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Abstract

In this paper we study some special classes of division algebras over a Laurent series
field with arbitrary residue field. We call the algebras from these classes as split-
table and good splittable division algebras. It is shown that theses classes contain
the group of tame division algebras. For the class of good division algebras a de-
composition theorem is given. This theorem is a generalization of the decomposition
theorems for tame division algebras given by Jacob and Wadsworth in [6]. For both
clases we introduce a notion of a δ -map and develop a technique of δ -maps for
division algebras from these classes. Using this technique we reprove several old
well known results of Saltman and get the positive answer on the period-index con-
jecture: the exponent of A is equal to its index for any division algebra A over
a C2 -field F , when F = F1((t2)) , where F1 is a C1 -field (see [10], 3.4.5.). The
paper includes also some other results about splittable division algebras, which, we
hope, will be useful for the further investigation of wild division algebras.

1 Introduction

In this paper we study some class of division algebras over a Laurent series field with
arbitrary residue field. Namely, we study division algebras which satisfy the following
condition: there exists a section D̄ ↪→ D of the residue homomorphism D → D̄ , where
D is a central division algebra over a complete discrete valued field F = k((t)) . We say
that these division algebras are splittable. If chark = 0 , all such division algebras are
tame and therefore belong to the group of tame division algebras, which was carefully
studied in the papers [6] and [10] even in a much more general situation of a henselian
field F of arbitrary characteristic. So, we consider mostly wild division algebras.

An extensive analysis of the wild division algebras of degree p over a field F with
complete discrete rank 1 valuation with char(F̄ ) = p was given by Saltman in [11]
(Tignol in [13] analyzed more general case of the defectless division algebras of degree
p over a fild F with Henselian valuation). Here we study splittable division algebras
of arbitrary index. This class (which is not a subgroup in Br(F ) ) contains a class of
good splittable division algebras (see the definition in section 2), which posess several
beautiful properties. In particular, we prove a decomposition theorem for such algebras.
This theorem is a generalization of the decomposition theorems for tame division algebras
given by Jacob and Wadsworth in [6].

For arbitrary splittable division algebras we give only several assorted results, and the
study of this class is far from to be complete. Nevertheless, we investigate here technical
tools, which are important for the study of such algebras, and prove a relation between
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the level and a higher order level for some splittable division algebras (see section 6).
We hope this technique will be applied to the study of the cyclisity question for certain
division algebras od degree pk .

As an application we get several results, which are partly well known (see proposition
6) and party not. In particular, we get the positive answer on the following conjecture:
the exponent of A is equal to its index for any division algebra A over a C2 -field
F = F1((t2)) , where F1 is a C1 -field.

Here is a brief overview of this paper.
In section 2 we give a definition of splittable and good splittable division algebras and

prove that all tame division algebras over F = k((t)) are good splittable.
Section 3 contains the most important technical tools for the study of splittable division

algebras. We define a notion of δ -maps and investigate a theory of δ -maps for such
algebras. In this section we define also the notion of a local height, which is a possible
generalization of Saltman’s level.

In section 4 we prove the period-index conjecture metioned above. This section contains
also a small history of the question known to the author. We note that the proof does not
use all the results from section 3.

In section 5 we study good splittable division algebras and prove the decomposition
theorem.

In section 6 we reprove some results of Saltman about semiramified division algebras
of index p over F using the technique from section 3. Then we define a notion of a higher
order level and prove several general properties of splittable division algebras satisfying
the following condition: Z(D̄)/F̄ is a simple extension. At the end of section we put
several open questions.

We use the notation of [6]. We always denote by D a division algebra finite dimensional
over its center F = k((t)) = Z(D) . Recall that any Henselian valuation on F has a
unique extension to a valuation on D . We denote the valuation on F by v and its
unique extension on D by w .

Given a valuation w on D , we denote by ΓD its value group, by VD its valuation
ring, by MD its maximal ideal and by D̄ = VD/MD its residue division ring.

By [12], p.21 one has the fundamental inequality

[D : F ] ≥ |ΓD : ΓE| · [D̄ : F̄ ].

D is called defectless over F if equality holds and defective otherwise. It is known that
D is defectless if it has a discrete valuation of rank 1.

Jacob and Wadsworth in [6] introduced the basic homomorphism

θD : ΓD/ΓF → Gal(Z(D̄)/F̄ )

induced by conjugation by elements of D . They showed that θD is surjective and Z(D̄)
is the compositum of an abelian Galois and a purely inseparable extension of F̄ .

We say D is tame division algebra if char(F̄ ) = 0 or char(F̄ ) = q 6= 0 , D is
defectless over F , Z(D̄) is separable over F̄ , and q 6 ||ker(θD)| . We say D is wild division
algebra if it is non tame.
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We call a division algebra D inertially split if Z(D̄) is separable over F̄ , the map
θD is an isomorphism, and D is defectless over F .
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2 Cohen’s theorem

Recall one definition from [14].

Definition 1 A division algebra D is said to be splittable if there is a homomorphism
D̄ ↪→ OD ⊂ D that is a section of the map OD → D̄ .

There is a natural question if there exists a generalization of Cohen’s theorem, i.e. is
any central division algebra splittable or not. It is not true if a division algebra is not
finite dimensional over its centre, as Dubrovin’s example in [14] shows. It is not true also
for some finite dimensional division algebras, as the example to theorem 2.7. in [11] shows.
But it is true for tame division algebras over complete discrete valued fields. This easily
follows from results of Jacob and Wadsworth [6] (compare with [14], Th.1).

Theorem 1 Let (F, v) be a valued field which is complete with respect to a discrete rank 1
valuation v . Suppose charF = charF̄ . Let D be a tame division algebra with Z(D) = F
and [D : F ] < ∞ .

Then there exists a section D̄ ↪→ D of the residue homomorphism D → D̄ .

Proof. Since F is a complete field, F is a Henselian field and v extends uniquely to
a valuation w on D . Since D is tame, Z(D̄)/Z(D) is a cyclic Galois extension. There
exists an inertial lift Z of Z(D̄) over F , Z is Galois over F , and by classical Cohen’s
theorem there exists a section Z̃(D̄) ↪→ Z .

Consider the centraliser C = CD(Z) of Z in D . Then we have C̄ = D̄ .
Indeed, by Double Centraliser Theorem we have [D : F ] = [C : F ][Z : F ] and [Z :

F ] = |Gal(Z(D̄)/F̄ )| . By [6], prop.1.7 a homomorphism θD : ΓD/ΓF → Gal(Z(D̄)/F̄ ) is
surjective, so for any parameter z we have θD(w(z)) = σ , where < σ >= Gal(Z(D̄)/F̄ ) .
It is clear that z /∈ C . Now let u1, . . . , u[C:F ] be a F -basis of C . It is easy to see that
the elements uj, zuj, . . . , z

n−1uj , j = 1, . . . , [C : F ] , where n = ord(σ) , the order of σ ,
are linearly independent, so form a basis for D over F . Since

w(F 〈zuj, . . . , z
n−1uj, j = 1, . . . , [C : F ]〉) ∩ ΓC = 0,

where F 〈zuj, . . . , z
n−1uj, j = 1, . . . , [C : F ]〉 denote a vector space in D over F gener-

ated by elements ujz
i , this implies that for any element x ∈ D with w(x) = 0 we can
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find elements r1, . . . r[C:F ] ∈ F such that x = r1u1 + . . .+r[C:F ]u[C:F ] mod MD . Hence
C̄ = D̄ .

Note that C is an unramified division algebra. Indeed, by [6], th.2.8, th.2.9 C contains
a copy of the inertial lift of a maximal separable subfield in C̄ , say C̃ . Then the centralizer
CC(C̃) must be a totally ramified division algebra, i.e. it is trivial and C̃ is a maximal
subfield. So, C must be unramified.

Fix an embedding i : F̄ ↪→ F . It can be extended to the embedding i′ : Z̄ ↪→ Z ,
i′|F̄ = i by Hensel lemma. Now consider the algebra A = C̄ ⊗Z̄ Z(C) . It is easy to see
that A is an unramified division algebra with Ā = C̄ = D̄ . Therefore by [3], Th.31,
A ∼= C ; so there exists a section D̄ ↪→ C .

The theorem is proved.
2

Later we will see that much more can be said about good splittable algebras:

Definition 2 A division algebra D is called good splittable if there exists a section s :
D̄ ↪→ D compatible with an embedding i : Z(D) ↪→ Z(D) , i.e. s(Z(D)) = i(Z(D)) ⊂
Z(D) .

It’s easy to see that all tame division algebras are good splittable, because by Hensel
lemma any embedding Z(D) ↪→ Z(D) can be uniquely extended to any separable exten-
sion of Z(D) .

It is interesting to know what kind of splittable division algebras are good splittable.
By theorem 3.9. in [11] even a splittable division algebra D of degree p = charD is

not a good splittable algebra if the level of D (the notion of level we will recall in section
3, see remark to lemma 7) is divisible by p . Nevertheless, it is an open question whether
it is true or not, for example, for division algebras with D̄ = Z(D̄) such that D̄/F̄ is
a simple extension and the local height (see the definition in the same remark) is not
divisible by p . We will discuss this question in section 6.

3 Delta-maps of splittable algebras

In this section we develop some ideas from [14], where some properties of δ -maps for
special kind of local skew fields were studied. Technical properties of δ -maps play the
main role in all our results. Here we will give a list of these properties.

Let D be a finite dimensional division algebra over a complete valued field F = k((t)) .
Let w be a unique extension of the valuation v to D . We will denote by z any parameter
of D , i.e. any element with 〈w(z)〉 = ΓD . Consider the ring Z〈α, δ〉 of noncommutative
polinomials in two variables. Define the map

σ : Z〈α, σ〉 → Z〈α, δ, δi; i ≥ 1〉,

σ(αa1δb1 . . . αanδbn) = αa1δb1 . . . δbn−1
αan−1δbn ,

where a1, bn ≥ 0 , ai, bj ≥ 1 , i > 1 , j < n for every word in Z〈α, δ〉 .
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Let Sk
i ∈ Z〈α, δ〉 , i ≥ k , i ≥ 1 be polynomials given by the following formula:

Sk
i =

∑

τ∈Si/G

τ(α . . . α
︸ ︷︷ ︸

i−k

δ . . . δ
︸ ︷︷ ︸

k

),

where Si is a permutation group and G is an isotropy subgroup.

Lemma 1 ([14], lemma 2) The polynomials Sk
i satisfy the following property:

Si
i = δi, S0

i = αi, Sk+1
i+1 = αSk+1

i + δSk
i

For any splittable division algebra can be defined a notion of δ -maps:

Proposition 1 ([14], prop. 1,2) Let D be a splittable division algebra. Fix some param-
eter z and some embedding u : D̄ ↪→ D . Then D is isomorphic to a division algebra
D̄((z)) , which is defined to be the vector space of series with multiplication defined by the
formula

zaz−1 = α(a) + δ1(a)z + δ2(a)z2 + . . . , a ∈ D̄,

where α : D̄ → D̄ is an automorphism and δi : D̄ → D̄ are linear maps such that the
map δi satisfy the identity

δi(ab) =
i∑

k=0

σ(δi−kα)(a)σ(Sk
i α)(b), a, b ∈ D̄

Remark Note that the values σ(Sk
i α) and σ(δi−kα) belong to the subring Z〈α, δi, i ≥

1〉 , so the formula is well defined.
Note that δ -maps depend on the choice of a parameter and an embedding. The auto-

morphism α , as it easy to see, depend only on the choice of a parameter. In the proposition
we identify D̄ with u(D̄) .

Corollary 1 ([14], corol. 1) Suppose α = Id . Then

δi(ab) = δi(a)b +
i∑

k=1

δi−k(a)
∑

(j1,...,jl)

C l
i−k+1δj1 . . . δjl

(b),

where δ0 = α and the second sum is taken over all the vectors (j1, . . . , jl) such that
0 < l ≤ min{i − k + 1, k} , jm ≥ 1 ,

∑
jm = k .

Further we will need even more general definition.

Definition 3 In the situation of proposition 1 let us define maps (z,u)
m δi : D̄ → D̄ ,

m ∈ Z , i ∈ N as follows.

zmaz−m = u((z)αm(ā)) + u((z,u)
m δ1(ā))z + u((z,u)

m δ2(ā))z2 + . . . , a ∈ u(D̄).

If m = 0 , put (z,u)
m δi = 0 .
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Note that (z)α|Z(D̄) does not depend on the choice of z .

