0) #£0
=0
if (n,j)=1.S0, cpjr # 0 by (i) in this case.

If ®a(Gwe(t)) = G¥5,(t), then ii’:fl)jéj(t) = (n+ qj)®W;(t) # 0 iff p does not
divide (n + qj). So, by (i) cpkir # 0 in this case iff n, (n + j),...,(n + (kK — 1)j) #
0 mod p.

The lemma is proved.

(I

Lemma 6 Let D be a splittable division algebra as in lemma 5. Let s € Z(D) be an
element such that «o(s) = s. Let i = i(u,s) be the minimal positive integer such that
(=W §:(s) # 0 (see corollary 2).

If p]z then for any positive integral k there exists a map (z’”)dj(k) such that
0804 (7)) £ 0.

Proof. We claim that **)§,q; is the first map such that (Z’“)épqihlzp(qu) # 0. The proof

is by induction on ¢. For ¢ = 0, there is nothing to prove. For arbitrary ¢, put t = s
By proposition 2 we have

pli—1
Opai(t7) = Opa-1; Zlﬂﬂ 1i0pa-1i(p—1) (T O+ Z ot ZlH(quz G
r=0 l=p9—1li+1

By induction and lemma 5, 1440pei|F,(t) = Cioipri—i,10 + - - . + Craipai—1,p—20P "2 for 1 >
p?~Yi. Therefore, Y725 1410, (tP"")t" = 0. By lemma 5, (ii), 1pi—10pa=14(p—1) R, (1) =
Cl+pq_1i,pq_1i(p71),15 +...+ Cl+pq—li’pq—1i(p,1)7p,1(5p_1 with Clypa—1i,pa—1i(p—1),p—1 = (0. Hence,
5pqi(tp) = _Cl+p‘1*1i,pq*1i(p—1)7p—15pq*1i(t) # 0

The same arguments show that *§,;(t?) = 0 for j < p%i. So, *W¢,q; is the first
non-zero map on F,(s"").
O
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Lemma 7 Let D be a splittable division algebra. Let z be a fized parameter and ®a =
id, let uw be some fized embedding u: D — D .

Let ®%¢;, i € NUoo be the first non-zero map on D . Assume (i,p) = 1, where
p = charD . Let (Z’“)(Sj, j>1i, j € NUoo be the first map such that (Z’“)(Sj #0 if j is
not divisible by i and *V§; # cj/i(z’“)(ﬁ/i for some c;;; € D otherwise. Then

a) for k < p = charD (arbitrary k if charD =0 ) we have *%dy; = ¢, *W6F | where
i+1)...(i(k—1)+1
Y ES VUSRS "

if ki<3j.

b) if condition (4) is satisfied for any k with ki < j, then (f{u)dq =0 fori<qg<y
and (_Zi’u)éj is a derivation.

Remark. We will call the number i(u, 2) = min,cp{w(zu(a)z™! — u(a))} defined in
this lemma a local height. The number i = i(z,u) in lemma coinside with the level of D
defined in [11] if D has index p = charD and D is splittable. As it follows from lemmas
3, 10 (see below), i(z,u) does not depend on z,u in this case. Corollary 2 completes then
the proof that it coinside with the level defined by Saltman in the case D is splittable. This
number will play an important role in this work. It was one of the important parameters
in [14]. Recall the definition of level: h(D) = min{w(ab — ba) — w(a) — w(b)} .

Proof. If we compare coefficients in formulae for dy;(ab) from proposition 2 with
coefficients in formulae for 6¥(ab) multiplied by ¢, we must have

exk = ((k — 1)i + 1)eg_i,

where from follows a).

(From the other hand side, if _;d,, ¢ > ¢ is the first nonzero map after _;d;, it must
be a derivation by proposition 2, (i). Note that in characterictic zero case this can happens
only if ¢ > j, because a map cd¥ can not be a derivation if k > 1, which proves b) in
this case.

Since the maps ¢, are uniquely defined, by lemma 2, by the maps &, 1 <q, and the
maps 5q are uniquely defined by the maps _;d;, { < ¢, and _;d, are linear combinations
of 0;, | < q with integer coefficients, we see that b) holds in arbitrary characteristic.

(I

Remark. So we see that the maps ;0, in this lemma satisfy the same identities as

dq/i - This can be thought of as a possible reduction from level ¢ to level 1.

Definition 5 Let D be a splittable division algebra. Let u be some fized embedding
w: D — D. Let s € Z(D) be an element such that a(s) = s. Let i = i(u,s) be
the minimal positive integer such that W& (s) # 0 ( corollary 2 shows that i does not
depend on z ). Assume (i,p) = 1, where p = charD . Define

d(u,s) = mzax{w(z_iu(s)zi —u(s) — u((fg“)éi(s))zi)} € NU oo,

13



As we can see from lemma 7 b), d(u,s) can be interpreted under some conditions as
the number j there. So, this definition was motivated by this lemma.

Lemma 8 In the definition above for p = charD >0 and (Z)a|Z(D) = id we have

i) d(u,s) =2i mod p if d(u s) <00y

i) If = (=) 3i(s) # 0, the map _Z (5dus V+(p—1yi 18 the first map such that (zu )5dus +(p—1)i(8P) #
0 for any pammeter z . In particular, if d(u,s) = oo, [u(s?),z]=0.

Proof. (ii) Let ()5, be the first map such that 5§ d.(s?) # 0. By corollary 2 K

does not depend on z. By the same reason )5 is the first map such that © (s) #0
for any z.

Put w:=d(u,s)+ (p— 1)i and fix u,z. By proposition 2 we have

7—2

p—2
—i6uw(8”) = Zibaus)(8) D dtus)—iOp—1)i(s" 1) 5T+
q=0
w—1
Z —Z(Sk’ Zkzwkplq)s
k=d(u,s)+1

By lemma 5, ki w_kth(S) = Chiw—k10+ o+ Chmitp20P"% for w—Fk < (p—1)i and
d(u,5)=i0 (p—1)i | F o (5) = Ca(u,s)—i,(p—1)is10 F - - - F Ca(u,s) =i, (p—1)ip—107 " With Caqu,s)—i,(p—1)ip—1 7 0
if d(u s)—1= z mod p. Indeed, as we have shown in the proof of lemma 5, (ii), the
order n of the automorphism *)a on *%§;(s) must divide 4, so (n,p) = 1. Now we
have two possibilities: n fd(u, s) and n|d(u, s) .

In the first case we can repeat the arguments to the first assertion in lemma 5, (ii) to
show that cqu,s)—i,(p—1)ip—1 7# 0. In the second case we have gy s)—it¢i0i(s) = (d(u,s) —i+
q1)/1;0;(s) # 0 if d(u,s)—i+qi is not divided by p. So, by lemma 5, (i) Ci(u,s)—i,(p—1)ip-1 7
0 iff d(u,s) —i=1i mod p in this case.

Hence,

—i0w(8") = —_i0a(u,s) (S)Ca(u,s)—i,(p—1)ip—1 7 0

if d(u,s)—i=14 mod p.
This also shows that _;0,, is the first map such that _;dy|p,(») # 0 if d(u,s) —i =
t mod p.
i) By Skolem-Noether theorem there exists a parameter 2’ in D such that )a = id.
Put
d(u, 2, s) = w(Z Tu(s)2” — uls) — u(F™6;(s))2").

—1

Since *)a = id, the map *"*)§; is the first map such that (_Z;’u)éi(s) #0.1f d(u,2',s) #
2i mod p, we can find a parameter z” such that d'(u,z2”,s) > d'(u, 7, s) using lem-
ma 3, (ii). Continuing this procedure, we find a parameter z such that d'(u,z,s) =
2i mod p or d'(u,z,8) =00.

