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Abstract. — We prove two conjectures of Tits on the unipotent elements of semisimple
algebraic groups defined over a field with positive characteristic.
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1. — Introduction
1.1. — Good finite subgroups. Let k be a field of characteristic p ≥ 0, and then ks be a
separable closure of k. Let G/k be a reductive connected algebraic group. For the notions on
algebraic groups used here, we refer to the paper by Borel and Tits [BT1] and the book of
Demazure and Gabriel [DG]. If G is semisimple and absolutely almost simple, we denote by
S(G) the finite set of torsion primes of G as defined by Serre in [Se2]. In the case of G simply
connected, the the Dynkin index will be denoted by dG (cf. [LS], § 2). Note taht the prime factors
of dG lie in S(G). We recall Tits’ definition of good unipotent elements.

DEFINITION 1 [T2]. — Let u be a unipotent element of G(k). The element u is k–good if u
lies in the unipotent radical of a k–parabolic subgroup of G, otherwise u is k–bad.

In characteristic 0, all unipotent elements are k–good, so the definition is relevant only if
char(k) = p > 0 ; in that case, a unipotent element u has finite order q = pr and can be viewed
as a morphism u] : Z/qZ → G sending 1 to u. This viewpoint leads to the following definition
of goodness for morphisms M → G where M/k is a finite étale group.

DEFINITION 1’. — Let M/k be a finite étale group and φ : M/k → G be a morphism. The
morphism φ is k–good if φ(M(ks)) lies in the radical of a k–parabolic subgroup of G, otherwise
φ is k–bad.
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If φ is injective, we also say that M is a k–good subgroup of G. We say that φ : M → G is
unipotent if φ(M(ks)) consists of unipotent elements. Let us prove that the two definitions are
compatible.

LEMMA 1. — Assume char(k) = p > 0. Let u be a unipotent element of order q and
u] : Z/qZ→ G be the associated morphism. Then u is k–good if and only if u] is k–good.

Proof : If u is k–good, it is obvious that the morphism u] is k–good. Conversely, assume that
the morphism u] : Z/qZ→ G is k–good. Then u = u](1) lies in the radical R(P ) of a k–parabolic
subgroup P of G, which is an extension of a k–torus S by the unipotent radical RuP of P , i.e.
we have an exact sequence 1→ Ru(P )→ R(P )→ S → 1. As S(k) has no element of order p, u
lies in Ru(P )(k), and u is k–good.

DEFINITION 2 [T2]. — Let α be a k–automorphism of G of finite order. The morphism α is
k–isotropic if α normalizes some proper k–parabolic subgroup of G, otherwise φ is k–anisotropic.

As above, we can extend this definition to isotropic morphisms M → Aut(G) which will yield
the previous one in the case M = Z/nZ.

DEFINITION 2’. — Let φ ∈ Homk−gr(M,Aut(G)). The morphism φ is k–isotropic if φ(M(ks))
normalizes some proper k–parabolic subgroup of G, otherwise φ is k–anisotropic.

We say that φ ∈ Homk−gr(M,G) is k–isotropic if the composite Ad◦φ : M → G is k–isotropic.
Obviously, k–anisotropic implies k–bad.

1.2. — The conjectures of Tits. Our first result is the proof of the following conjecture (see
Theorem 2 of § 2).

CONJECTURE 1 [T3]. — Assume p > 0, [k : kp] ≤ p and that G/k is semisimple and
simply connected. Then every unipotent subgroup of G(k) (i.e a subgroup consisting of unipotent
elements) is k–embeddable into the unipotent radical of a k-parabolic subgroup of G.

The case p = 2 is due to Tits [T2, § 4.5]. Further known cases are when p is not a torsion prime
of G, and types An and Cn (loc. cit., § 3.5 and 4.4). In conjecture 1, the condition [k : kp] ≤ p
is necessary as the following theorem of Tits shows.

THEOREM 1 [T4, prop. S1] and [T5, th. 7]. — Assume that G is split simply connected and
almost simple. If [k : kp] ≥ p2 and p divides dG, then the group G(k) contains a k–bad unipotent
element of order p.