Note that if (z)α = id , then (z,u)
m δi = 0 for m = pk , where k is sufficiently large, k

depends on i . Moreover, (z,u)
m δi =

(z,u)

m+pkδi for k sufficiently large. We will use also the
following notation:

(z,u)
m δ̃i =

(z,u)
−m δi,

(z,u)
1 δi = (z,u)δi

Sometimes, we will write mδi instead of (z,u)
m δi and (z,u)

m δi(a) instead of u((z,u)
m δi(ā))

whenever the context is clear.
Immediately from the definition follows

Lemma 2 In the situation of definition 3 we have
(i) for |m| > 1

(z,u)
m δi(a) = (z)αsign(m)(

(z,u)
sign(m)(|m|−1)δi(a)) +

(z,u)
sign(m)δi(

(z)αsign(m)(|m|−1)(a))+

i−1∑

j=1

(z,u)
sign(m)δj(

(z,u)
sign(m)(|m|−1)δi−j(a)),

where sign(m) = m/|m| , a ∈ D̄ ;
(ii) for any m 6= 0

(z)α−m((z,u)
m δi) +

(z,u)
−m δi(

(z)αm) +
i−1∑

j=1

(z,u)
−m δj(

(z,u)
m δi−j) = 0

Proposition 2 For fixed z, u from proposition 1 we have
(i) The maps (z,u)

m δi satisfy the following identities:

mδi(ab) = mδi(a)αi+m(b) + αm(a)mδi(b) +
i−1∑

k=1

mδi−k(a)i−k+mδk(b)

(ii) Suppose α = id . Then the maps (z,u)
m δi satisfy the following identities:

mδi(ab) = mδi(a)b + amδi(b) +
i−1∑

k=1

mδi−k(a)
∑

(j1,...,jl)

C l
i−k+mδj1 . . . δjl

(b)

where the second sum is taken over all the vectors (j1, . . . , jl) such that 0 < l ≤ min{i−
k + m, k} , jm ≥ 1 ,

∑
jm = k ; Ck

j = 0 if j = 0 , and Ck
j = Ck

j+pq for q >> 0 if j ≤ 0 .

Proof. For any a, b ∈ D̄ we have

αm(ab)zm + mδ1(ab)zm+1 + mδ2(ab)zm+2 + . . . = zm(ab) =

(αm(a)zm + mδ1(a)zm+1 + mδ2(a)zm+2 + . . .)b (1)

If we represent the right-hand side of (1) as a series with coeffitients shifted to the left and
then compare the corresponding coeffitients on the left-hand side and right-hand side, we
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get some formulas for mδi(ab) . We have to prove that these formulas are the same as in
our proposition.

Let
zi+m−kb = αi+m−k(b)zi+m−k + . . . + x′

kz
i+m + . . .

and

(αm(a)zm + mδ1(a)zm+1 + mδ2(a)zm+2 + . . .)b = αm(ab)zm + ym+1z
m+1 + ym+2z

m+2 + . . .

Then we have

yi+m = αm(a)x′
i +

i−1∑

k=0

mδi−k(a)x′
k

In the proof of [14], prop.2 we have shown that

zi+1−kb = αi+1−k(b)zi+1−k + . . . + σ(Sk
i α)(b)zi+1 + . . .

Hence x′
k = σ(Sk

i+m−1α)(b) for k < i . It is easy to see that x′
i = mδi(b) , x′

0 = αi+m(b)
and σ(Sk

i+m−1α) = i+m−kδk , which proves (i).
For α = id , by corollary 1,

σ(Sk
i+m−1α)(b) =

∑

(j1,...,jl)

C l
i−k+mδj1 . . . δjl

(b),

where l, j1, . . . , jl were defined in our proposition. This proves (ii).
The proposition is proved.
2

Lemma 3 ([14], lemma 3 )

In the situation of proposition 1 suppose
(z,u)
i δj is the first map such that

(z,u)
i δj(a) 6= 0

for given a ∈ D̄ , i ∈ Z\{0} , i.e.
(z,u)
i δ1(a) = . . . =

(z,u)
i δj−1(a) = 0 ,

(z,u)
i δj(a) 6= 0 (so

we have a map i 7→ j(i) ). Then

(i) for z′ = z + u(b)zq+1 , b ∈ D̄ we have (z′)αi(a) = (z)αi(a) ,
(z′,u)
i δk(a) =

(z,u)
i δk(a)

for k < q and
(z′,u)
i δq(a) =

(z,u)
i δq(a) + b′(z)αq+i(a) − (z)αi(a)b′,

where b′ =
∑i−1

k=0
(z)αk(b) .

(ii) Suppose (z)αn|Z(D̄) = id , n ≥ 1 , a ∈ Z(D̄) and
(z,u)
1 δ1(

(z)αk(a)) = . . . =
(z,u)
1 δj−1(

(z)αk(a)) = 0 for any k .

Then for z′ = z+u(b)zq+1 , b ∈ D̄ we have (z′)αi(a) = (z)αi(a) ,
(z′,u)
i δk(a) =

(z,u)
i δk(a)

for k < q + j and

(z′,u)
i δq+j(a) =

(z,u)
i δq+j(a) + b′(z)αq(

(z,u)
i δj(a)) −

(z,u)
i δj(a)(z)αj(b′)+

b′
q

∑

k=1

(z)αq−k((z,u)δj(
(z)αk+i−1(a))) −

(z,u)
i δj(a)

j−1
∑

k=0

(z)αk(b),
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where b′ =
∑i−1

k=0
(z)αk(b) , if n|q or (z)α(a) = a .

In particular, if (z)α = id and (i, p) = 1 , then

(z′,u)
i δq+j(a) =

(z,u)
i δq+j(a) + (q − j)

(z,u)
i δj(a)b

(iii) for z′ = u(b)z , b ∈ Z(D̄) , b 6= 0 we have (z′)α(a) = (z)α(a) , (z′,u)δk(a) =
(z,u)δk(a) for k < j and

(z′,u)δj(a) = (z,u)δj(a)(z)α(b−1) · · · (z)αj(b−1)

if i = 1 .

Proof. (i) We have

z′
i
az′

−i
= (1+b′zq+. . .)ziaz−i(1+b′zq+. . .)−1 = (ziaz−i+b′zqziaz−i+. . .)(1−b′zq+. . .) =

(ziaz−i − ziaz−ib′zq + . . . + b′zqziaz−i − . . .) =

(ziaz−i − [(z)αi(a) +
(z,u)
i δj(a)zj + . . .]b′zq + b′zq[(z)αi(a) +

(z,u)
i δj(a)zj + . . .] + . . .) =

(ziaz−i − [(z)αi(a)b′ +
(z,u)
i δj(a)(z)αj(b′)zj + . . .]zq + b′(z)αq+i(a)zq + . . .) =

(ziaz−i + (−(z)αi(a)b′ + b′(z)αq+i(a))zq + . . .) = (z)αi(a) + . . . +
(z,u)
i δq−1(a)z′q−1+

(
(z,u)
i δq(a) + b′(z)αq+i(a) − (z)αi(a)b′)z′q + . . .

(ii) Put c = z′iz−i − 1 − b′zq+i . So, w(c) > q + i . Note that c(z)αk(a) = (z)αk(a)c ,
since n|q or (z)α(a) = a and a ∈ Z(D̄) . We have

z′iaz′−i = (1+b′zq+c)ziaz−i(1+b′zq+c)−1 = (ziaz−i+b′zqziaz−i+cziaz−i)(1+b′zq+c)−1 =

((z)αi(a)+
(z,u)
i δj(a)zj+. . .+

(z,u)
i δq+j(a)zq+j+. . .+b′zq((z)αi(a)+

(z,u)
i δj(a)zj+. . .))(1+b′zq+c)−1 =

((z)αi(a) + b′(z)αq+i(a)zq + (z)αi(a)c +
(z,u)
i δj(a)zj + . . . +

(z,u)
i δq+j(a)zq+j + . . . +

b′
q

∑

k=1

((z)αq−k((z,u)δj(
(z)αk+i−1(a))))zq+j + b′((z)αq(

(z,u)
i δj(a)))zq+j + . . .)(1 + b′zq + c)−1 =

(z)αi(a)+[
(z,u)
i δj(a)zj+. . .+

(z,u)
i δq+j(a)zq+j+. . .+b′

q
∑

k=1

((z)αq−k((z,u)δj(
(z)αk+i−1(a))))zq+j+

b′((z)αq(
(z,u)
i δj(a)))zq+j + . . .)](1 − b′zq − c + . . .) =

(z)αi(a)+
(z,u)
i δj(a)zj +. . .+

(z,u)
i δq+j(a)zq+j +. . .+b′

q
∑

k=1

((z)αq−k((z,u)δj(
(z)αk+i−1(a))))zq+j+

b′((z)αq(
(z,u)
i δj(a))zq+j + . . . −

(z,u)
i δj(a)(z)αj(b′)zq+j + . . . =

(z)αi(a) + . . . +
(z,u)
i δq+j−1(a)z′q+j−1 + (

(z,u)
i δq+j(a) + b′(z)αq(

(z,u)
i δj(a)) −

(z,u)
i δj(a)(z)αj(b′)
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+b′
q

∑

k=1

(z)αq−k((z,u)δj(
(z)αk+i−1(a))) −

(z,u)
i δj(a)

j−1
∑

k=0

(z)αk(b))z′q+j + . . . ,

since z′j = zj +
∑j−1

k=0
(z)αk(b)zq+j + . . . .

(iii) We have

z′az′−1 = bzaz−1b−1 = (z)α(a) + b(z,u)δj(a)(z)αj(b−1)zj + . . . =

(z)α(a) + (z,u)δj(a)(z)α(b−1) . . . (z)αj(b−1)z′j + . . . ,

since (z′)α|Z(D̄) = (z)α|Z(D̄) .
2

Corollary 2 In the situation of lemma 3 we have

j = w(xu(a)x−1 − u(a)),

where x ∈ D is any element with w(x) = i , if a ∈ Z(D̄) , α(a) = a and (i, p) = 1 ,
where p = charD .

If i = 1 , we will denote j by j(u, a) or by i(u, a) .

Proof. Since for some parameter z we have x = b(1+x1z+. . .)zi , where b, xk ∈ u(D̄) ,
the proof is easily follows from the proof of (ii) in lemma 3.
2

In the sequel we will need the following definition.

Definition 4 Let (α, β) be endomorphisms of a division algebra D . A map δ : D →
D′ , where D ⊂ D′ are algebras, is called a (α, β) -derivation if it is linear and satisfy
the following identity

δ(ab) = δ(a)α(b) + β(a)δ(b)

where a, b ∈ D .
We will say that (α, 1) -derivation is an α -derivation.

Lemma 4 (cf. [14], lemma 4) Let δ be an (α, β) -derivation of an arbitrary division
algebra D such that α, β preserve Z(D) and α|Z(D) 6= β|Z(D) .

Then δ is an inner derivation, i.e. there exists d ∈ D such that

δ(a) = dα(a) − β(a)d

for all a ∈ D .

Proof. Put d = δ(a)(aα − aβ)−1 , where a ∈ Z(D) is any element such that α(a) 6=
β(a) . Put δin(x) = dα(x) − β(x)d . We claim that δ = δin . Indeed, consider the map
δ̄ = δ − δin . It is an (α, β) -derivation. Take arbitrary b ∈ D . Then δ̄(ab) = δ̄(ba) . But
we have

δ̄(ab) = δ̄(a)α(b) + β(a)δ̄(b) = β(a)δ̄(b),
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and
δ̄(ba) = δ̄(b)α(a) + β(b)δ̄(a) = α(a)δ̄(b)

Therefore, δ̄(b) = 0 for any b .
2

Proposition 3 (cf. [14], lemma 10) Let D be a splittable division algebra. Let n =
Gal(Z(D̄)/Z(D)) . There exists a parameter z′ such that

(z′,u)
m δj = 0

if n 6 |j .

Proof. Since for n = 1 there is nothing to prove, we will assume that n > 1 . Let z
be some fixed parameter. By [6], prop. 1.7 (z)α|Z(D̄) has order n .

By proposition 2, (z,u)δ1 is a ((z)α2, (z)α) -derivation. Since n > 1 , (z)α2|Z(D̄) 6=
(z)α|Z(D̄) . Therefore, by lemma 4, (z,u)δ1 is an inner derivation and (z,u)δ1(a) = d(z)α2(a)−
(z)α(a)d , a ∈ D̄ . Put z1 = z − u(d)z2 . By lemma 3, (i) we have for any a ∈ D̄
(z1,u)δ1(a) = 0 and (z)α(a) = (z1)α(a) . So, (z1,u)δ1 = 0 and (z)α = (z1)α .

By proposition 2, (z1,u)δ2 is a ((z1)α3, (z1)α) -derivation. If n 6= 2 then it is inner and
we can apply lemma 3. By induction we get that there exists a parameter zn−1 such that
(zn−1,u)δj = 0 for j < n and (z)α = (zn−1)α . It is easy to see that then (zn−1,u)

m δj = 0 for
j < n and all m ∈ Z . Note that (zn−1,u)δn is a ((zn−1)αn+1, (zn−1)α) = ((zn−1)α, (zn−1)α) -
derivation, i.e. (zn−1,u)δn

(zn−1)α−1 is a derivation.
Note that (zn−1,u)δn+1 is a ((zn−1)α2, (zn−1)α) -derivation. This follows by proposition

2, since (zn−1,u)
m δj = 0 for j < n and all m ∈ Z . So, by lemma 4, (zn−1,u)δn+1 is an

inner derivation. Using lemma 3, (i) with zn+1 = zn−1 + bzn+2
n−1 for an appropriate b , we

have (zn+1,u)δj = 0 for j < n + 2 , n 6 |j and (z)α = (zn+1)α . Moreover, (zn+1,u)
m δj = 0 for

j < n + 2 , n 6 |j and all m ∈ Z . This easily follows from lemma 2.
By induction we can assume that there exists a parameter zk such that (zk,u)

m δj = 0
for j < k + 1 , n 6 |j and all m ∈ Z , and (z)α = (zk)α .