Usmg arguments from ii) we get that the map 5d/ (u,2,8)+(p—1)i 1S the first map such
that ” 5d/(u,z,s)+(p_1)i( P) # 0 for the parameter z. As it was noted in the beginning
of the proof, the number xk = d'(u, z,s) + (p — 1)i does not depend on the parameter.
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Since d'(u,z,s) < d
arguments from (i) and conclude that (_Zgu)éd(w)ﬂp_l)i(sp) = 0, a contradiction. The
lemma is proved.
(]
It would be interesting to know more about a behaviour of **)§; with respect to the

embedding «. We will give an answer in one special case, namely, when D = Z(D) and
Z(D)/Z(D) is a simple extension.

(u,s), we get d'(u,z,s) = d(u,s). For, otherwise we can repeat the

Lemma 9 Let D be a division algebra such that charD =p >0, D = Z(D), Z(D)
is not perfect and Z(D)/Z(D) is a simple extension (so, D is splittable). Let u be a

primitive element of the extension Z(D)/Z(D) such that @ ¢ (Z(D))P and let u be any
lift of u in D.
Then there exists an embedding v : D < D such that u(@) = u and any map Sﬁ’“)@
is unigely defined by the values Z5;(u?) or, equivalently, by the values l(z’u)5k(u) L k<j.
In particular, if ZW6,(u) =0 for k< j, then ZW§; =0.

Proof. Consider a field Z(D)(u). It is a complete discrete valued field as a finite
extension of Z(D). By classical Cohen theorem, there exists an embedding Z(D)(u) =
D — Z(D)(u) C D. By [4], lemmas 11,12 the embedding is completely defined by a
p-basis ' of the field Z(D)(u). Namely, for any lift G of a given p-basis I' there exists
an embedding s such that G C s(Z(D)(u)).

Let’s show that there exists a p-basis I' of the field D such that @ € I and I' 3 v €
Z(D) if vy # 1.

Consider a set of all non-void sets I” of elements v, € D satisfying the following
property:

A)ael', I">y¢eZ([D) if y# a and [D?(y,...,v) : DP] = p" for any r distinct
elements of 1.

This set is not void, since it contains the set I” = {@}. By Zorn’s lemma, there exists
a maximal set I satisfying A). Then D = D?(T'). Indeed, since Z(D) (a) c D?(T),
it suffice to show that any element from Z(D) lies in DP(T'). Suppose a € Z(D),
a ¢ DP(T). Then the set ' = {aUT} satisfy A), a contradiction with maximality of T .

Now, we can take a lift of " in the following way. We take u as a lift of u, and we
take lifts of all other elements in Z(D). This lift defines an embedding u : D — D.

Let us show that any map 7(;7”)5]- (for some fixed z) is uniqgely defined by the values
W5, (u), k < j. We have u(D) = w(Z(D))(u) and any element a € u(D) can be
represented as a polynomial in finite number of elements from I' with coefficients from
w(D)?" for any k> 0.

Note that for any j there exists £ > 0 such that for any b € mpk l(z’u)d](b) =0
for all ¢ < j and all [. Indeed, assume "™3,(b) # 0 for some ¢ < j, b€ Z(D)' and

k
15 (c) =0 forall I, all c€ Z(D)" andall s < q. Then, since (Z)a|m = id and by

k
proposition 2, l(z’u)_és(bp) —0 forall be Z(D)" ,all [ and all s <gq.
Now, since u(D)?" = u(Z(D))*" (u*"), any element a € u(D) can be represented as a
polynomial in finite number of elements from T’ with coefficients from u(Z(D))?" . Since

=
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all elements except u in T' belong to the center Z(D), the value of *§;(a) is uniqely
determined by the values (Z’“)éj (u') that are unigely defined, by proposition 2, by the

values *"6(u), k< j.
a

Remark In the case Z(D) perfect field there is only one embedding w, which is
compatible with the embedding Z(D) — Z(D). So, the assertion of lemma is easy in
this case.

Lemma 10 (¢f. [14], lemma 8)

In the situation of lemma 9 suppose (W§ = ... = %’“)5]-,1 =0, 7(7;"“)5]' #0. Let n
be the order of Pac. Then B

(i) for W' =u+bz?, beu(D), n|g we have &) = EW§ 1 < q and

S084(a) = 500, () + Pam () = o= (Da™ (@),
where the derivative is taken in the field D = DP(T). B

(ii) Suppose Fa = id. Then for v’ = u+ bz, b € u(D) we have )5 = V4,
I<q+j and

’

where the derivative is taken in the field D = DP(T).

(iii) Suppose P =id. Let w' € D be any primitive element of the extension D/Z(D)
satisfying the conditions of lemma 9, and let ' € D be any lift of ' . Then we have
g’“')él = %’u)él, l <7 and

where the derivative is taken in the field D = DP(T) .

k

Proof. First of all, let’s note that there exists k € N such that for any a € Z(D)"
holds u(a) —u'(a) =0 mod MET where «' is any another embedding, ¢ € N is any
given number. .

Indeed, assume for any ¢ € Z(D)" holds u(c) —u/(c) =0 mod M}, ie. u(c) =
u'(c) + ezt +..., where ¢; € u/(D). Then u(c?) = (u(c))? = (v'(c))? +pu'(c)Ptet +. . .,
so u(c?) —u/(c?) =0 mod M.

;From this immediately follows that u(a) —u/(a) =0 mod M} for any a € D if
v’ is defined by the element u = u + 029, because u(u) — u'(u) = bz?. Moreover, if we

k

represent a as some polynomial P(7i,...,7,,u) with coefficients from Z(D)" | then it
is clear that 9

P

[u(a) —u'(a)]z™ = —==(P(v1,...,%,4)b mod Mp
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if n|q, since u(y) = u'(y) for any I and 29uz™ =u mod Mp. It is also clear that
the derivative can be taken even in the field D?(I"). So, we have

(i)
2™ 2T =2 (u+ b2 2T = u((z)am(ﬁ)) + u(ffb’“)cgj (@))2? 4+ ...+ (u((z)ozm(l_)))

Fu(EW6,;(0)27 + .. )20 = u(Wa™@) + ... + (w(FW5,(a)) + u(Pa™ D))z + ... =
(0 @) - @8 ) + ol (D) — (o

(ii) We have

2™ = 2 (b2 2™ = (@) +u(E6 (@) 2 4 A (u() +u(F6 (D)2 4. )2t =

(@) + w085 ()2 + - (w(8(@)) + w(b)) 2+ (S (@) 2+
451027+ (845 (0) + (6 B2+ =
(@) + ! (G065 (@) 2+ (G0 (@) 2T 4 (W (504 (@) + ' (56(D) —
/ a Z,U —\\7 j
u (%(ﬁn )6,;(@))b)) 2 + ...
(iii) Assume v’ = u(u') + a1z + ..., where a; € u(D). Since, by proposition 2, the map

(20§, is a derivation, we have

2 2™ = [u(u!) + (W6 (u)2 4 )+ o+ u(EWe(a) . )+ =

u - u(F6(u) 2 4. = u’+u(%’“)5j(u)%(ﬁ’))zj+. o= u’+u’(£§’“)5j(u)%(ﬁ’))zj+. .
(]

4 The period-index problem
In this section we will prove the following theorem.

Theorem 2 The following conjecture: the exponent of A is equal to its index for any
division algebra A over a Cy -field F' has the positive answer for F = Fi((t)), where Fy
1s a Cq -fleld.

Recall that a field F is called a C; -field if any homogeneous form f(z1,...,z,) of
degree d in n > d' variables with coefficients in F has a non-trivial zero. Some basic
properties of C;-fields see, for example, in [10].