Our proof of conjecture 1 is based on the reduction to a problem in Galois cohomology for the
group Gk((t)), which is done in Proposition 3 (§ 2.2), and on known cases of Serre’s conjecture
II in Galois cohomology [Gi1]. Our second result is the proof of the following conjecture
(see Theorem 3 of § 4), which is related to the shape of conjugacy classes of k–anisotropic
automorphisms.

CONJECTURE 2 [T2]. — Assume p > 0 and that G/k is split and almost simple. Let α be a
k–anisotropic automorphism of order p. Then α normalizes a maximal k–split torus of G.

Let us recall first the known cases handled by Tits.
1) p = 2, all types,
2) p = 3, G of type D4 or E6, using a triality argument due to Harder [H],
3) type An.

It turns out that conjecture 2 and a large part of the present paper make sense in a broader
setting, including the characteristic zero case. To this end, we formulate the following conjecture,
which extends the preceeding one.
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CONJECTURE 2’. — Assume G/k is split almost simple. Let l be a prime of S(G). We assume
that l = char(k) or either that k contains a primitive l–root of unity. Let α be a k–anisotropic
automorphism of order l. Then α normalizes a maximal k–split torus of G.

Such anisotropic automorphisms are called special automorphisms. In section 4, we prove
conjecture 2’ except for the E8 case. However, the case of E8 and l = p = 5 is proven in [Gi3].
Tits’ original conjecture is thus true.

The proof of conjecture 2’ requires several steps. First we work in characteristic zero and prove
by a case-by-case analysis conjecture 2’ (except for the E8 case) by using methods inspired by
the proof of Hasse principle (§ 4.2). The tame case l 6= p is then not hard and we can concentrate
on the wild case l = p = char(k). We consider a complete discrete valuation ring A with residue
field k and fraction field FA of characteristic zero. We remark that special elements lift in
characteristic zero, i.e. if α ∈ Aut(G)(k) is a special automorphism of order p, then there exists
α̃ ∈ Aut(G)(A) of order p specializing to α. We show that anisotropic automorphisms lift in
characteristic 0 (§ 4.3). The proof concludes by a specialization argument.

1.3. — Complements on finite subgroups. In this section, we remark on the extension of
some known results to our present setting. The argument as used in the proof of proposition 3.2
of [T2] yields in fact the following.

PROPOSITION 1. — Let φ ∈ Homk−gr(M,G), and let P/k be a k–parabolic subgroup normalized
by φ. Let L be a Levi subgroup of P defined over k, so that P = Ru(P ) o L and let φ′ be the
composition of M → P → L.

a) The following are equivalent :
i) φ is k–good in G
ii) φ′ is k–good in G
iii) φ′ is k–good in L.

b) If P is minimal among all k–parabolic subgroups normalized by φ, then φ′ is k–
anisotropic in L.

Similarly, we can extend lemma 3.5 of [T2].

LEMMA 2. — Let H/k be a reductive subgroup of G/k. Let φ : M → Aut(G,H) ⊂ Aut(G) be a
k–anisotropic morphism. Then the morphism φ : M → Aut(G,H)→ Aut(H) is k–anisotropic.

We also recall :

PROPOSITION 2 ([BT2], prop. 3.6). — Let U ⊂ G(k) be a unipotent subgroup such that every
element of U is ks–embeddable in a Borel subgroup. Then U is k–embeddable in the unipotent
radical of a k–parabolic subgroup of G.

In particular and in contrast to the tame case, a unipotent element u is k–good iff it is
ks–good.

LEMMA 3. — Let g ∈ G(k) be an element of finite order invertible in k. Then g lies in a
maximal k–torus of G. In particular g is ks–good.

Proof : Let g ∈ G(k) be an element of finite order invertible in k. Then g is semisimple and
g lies in some maximal torus T/k. As T ×k ks is a split maximal torus, g is ks–good.
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More generally, if char(k) = 0, Borel-Mostow’s theorem asserts that an automorphism of G
of finite order normalizes a maximal torus of G [BM] (see also [P]).

2. — Finite unipotent subgroups and Galois cohomology

2.1. — A Galois cohomology class. Let us set K = k((t)) and denote by Kmod a maximal
tamely ramified extension of K. Let I = Iw o µm be a k–étale group, semi–direct product of
µm (m ∈ k×) by a constant p–group Iw. Throughout this paper, we assume that

there exists a totally ramified field extension L/K such that Spec(L) → Spec(K) is an I–
torsor.