So, by proposition 2, if n 6 |k+1 , then (zk,u)δk+1 is an inner ((zk)αk+2, (zk)α) -derivation.
And if n|k + 1 , we can apply the same arguments and conclude that (zk,u)δk+2 is a
((zk)αk+2, (zk)α) -derivation. Therefore, by lemma 3 there exists a parameter zk+1 = zk +
bzk+2

k ( zk + bzk+3
k if n|k + 1 ) such that (zk+1,u)

m δj = 0 for j < k + 2 , n 6 |j and all
m ∈ Z , and (z)α = (zk+1)α (or (zk+1,u)

m δj = 0 for j < k + 3 , n 6 |j and all m ∈ Z , and
(z)α = (zk+1)α if n|k + 1 ).

Since zl+1 = (1 + blz
kl

l )zl for every l , the sequence {zl}
∞
l=1 converges in D , which

completes the proof of the proposition.
2

Lemma 5 Let D be a splittable division algebra as in proposition 1, of characteristic
p > 0 . Let t ∈ Z(D̄) be an element such that α(t) = t .

Let j = i(u, t) be the minimal positive integer such that (z,u)δj|Fp(t) 6= 0 (see corollary

2), and we assume j < ∞ . Then the maps (z,u)
n δm , kj ≤ m < (k+1)j , k ∈ {1, . . . , p−1}

satisfy the following properties:
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i) there exist elements cn,m,k ∈ D̄ such that

(z,u)
n δm|Fp(t) = cn,m,1δ + . . . + cn,m,kδ

k,

where δ : Fp(t) → Fp(t) is a derivation such that δ(t) = 1 , and

cn,kj,k = (k!)−1(z,u)
n δj(t)

(z,u)
n+j δj(t) . . .

(z,u)
n+(k−1)jδj(t).

ii) Let ζ = ord((z)α|Z(D̄)) . Then ζ|j and

cn,kj,k 6= 0 if (n, j) = 1 and (z)α((z,u)δj(t)) 6=
(z,u)δj(t) ;

cn,kj,k 6= 0 if (z)α((z,u)δj(t)) = (z,u)δj(t) and n, (n + j), . . . , (n + (k − 1)j) 6= 0 mod p .
If (z)α = id , then cn,kj,k 6= 0 iff n, (n + j), . . . , (n + (k − 1)j) 6= 0 mod p .

Proof. i) The proof is by induction on k . Let a, b ∈ Fp(t) . For k = 1 , by proposition
2, (ii) we have

nδm(ab) = nδm(a)b + anδm(b)

because all the maps δq , q < j are equal to zero on Fp(t) . Hence, nδm is a derivation
on Fp(t) , nδm|Fp(t) = cn,m,1δ and cn,j,1 = nδj(t) .

For arbitrary k , by proposition 2, (i) and by the induction hypothesis we have

nδm(tq) = qnδm(t)tq−1 + nδj(t)(
q−2
∑

l=0

(cn+j,m−j,1δ + . . . + cn+j,m−j,k−1δ
k−1)(tq−1−l)tl)+

. . . + nδm−j(t)(
q−2
∑

l=0

(cm−j+n,m−s,1δ)(t
q−1−l)tl). (2)

Therefore, nδm(tp) = 0 , because k ≤ p − 1 and
∑p−2

l=0 δi(tp−1−l)tl = 0 for i ≤ p − 2 .
Hence, nδm|Fp(t) = cn,m,1δ + . . . + cn,m,p−1δ

p−1 and we only have to show that cn,m,q = 0
for q > k .

Using (2) we can calculate cn,m,j . We have

cn,m,1 = nδm(t);

cn,m,2 =
1

2!
(nδm(t2) − 2cn,m,1t) =

1

2
(nδj(t)(cn+j,m−j,1δ(t)) + . . . + nδs(t)(cs+n,m−s,1δ(t)))

. . .

cn,m,q =
1

q!
(nδj(t)(

q−2
∑

l=0

cn+j,m−j,q−1δ
q−1(tq−1−l)tl) + . . .

+nδm−(q−1)j(t)(
q−2
∑

l=0

cm+n−(q−1)j,(q−1)j,q−1δ
q−1(tq−1−l)tl))

=
1

q
(nδj(t)cn+j,m−j,q−1 + . . . + nδm−(q−1)j(t)cm+n−(q−1)j,(q−1)j,q−1) (3)
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Hence, cn,m,k+1 = . . . = cn,m,p−1 = 0 and

cn,kj,k = q−1
nδj(t)cn+j,kj−j,k−1 = (k!)−1(z,u)

n δj(t)
(z,u)
n+j δj(t) . . .

(z,u)
n+(k−1)jδj(t).

ii) Let us prove first that ζ divide i . For, if i is not divisible by ζ , we have, by
proposition 2,

(z,u)δj(tx) = (z,u)δj(t)
(z)αj+1(x) + (z)α(t)(z,u)δj(x) = (z,u)δj(xt) =

(z,u)δj(x)(z)αj+1(t) + (z)α(x)(z,u)δj(t),

where x ∈ Z(D̄) , α(x) 6= x . But then (z)αj+1(x) = (z)α(x) , a contradiction.
If (z)α = id , the same arguments show that (z,u)δj(t) ∈ Z(D̄) .
If x ∈ D̄ is an arbitrary element, this formulae shows (z)αj is an inner automorphism

ad((z,u)δj(t)
−1) . Therefore, (z)αj((z,u)δj(t)) = (z,u)δj(t) .

Assume (z)α((z,u)δj(t)) 6=
(z,u)δj(t) . It’s clear then that

(z,u)
n+qjδj(t) =

n+qj−1
∑

l=0

(z)αl((z,u)δj(t)) 6= 0

if (n, j) = 1 . So, cn,kj,k 6= 0 by (i) in this case.

If (z)α((z,u)δj(t)) = (z,u)δj(t) , then
(z,u)
n+qjδj(t) = (n + qj)(z,u)δj(t) 6= 0 iff p does not

divide (n + qj) . So, by (i) cn,kj,k 6= 0 in this case iff n, (n + j), . . . , (n + (k − 1)j) 6=
0 mod p .

The lemma is proved.
2

Lemma 6 Let D be a splittable division algebra as in lemma 5. Let s ∈ Z(D̄) be an
element such that α(s) = s . Let i = i(u, s) be the minimal positive integer such that
(z,u)δi(s) 6= 0 (see corollary 2).

If p|i , then for any positive integral k there exists a map (z,u)δj(k) such that
(z,u)δj(k)(s

pk

) 6= 0 .

Proof. We claim that (z,u)δpqi is the first map such that (z,u)δpqi|Fp(spq
) 6= 0 . The proof

is by induction on q . For q = 0 , there is nothing to prove. For arbitrary q , put t = spq−1

.
By proposition 2 we have

δpqi(t
p) = δpq−1i(t)

p−2
∑

r=0
1+pq−1iδpq−1i(p−1)(t

p−1−r)tr +
pqi−1
∑

l=pq−1i+1

δl(t)
p−2
∑

r=0

1+lδpqi−l(t
p−1−r)tr

By induction and lemma 5, 1+lδpqi−l|Fp(t) = c1+l,pqi−l,1δ + . . . + c1+l,pqi−1,p−2δ
p−2 for l >

pq−1i . Therefore,
∑p−2

r=0 1+lδpqi−l(t
p−1−r)tr = 0 . By lemma 5, (ii), 1+pq−1iδpq−1i(p−1)|Fp(t) =

c1+pq−1i,pq−1i(p−1),1δ + . . . + c1+pq−1i,pq−1i(p−1),p−1δ
p−1 with c1+pq−1i,pq−1i(p−1),p−1 6= 0 . Hence,

δpqi(t
p) = −c1+pq−1i,pq−1i(p−1),p−1δpq−1i(t) 6= 0 .

The same arguments show that (z,u)δj(t
p) = 0 for j < pqi . So, (z,u)δpqi is the first

non-zero map on Fp(s
pq

) .
2
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Lemma 7 Let D be a splittable division algebra. Let z be a fixed parameter and (z)α =
id , let u be some fixed embedding u : D̄ ↪→ D .

Let (z,u)δi , i ∈ N ∪ ∞ be the first non-zero map on D̄ . Assume (i, p) = 1 , where
p = charD . Let (z,u)δj , j > i , j ∈ N ∪∞ be the first map such that (z,u)δj 6= 0 if j is

not divisible by i and (z,u)δj 6= cj/i
(z,u)δ

j/i
i for some cj/i ∈ D̄ otherwise. Then

a) for k < p = charD (arbitrary k if charD = 0 ) we have (z,u)δki = ck
(z,u)δk

i , where

ck =
(i + 1) . . . (i(k − 1) + 1)

k!
, (4)

if ki < j .
b) if condition (4) is satisfied for any k with ki < j , then

(z,u)
−i δq = 0 for i < q < j

and
(z,u)
−i δj is a derivation.

Remark. We will call the number i(u, z) = mina∈D̄{w(zu(a)z−1 − u(a))} defined in
this lemma a local height. The number i = i(z, u) in lemma coinside with the level of D
defined in [11] if D has index p = charD and D is splittable. As it follows from lemmas
3, 10 (see below), i(z, u) does not depend on z, u in this case. Corollary 2 completes then
the proof that it coinside with the level defined by Saltman in the case D is splittable. This
number will play an important role in this work. It was one of the important parameters
in [14]. Recall the definition of level: h(D) = min{w(ab − ba) − w(a) − w(b)} .

Proof. If we compare coefficients in formulae for δki(ab) from proposition 2 with
coefficients in formulae for δk

i (ab) multiplied by ck , we must have

ckk = ((k − 1)i + 1)ck−1,

where from follows a).
¿From the other hand side, if −iδq , q > i is the first nonzero map after −iδi , it must

be a derivation by proposition 2, (i). Note that in characterictic zero case this can happens
only if q ≥ j , because a map cδk

i can not be a derivation if k > 1 , which proves b) in
this case.

Since the maps δq are uniquely defined, by lemma 2, by the maps δ̃l , l ≤ q , and the
maps δ̃q are uniquely defined by the maps −iδl , l ≤ q , and −iδq are linear combinations
of δl , l ≤ q with integer coefficients, we see that b) holds in arbitrary characteristic.
2

Remark. So we see that the maps iδq in this lemma satisfy the same identities as
δq/i . This can be thought of as a possible reduction from level i to level 1 .

Definition 5 Let D be a splittable division algebra. Let u be some fixed embedding
u : D̄ ↪→ D . Let s ∈ Z(D̄) be an element such that α(s) = s . Let i = i(u, s) be
the minimal positive integer such that (z,u)δi(s) 6= 0 ( corollary 2 shows that i does not
depend on z ). Assume (i, p) = 1 , where p = charD . Define

d(u, s) = max
z

{w(z−iu(s)zi − u(s) − u(
(z,u)
−i δi(s))z

i)} ∈ N ∪∞,
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As we can see from lemma 7 b), d(u, s) can be interpreted under some conditions as
the number j there. So, this definition was motivated by this lemma.

Lemma 8 In the definition above for p = charD > 0 and (z)α|Z(D̄) = id we have
i) d(u, s) = 2i mod p if d(u, s) < ∞ ;

ii) If
(z,u)
−i δi(s) 6= 0 , the map

(z,u)
−i δd(u,s)+(p−1)i is the first map such that

(z,u)
−i δd(u,s)+(p−1)i(s

p) 6=
0 for any parameter z . In particular, if d(u, s) = ∞ , [u(sp), zi] = 0 .

Proof. (ii) Let
(z,u)
−i δκ be the first map such that

(z,u)
−i δκ(s

p) 6= 0 . By corollary 2 κ

does not depend on z . By the same reason,
(z,u)
−i δi is the first map such that

(z,u)
−i δi(s) 6= 0

for any z .
Put w := d(u, s) + (p − 1)i and fix u, z . By proposition 2 we have

−iδw(sp) = −iδd(u,s)(s)
p−2
∑

q=0
d(u,s)−iδ(p−1)i(s

p−1−q)sq+

w−1∑

k=d(u,s)+1

−iδk(s)
p−2
∑

q=0

k−iδw−k(s
p−1−q)sq

By lemma 5, k−iδw−k|Fp(s) = ck−i,w−k,1δ + . . . + ck−i,w−k,p−2δ
p−2 for w − k < (p− 1)i and

d(u,s)−iδ(p−1)i|Fp(s) = cd(u,s)−i,(p−1)i,1δ+ . . .+cd(u,s)−i,(p−1)i,p−1δ
p−1 with cd(u,s)−i,(p−1)i,p−1 6= 0

if d(u, s) − i = i mod p . Indeed, as we have shown in the proof of lemma 5, (ii), the
order n of the automorphism (z)α on (z,u)δi(s) must divide i , so (n, p) = 1 . Now we
have two possibilities: n 6 |d(u, s) and n|d(u, s) .