This conjecture was proposed by M. Artin and was solved for some another examples
of the field F' by many authors. As it is known for me, the positive answer for all division
algebras of index indA = 243" was given in [10], for division algebras over the field F =
E((X))((Y)), where k is a perfect field of characteristic p # 0 such that dimp, k/p(k) =
1, was given by Tignol in the Appendix in [2] (we include this case though F may not
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be a Cj-field), for division algebras of index prime to the characterictic of F', where F
is a function field of a surface, was given in [7]. I propose, the positive answer was also
known for division algebras over F' = Fj((t)) of characteristic 0. We will give the prove
of the theorem above in any characteristic.

Proof. 1) Recall that any extension of a C-field is simple. Indeed, suppose E =
F(uy,...,u,). Consider the field K = F(u},...,u?). By Tsen’s theorem, K and FE are
C -fields. So, the form ¥ + 2hu; + .. .—i—xgu}l’_l +xp, jup has a non-trivial zero in E. But
¥ € K and elements 1,uy, ... ,u’l’_l, uy are linearly independent over K , a contradiction.

2) Assume the theorem is known in the prime exponent case. We deduce the theorem
by ascending induction on e = expA. If e is not a prime number, then write e = Im .
By assumption A®™ can be split by a field extension F' C F’ of degree [. This implies
that Ap has exponent dividing m . Note that F’ is also a Laurent series field. By the
induction hypothesis applied to the pair (F’, Ap/), there exists a field extension F’ C L
of degree dividing m splitting Ap . Therefore A is split by the extension F C L of
degree dividing Im and we conclude the theorem.

3) So, let expA =1 be a prime number. By the basic properties of the exponent and
the index (see, e.g. [10]) we have then indA = [* for some natural k.

Suppose (I,p = charF)=1.

It is known that the conjecture is true for all division algebras of index indA = 223°
so we can assume [ # 2,3. We can assume F' contains the group p; of [-roots of unity,
because [F'(u;) : F| <l and we can reduce the problem to the algebra A®p F(1). Then
by the Merkuriev-Suslin theorem A is similar to the tensor product of symbol-algebras
of index [.

To conclude the statement of the corollary it is sufficient to prove that every two
symbol algebras A;, A contain F -isomorphic maximal subfields.

Since every division algebra over a (' -field is trivial and every field extension is
simple, every symbol-algebra of index [ over F is splittable. Since (I,p) =1, it is good
splittable and its residue field is a cyclic Galois extension of F'. So, if z; is a parameter
from proposition 3 for algebra A;, then z; acts on A; as a Galois automorphism and
2t e F. We have v(2!) =1 (v is the valuation on F).

Let us show that A; contains a [-root of any element u in F with v(u) # 0. So,
A; will contain a subfield isomorphic to F(zy). Since for any element 14 b, v(b) > 0
there exists a [-root (14 b)'/! € F | it is sufficient to prove that A; contains any [-root
of elements ct, ¢ € u(F), where u is some fixed embedding u : A} — A; .

Assume z! = c1t, ¢; € u(F). Note that for any element b € u(A;) we have (bz)! =
U(Ngl/p(b))zi. But the norm map Ny, p is surjective, since F is a C)-field (see, e.g.
[10], 3.4.2), so there exists b such that (bz)! = ct.

4) Suppose now erpA = p. Then indA = p*.

By Albert’s theorem (in [1]) there exists a field F = F(u}/p, . ,u,lg/p) which splits
A . Using the same arguments as in 1) one can show that every such a field has maximum
two generators, say [’ = F(u}/p,ué/p). Therefore, indA < p?. If indA = p, there is
nothing to prove, so we assume indA = p* and F’ is a maximal subfield in A.

5) Suppose Fi is a perfect field.

18



By Albert’s theorem, A = A; ®p Ay, where A, Ay are cyclic algebras of degree
p, Ay = (Li/F,01,u1), Ay = (Ly/F,09,uy). Since F| is perfect, A,/F, Ay/F are
Galois extensions. So, A, Ay are good splittable. Let us show that A;, A have common
splitting field of degree p over F'. This leads to a contradiction.

By proposition 3 there exist parameters z; € A;, 2, € Ay such that they act on A;,
A, as Galois automorphisms. Note that then 27,25 € F'. Let us show that F(z;) splits
AQ .

Consider the centralizer D = C4(F(z;)). Consider the element #; = zz; . We have
th € F, w(ty) =0, where w denote the unique extension of the valuation v on F . Since
D/Z(D) is a Galois extension, there exists an element b; € F' such that w(t; —b;) > 0.
Since (t; — by)? € F, there exists natural k, such that w((t; — b1)z;*) = 0. Denote
ty = (t1 — bl)szl. We have again t5 € F. Repeating this arguments and using the
completeness of D C A we get
29 = tlzl = (tQZ{Cl + bl)Zl =...= b121 + ng’fl—H + ... s
0, 29 € F(z1) = Z(D).

6) Suppose F} is not perfect.

Since F” is generated by two elements over F', it contains all p-roots of F'. Then,
every two elements u,z € F such that z'/? ¢ F(u'/?), where z'/P u'/? ¢ F'  also
generate [ over F'. This follows from the same arguments as in 1), 4).

Now take u € Fy\FY, z = u+t. It’s clear that p-roots of these elements generate
F' over F.Moreover, the fields F(u'/?), F(2'/?) are "unramified” over F ,i.e. [F(u'/?):
F] =p=[F@'?): F], [F(z/?) : F] = p. Denote u; = u'/?, uy = 27 in F’'. Then
by Albert’s theorem, A = A; ®r Ay, where A;, Ay are cyclic algebras of degree p),
Alz(Ll/F,O'l,U,), AZZ(LQ/F,O'Q,Z). o

Concider the centralizer D = Cy(F(u1)). Suppose D/Z(D) is a separable extension.
Then there exist a lift u : D < D of arbitrary embedding u’ : F'(u;) < F(u;) . Consider
the embedding « = w; defined in lemma 9. Since F(uy)/F is a purely inseparable
extension, «’ is a good embedding, so u is a good embedding of D = A in D C A.
So, we get A is a good splittable algebra, and u(A) contain a purely inseparable over F
element. But this is a contradiction with lemma 6. So, A/F can not contain a separable
subextension, because in this case D/Z(D) must be a separable extension.

Now we can use, for shorteness, lemmas A.4., A.6. of Tignol in Appendix to the paper
[2]. These lemmas show that a tensor product A; ® Ay of any two symbols A, Ay is
similar either to a single symbol in Br(F') (in which case we are done) or to a product of
two symbols of level zero. Recall that, by Saltman’s results in [11], every division algebra of
level zero is tame, which means in our case that the residue division algebra is a separable
extension over F'. A notion of level was already discussed above in remark to lemma 7.

So, assume A ~ D; ® Dy, where Dy, Dy are tame division algebras of degree p over
F'. We can assume A and D;® D, are division algebras, so A = D; ® D, . Since Dy, D,
are tame, we conclude A must contain a separable element, a contradiction.

The theorem is proved.

O
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5 Good splittable algebras

In this section we prove a decomposition theorem for good splittable division algebras.
This theorem shows how the studying of good splittable division algebras can be reduced
to the studying of division algebras with simple described structure. So, good splittable
algebras are the most easy and good algebras to study.

Lemma 11 Let D be a good splittable division algebra, F = Z(D), and let Z(D) = F(s)
be a purely inseparable over F field of degree p = charD > 0. Let u: D — D be a good
embedding.

Then there exists a parameter z such that (fi’u)éj =0 for j>1i, where i =i(z,u) is
a local height, and u(*"&;(s)) =z, where x € Z(D). Moreover, (i,p) = 1.

Proof. Since Z(D)/F is a purely inseparable extension, a|, 5, = id for any pa-
rameter z. By Skolem-Noether theorem there exists a parameter z in D such that
#)oy = id. Suppose *"§;(s) = 0, where i = i(z,u). Then (Z’U)5i|Z(D) = 0, since u is
a good embedding and Z(D)/F is a simple extension. So, **§; is an inner derivation
by Scolem-Noether theorem, and by lemma 3, (i) there exists a parameter z’ such that
#wg =0, Fa=id.

So, we can assume *%§;(s) # 0 for some parameter z. Since s? € Z(D), by lemma
6 we have (i,p) = 1. Since *%§; is a derivation, *"§;(s) € Z(D) (see the arguments
in lemma 5, (ii)). Since (i,p) = 1, there exists k such that p|(1 — ki). So, by lemma
3, (iii), for the parameter 2/ = (*9§;(s))* we have *a = id, F'%(s) € F, ie.
u('¥4,(s)) € Z(D). Since s? € Z(D), by lemma 8 we must have d(u,s) = oo. In the
proof of lemma 8, (i) was shown that d(u,s) = d'(u, z,s) for some parameter z, and the
construction of this element uses lemma 3, (ii), so it preserves the initial values of e,
(#u)6, . So, (,Z{“)5j =0 for j > i and the lemma is proved.

(]

Proposition 4 Let D be a splittable division algebra. Then we have D = Dy ®p Do,
where Dy, Dy are splittable division algebras such that Dy is an inertially split algebra.
If D is a good splittable division algebra, then Z(Ds)/F is a purely inseparable ex-
tension and Dy is a good splittable algebra (D or Dy may be trivial).
So, D~ A®pr B®p Dy, where A is a cyclic division algebra and B is an unramified
division algebra.

Proof. If charD = 0, the proposition is obvious, so we assume charD > 0.

By [9], p-261, D = Dy ®p ... ®p Dy, where [D: F] =pi"...p;* and [D;: F| =p;".
Let po = p. Since D; are defectless over F', Dy, Ds, ... D; are inertially split. Therefore,
by theorem 1 the algebra B = D; ® D3 ® ... ® Dy, is good splittable.

Assume first that D is good splittable. By proposition 1.7. in [6], if s € Z(D) is an
element such that a(s) = s, then this element is a purely inseparable element over F .
So, if D is a good splittable division algebra, then by lemma 6 D, is either inertially
split or Z(D,)/F is a purely inseparable extension. For, otherwise there exists an element
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s € Z(Dy) C Z(D) as above and by proposition 3 p|i(u,s) for any embedding u. If u
is a good embedding, then s** € Z(D) for some k, a contradiction.

So, we assume below Z(D,)/F is a purely inseparable extension. Now, we have (see,
e.g. th.lin [8]) D = D, ®p B and so u(D) = u(D;) @,y u(B), where u is a good
embedding. So, E = u(Z(D3)) is a purely inseparable field over u(F) C Z(D).

Consider the field £’ = u(K)®,p) F , where K is a maximal separable subfield in B..
This is an inertial lift of K in D . Consider the centralizer C' = Cp(E’) = Dy®p E'. Let
M be a maximal subfield in D, . Note that u(D;) C C',so L C C, where L = u(M)F is
the composit of u(M) and F',and E C L. Note that [L: F| = indDy = indC'. The field
L splits C' by dimension arguments. So, it must split D, since ([E': F],p) =1, and D,
is a p-algebra. Therefore, L is isomorphic to a maximal subfield in D5, so Dy contain
a copy of purely inseparable "unramified” subfield, whose residue field is isomorphic to
Z(Dy) . Therefore, D, is a god splittable algebra. For, the centralizer of this field is an
unramified division algebra, so by theorem 1 is splittable. So, D5 is good splittable if
the purely inseparable field is good splittable. But it is good splittable since it contains
a subfield isomorphic to u(Z(D,)) by the construction. (Another way to see it is to use
arguments from lemma 9 to show that there exists an appropriate p-basis).

Let D be a splittable algebra. Then the same arguments as in the previous paragraph
show that L is isomorphic to a maximal subfield in D, (it is not important that Z(D,)/F
may be not a purely inseparable extension). Now, the composit EF' C L, EF # L, since
every element from E commute with u(Ds), where u is some fixed embedding. So we
must have Cp,(EF) = Dy and Cp,(EF) is an unramified division algebra. Therefore,
Ds is splittable division algebra.

Decomposition theorems [6], Thm. 5.6-5.15 complete the proof.

O

This proposition shows that the study of splittable division algebras can be reduced
to the study of splittable p-algebras. So, below in this section and in the next section we
will deal with p-algebras only.

Proposition 5 Let D be a good splittable division algebra such that Z(D)/Z(D) is a
purely inseparable extension. Then D = Dy ®yzpy Dy, where Dy is an unramified division

algebra and Dy is a good splittable division algebra such that Dy is a field, Dy/Z(D) is
a purely inseparable extension, [Dy : Z(D)] = [I'p, : Izpy] .

Proof. The proof is by induction on the degree [Z(D) : Z(D)].
Assume [Z(D) : Z(D)] = p. Let *§; be the map from lemma 11. Then %! is
a derivation trivial on the centre Z(D), hence by Scolem-Noether theorem it is an inner

derivation.
We claim that 2 € Z(D). We have

2zt = a+ i6;(a)2’', a€wu(D)

Therefore, -
z7 Pzl =a+ _;0F(a)2", a€u(D)
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and . . . .
Plaz P = a+8(a)2 + 0 (a) 2 + ...

where 0] = (—1)_;,07 = P! . So,
D, D 1 / pi 1 12 2pi
az™? =a+ ;(51(01)2 + cgi—2(51 (a)zP + ...,

where ¢, are given by (4) in lemma 7. So, 2 € Z(D) iff 6/ = 0. Suppose ¢ # 0.
Consider an element Y € Z(D), w(Y) > 0. Let

Y=a2"+..., a; €uD).

First note that ~
Y = a2’ + a2 + a3z +..., a; €u(D)

Indeed, Y must satisfy [V,s] =0, where s is a generator of u(Z(D)) over u(F). Since
s€u(Z(D)) and w([z*,s]) =k +i if (k,p) =1 and w([z*,s]) = co otherwise, we then
have [z%,s] =0 for every k, where

> .
Y = Z apz'™
k=1

Therefore, pliy .
Then, Y must satisfy Ya = aY for any a € u(D). Therefore, ai,...a; € u(Z(D))
and we must have
aa; 1 — a;p1a = ayd;(a)/i
and
aa2i11 — 10 = a;8)(a) + 16201 (a).

Since A(a) = aagiy1 — agi41a is an inner derivation, we get 5{2 = 0, where 0 is a
derivation, which is a contradiction if § # 0 and charD # 2. In the last case we can use
the same arguments with as;,; . Therefore, §/> =8 =0 and & =0, and 2” € Z(D).

Consider the algebra W = u(Z(D))((z)). Since 2P € Z(D) and u(F) C Z(D), we
have Z(W) = u(F)((z*)) = F. So, D =2 W ®p Cp(W) by Double Centralizer theorem.
It is clear that Cp(W) is an unramified division algebra.

Now suppose the proposition is proved for [Z(D) : Z(D)] = p*~*. By Albert’s theorem
(th.13 in [1]) Do then is a cyclic algebra as a product of cyclic subalgebras D;, where
D;/F is a simple purely i 1nseparable extension and D; is a good splittable algebra.

Assume [Z(D) : Z(D)] = p* . For a good embedding there exists a lift K of a subfield

Z(D) ¢ K C Z(D) such that the extension K/Z(D) has degree p, ie. K = K,
L't =Tz, u(K) C K, f(/Z(D) is a purely inseparable extension of degree p. By the
induction hypothesis the centralizer C’D(f( ) = A ®; As, where A, is a cyclic division
algebra and A, is a field. Note that Ay = Z(D).