In the first case we can repeat the arguments to the first assertion in lemma 5, (ii) to
show that cd(u,s)−i,(p−1)i,p−1 6= 0 . In the second case we have d(u,s)−i+qiδi(s) = (d(u, s)− i+
qi)/iiδi(s) 6= 0 if d(u, s)−i+qi is not divided by p . So, by lemma 5, (i) cd(u,s)−i,(p−1)i,p−1 6=
0 iff d(u, s) − i = i mod p in this case.

Hence,

−iδw(sp) = −−iδd(u,s)(s)cd(u,s)−i,(p−1)i,p−1 6= 0

if d(u, s) − i = i mod p .
This also shows that −iδw is the first map such that −iδw|Fp(sp) 6= 0 if d(u, s) − i =

i mod p .
i) By Skolem-Noether theorem there exists a parameter z′ in D such that (z′)α = id .

Put
d′(u, z′, s) = w(z′−ju(s)z′j − u(s) − u(

(z′,u)
−i δi(s))z

′i).

Since (z′)α = id , the map (z′,u)δi is the first map such that
(z′,u)
−i δi(s) 6= 0 . If d′(u, z′, s) 6=

2i mod p , we can find a parameter z′′ such that d′(u, z′′, s) > d′(u, z′, s) using lem-
ma 3, (ii). Continuing this procedure, we find a parameter z such that d′(u, z, s) =
2i mod p or d′(u, z, s) = ∞ .

Using arguments from ii) we get that the map
(z,u)
−i δd′(u,z,s)+(p−1)i is the first map such

that
(z,u)
−i δd′(u,z,s)+(p−1)i(s

p) 6= 0 for the parameter z . As it was noted in the beginning
of the proof, the number κ = d′(u, z, s) + (p − 1)i does not depend on the parameter.
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Since d′(u, z, s) ≤ d(u, s) , we get d′(u, z, s) = d(u, s) . For, otherwise we can repeat the

arguments from (ii) and conclude that
(z,u)
−i δd(u,s)+(p−1)i(s

p) = 0 , a contradiction. The
lemma is proved.
2

It would be interesting to know more about a behaviour of (z,u)
m δj with respect to the

embedding u . We will give an answer in one special case, namely, when D̄ = Z(D̄) and
Z(D̄)/Z(D) is a simple extension.

Lemma 9 Let D be a division algebra such that charD = p > 0 , D̄ = Z(D̄) , Z(D̄)
is not perfect and Z(D̄)/Z(D) is a simple extension (so, D is splittable). Let ū be a
primitive element of the extension Z(D̄)/Z(D) such that ū /∈ (Z(D̄))p and let u be any
lift of ū in D .

Then there exists an embedding u : D̄ ↪→ D such that u(ū) = u and any map (z,u)
m δj

is uniqely defined by the values (z,u)
m δj(u

q) or, equivalently, by the values
(z,u)
l δk(u) , k ≤ j .

In particular, if (z,u)
m δk(u) = 0 for k ≤ j , then (z,u)

m δj = 0 .

Proof. Consider a field Z(D)(u) . It is a complete discrete valued field as a finite
extension of Z(D) . By classical Cohen theorem, there exists an embedding Z(D)(u) =
D̄ ↪→ Z(D)(u) ⊂ D . By [4], lemmas 11,12 the embedding is completely defined by a
p -basis Γ of the field Z(D)(u) . Namely, for any lift G of a given p -basis Γ there exists
an embedding s such that G ⊂ s(Z(D)(u)) .

Let’s show that there exists a p -basis Γ of the field D̄ such that ū ∈ Γ and Γ 3 γ ∈
Z(D) if γ 6= ū .

Consider a set of all non-void sets Γ′ of elements γτ ∈ D̄ satisfying the following
property:
A) ū ∈ Γ′ , Γ′ 3 γ ∈ Z(D) if γ 6= ū and [D̄p(γ1, . . . , γr) : D̄p] = pr for any r distinct
elements of Γ′ .

This set is not void, since it contains the set Γ′ = {ū} . By Zorn’s lemma, there exists
a maximal set Γ satisfying A). Then D̄ = D̄p(Γ) . Indeed, since Z(D)

p
(ū) ⊂ D̄p(Γ) ,

it suffice to show that any element from Z(D) lies in D̄p(Γ) . Suppose a ∈ Z(D) ,
a /∈ D̄p(Γ) . Then the set Γ′ = {a∪ Γ} satisfy A), a contradiction with maximality of Γ .

Now, we can take a lift of Γ in the following way. We take u as a lift of ū , and we
take lifts of all other elements in Z(D) . This lift defines an embedding u : D̄ ↪→ D .

Let us show that any map (z,u)
m δj (for some fixed z ) is uniqely defined by the values

(z,u)
l δk(u) , k ≤ j . We have u(D̄) = u(Z(D))(u) and any element a ∈ u(D̄) can be
represented as a polynomial in finite number of elements from Γ with coefficients from
u(D̄)pk

for any k > 0 .

Note that for any j there exists k > 0 such that for any b ∈ Z(D)
pk

(z,u)
l δq(b) = 0

for all q ≤ j and all l . Indeed, assume
(z,u)
1 δq(b) 6= 0 for some q ≤ j , b ∈ Z(D)

pk

and
(z,u)
l δs(c) = 0 for all l , all c ∈ Z(D)

pk

and all s < q . Then, since (z)α|Z(D) = id and by

proposition 2,
(z,u)
l δs(b

p) = 0 for all b ∈ Z(D)
pk

, all l and all s ≤ q .
Now, since u(D̄)pk

= u(Z(D))pk

(upk

) , any element a ∈ u(D̄) can be represented as a
polynomial in finite number of elements from Γ with coefficients from u(Z(D))pk

. Since
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all elements except u in Γ belong to the center Z(D) , the value of (z,u)
m δj(a) is uniqely

determined by the values (z,u)
m δj(u

l) that are uniqely defined, by proposition 2, by the

values
(z,u)
l δk(u) , k ≤ j .

2

Remark In the case Z(D̄) perfect field there is only one embedding u , which is
compatible with the embedding Z(D) ↪→ Z(D) . So, the assertion of lemma is easy in
this case.

Lemma 10 (cf. [14], lemma 8)
In the situation of lemma 9 suppose (z,u)

m δ1 = . . . = (z,u)
m δj−1 = 0 , (z,u)

m δj 6= 0 . Let n
be the order of (z)α . Then

(i) for u′ = u + bzq , b ∈ u(D̄) , n|q we have (z,u′)
m δl = (z,u)

m δl , l < q and

(z,u′)
m δq(ū) = (z,u)

m δq(ū) + (z)αm(b̄) −
∂

∂ū
((z)αm(ū))b̄,

where the derivative is taken in the field D̄ = D̄p(Γ) .
(ii) Suppose (z)α = id . Then for u′ = u + bzq , b ∈ u(D̄) we have (z,u′)

m δl = (z,u)
m δl ,

l < q + j and

(z,u′)
m δq+j(ū) = (z,u)

m δq+j(ū) + (z,u)
m δj(b̄) −

∂

∂ū
((z,u)
m δj(ū))b̄,

where the derivative is taken in the field D̄ = D̄p(Γ) .
(iii) Suppose (z)α = id . Let ū′ ∈ D̄ be any primitive element of the extension D̄/Z(D)

satisfying the conditions of lemma 9, and let u′ ∈ D be any lift of ū′ . Then we have
(z,u′)
m δl = (z,u)

m δl , l < j and

(z,u′)
m δj(ū′) = (z,u)

m δj(ū)
∂

∂ū
(ū′),

where the derivative is taken in the field D̄ = D̄p(Γ) .

Proof. First of all, let’s note that there exists k ∈ N such that for any a ∈ Z(D)
pk

holds u(a)− u′(a) = 0 mod M q+1
D , where u′ is any another embedding, q ∈ N is any

given number.

Indeed, assume for any c ∈ Z(D)
ps

holds u(c) − u′(c) = 0 mod M l
D , i.e. u(c) =

u′(c)+ clz
l + . . . , where cl ∈ u′(D̄) . Then u(cp) = (u(c))p = (u′(c))p + pu′(c)p−1clz

l + . . . ,
so u(cp) − u′(cp) = 0 mod M l+1

D .
¿From this immediately follows that u(a) − u′(a) = 0 mod M q

D for any a ∈ D̄ if
u′ is defined by the element u′ = u + bzq , because u(ū) − u′(ū) = bzq . Moreover, if we

represent a as some polynomial P (γ1, . . . , γr, ū) with coefficients from Z(D)
pk

, then it
is clear that

[u(a) − u′(a)]z−q = −
∂

∂ū
(P (γ1, . . . , γr, ū))b̄ mod MD
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if n|q , since u(γl) = u′(γl) for any l and zquz−q = u mod MD . It is also clear that
the derivative can be taken even in the field D̄p(Γ) . So, we have
(i)

zmu′z−m = zm(u + bzq)z−m = u((z)αm(ū)) + u((z,u)
m δj(ū))zj + . . . + (u((z)αm(b̄))

+u((z,u)
m δj(b̄))z

j + . . .)zq = u((z)αm(ū)) + . . . + (u((z,u)δq(ū)) + u((z)αm(b̄)))zq + . . . =

u′((z)αm(ū)) + . . . + (u′((z,u)
m δq(ū)) + u′((z)αm(b̄)) − u′(

∂

∂ū
(z)αm(ū)b̄))zq + . . . ,

(ii) We have

zmu′z−m = zm(u+bzq)z−m = u(ū)+u((z,u)
m δj(ū))zj + . . .+(u(b̄)+u((z,u)

m δj(b̄))z
j + . . .)zq =

u(ū) + u((z,u)
m δj(ū))zj + . . . + (u((z,u)

m δq(ū)) + u(b̄))zq + u((z,u)
m δq+1(ū))zq+1 + . . .

+u((z,u)
m δq+j−1(ū))zq+j−1 + (u((z,u)

m δq+j(ū)) + u((z,u)
m δj(b̄)))z

q+j + . . . =

u′(ū) + u′((z,u)
m δj(ū))zj + . . . + u′((z,u)

m δq+j−1(ū))zq+j−1 + (u′((z,u)
m δq+j(ū)) + u′((z,u)

m δj(b̄))−

u′(
∂

∂ū
((z,u)
m δj(ū))b̄))zq+j + . . .

(iii) Assume u′ = u(ū′) + a1z + . . . , where ai ∈ u(D̄) . Since, by proposition 2, the map
(z,u)
m δj is a derivation, we have

zmu′z−m = [u(ū′) + u((z,u)
m δj(ū′))zj + . . .] + [a1 + u((z,u)

m δj(a1)z
j + . . .]z + . . . =

u′+u((z,u)
m δj(ū′))zj + . . . = u′+u((z,u)

m δj(ū)
∂

∂ū
(ū′))zj + . . . = u′+u′((z,u)

m δj(ū)
∂

∂ū
(ū′))zj + . . .

2

4 The period-index problem

In this section we will prove the following theorem.

Theorem 2 The following conjecture: the exponent of A is equal to its index for any
division algebra A over a C2 -field F has the positive answer for F = F1((t)) , where F1

is a C1 -field.

Recall that a field F is called a Ci -field if any homogeneous form f(x1, . . . , xn) of
degree d in n > di variables with coefficients in F has a non-trivial zero. Some basic
properties of Ci -fields see, for example, in [10].

This conjecture was proposed by M. Artin and was solved for some another examples
of the field F by many authors. As it is known for me, the positive answer for all division
algebras of index indA = 2a3b was given in [10], for division algebras over the field F =
k((X))((Y )) , where k is a perfect field of characteristic p 6= 0 such that dimFp

k/℘(k) =
1 , was given by Tignol in the Appendix in [2] (we include this case though F may not
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be a C2 -field), for division algebras of index prime to the characterictic of F , where F
is a function field of a surface, was given in [7]. I propose, the positive answer was also
known for division algebras over F = F1((t)) of characteristic 0. We will give the prove
of the theorem above in any characteristic.

Proof. 1) Recall that any extension of a C1 -field is simple. Indeed, suppose E =
F̄ (u1, . . . , ur) . Consider the field K = F̄ (up

1, . . . , u
p
r) . By Tsen’s theorem, K and E are

C1 -fields. So, the form xp
1 +xp

2u1 + . . .+xp
pu

p−1
1 +xp

p+1u2 has a non-trivial zero in E . But

xp
i ∈ K and elements 1, u1, . . . , u

p−1
1 , u2 are linearly independent over K , a contradiction.

2) Assume the theorem is known in the prime exponent case. We deduce the theorem
by ascending induction on e = expA . If e is not a prime number, then write e = lm .
By assumption A⊗m can be split by a field extension F ⊂ F ′ of degree l . This implies
that AF ′ has exponent dividing m . Note that F ′ is also a Laurent series field. By the
induction hypothesis applied to the pair (F ′, AF ′) , there exists a field extension F ′ ⊂ L
of degree dividing m splitting AF ′ . Therefore A is split by the extension F ⊂ L of
degree dividing lm and we conclude the theorem.