By theorem 6 in [1] we can assume A, = (L/K,0,a), where a generate K over
Z(D). So, A, contains a maximal purely inseparable Kummer subfield E = K (y) with
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y?'' = a,s0o E = Z(D)(y). By theorem 3 in [1] L = Ly x K, where Lq is cyclic of
degree p*~1 over Z(D) and yxo = o(xq)y, where x¢ € Ly.

Consider the centralizer B = Cp(Ly). We claim B = By ®p, By, where Bs is a cyclic
division algebra of degree p and By contains K.

Note that B contains Z(D)(a) = K and A,.If KLy = L is "unramified” over
Lo, then we apply the arguments for the first step of our induction to the algebra B.
By construction, By then will contain L, so K . Suppose L is totally ramified over L
and let z be a parameter of L, i.e. an element with the least possible positive mean of
valuation on L. Since L is purely inseparable over Lg, 2P is a parameter of L.

We have W := Cp(L) = Cp(L) & A;®j L is an unramified division algebra. Consider
an embedding ' : L = Ly — Lg. As it was shown in the proof of theorem 1 there is
a lift ' of u' d W — W. Now consider the subalgebra W’ = u/(W)((2?)). We
have Z(W') = (E)(( P)) = Ly, so W’ is an unramified subalgebra in B. By Double
Centralizer theorem, B = W' ®r, Cg(W'), where Cg(W’) is a division algebra of degree
p and contains Lo(z) = L, so it contains K and it is cyclic by Albert’s theorem (th.12
in [1]).

Now we can word by word repeat the arguments in the proof of theorem 12 in [1] to
show that there exists a cyclic Galois extension L’ of Ly which is cyclic Galois over Z (D),
and y acts as a Galois automorphism on L'/Z(D) which generates Gal(L'/Z(D)). So,
there is the cyclic subalgebra Dy = (L’/Z(D),ad(y),ypk) in D. Note that Ay C D,
and A, is known to be a good splittable algebra with [Ay : Z(A4s)] = T4, : Tza,)]-
Since A, = Dy and Z(Ay) = K is a purely inseparable extension of Z(D), D, is a
good splittable algebra such that D, a field and [Dy : Z(D)] = ['p, : [z(p)] . By Double
Centralizer theorem D = Dy ®zpy Do, where Dy = Cp(D,) must be an unramified
division algebra, which completes the proof.

(I
Combining all results in this section, we get the following theorem.

Theorem 3 Let D be a finite dimensional good splittable central division algebra over a
field F=k((t)).

If char(F) =p >0, then D= D) ®p Dy ®p Ay Qp ... p A, where A; are cyclic
division algebras such that [A; : Z(D)] = [La, : Tzp)] and A;/Z(D) are simple purely
inseparable field extensions, Dy is an inertially split division algebra, (ind(D),p) =1,
Dy is an unramified division algebra ( Dy, Do, A; may be trivial).

If charF =0, then D 1is an wnertially split division algebra.

6 Splittability and good splittability

In this section we collect some assorted results about a relation between splittable and
good splittable division algebras and about splittable division algebras. We consider here
only division algebras with the following property: Z(D)/Z(D) is a simple extension.

Proposition 6 Let D be a central division algebra over F of charD = p > 0 such that
Z(D)=D and [Z(D): F]=p.
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Then D is a splittable algebra and the local height i = i(u, z) (in the situatuion when
it is defined, i.e. when o = id ) does not depend on u and z. It is a good splittable
algebra if (i,p) = 1. If p|i, then there exists a parameter z such that zP € Z(D) and
any “unramified” maximal subfield is cyclic Galois.

So, in both cases D is a cyclic division algebra of degree p .

Proof. Since D/F is a simple extension, we have [D : F] = [['p : I'r]. Indeed,
consider the fields £ = F(s) and E' = F(z), where s is any element such that § is a
primitive element of the extension D/F and z is any parameter of D. Then [D: F] <
[E:F)<[D:F)"?=(D: F|[lp:Tx)"?, 50 [D: F] <[[p:Tx]. From another hand
side, [FD : FF] S [E, : F] S ([D : F][FD : FF])I/Q, SO [D : F] = [FD : FF} SO, D is
splittable division algebra of degree p.

If Z(D)/F is a separable extension, then D is a good splittable algebra by theorem
1. So, we assume it is a purely inseparable extension, Z(D) = F (i) . For any lift u of the
element @ let u be an embedding constructed in lemma 9, i.e. (Z’“)(Sj is defined by the
values #%§;(u*) for any j. By corollary 2 the local height i(u,z) does not depend on
z, and by lemma 10 i(u,z) does not depend on w. For arbitrary embedding «’, since
(Z’“')(Si(ulyz) is a derivation and D/F is a simple extension, (Z’“/)éi(u@z) is completely defined
by a value at u. Therefore, i(v/,2) = w(zu/(u)z~' — v/(u)) and i(v/,2) is completely
defined by the lift «/(u). But arbitrary lift of @ defines an embedding, on which we have
proved i does not depend. So, i(u,z) does not depend on z and wu.

Now assume pli .

Using lemma 3, we can assume without loss of generality that #*)§; = 0 if j is not
divisible by p.

Indeed, if (z’“)éj # 0, then we apply lemma 3, (ii) to show that there exists a parameter
z; such that W6 (u) =0 and W, = EWE, for k < j, @a =id. Since G3%g; is
a derivation by proposition 2 and by induction (similar arguments was already used in
the proof of proposition 3), and since it is defined by the values on u*, so by the values
on u, we have #%§; = (. Since for j; > jo we have w(zj, — 2;,) > ji1 — 4, the sequence
{z;} convereges to a parameter z’, which satisfies our condition.

So, there exists the subalgebra A = u(D)((2?)). Let’s show that Z(D) C A. Note
that every element a € D can be written as a = ag + a12 + ... + ap,lzp_l, where
a; € A. Note that zFA27% C A for every k. So, if a € Z(D), then zajz~' = a; and
uajz’u~t = a;2? for every j. For j > 0 we have a;z/ = Y} a;x2"" | so by corollary 2
ua;z’ut # a;2? . Therefore, a =ag € A.

Since A # D, A must be commutative, so 2P € Z(D). Moreover, A/Z (D) is cyclic
Galois. Since the arguments work for arbitrary lift u of the element «, arbitrary ”un-
ramified” maximal subfield in D must be Galois over F'.

Now let (i,p) =1.

Using lemma 3, (iii) we can find a parameter z and a primitive element s € D such
that *%)§;(s) = sc, where ¢ € F. Indeed, since (i,p) = 1, there exists k such that
1 — ki is divisible by p. So, by lemma 3, (iii) for a parameter 2’ = u(*"§;(%)*)z we have
(#w§i(w) € F, so by lemma 10, (iii) ¢""§;(s) = 1, where s = a*"§;(@)~". Now, there
exists k; such that —ik; — 1 is divisible by p, so for 2’ = s"2' we have "%§(s) = sc,
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where ¢ = s7*1=1 € [ It is easy to see that, since s = @a, where a € F', the map (27“)53-
is uniquely defined also by *§,(s*), so by #%§(s) for [ < j. So, we assume without
loss of generality that s =u, 2z = 2".

Using lemma 10, (ii) we can find a converge sequence {u;}, u; € D, j > such that
Uiy = uj +bj2? 1w, =, bj € uj(D) (here u; is an embedding defined by w;, see
lemma 9) and %’“f)ak(a)a—l € F forall k<j and all m.

Indeed, suppose it is true for 7 > . Let %’uj)éjﬂ(ﬂ) =ap+...a, Ut a; € F.