3) So, let expA = l be a prime number. By the basic properties of the exponent and
the index (see, e.g. [10]) we have then indA = lk for some natural k .

Suppose (l, p = charF ) = 1 .
It is known that the conjecture is true for all division algebras of index indA = 2a3b ,

so we can assume l 6= 2, 3 . We can assume F contains the group µl of l -roots of unity,
because [F (µl) : F ] < l and we can reduce the problem to the algebra A⊗F F (µl) . Then
by the Merkuriev-Suslin theorem A is similar to the tensor product of symbol-algebras
of index l .

To conclude the statement of the corollary it is sufficient to prove that every two
symbol algebras A1, A2 contain F -isomorphic maximal subfields.

Since every division algebra over a C1 -field is trivial and every field extension is
simple, every symbol-algebra of index l over F is splittable. Since (l, p) = 1 , it is good
splittable and its residue field is a cyclic Galois extension of F̄ . So, if zi is a parameter
from proposition 3 for algebra Ai , then zi acts on Āi as a Galois automorphism and
zl

i ∈ F . We have v(zl
i) = 1 ( v is the valuation on F ).

Let us show that A1 contains a l -root of any element u in F with v(u) 6= 0 . So,
A1 will contain a subfield isomorphic to F (z2) . Since for any element 1 + b , v(b) > 0
there exists a l -root (1 + b)1/l ∈ F , it is sufficient to prove that A1 contains any l -root
of elements ct , c ∈ u(F̄ ) , where u is some fixed embedding u : Ā1 ↪→ A1 .

Assume zl
1 = c1t , c1 ∈ u(F̄ ) . Note that for any element b ∈ u(Ā1) we have (bz1)

l =
u(NĀ1/F̄ (b))zl

1 . But the norm map NĀ1/F̄ is surjective, since F̄ is a C1 -field (see, e.g.
[10], 3.4.2), so there exists b such that (bz)l = ct .

4) Suppose now expA = p . Then indA = pk .

By Albert’s theorem (in [1]) there exists a field F ′ = F (u
1/p
1 , . . . , u

1/p
k ) which splits

A . Using the same arguments as in 1) one can show that every such a field has maximum

two generators, say F ′ = F (u
1/p
1 , u

1/p
2 ) . Therefore, indA ≤ p2 . If indA = p , there is

nothing to prove, so we assume indA = p2 and F ′ is a maximal subfield in A .
5) Suppose F1 is a perfect field.
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By Albert’s theorem, A ∼= A1 ⊗F A2 , where A1, A2 are cyclic algebras of degree
p , A1 = (L1/F, σ1, u1) , A2 = (L2/F, σ2, u2) . Since F1 is perfect, Ā1/F̄ , Ā2/F̄ are
Galois extensions. So, A1, A2 are good splittable. Let us show that A1, A2 have common
splitting field of degree p over F . This leads to a contradiction.

By proposition 3 there exist parameters z1 ∈ A1 , z2 ∈ A2 such that they act on Ā1 ,
Ā2 as Galois automorphisms. Note that then zp

1 , z
p
2 ∈ F . Let us show that F (z1) splits

A2 .
Consider the centralizer D = CA(F (z1)) . Consider the element t1 = z2z

−1
1 . We have

tp1 ∈ F , w(t1) = 0 , where w denote the unique extension of the valuation v on F . Since
D̄/Z(D) is a Galois extension, there exists an element b1 ∈ F such that w(t1 − b1) > 0 .
Since (t1 − b1)

p ∈ F , there exists natural k1 such that w((t1 − b1)z
−k1

1 ) = 0 . Denote
t2 = (t1 − b1)z

−k1

1 . We have again tp2 ∈ F . Repeating this arguments and using the
completeness of D ⊂ A we get
z2 = t1z1 = (t2z

k1

1 + b1)z1 = . . . = b1z1 + b2z
k1+1
1 + . . . ,

so, z2 ∈ F (z1) = Z(D) .
6) Suppose F1 is not perfect.
Since F ′ is generated by two elements over F , it contains all p -roots of F . Then,

every two elements u, z ∈ F such that z1/p /∈ F (u1/p) , where z1/p, u1/p ∈ F ′ , also
generate F ′ over F . This follows from the same arguments as in 1), 4).

Now take u ∈ F1\F
p
1 , z = u + t . It’s clear that p -roots of these elements generate

F ′ over F . Moreover, the fields F (u1/p), F (z1/p) are ”unramified” over F , i.e. [F (u1/p) :
F̄ ] = p = [F (u1/p) : F ] , [F (z1/p) : F̄ ] = p . Denote u1 = u1/p , u2 = z1/p in F ′ . Then
by Albert’s theorem, A ∼= A1 ⊗F A2 , where A1, A2 are cyclic algebras of degree p ,
A1 = (L1/F, σ1, u) , A2 = (L2/F, σ2, z) .

Concider the centralizer D = CA(F (u1)) . Suppose D̄/Z(D) is a separable extension.
Then there exist a lift u : D̄ ↪→ D of arbitrary embedding u′ : F (u1) ↪→ F (u1) . Consider
the embedding u′ = u1 defined in lemma 9. Since F (u1)/F is a purely inseparable
extension, u′ is a good embedding, so u is a good embedding of D̄ = Ā in D ⊂ A .
So, we get A is a good splittable algebra, and u(Ā) contain a purely inseparable over F
element. But this is a contradiction with lemma 6. So, Ā/F̄ can not contain a separable
subextension, because in this case D̄/Z(D) must be a separable extension.

Now we can use, for shorteness, lemmas A.4., A.6. of Tignol in Appendix to the paper
[2]. These lemmas show that a tensor product A1 ⊗ A2 of any two symbols A1, A2 is
similar either to a single symbol in Br(F ) (in which case we are done) or to a product of
two symbols of level zero. Recall that, by Saltman’s results in [11], every division algebra of
level zero is tame, which means in our case that the residue division algebra is a separable
extension over F̄ . A notion of level was already discussed above in remark to lemma 7.

So, assume A ∼ D1 ⊗D2 , where D1, D2 are tame division algebras of degree p over
F . We can assume A and D1 ⊗D2 are division algebras, so A ∼= D1 ⊗D2 . Since D1, D2

are tame, we conclude Ā must contain a separable element, a contradiction.
The theorem is proved.

2
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5 Good splittable algebras

In this section we prove a decomposition theorem for good splittable division algebras.
This theorem shows how the studying of good splittable division algebras can be reduced
to the studying of division algebras with simple described structure. So, good splittable
algebras are the most easy and good algebras to study.

Lemma 11 Let D be a good splittable division algebra, F = Z(D) , and let Z(D̄) = F̄ (s)
be a purely inseparable over F̄ field of degree p = charD > 0 . Let u : D̄ ↪→ D be a good
embedding.

Then there exists a parameter z such that
(z,u)
−i δj = 0 for j > i , where i = i(z, u) is

a local height, and u((z,u)δi(s)) = x , where x ∈ Z(D) . Moreover, (i, p) = 1 .

Proof. Since Z(D̄)/F̄ is a purely inseparable extension, (z)α|Z(D̄) = id for any pa-
rameter z . By Skolem-Noether theorem there exists a parameter z in D such that
(z)α = id . Suppose (z,u)δi(s) = 0 , where i = i(z, u) . Then (z,u)δi|Z(D̄) = 0 , since u is

a good embedding and Z(D̄)/F̄ is a simple extension. So, (z,u)δi is an inner derivation
by Scolem-Noether theorem, and by lemma 3, (i) there exists a parameter z′ such that
(z′,u)δi = 0 , (z′)α = id .

So, we can assume (z,u)δi(s) 6= 0 for some parameter z . Since sp ∈ Z(D) , by lemma
6 we have (i, p) = 1 . Since (z,u)δi is a derivation, (z,u)δi(s) ∈ Z(D̄) (see the arguments
in lemma 5, (ii)). Since (i, p) = 1 , there exists k such that p|(1 − ki) . So, by lemma
3, (iii), for the parameter z′ = ((z,u)δi(s))

k we have (z′)α = id , (z′,u)δi(s) ∈ F̄ , i.e.
u((z′,u)δi(s)) ∈ Z(D) . Since sp ∈ Z(D) , by lemma 8 we must have d(u, s) = ∞ . In the
proof of lemma 8, (i) was shown that d(u, s) = d′(u, z, s) for some parameter z , and the
construction of this element uses lemma 3, (ii), so it preserves the initial values of (z′)α ,
(z′,u)δi . So,

(z,u)
−i δj = 0 for j > i and the lemma is proved.

2

Proposition 4 Let D be a splittable division algebra. Then we have D ∼= D1 ⊗F D2 ,
where D1, D2 are splittable division algebras such that D1 is an inertially split algebra.

If D is a good splittable division algebra, then Z(D̄2)/F̄ is a purely inseparable ex-
tension and D2 is a good splittable algebra (D1 or D2 may be trivial).

So, D ∼ A⊗F B⊗F D2 , where A is a cyclic division algebra and B is an unramified
division algebra.

Proof. If charD = 0 , the proposition is obvious, so we assume charD > 0 .
By [9], p.261, D ∼= D1 ⊗F . . . ⊗F Dk , where [D : F ] = pr1

1 . . . prk

k and [Di : F ] = pri

i .
Let p2 = p . Since Di are defectless over F , D1, D3, . . . Dk are inertially split. Therefore,
by theorem 1 the algebra B = D1 ⊗ D3 ⊗ . . . ⊗ Dk is good splittable.

Assume first that D is good splittable. By proposition 1.7. in [6], if s ∈ Z(D̄) is an
element such that α(s) = s , then this element is a purely inseparable element over F̄ .
So, if D is a good splittable division algebra, then by lemma 6 D2 is either inertially
split or Z(D̄2)/F̄ is a purely inseparable extension. For, otherwise there exists an element

20



s ∈ Z(D̄2) ⊂ Z(D̄) as above and by proposition 3 p|i(u, s) for any embedding u . If u
is a good embedding, then spk

∈ Z(D) for some k , a contradiction.
So, we assume below Z(D̄2)/F̄ is a purely inseparable extension. Now, we have (see,

e.g. th.1 in [8]) D̄ ∼= D̄2 ⊗F̄ B̄ and so u(D̄) ∼= u(D̄2) ⊗u(F̄ ) u(B̄) , where u is a good
embedding. So, E = u(Z(D̄2)) is a purely inseparable field over u(F̄ ) ⊂ Z(D) .

Consider the field E ′ = u(K)⊗u(F̄ )F , where K is a maximal separable subfield in B̄ .
This is an inertial lift of K in D . Consider the centralizer C = CD(E ′) ∼= D2 ⊗F E ′ . Let
M be a maximal subfield in D̄2 . Note that u(D̄2) ⊂ C , so L ⊂ C , where L = u(M)F is
the composit of u(M) and F , and E ⊂ L . Note that [L : F ] = indD2 = indC . The field
L splits C by dimension arguments. So, it must split D2 , since ([E ′ : F ], p) = 1 , and D2

is a p -algebra. Therefore, L is isomorphic to a maximal subfield in D2 , so D2 contain
a copy of purely inseparable ”unramified” subfield, whose residue field is isomorphic to
Z(D̄2) . Therefore, D2 is a god splittable algebra. For, the centralizer of this field is an
unramified division algebra, so by theorem 1 is splittable. So, D2 is good splittable if
the purely inseparable field is good splittable. But it is good splittable since it contains
a subfield isomorphic to u(Z(D̄2)) by the construction. (Another way to see it is to use
arguments from lemma 9 to show that there exists an appropriate p -basis).

Let D be a splittable algebra. Then the same arguments as in the previous paragraph
show that L is isomorphic to a maximal subfield in D2 (it is not important that Z(D̄2)/F̄
may be not a purely inseparable extension). Now, the composit EF ⊂ L , EF 6= L , since
every element from E commute with u(D̄2) , where u is some fixed embedding. So we

must have CD2
(EF ) = D̄2 and CD2

(EF ) is an unramified division algebra. Therefore,
D2 is splittable division algebra.

Decomposition theorems [6], Thm. 5.6-5.15 complete the proof.
2

This proposition shows that the study of splittable division algebras can be reduced
to the study of splittable p -algebras. So, below in this section and in the next section we
will deal with p -algebras only.

Proposition 5 Let D be a good splittable division algebra such that Z(D̄)/Z(D) is a
purely inseparable extension. Then D ∼= D1⊗Z(D)D2 , where D1 is an unramified division

algebra and D2 is a good splittable division algebra such that D̄2 is a field, D̄2/Z(D) is
a purely inseparable extension, [D̄2 : Z(D)] = [ΓD2

: ΓZ(D)] .

Proof. The proof is by induction on the degree [Z(D̄) : Z(D)] .
Assume [Z(D̄) : Z(D)] = p . Let (z,u)δi be the map from lemma 11. Then (z,u)δp

i is
a derivation trivial on the centre Z(D) , hence by Scolem-Noether theorem it is an inner
derivation.