Since %’uj)éi = EW§ = mEW§,; | we have

Fui) 5 (aput) — %(%’“J‘)(Si(ﬂ))akak = (k — 1)mcaa"”.

So, w1 = u; — uj(Xgppr (b — 1) 'm e agu?) 2 will satisfy our condition.

We will denote by « now a limit of the sequence {u;} . Using induction and proposition
2 one can easily show that (>%)§,(a*)u=* € F for any integer k. So, there is the subalgebra
A =u(F)((z)) in D. Using similar arguments as in the case pl|i, one can show that A
contains Z(D). Since A # D, it must be commutative, so u? € Z(D). Then u is a good
embedding, which completes the proof.
O

Let D be a splittable division algebra and let Z(D)/Z(D) be a purely inseparable
extension. As it was shown in the proof of lemma 11, then there exists a parameter z
in D such that (Z’“)éi\Z(D) # 0, where i = i(u, z) is a local height. Though D may
be not a good splittable algebra, the arguments from there are valid for every splittable
algebra. We will call such a parameter an appropriate parameter, and the number i(u) =
max, i(u, z) = i(u,z) for an appropriate parameter a semilocal height. Let’s prove the

following simple lemma.

Lemma 12 Let D be a splittable central division p -algebra over F', where p = charD >
0, and let Z(D) = F(s) be a simple extension over F. Then

i) there exists an embedding u such that l(z’u)éj|Z(D) is defined by the values l(z’u)éj(sk)
for any j,l,z (as in lemma 9);

i) [Z(D): F]=[p:Tx|;

i) if alzpy # id or i(u) is divisible by p, then there erists a subalgebra A =
w(D)((2)) for some appropriate parameter z such that Z(D) C Z(A). Moreover, Z(A)
is a cyclic Galois extension over Z (D).

Proof. i) For arbitrary embedding u consider the field E = u(Z(D))F C D and the
centralizer W = Cp(E). We have W = D and so Z(W) = E. Therefore, W must be
an unramified division algebra, and by theorem 1 there exists a lift on W of arbitrary
embedding F — FE. Now we can take an embedding defined by the element s as in
lemma 9. It’s lift will be desired embedding. We will denote this embedding also by s.

ii) By proposition 1.7. in [6] the basic homomorphism 6, (see introduction) is surjec-
tive. So, it is sufficient to prove the assertion only for the centralizer Cp(K), where K
is a lift of a Galois part of the extension Z(D)/F . So, we will assume below Z(D)/F is
a purely inseparable extension.
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Consider a maximal separable subfield M in D, and let M’ be a separable part of
the extension M/F . By [6], th.2.8, th.2.9. there exists an inertial lift of M’ in D, say
M . Consider the centralizer B = Cp(M). Then B is a field. Our assertion will be proved
if we show it for B, since [M : F] =ind(D) and [D : F] = ind(D)*[Z(D) : F|[I'p : Tf].

Since B/Z(B) is a simple extension, we can repeat the arguments from the beginning
of proposition 6.

iii) If oy py # id, consider the parameter z from proposition 3. Then, clearly, A =
u(D)((z)) will be a subalgebra with the center K, which is an inertial lift of a Galois
part of the extension Z(D)/F .

Assume a|zpy = id and i(u) is divisible by p. Let z be an appropriate parameter.

Using lemma 3, we can prove that **)§; = 0 if j is not divisible by p.

Indeed, let *¥§; # 0 be the first map with this property for (j,p) = 1. If
(Z’“)§j|Z(D) = 0, then we apply lemma 3, (i) to show that there exists a parameter z;
such that (Zf’“)éj =0 and ®Wg, = s, for k < j, ®Wa = id, since (Z’“)5j is a
derivation by proposition 2 and by induction (similar arguments was already used in the
proof of proposition 3) and so it is an inner derivation by Scolem-Noether theorem.

If (Z’“)5j|Z(D) # 0, then we apply lemma 3, (ii) to show that there exists a parameter
z; such that %g;(s) = 0 and 9§, = G for k < j, ®a = id. Since G,
is a derivation and since its restriction on Z(D) is defined by the values on s*, so by
the values on s, we have (Z’“)5j| z) = 0, and we reduce the problem to the previous
case. Since for j; > jo we have w(zj — 2j,) > j1 — @, the sequence {z;} convereges to a
parameter z’, which satisfies our condition.

Therefore, there exists a subalgebra A = u(D)((z')) in D . Using the same arguments
as in proposition 6 one can show that Z(D) C Z(A) Since z' preserves A, it preserves
the centre Z(A) (From the other hand side, it acts nontrivially on it. So, Z(A) is a cyclic
Galois extension of degree p, and ad(z’) generates its Galois group.

O

This lemma shows that the study of splittable p-algebras over F' can be reduced

to the study of splittable p-algebras with a purely inseparable extension Z(D)/F and

(i(u),p) = 1.

Definition 6 Let D be a splittable division p -algebra with a purely inseparable exten-
sion Z(D)/F . For any element a € D define the number

dp(a) = maxw(z~ @Dy (a) 2™ — y(a) — u((z’u) )5i(u,a)(a))zi(“’“)) € NU oo,

U,z —i(u,a

where parameters z are taken from the set of appropriate parameters and i(u,a) was
defined in corollary 2.

It seems that the number dp(a) will play the role of a higher order level in a splittable
division algebra. We will see that it codes a part of information about a division algebra.

Lemma 13 Let D be a splittable division p-algebra, p > 2, with a purely inseparable
simple extension Z(D)/F', let u be some fized embedding u: D — D .
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Suppose Z(D) = F(a) and (i(u,a),p) = 1. Suppose d(u,a) <

Let z be a parameter such that “)5i(u,a)((zl w) Z(u o(a)) = 0, (z a = id and
_Z ua)5 ) =0 for i(u,a) < q<d(u,a). Put j(k):=i(u, a?") .

Suppose for every k > 1 a parameter z, such that (z’“’u)é |IF =0 for jk) <r<
d(u,a”") satisfy a condition (@) G0y = )52( 0, B )oz = (Z)oz.

Suppose for every k> 1 we have d(u,a?") — j(k) = d(u,a) — j(0).

Then the maps SH()p 1—mit0cs Ti(k) < C < (r=1)5(k)+d(u, a), re{l,....p—1},
k > 0 satisfy the following properties:

2i(u,a

(zu)
w+(p—1—7)5(k) 6C|IE‘ S(ar®) = Cut(p—1-1)j (#),610 F - F Cut(p—1-r)j(k) €0

where the derivation § was defined in lemma 5, Cyi(p—1-r)jk)cr € Z(D), Cot(p—1—r)j (k) ,Cor 7
0 only if ¢ = (r—1)j(k)+d(u,a”).

Moreover, ¢ L A0 fw= i(u,a) mod p;

w~+(p—1—r)j(k),(r—1)7(k)+d( uap

k

= T!Cw+(pfr)j(k),(r72)j(k)+d(u,apk),r71w+(p*1*7")j(k)5j(k)(ap ),

Coot (p—1=r)j (k) (r—1)j (k) +d(u,a?* ) 7

2k ke Zk U k
and ) ) B amary (@) = 50 o (@)

Proof. The proof is similar to the proof of lemma 5, (i). It is by induction on r
simultaneously for all k£ > 0.

For r = 1, using lemma 2 and induction, one can easily show that (Zk’“)éq(apk) =
—(j(l{;))_l(_zj(’z))éq(apk) for j(k) < ¢ < d(u,a”") (we assume here zy = z). By lemma 8, (i)
we have d(u,a) —i(u,a) = i(u,a) mod p. So, by lemma 8, (ii) and by induction we
have j(k) =3j(0) mod p.