We claim that zp ∈ Z(D) . We have

z−iazi = a + −iδi(a)zi, a ∈ u(D̄)

Therefore,
z−piazpi = a + −iδ

p
i (a)zpi, a ∈ u(D̄)
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and
zpiaz−pi = a + δ′1(a)zpi + δ′1

2
(a)z2pi + . . . ,

where δ′1 = (−1)−iδ
p
i = ipδp

i . So,

zpaz−p = a +
1

i
δ′1(a)zpi + c2

1

i2
δ′1

2
(a)z2pi + . . . ,

where ck are given by (4) in lemma 7. So, zp ∈ Z(D) iff δp
i = 0 . Suppose δp

i 6= 0 .
Consider an element Y ∈ Z(D) , w(Y ) > 0 . Let

Y = a1z
p + . . . , a1 ∈ u(D̄).

First note that
Y = a1z

p + a2z
2p + a3z

3p + . . . , ai ∈ u(D̄)

Indeed, Y must satisfy [Y, s] = 0 , where s is a generator of u(Z(D̄)) over u(F̄ ) . Since
s ∈ u(Z(D̄)) and w([zk, s]) = k + i if (k, p) = 1 and w([zk, s]) = ∞ otherwise, we then
have [zik , s] = 0 for every k , where

Y =
∞∑

k=1

akz
ik

Therefore, p|ik .
Then, Y must satisfy Y a = aY for any a ∈ u(D̄) . Therefore, a1, . . . ai ∈ u(Z(D̄))

and we must have
aai+1 − ai+1a = a1δ

′
1(a)/i

and
aa2i+1 − a2i+1a = aiδ

′
1(a) + a1c2δ

′
1
2
(a).

Since ∆(a) = aa2i+1 − a2i+1a is an inner derivation, we get δ′1
2 = δ , where δ is a

derivation, which is a contradiction if δ 6= 0 and charD 6= 2 . In the last case we can use
the same arguments with a3i+1 . Therefore, δ′1

2 = δ = 0 and δ′1 = 0 , and zp ∈ Z(D) .
Consider the algebra W = u(Z(D̄))((z)) . Since zp ∈ Z(D) and u(F̄ ) ⊂ Z(D) , we

have Z(W ) = u(F̄ )((zp)) = F . So, D ∼= W ⊗F CD(W ) by Double Centralizer theorem.
It is clear that CD(W ) is an unramified division algebra.

Now suppose the proposition is proved for [Z(D̄) : Z(D)] = pk−1 . By Albert’s theorem
(th.13 in [1]) D2 then is a cyclic algebra as a product of cyclic subalgebras Di , where
D̄i/F̄ is a simple purely inseparable extension and Di is a good splittable algebra.

Assume [Z(D̄) : Z(D)] = pk . For a good embedding there exists a lift K̃ of a subfield

Z(D) ⊂ K ⊂ Z(D̄) such that the extension K/Z(D) has degree p , i.e. ¯̃K = K ,
ΓK̃ = ΓZ(D2) , u(K) ⊂ K̃ , K̃/Z(D) is a purely inseparable extension of degree p . By the

induction hypothesis the centralizer CD(K̃) ∼= A1 ⊗K̃ A2 , where A2 is a cyclic division
algebra and Ā2 is a field. Note that Ā2 = Z(D̄) .

By theorem 6 in [1] we can assume A2 = (L/K̃, σ, a) , where a generate K̃ over
Z(D) . So, A2 contains a maximal purely inseparable Kummer subfield E = K̃(y) with
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ypk−1

= a , so E = Z(D)(y) . By theorem 3 in [1] L = L0 × K̃ , where L0 is cyclic of
degree pk−1 over Z(D) and yx0 = σ(x0)y , where x0 ∈ L0 .

Consider the centralizer B = CD(L0) . We claim B ∼= B1⊗L0
B2 , where B2 is a cyclic

division algebra of degree p and B2 contains K̃ .
Note that B contains Z(D)(a) = K̃ and A1 . If K̃L0 = L is ”unramified” over

L0 , then we apply the arguments for the first step of our induction to the algebra B .
By construction, B2 then will contain L , so K̃ . Suppose L is totally ramified over L0

and let z be a parameter of L , i.e. an element with the least possible positive mean of
valuation on L . Since L is purely inseparable over L0 , zp is a parameter of L0 .

We have W := CB(L) = CD(L) ∼= A1⊗K̃ L is an unramified division algebra. Consider
an embedding u′ : L̄ = L̄0 ↪→ L0 . As it was shown in the proof of theorem 1 there is
a lift ũ′ of u′ , ũ′ : W̄ ↪→ W . Now consider the subalgebra W ′ = ũ′(W̄ )((zp)) . We
have Z(W ′) = u′(L̄)((zp)) = L0 , so W ′ is an unramified subalgebra in B . By Double
Centralizer theorem, B ∼= W ′⊗L0

CB(W ′) , where CB(W ′) is a division algebra of degree
p and contains L0(z) = L , so it contains K̃ and it is cyclic by Albert’s theorem (th.12
in [1]).

Now we can word by word repeat the arguments in the proof of theorem 12 in [1] to
show that there exists a cyclic Galois extension L′ of L0 which is cyclic Galois over Z(D) ,
and y acts as a Galois automorphism on L′/Z(D) which generates Gal(L′/Z(D)) . So,
there is the cyclic subalgebra D2 = (L′/Z(D), ad(y), ypk

) in D . Note that A2 ⊂ D2 ,
and A2 is known to be a good splittable algebra with [Ā2 : Z(A2)] = [ΓA2

: ΓZ(A2)] .

Since Ā2 = D̄2 and Z(A2) = K̃ is a purely inseparable extension of Z(D) , D2 is a
good splittable algebra such that D̄2 a field and [D̄2 : Z(D)] = [ΓD2

: ΓZ(D)] . By Double
Centralizer theorem D ∼= D1 ⊗Z(D) D2 , where D1 = CD(D2) must be an unramified
division algebra, which completes the proof.
2

Combining all results in this section, we get the following theorem.

Theorem 3 Let D be a finite dimensional good splittable central division algebra over a
field F = k((t)) .

If char(F ) = p > 0 , then D ∼= D1 ⊗F D2 ⊗F A1 ⊗F . . . ⊗F Am , where Ai are cyclic
division algebras such that [Āi : Z(D)] = [ΓAi

: ΓZ(D)] and Āi/Z(D) are simple purely
inseparable field extensions, D1 is an inertially split division algebra, (ind(D1), p) = 1 ,
D2 is an unramified division algebra (D1, D2, Ai may be trivial).

If charF = 0 , then D is an inertially split division algebra.

6 Splittability and good splittability

In this section we collect some assorted results about a relation between splittable and
good splittable division algebras and about splittable division algebras. We consider here
only division algebras with the following property: Z(D̄)/Z(D) is a simple extension.

Proposition 6 Let D be a central division algebra over F of charD = p > 0 such that
Z(D̄) = D̄ and [Z(D̄) : F̄ ] = p .
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Then D is a splittable algebra and the local height i = i(u, z) (in the situatuion when
it is defined, i.e. when α = id ) does not depend on u and z . It is a good splittable
algebra if (i, p) = 1 . If p|i , then there exists a parameter z such that zp ∈ Z(D) and
any ”unramified” maximal subfield is cyclic Galois.

So, in both cases D is a cyclic division algebra of degree p .

Proof. Since D̄/F̄ is a simple extension, we have [D̄ : F̄ ] = [ΓD : ΓF ] . Indeed,
consider the fields E = F (s) and E ′ = F (z) , where s is any element such that s̄ is a
primitive element of the extension D̄/F̄ and z is any parameter of D . Then [D̄ : F̄ ] ≤
[E : F ] ≤ [D : F ]1/2 = ([D̄ : F̄ ][ΓD : ΓF ])1/2 , so [D̄ : F̄ ] ≤ [ΓD : ΓF ] . From another hand
side, [ΓD : ΓF ] ≤ [E ′ : F ] ≤ ([D̄ : F̄ ][ΓD : ΓF ])1/2 , so [D̄ : F̄ ] = [ΓD : ΓF ] . So, D is
splittable division algebra of degree p .

If Z(D̄)/F̄ is a separable extension, then D is a good splittable algebra by theorem
1. So, we assume it is a purely inseparable extension, Z(D̄) = F̄ (ū) . For any lift u of the
element ū let u be an embedding constructed in lemma 9, i.e. (z,u)δj is defined by the
values (z,u)δj(u

k) for any j . By corollary 2 the local height i(u, z) does not depend on
z , and by lemma 10 i(u, z) does not depend on u . For arbitrary embedding u′ , since
(z,u′)δi(u′,z) is a derivation and D̄/F̄ is a simple extension, (z,u′)δi(u′,z) is completely defined
by a value at ū . Therefore, i(u′, z) = w(zu′(ū)z−1 − u′(ū)) and i(u′, z) is completely
defined by the lift u′(ū) . But arbitrary lift of ū defines an embedding, on which we have
proved i does not depend. So, i(u, z) does not depend on z and u .

Now assume p|i .
Using lemma 3, we can assume without loss of generality that (z,u)δj = 0 if j is not

divisible by p .
Indeed, if (z,u)δj 6= 0 , then we apply lemma 3, (ii) to show that there exists a parameter

zj such that (zj ,u)δj(u) = 0 and (zj ,u)δk = (z,u)δk for k < j , (zj)α = id . Since (zj ,u)δj is
a derivation by proposition 2 and by induction (similar arguments was already used in
the proof of proposition 3), and since it is defined by the values on uk , so by the values
on u , we have (z,u)δj = 0 . Since for j1 > j2 we have w(zj1 − zj2) > j1 − i , the sequence
{zj} convereges to a parameter z′ , which satisfies our condition.

So, there exists the subalgebra A = u(D̄)((zp)) . Let’s show that Z(D) ⊂ A . Note
that every element a ∈ D can be written as a = a0 + a1z + . . . + ap−1z

p−1 , where
ai ∈ A . Note that zkAz−k ⊂ A for every k . So, if a ∈ Z(D) , then zajz

−1 = aj and
uajz

ju−1 = ajz
j for every j . For j > 0 we have ajz

j =
∑

k ajkz
kp+j , so by corollary 2

uajz
ju−1 6= ajz

j . Therefore, a = a0 ∈ A .
Since A 6= D , A must be commutative, so zp ∈ Z(D) . Moreover, A/Z(D) is cyclic

Galois. Since the arguments work for arbitrary lift u of the element ū , arbitrary ”un-
ramified” maximal subfield in D must be Galois over F .

Now let (i, p) = 1 .
Using lemma 3, (iii) we can find a parameter z and a primitive element s ∈ D̄ such

that (z,u)δi(s) = sc , where c ∈ F̄ . Indeed, since (i, p) = 1 , there exists k such that
1−ki is divisible by p . So, by lemma 3, (iii) for a parameter z′ = u((z,u)δi(ū)k)z we have
(z′,u)δi(ū) ∈ F̄ , so by lemma 10, (iii) (z′,u)δi(s) = 1 , where s = ū(z′,u)δi(ū)−1 . Now, there
exists k1 such that −ik1 − 1 is divisible by p , so for z′′ = sk1z′ we have (z′′,u)δi(s) = sc ,
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where c = s−ik1−1 ∈ F̄ . It is easy to see that, since s = ūa , where a ∈ F̄ , the map (z,u)δj

is uniquely defined also by (z,u)δj(s
k) , so by (z,u)

m δl(s) for l ≤ j . So, we assume without
loss of generality that s = ū , z = z′′ .

Using lemma 10, (ii) we can find a converge sequence {uj} , uj ∈ D , j ≥ i such that
uj+1 = uj + bjz

j+1−i , ui = u , bj ∈ uj(D̄) (here uj is an embedding defined by uj , see

lemma 9) and
(z,uj)
m δk(ū)ū−1 ∈ F̄ for all k ≤ j and all m .

Indeed, suppose it is true for j ≥ i . Let
(z,uj)
m δj+1(ū) = a0 + . . . ap−1ū

p−1 , ak ∈ F̄ .

Since
(z,uj)
m δi = (z,u)

m δi = m(z,u)δi , we have

(z,uj)
m δi(akū

k) −
∂

∂ū
((z,uj)
m δi(ū))akū

k = (k − 1)mcakū
k.

So, uj+1 = uj − uj(
∑

k,k 6=1(k − 1)−1m−1c−1akū
k)zj+1−i will satisfy our condition.

We will denote by u now a limit of the sequence {uj} . Using induction and proposition
2 one can easily show that (z,u)

m δj(ū
k)ū−k ∈ F̄ for any integer k . So, there is the subalgebra

A = u(F̄ )((z)) in D . Using similar arguments as in the case p|i , one can show that A
contains Z(D) . Since A 6= D , it must be commutative, so up ∈ Z(D) . Then u is a good
embedding, which completes the proof.
2

Let D be a splittable division algebra and let Z(D̄)/Z(D) be a purely inseparable
extension. As it was shown in the proof of lemma 11, then there exists a parameter z
in D such that (z,u)δi|Z(D̄) 6= 0 , where i = i(u, z) is a local height. Though D may
be not a good splittable algebra, the arguments from there are valid for every splittable
algebra. We will call such a parameter an appropriate parameter, and the number i(u) =
maxz i(u, z) = i(u, z) for an appropriate parameter a semilocal height. Let’s prove the
following simple lemma.

Lemma 12 Let D be a splittable central division p -algebra over F , where p = charD >
0 , and let Z(D̄) = F̄ (s) be a simple extension over F̄ . Then

i) there exists an embedding u such that
(z,u)
l δj|Z(D̄) is defined by the values

(z,u)
l δj(s

k)
for any j, l, z (as in lemma 9);

ii) [Z(D̄) : F̄ ] = [ΓD : ΓF ] ;
iii) if α|Z(D̄) 6= id or i(u) is divisible by p , then there exists a subalgebra A =

u(D̄)((z)) for some appropriate parameter z such that Z(D) ⊂ Z(A) . Moreover, Z(A)
is a cyclic Galois extension over Z(D) .

Proof. i) For arbitrary embedding u consider the field E = u(Z(D̄))F ⊂ D and the
centralizer W = CD(E) . We have W̄ = D̄ and so Z(W̄ ) = Ē . Therefore, W must be
an unramified division algebra, and by theorem 1 there exists a lift on W̄ of arbitrary
embedding Ē ↪→ E . Now we can take an embedding defined by the element s as in
lemma 9. It’s lift will be desired embedding. We will denote this embedding also by s .

ii) By proposition 1.7. in [6] the basic homomorphism θD (see introduction) is surjec-
tive. So, it is sufficient to prove the assertion only for the centralizer CD(K) , where K
is a lift of a Galois part of the extension Z(D̄)/F̄ . So, we will assume below Z(D̄)/F̄ is
a purely inseparable extension.
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Consider a maximal separable subfield M in D̄ , and let M ′ be a separable part of
the extension M/F̄ . By [6], th.2.8, th.2.9. there exists an inertial lift of M ′ in D , say
M̃ . Consider the centralizer B = CD(M̃) . Then B̄ is a field. Our assertion will be proved
if we show it for B , since [M̃ : F ] = ind(D̄) and [D : F ] = ind(D̄)2[Z(D̄) : F̄ ][ΓD : ΓF ] .

Since B̄/Z(B) is a simple extension, we can repeat the arguments from the beginning
of proposition 6.

iii) If α|Z(D̄) 6= id , consider the parameter z from proposition 3. Then, clearly, A =
u(D̄)((z)) will be a subalgebra with the center K , which is an inertial lift of a Galois
part of the extension Z(D̄)/F̄ .

Assume α|Z(D̄) = id and i(u) is divisible by p . Let z be an appropriate parameter.

Using lemma 3, we can prove that (z,u)δj = 0 if j is not divisible by p .
Indeed, let (z,u)δj 6= 0 be the first map with this property for (j, p) = 1 . If

(z,u)δj|Z(D̄) = 0 , then we apply lemma 3, (i) to show that there exists a parameter zj

such that (zj ,u)δj = 0 and (zj ,u)δk = (z,u)δk for k < j , (zj)α = id , since (z,u)δj is a
derivation by proposition 2 and by induction (similar arguments was already used in the
proof of proposition 3) and so it is an inner derivation by Scolem-Noether theorem.

If (z,u)δj|Z(D̄) 6= 0 , then we apply lemma 3, (ii) to show that there exists a parameter

zj such that (zj ,u)δj(s) = 0 and (zj ,u)δk = (z,u)δk for k < j , (zj)α = id . Since (zj ,u)δj

is a derivation and since its restriction on Z(D̄) is defined by the values on sk , so by
the values on s , we have (z,u)δj|Z(D̄) = 0 , and we reduce the problem to the previous
case. Since for j1 > j2 we have w(zj1 − zj2) > j1 − i , the sequence {zj} convereges to a
parameter z′ , which satisfies our condition.

Therefore, there exists a subalgebra A = u(D̄)((z′)) in D . Using the same arguments
as in proposition 6 one can show that Z(D) ⊂ Z(A) Since z′ preserves A , it preserves
the centre Z(A) ¿From the other hand side, it acts nontrivially on it. So, Z(A) is a cyclic
Galois extension of degree p , and ad(z′) generates its Galois group.
2

This lemma shows that the study of splittable p -algebras over F can be reduced
to the study of splittable p -algebras with a purely inseparable extension Z(D̄)/F̄ and
(i(u), p) = 1 .

Definition 6 Let D be a splittable division p -algebra with a purely inseparable exten-
sion Z(D̄)/F̄ . For any element a ∈ D̄ define the number

dD(a) = max
u,z

w(z−i(u,a)u(a)zi(u,a) − u(a) − u(
(z,u)
−i(u,a)δi(u,a)(a))zi(u,a)) ∈ N ∪∞,

where parameters z are taken from the set of appropriate parameters and i(u, a) was
defined in corollary 2.

It seems that the number dD(a) will play the role of a higher order level in a splittable
division algebra. We will see that it codes a part of information about a division algebra.

Lemma 13 Let D be a splittable division p -algebra, p > 2 , with a purely inseparable
simple extension Z(D̄)/F̄ , let u be some fixed embedding u : D̄ ↪→ D .
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Suppose Z(D̄) = F̄ (a) and (i(u, a), p) = 1 . Suppose d(u, a) ≤ 2i(u, a) .

Let z be a parameter such that (z,u)δi(u,a)(
(z,u)
−i(u,a)δi(u,a)(a)) = 0 , (z)α = id and

(z,u)
−i(u,a)δq|Fp(a) = 0 for i(u, a) < q < d(u, a) . Put j(k) := i(u, apk

) .

Suppose for every k ≥ 1 a parameter zk such that
(zk,u)
−j(k)δr|Fp(apk

)
= 0 for j(k) < r <

d(u, apk

) satisfy a condition (zk,u)δi(u,a) = (z,u)δi(u,a) ,
(zk)α = (z)α .

Suppose for every k ≥ 1 we have d(u, apk

) − j(k) = d(u, a) − j(0) .

Then the maps
(z,u)
w+(p−1−r)j(k)δζ , rj(k) < ζ ≤ (r−1)j(k)+d(u, apk

) , r ∈ {1, . . . , p−1} ,
k ≥ 0 satisfy the following properties:

(z,u)
w+(p−1−r)j(k)δζ |Fp(apk

)
= cw+(p−1−r)j(k),ζ,1δ + . . . + cw+(p−1−r)j(k),ζ,rδ

r,

where the derivation δ was defined in lemma 5, cw+(p−1−r)j(k),ζ,r ∈ Z(D̄) , cw+(p−1−r)j(k),ζ,r 6=

0 only if ζ = (r − 1)j(k) + d(u, apk

) .
Moreover, c

w+(p−1−r)j(k),(r−1)j(k)+d(u,apk
),r

6= 0 if w = i(u, a) mod p ;

c
w+(p−1−r)j(k),(r−1)j(k)+d(u,apk

),r
= r!c

w+(p−r)j(k),(r−2)j(k)+d(u,apk
),r−1w+(p−1−r)j(k)δj(k)(a

pk

),

and
(zk,u)
w+(p−2)j(k)δd(u,apk

)
(apk

) =
(zk,u)
−j(k)δd(u,apk

)
(apk

) .

Proof. The proof is similar to the proof of lemma 5, (i). It is by induction on r
simultaneously for all k ≥ 0 .

For r = 1 , using lemma 2 and induction, one can easily show that (zk,u)δq(a
pk

) =

−(j(k))−1(zk,u)
−j(k)δq(a

pk

) for j(k) ≤ q < d(u, apk

) (we assume here z0 = z ). By lemma 8, (i)
we have d(u, a) − i(u, a) = i(u, a) mod p . So, by lemma 8, (ii) and by induction we
have j(k) = j(0) mod p .

So,
(zk,u)
w+(p−2)j(k)δq|Fp(apk

)
= 0 if j(k) < q < d(u, apk

) and
(zk,u)
w+(p−2)j(k)δq|Fp(apk

)
6= 0 only

if q = d(u, apk

) .

Since
(zk,u)
−j(k)δj(k)|Fp(apk

)
is a derivation and since, by proposition 2, (i), the map

(zk,u)
−j(k)δd(u,apk

)
|
Fp(apk

)
must be a derivation, we have

(zk,u)
w+(p−2)j(k)δd(u,apk

)
(apk

) ∈ Z(D̄) . For, as

it was shown in the proof of lemma 5, (ii) for any derivation δ we have δ(b) ∈ Z(D̄) for any

b ∈ Z(D̄) . Since
(zk,u)
w+(p−2)j(k)δd(u,apk

)
(apk

) = q1
(zk,u)
−j(k)δd(u,apk

)
(apk

)+ q2
(zk,u)
m δj(0)(

(zk,u)
−j(k)δj(k)(a

pk

))

for some integer q1, q2,m , we have proved our assertion. So, c
w+(p−2)j(k),d(u,apk

),1
∈ Z(D̄) .

If w = j(0) mod p , then
(zk,u)
w+(p−2)j(k)δd(u,apk

)
(apk

) =
(zk,u)
−j(k)δd(u,apk

)
(apk

) , since w +

(p − 1)j(0) = 0 mod p and charD > 2 . So, we have c
w+(p−2)j(k),d(u,apk

),1
6= 0 .

Put now t = apk

. For arbitrary r by proposition 2, (i) we have

(zk,u)
w+(p−1−r)j(k)δζ(t

q) = qw+(p−1−r)j(k)δζ(t)t
q−1+

w+(p−1−r)j(k)δj(k)(t)
q−2
∑

l=0

w+(p−r)j(k)δζ−j(k)(t
q−1−l)tl+

27



w+(p−1−r)j(k)δd(u,t)(t)
q−2
∑

l=0

w+(p−1−r)j(k)+d(u,t)δζ−d(u,t)(t
q−1−l)tl+

ζ−1
∑

i=d(u,t)+1

w+(p−1−r)j(k)δi(t)
q−2
∑

l=0

w+(p−1−r)j(k)+iδζ−i(t
q−1−l)tl.

Using the same arguments as in the proof of lemma 5,(i) we see that w+(p−1−r)j(k)δζ(t
p) = 0

and w+(p−1−r)j(k)δζ |Fp(t) = cw+(p−1−r)j(k),ζ,1δ + . . . + cw+(p−1−r)j(k),ζ,p−1δ
p−1 . To show that

cw+(p−1−r)j(k),ζ,i = 0 for i > r it suffice, by formulae (3) in lemma 5, to show that all the
maps in the formula above are represented in the form c1δ + . . . + cr−1δ

r−1 . Let us show
it in details.

Since ζ − d(u, t) − 1 < (r − 1)j(k) , by lemma 5, (ii) mδζ−i|Fp(t) = cm,ζ−i,1δ + . . . +
cm,ζ−i,r−2δ

r−2 for any i > d(u, t) .
If w = j(0) mod p , then w + (p− 1− r)j(k) + d(u, t) + (r− 2)j(k) = 0 mod p .

Since ζ −d(u, t) ≤ (r−1)j(k) , by lemma 5, (ii) we have w+(p−1−r)j(k)+d(u,t)δζ−d(u,t)|Fp(t) =
cw+(p−1−r)j(k)+d(u,t),ζ−d(u,t),1δ + . . . + cw+(p−1−r)j(k)+d(u,t),ζ−d(u,t),r−2δ

r−2 .
If w 6= j(0) mod p , then by the same reason we have w+(p−1−r)j(k)+d(u,t)δζ−d(u,t)|Fp(t) =

cw+(p−1−r)j(k)+d(u,t),ζ−d(u,t),1δ + . . . + cw+(p−1−r)j(k)+d(u,t),ζ−d(u,t),r−1δ
r−1 and by lemma 5, (i)

cw+(p−1−r)j(k)+d(u,t),ζ−d(u,t),r−1 ∈ Z(D̄) as a product of elements from Z(D̄) .
At last, by the induction hypothesis w+(p−r)j(k)δζ−j(k)|Fp(t) = cw+(p−r)j(k),ζ−j(k),1δ+. . .+

cw+(p−r)j(k),ζ−j(k),r−1δ
r−1 and cw+(p−r)j(k),ζ−j(k),r−1 6= 0 only if ζ − j(k) = (r − 2)j(k) +

d(u, t) , and cw+(p−r)j(k),ζ−j(k),r−1 ∈ Z(D̄) . Since w+(p−1−r)j(k)δj(k)(t) ∈ Z(D̄) , by formulae
(3) we get cw+(p−1−r)j(k),ζ,r ∈ Z(D̄) and if w = j(0) mod p , then cw+(p−1−r)j(k),ζ,r 6= 0
iff ζ = (r − 1)j(k) + d(u, t) ,

cw+(p−1−r)j(k),(r−1)j(k)+d(u,t),r = r!cw+(p−r)j(k),(r−2)j(k)+d(u,t),r−1w+(p−1−r)j(k)δj(k)(t) 6= 0.

The lemma is proved.
2

Lemma 14 Let D be a division algebra as in lemma 13. Suppose d(u, a) ≤ 2i(u, a) and
charD > 2 .