So, () Olp, @y = 0 if j(k) < q < d(u, a) and ") Oqlp, oy # 0 only

» w4 (p— 2)] k)~ 4q w+(p—2)3(k)
if q=d(u,a).
Since (Z’“(Z; |IF ohy IS @ derivation and since, by proposition 2, (i), the map

(2k,u)
k( )5d(uap ’F (aP®)

it was shown in the proof of lemma 5, (ii) for any derivation § we have §(b) € Z(D) for any
b€ Z(D). Since S0 ) 00 0aary (@) = 01750040t )(apk)+CJ2$§’““)5J'<0)((_Zﬁ(’z))@(k)(apf))
for some integer ¢y, g2, m , we have proved our assertion. So, Cont (p—2) (k) d(war* )1 € Z(D).
If w=3j(0) mod p, then ,fjjj(’[;)72)j(k)(5d(u’apk)(apk) = (fj’?(’z))%(u,apk)(apk) , since w +
(p—1)j(0) =0 mod p and charD > 2. So, we have Cot (p—2)(K).d(war™) 1 7 0 -

Put now ¢ = a?" . For arbitrary r by proposition 2, (i) we have

o (20,1)
must be a derivation, we have V" o) 1050, ook (@7 ") € Z(D). For, as

(zk7u)

wt(p—1-7)4( k)5C( 1) = Qut@-1-rimdc(t A
q—2

Wt (1= (0 050 (E) D et oty Sc—icey (87 HE 4
=0
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wh(p—1-r)j(k) Od(u,t) (1 pr 1)) (ut) Og—dut) (77 )+

¢—-1 —2
Y w1 waa =it —i(EHE.
i=d(u,t)+1 1=0

Using the same arguments as in the proof of lemma 5,(i) we see that ,.(,— 1- mik)0c(t?) =0
and wy (p-1-m)j(k)Oc|Fy (1) = Curt(o-1-1)j(k).C,10 T -+ + Cut(p-1-r)j(h),cp-10”" " . To show that
Cut(p—1-r)j(k),¢si = 0 for i > r it suffice, by formulae (3) in lemma 5, to show that all the
maps in the formula above are represented in the form c¢0 + ...+ cr_lér_l . Let us show
it in details.

Since ¢ —d(u,t) —1 < (r —1)j(k), by lemma 5, (i) méc—i|r,@) = Cmc—ind + ...+
Cmc—ir—20" 2 for any i > d(u,t).

If w=4(0) mod p,then w+ (p—1—-r)j(k)+d(u,t)+(r—2)jk) =0 mod p.
Since ¢ —d(u,t) < (r—1)j(k), by lemma 5, (ii) we have 41— T)j(k) d(u,t) O —d(u,t) [Py (t) =
Cowt(p—1—r)j(k)+d(u,t),{—d(u,t), 15+ .+ Cwd-(p—1—r)j(k)+d(u,t),{—d(u,t),r— 2(S

If w# j(0) mod p,then by the same reason we have 41— T) (k)+d(u,t)5c—d(u,t)’Fp(t) =
Curt (p—1—r)j(k)+d(u,t).¢ —d(wt),10 T - - - Coo (p1—r)j(k)+d(ut) C—d(ut)r—10" " and by lemma 5, (i)
Cor-(p—1—1)j (k) +d(ut),C—d(u,t),r—1 € Z(D) as a product of elements from Z(D).

At last, by the mductlon hypothesis w(p—r);j(k)0c—jk) [Fy(t) = Cwrt(p—r)j(k).c—j(k), 10+ -+
Curt (p—1)j(k) C—j(k)r—10" " and Cop(por)jh).c—j(kyr—1 7 0 only if ¢ — j(k) = (r —2)j(k) +
d(u t) and Cwt(p—1)j(k),C—5(k),r—1 § Z( ) Since wH(p—1—1)j(k )53(19)( ) c Z(D) , by formulae
(3) we get Cut(p-1-r)jk)cr € Z(D) and if w = j(0) mod p, then cyip_1-r)j@k)cr # 0
iff (= (r—1)j(k)+d(u,t),

Curt (p—1—1)j(k),(r— 1) (B)+d(ut)r = T Curt (p=r)j (k) (r—2) (k) +d(wst) s — Lo+ (p—1-1)j (k) Oy () 7 0.

The lemma is proved.
O

Lemma 14 Let D be a division algebra as in lemma 13. Suppose d(u,a) < 2i(u,a) and
charD > 2.
Then for every k there exists a parameter z, such that ZJ’“(Z 5T|1Fp(ap’“) =0 for j(k) <

r < d(u,a”") and o = Ga, Eewg, gy = BW§q for all 1 < k (we use here the
notation defined in lemma 13).
Moreover, for every k> 1 we have d(u,a”) — j(k) = d(u,a) — j(0) and

k

P): (21— 1u)5 k

(20.1)
(k)0 301 O art=1y (07 ) Cagu,) =i (k1) (k) —j(h=1).p-1

—j(k) Od(u,a?*) (a

where Cagut)—j(k—1),j(k)—j(k—1),p—1 &S defined in lemma 15.

Proof. The proof is by induction on k. By lemma 8 d(u,a) = 2j(0) mod p
and j(1) = d(u,a) + (p — 1)j(0). So, by the induction hypothesis we can assume for
arbitrary k that d(u,a” ') = 2j(0) mod p and j(k—1) = j(0) mod p, and
. k—1 .

(k) = d(u,a” ") + (p = 1)j(k = 1).
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For the convinience we can start with a parameter z = 2y, which satisfy the conditions
of lemma 13. Indeed, taking an appropriate parameter z and changing it by a parameter
u(c)z for an appropriate ¢ € Z(D) (as in the proof of proposition 6), we can assume that

(_ZJ?I(L()))(SJ-(O)(@) € Z(D)?. Now, using arguments from the proof of lemma 8, (i), we can find
such a parameter zp.

The idea of the proof is the following. We prove first that o

k- ))5 () dua)—i0) (@) 7
0. Then we prove that there exists a parameter z; such that * Z’“’ §<(ap ) =0 for j(k) <
¢ < j(k)+d(u,a)—75(0) and (zj’“(’k))é( k) +d(u,a)—j(0) (apk) #0.1It Wlll be shown that z; satisfy
the conditions of lemma.

So, assume J(k) < ¢ < j(k) +d(u,a) — 5(0) = j(k) 4+ d(u,a® ") — j(k — 1). Put
t= apk . By proposition 2, (i) we have

(zh—1,u)
—]kkl 154( )

p—2
(Z — ﬂl) (Z ’ )
0t (8) D ey ey -ty (BT
1=0
—2
(Zkfh 5 p (Zk 17u) . tpflfl tl
~j(k=1)0¢—(p—1)j(k—1) i) 0113 (k1) ( )t +
1:0
¢-1 P2
DI TR OD DFseait e G T
i=¢—(p—1)j(k—1)+1 1=0
By lemma 5, (i) in the last sum ,EZ"J(}C 0 Oc—ilFy(t) = Cimj(k—1),c—i,10F. . ACimjh—1),c—ip—20P 2,

since ( —i < (p—1)j(k—1). So, thls sum is equal to zero.

(Zkfh )

By lemma 5, (ii) we have /67 0p-1)jk-1)lE,0) = Ccpit-1.o-1ith-110 + - +
Cempi(k—1).(p—1)ji(k—1)p—107 " and ¢ pjik-1),(o-1)jk-1)p—1 7 0 iff (= j(k=1) = j(0) mod p.