Then for every k there exists a parameter zk such that
(zk,u)
−j(k)δr|Fp(apk

)
= 0 for j(k) <

r < d(u, apk

) and (zk)α = (z)α , (zk,u)δj(l) = (z,u)δj(l) for all l ≤ k (we use here the
notation defined in lemma 13).

Moreover, for every k ≥ 1 we have d(u, apk

) − j(k) = d(u, a) − j(0) and

(zk,u)
−j(k)δd(u,apk

)
(apk

) = −
(zk−1,u)
−j(k−1)δd(u,apk−1

)
(apk

)cd(u,t)−j(k−1),j(k)−j(k−1),p−1,

where cd(u,t)−j(k−1),j(k)−j(k−1),p−1 is defined in lemma 13.

Proof. The proof is by induction on k . By lemma 8 d(u, a) = 2j(0) mod p
and j(1) = d(u, a) + (p − 1)j(0) . So, by the induction hypothesis we can assume for
arbitrary k that d(u, apk−1

) = 2j(0) mod p and j(k − 1) = j(0) mod p , and
j(k) = d(u, apk−1

) + (p − 1)j(k − 1) .

28



For the convinience we can start with a parameter z = z0 , which satisfy the conditions
of lemma 13. Indeed, taking an appropriate parameter z and changing it by a parameter
u(c)z for an appropriate c ∈ Z(D̄) (as in the proof of proposition 6), we can assume that
(z,u)
−j(0)δj(0)(a) ∈ Z(D̄)p . Now, using arguments from the proof of lemma 8, (i), we can find
such a parameter z0 .

The idea of the proof is the following. We prove first that
(zk−1,u)
−j(k−1)δj(k)+d(u,a)−j(0)(a

pk

) 6=

0 . Then we prove that there exists a parameter zk such that
(zk,u)
−j(k)δζ(a

pk

) = 0 for j(k) <

ζ < j(k)+d(u, a)−j(0) and
(zk,u)
−j(k)δj(k)+d(u,a)−j(0)(a

pk

) 6= 0 . It will be shown that zk satisfy
the conditions of lemma.

So, assume j(k) ≤ ζ ≤ j(k) + d(u, a) − j(0) = j(k) + d(u, apk−1

) − j(k − 1) . Put
t = apk−1

. By proposition 2, (i) we have

(zk−1,u)
−j(k−1)δζ(t

p) =

(zk−1,u)
−j(k−1)δd(u,t)(t)

p−2
∑

l=0

(zk−1,u)
d(u,t)−j(k−1)δζ−d(u,t)(t

p−1−l)tl + . . . +

(zk−1,u)
−j(k−1)δζ−(p−1)j(k−1)(t)

p−2
∑

l=0

(zk−1,u)
ζ−pj(k−1)δ(p−1)j(k−1)(t

p−1−l)tl+

ζ−1
∑

i=ζ−(p−1)j(k−1)+1

(zk−1,u)
−j(k−1)δi(t)

p−2
∑

l=0

(zk−1,u)
i−j(k−1)δζ−i(t

q−1−l)tl.

By lemma 5, (i) in the last sum
(zk−1,u)
i−j(k−1)δζ−i|Fp(t) = ci−j(k−1),ζ−i,1δ+. . .+ci−j(k−1),ζ−i,p−2δ

p−2 ,
since ζ − i < (p − 1)j(k − 1) . So, this sum is equal to zero.

By lemma 5, (ii) we have
(zk−1,u)
ζ−pj(k−1)δ(p−1)j(k−1)|Fp(t) = cζ−pj(k−1),(p−1)j(k−1),1δ + . . . +

cζ−pj(k−1),(p−1)j(k−1),p−1δ
p−1 and cζ−pj(k−1),(p−1)j(k−1),p−1 6= 0 iff ζ = j(k−1) = j(0) mod p .

By lemma 5, (i) we have (zk−1,u)
m δq|Fp(t) = cm,q,1δ+. . .+cm,q,p−1δ

p−1 for (p−1)j(k−1) <
q < (p − 1)j(k − 1) + d(u, a) − j(0) , and by lemma 13 cm,q,p−1 = 0 . By lemma 13 we

have
(zk−1,u)
d(u,t)−j(k−1)δζ−d(u,t)|Fp(t) = cd(u,t)−j(k−1),ζ−d(u,t),1δ + . . . + cd(u,t)−j(k−1),ζ−d(u,t),p−1δ

p−1

with cd(u,t)−j(k−1),ζ−d(u,t),p−1 6= 0 if ζ − d(u, t) = j(0) .

So, we have the following picture:
(zk−1,u)
−j(k−1)δζ(t

p) 6= 0 only if ζ = j(0) mod p or if
ζ = j(k) + d(u, a) − j(0) . In the last case

(zk−1,u)
−j(k−1)δζ(t

p) = −
(zk−1,u)
−j(k−1)δd(u,t)(t

p)cd(u,t)−j(k−1),j(k)−j(k−1),p−1,

where cd(u,t)−j(k−1),j(k)−j(k−1),p−1 can be calculated using lemma 13.

Let’s show that there exists a parameter zk such that
(zk,u)
−j(k−1)δζ(t

p) = 0 for j(k) <
ζ < j(k)+d(u, a)−j(0) . By lemma 3, (ii) there exists a change of parameters zk−1 7→ z′ =

zk−1 + bzp+1
k−1 such that

(z′,u)
−j(k−1)δj(k)+p(t

p) = 0 . It suffice to prove that any such a change of
parameters as in lemma 3, (ii) with p|q changes only the values of maps −j(k−1)δζ with
ζ = j(0) mod p . For, if it is true, we can make several changes and kill all nonzero

maps
(zk−1,u)
−j(k−1)δζ with j(k) < ζ < j(k) + d(u, a) − j(0) , since they are derivations and

therefore are completely defined by their values at tp .
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To prove it, we can use the calculations in the proof of lemma 3, (ii). Since d(u, a) −
j(0) ≤ j(0) , it is easy to see that for a change z 7→ z′ = z + bzkp+1 , p > 2 we have there

z′−j(k−1)tpz′j(k−1) = tp +
(z,u)
−j(k−1)δj(k)(t

p)zj(k) + . . . +
(z,u)
−j(k−1)δj(k)+j(0)(t

p)zj(k)+j(0) + . . . .

Since z′ = z + bzkp+1 , any power zl can be expressed as a series in z′ , all powers
of which are equal to l modulo p . So, this change will change only maps with right

indexes equal to j(k) modulo p . Since
(zk−1,u)
−j(k−1)δζ(t

p) 6= 0 only if ζ = j(0) mod p for
ζ < j(k) + d(u, a) − j(0) , our assertion is proved.

So, there exists a parameter zk we have:
(zk,u)
−j(k−1)δζ(t

p) 6= 0 only if ζ = j(k)+d(u, a)−
j(0) or ζ = j(k) . Since zk was constructed as a sequence of changes as in lemma 3, (ii),
we have (zk)α = (zk−1)α and (zk,u)δj(q) = (zk−1,u)δj(q) for any q ≤ k .

At last, let’s prove that
(zk,u)
−j(k)δζ(t

p) 6= 0 only if ζ = j(k) + d(u, a)− j(0) or ζ = j(k) .
But this follows immediately from the definition of these maps, since j(k) = j(k −

1) mod p , d(u, a) − j(0) ≤ j(0) and charD > 2 . In particular,
(zk,u)
−j(k)δj(k)(t

p) =
(zk,u)
−j(k−1)δj(k)(t

p) ,
(zk,u)
−j(k)δj(k)+d(u,a)−j(0)(t

p) =
(zk,u)
−j(k−1)δj(k)+d(u,a)−j(0)(t

p) .
The lemma is proved.

2

Now we can prove the following theorem.

Theorem 4 Let D be a division p -algebra of charD = p > 2 with the center Z(D) =
F . Suppose Z(D̄) = D̄ and D̄/F̄ is a simple purely inseparable extension, D̄ = F̄ (a) .
Suppose that the semilocal height i(u) , which does not depend on the embedding u in this
case, is not divisible by p .

Then dD(a) > i(u) .

Proof. By lemma 12, (ii) [D̄ : F̄ ] = [ΓD : ΓF ] . So, the field F (ã) , where ã is a lift
of a , is a maximal ”unramified” subfield and therefore D is a splittable division algebra.
Obviously, α = id .

Since (z,u)δi(u,z) is a derivation and D̄/F̄ is a simple extension, (z,u)δi(u,z) is completely
defined by a value at a . So, by lemma 3 i(u, z) does not depend on z and i(u, z) = i(u) .
Therefore, i(u) = w(zu(a)z−1 − u(a)) and i(u) is completely defined by the lift u(a) .
From the other hand side, any lift ã of a defines, by lemma 9, an embedding ã , and by
lemma 10 i(ã) does not depend on ã . So, i(u) does not depend on u .

The idea of the proof is following. We consider linear spaces which are the images of
the maps (z,u)δj(k)|F̄ (apk

)
in D̄ , where j(k) were defined in lemma 14 and z, u are fixed.

We show that every such spase has zero intersection with each other if dD(a) ≤ i(u) .
Then we show that this contradicts with the fact that u(a) generate a finite dimensional
space over F .

So, assume dD(a) ≤ i(u) . To calculate the spaces (z,u)δj(k)(F̄ (apk

)) ∈ D̄ we use
lemmas 8, 13 and 14. We fix a parameter z defined in lemma 13. By lemmas 9, 10, (iii)
we can find a primitive element ū ∈ D̄ of the extension D̄/F̄ such that (z,u)δj(0)(ū) = 1 ,
where u is an embedding defined in lemma 9 for some lift u of the element ū . Using
lemma 3, (ii) we can find an embedding u such that (z,u)δd(u,ū)(ū) /∈ (z,u)δj(0)(D̄) . We fix

30



this embedding. From lemmas 3, 10 immediately follows that d(u, ū) = dD(ū) = dD(a) .
So, we assume without loss of generality a = ū .

Put J(k) := (z,u)δj(k)(a
pk

) . Put A(k) := (z,u)δj(k)(F̄ (apk

)) , A′(k) := F̄ (apk+1

) ·

apk(p−1)J(k) .
We have A(k) = ⊕p−2

q=0F̄ (apk+1

) · apkqJ(k) and D̄ · J(k) = A(k) ⊕ A′(k) as Fp -linear
spaces.

¿From lemma 8 follows that

(z,u)δj(k)(a
pk

) = (zk,u)δj(k)(a
pk

) = q
(zk−1,u)
−j(k−1)δd(u,apk−1

)
(apk−1

)c
d(u,apk−1

)−j(k−1),(p−1)j(k−1),p−1
,

where q ∈ F
∗
p , zk were defined in lemma 13, c

d(u,apk−1
)−j(k−1),(p−1)j(k−1),p−1

is calculated

in lemma 5, (i) and it is not equal to zero by lemma 5, (ii), and
(zk−1,u)
−j(k−1)δd(u,apk−1

)
(apk−1

)

is calculated in lemma 14. By lemma 14 we have
(zk−1,u)
−j(k−1)δd(u,apk−1

)
(apk−1

) = −j(k −

1)(z,u)δ
d(u,apk−1

)
(apk−1

) . Combining all these calculation together and using induction, we

get J(k) = qkJ(k − 1)pJ(1) = q̃kJ(1)pk−1+pk−2+...+1 for k ≥ 1 , where qk ∈ Fp .
Therefore, there is the following filtration

F̄ ⊂ . . . ⊂ F̄ (apk+1

)J(k + 1) ⊂ F̄ (apk

)J(k) ⊂ . . . ⊂ D̄,

and for every k ≥ 1 we have F̄ (apk

) ·J(k) ⊂ A′(k−1) . So, A(k)∩A(k1) = {0} if k 6= k1 .
Now consider an element b ∈ F such that b̄ = apl

for some l > 0 . We assume l is
a minimal possible integer. It exists, because D is a finite dimensional algebra over F .
Let b = u(apl

) + b1z + . . . , where bk ∈ u(D̄) . Put I := min{w(zbkz
k−1 − bkz

k)} (we
assume here that b0 = u(apl

) ). Note that I < ∞ , since by lemma 14 j(l) < ∞ , i.e.
(z,u)δj(l)(a

pl

) 6= 0 . Now we must have

zbz−1 =
∞∑

k=0

zbkz
k−1 = b +

∑

r

(z,u)δj(r)(bqr
)zI + . . . = b,

where bqr
∈ F̄ (apr

) and bqr
/∈ F̄ (apr+1

) . So,
∑

r
(z,u)δj(r)(bqr

) = 0 , but it is impossible,
since A(k) ∩ A(k1) = {0} if k 6= k1 , a contradiction.

The theorem is proved.
2

Remark. It would be interesting to know the answer on the following questions.
i) Suppose D is a division algebra as in the theorem 4. Does there exist a pair (z, u)

such that all nonzero maps (z,u)δq satisfy the property i(u)|q ? If it is true, there is a
subalgebra D′ ⊂ D with [D : D′] < ∞ and D′ has level 1 (see remark before lemma 8).
So, we can reduce studying of D to the algebra of level 1.

ii) Is it true that D is a good splittable algebra, i.e. cyclic? Probably, it is possible to
apply our technique to give an answer to this question at least in the case of level 1.
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