By lemma 5, (i) we have (=198 g ) = g 10+. . .+ Cmgp10P7" for (p—1)j(k—1) <
q<(p-— 1) i(k—1) + d(u, a) — ](0), and by lemma 13 ¢, 4,-1 = 0. By lemma 13 we
have 43 Sc aunlBae = Catut—ith1)mdad F - F Cdut) 1) C—d(ut)p-107 "

With Cagu,)—j(k—1) ¢—d(un.p-1 7& 0 if ¢ —d(u,t) = j(0).
So, we have the following picture: (_j’?(kl_’l)éc(tp) # 0 only if ( =7j(0) mod p orif
¢ =j(k)+d(u,a) — 7(0). In the last case

Zk—1,U) (Zl—1,u)
0 () = =50 By () Cauty—i 51,56 s 1)1

where Cy(u,i)—jk—1).j(k)—j(k—1)p—1 can be calculated using lemma 13.

Let’s show that there exists a parameter z; such that (_z’“’u) 10¢(t7) = 0 for j(k)
¢ <ijlk )+d(u a)—7(0). By lemma 3, (ii) there exists a change of parameters Zg_1 2
Zk—1 +bzk 1 such that = (k) 1)5J(k)+p( P) = 0. It suffice to prove that any such a change of
parameters as in lemma 3 (ii) with p|g changes only the values of maps _j;—1)d¢ with
¢ =j(0) mod p. For, if it is true, we can make several changes and kill all nonzero
maps fkl’ii))(SC with j(k) < ¢ < j(k) + d(u,a) — 5(0), since they are derivations and
therefore are completely defined by their values at 7.
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To prove it, we can use the calculations in the proof of lemma 3, (ii). Since d(u,a) —
7(0) < 4(0), it is easy to see that for a change z +— 2’ = 2 + bz*P*1 | p > 2 we have there

S =i (k=1)yp 1j(k=1) _ 4p + (—g(l)c 1)5 (k )(tp>zj(k) + .+ (—z]tq(tlz;_l)(sj(k)Jrj(O) (tp)zj(k)+j(0) 4+
Since 2 = z + bz"*! any power 2! can be expressed as a series in 2z, all powers
of which are equal to [ modulo p. So, this change will change only maps with right
indexes equal to j(k) modulo p. Since (_Z;(‘kl_’ﬁ)ﬁg(tp) #0 only if ( =j(0) mod p for
¢ < j(k)+d(u,a) — j(0), our assertion is proved

So, there exists a parameter z;, we have: k 1)5<(tp) # 0 only if ¢ =j(k)+d(u,a)—
j(0) or ¢ =j(k). Since z; was constructed a as a sequence of changes as in lemma 3, (ii),
we have (%) = (-1)g and xW§, i(q) = = (r-1u 5 y for any ¢ < k.

At last, let’s prove that z’“ w k) O¢(tF) # 0 only 1f C = j(k)+d(u,a) — 5(0) or ¢ =j(k).
But this follows immediately from the definition of these maps, since j(k) = j(k —
1) mod p, d(u,a) — j(0) < 7(0) and charD > 2. In particular, (_Z]’?’(’z))c%(k)(tp) =
(z1,u) (zk,u) _ (zk,u)

S0 ) 5 05tk +dwa)—50) () = ikt 1) 05tk +dwa)—s(0) () -

The lemma is proved.

O

Now we can prove the following theorem.

Theorem 4 Let D be a division p-algebra of charD = p > 2 with the center Z(D) =
F . Suppose Z(D) = D and D/F is a simple purely inseparable extension, D = F(a).
Suppose that the semilocal height i(u) , which does not depend on the embedding u in this
case, is not divisible by p .

Then dp(a) > i(u).

Proof. By lemma 12, (i) [D : F| = [['p : T'x]. So, the field F(a), where a is a lift
of a,is a maximal "unramified” subfield and therefore D is a splittable division algebra.
Obviously, a =1id.

Since (Z’“)éi(u’z) is a derivation and D/F is a simple extension, (Z’“)éi(u’z) is completely
defined by a value at a. So, by lemma 3 i(u, z) does not depend on z and i(u, z) = i(u).
Therefore, i(u) = w(zu(a)z~ — u(a)) and i(u) is completely defined by the lift u(a).
From the other hand side, any lift @ of a defines, by lemma 9, an embedding a, and by
lemma 10 i(a) does not depend on a. So, i(u) does not depend on wu.

The idea of the proof is following. We consider linear spaces which are the images of
the maps (Z’“)éj(k)|F(apk) in D, where j(k) were defined in lemma 14 and z,u are fixed.
We show that every such spase has zero intersection with each other if dp(a) < i(u).
Then we show that this contradicts with the fact that u(a) generate a finite dimensional
space over F'.

So, assume dp(a) < i(u). To calculate the spaces *"3;p (F(a”")) € D we use
lemmas 8, 13 and 14. We fix a parameter z defined in lemma 13. By lemmas 9, 10, (iii)
we can find a primitive element @ € D of the extension D/F such that (2’“)(5]-(0)(11) =1,
where u is an embedding defined in lemma 9 for some lift u of the element @. Using
lemma 3, (ii) we can find an embedding u such that %, q) (@) & #§;)(D). We fix
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this embedding. From lemmas 3, 10 immediately follows that d(u,u) = dp(u) = dp(a).
So, we assume without loss of generality a = u.

Put J(k) = G955 (a"). Put A(k) = G950 (Fa")), A'(k) = F@") -
a?* =D J (k) .

We have A(k) = @25 F(a?*™) - a?"J(k) and D - J(k) = A(k) ® A'(k) as F,-linear
spaces.

From lemma 8 follows that

G550 (@) = B9800 (@) = ¢35,

k—1

(u,ap“)(“p >Cd(u,ap’“‘1)fj(k—l),(p—nj(kfl),p—l7

where ¢ € JF;, zr, were defined in lemma 13, ¢ o is calculated

) —j(k=1),(p=1)j (k—1),p—1
in lemma 5, (i) and it is not equal to zero by lemma 5, (ii), and %;&;fg&d(u apkfl)((lpk71>

is calculated in lemma 14. By lemma 14 we have (_Z;,(_kl_ﬂi))é‘d(uyapk—l)(a,pk_l) = —j(k —

1)=w5 d(wpk_l)(apk*l) . Combining all these calculation together and using induction, we

get J(k) = quJ(k —1)PJ(1) = G JJ(1)P" 7+ P4 for k> 1, where ¢, € F,.
Therefore, there is the following filtration

Fc...CcFa™Jk+1)cF)Jk) c...cD,

and for every k > 1 we have F(a?")-J(k) C A'(k—1).So, A(k)NA(ky) = {0} if k # ky .

Now consider an element b € F such that b = a” for some [ > 0. We assume [ is
a minimal possible integer. It exists, because D is a finite dimensional algebra over F'.
Let b = u(a?) + bz + ..., where by € w(D). Put I := min{w(zbezF~' — bpz¥)} (we
assume here that by = u(a?')). Note that I < oo, since by lemma 14 j(I) < oo, ie.
(Z’“)(Sj(l)(apl) # 0. Now we must have

o0

2bz =Yz =04 G650y (bg)2E + ... =D,
k=0 T

where b, € F(a”") and b, ¢ F(a?""). So, 3, 5"d;0y(b,) = 0, but it is impossible,

since A(k) N A(ky) = {0} if k # k1, a contradiction.

The theorem is proved.

(I

Remark. It would be interesting to know the answer on the following questions.

i) Suppose D is a division algebra as in the theorem 4. Does there exist a pair (z,u)
such that all nonzero maps *%§, satisfy the property i(u)|q? If it is true, there is a
subalgebra D" C D with [D: D’] < co and D’ has level 1 (see remark before lemma 8).
So, we can reduce studying of D to the algebra of level 1.

ii) Is it true that D is a good splittable algebra, i.e. cyclic? Probably, it is possible to
apply our technique to give an answer to this question at least in the case of level 1.
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