This hypothesis is satisfied in the two extreme cases I = µm (obviously) and I = Iw since the
maximal pro–p quotient of Gal(Ks/K) is a free pro–p group [Se1, § II.2.2, Cor. 1]. We denote

by L̃ = L.K(µm), which is a Galois extension of K with Galois group Ĩ. So, there is a diagram
of field extensions

L̃
Á Â

L K(µm),

Â Á

L ∩K(µm)

|
K

and the residue field of L̃ is k(µm). We denote by fθ ∈ Z1(Ĩ , I(L̃)) the 1–cocycle defined by the
I–torsor Spec(L)→ Spec(K) and by θ ∈ H1(K, I) its class. For simplicity, the reader can think
of I = Z/pZ ; this case, which is of main interest for us, was treated in [Gi2].

We consider the set Homk−gr(I,G) and pick φ ∈ Homk−gr(I,G). The key point, due to Serre,
is to associate to φ : I → G the 1–cocycle

fφ = φ∗(fθ) in Z1(Ĩ , G(L̃))

and the cohomology class

γ(φ) = φ∗(θ) = [fφ] in H1(K,G).

Remark 1 : We shall use functoriality for a surjective base change λ : I ′ → I and an extension
L′/L/K of monodromy group I ′ : if there exists θ′ such that λ∗(θ

′) = θ, then φ∗(θ)L′ = λ∗(φ◦λ)
in H1(L′, G).

2.2. — How to see if a finite unipotent subgroup is k–good

PROPOSITION 3. — a) If φ is k–good, then γ(φ) = 1 in H1(K,G).

b) Assume that φ is unipotent. Then the following assertions are equivalent :
i) φ is k–good,
ii) γ(φ) = 1 in H1(K,G),
iii) γ(φ)Kmod

= 1 ∈ H1(Kmod, G).
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Proof : a) : Let P/k be a parabolic subgroup of G/k such that the radical R(P ) contains
Im(φ). The group R(P ) is split and we know that H1(K,R(P )) = 1. Thus γ(φ) = 1.

b) : As we consider unipotent morphisms, we can assume that I = Iw, i.e. I is a finite p–group.
There is only the implication iii) =⇒ i) to prove. By hypothesis, there exists a tamely ramified
extension K ′/K of valuation ring O′/O and residue extension k′/k such that γ(φ)K′ = 1 in
H1(K ′, G). One can assume K ′ = k′((t′)), (t′)e = t and (e, p) = 1, and that Gk′ is split. Let
B/k′ be a Borel subgroup of G/k′. We consider the extension L′ = L.K ′/K ′, which is Galois
of group I = Gal(L′/K ′) and valuation ring OL′ . Let us denote by X/k′ = G/B the variety of
Borel subgroups of G and by π : G/k′ → X/k′ the canonical map. This variety is projective,
the morphism π is smooth and one knows that the map on k′–points G(k′) → X(k′) is onto.
Using Hensel’s lemma and the valuative criterion of properness, one obtains easily that the map
π : G(OL′) → X(OL′) is onto and the map G(OL′)/B(OL′)

∼−→ G(k′)/B(k′) is bijective. We
have the following commutative diagram of pointed sets (cf. [Se1], § 1.5.4, prop. 36)

[
G(OL′)/B(OL′)

]I
−→ H1(I,B(OL′)) −→ H1(I,G(OL′))

y o

y
y

[
G(L′)/B(L′)

]I
−→ H1(I,B(L′)) −→ H1(I,G(L′)).

Taking the fixed points of the twisted I–sets by the cocycle fφ, one gets

[
fφ

(
G(OL′)/B(OL′)

)]I ∼−→
[
fφ

(
G(L′)/B(L′)

)]I
,

so the class [fφ] ∈ H1(I,G(OL′)) has a reduction inH1(I,B(OL′)). Thus there exists h ∈ G(OL′)
such that hφ(σ)(σh−1) ∈ B(OL′) for any σ ∈ I. Let h be the image of h in G(k′). Then
hφ(σ)(h)−1 ∈ B(k′) for any σ ∈ I (we used here that L/K is totally ramified) and φ is k′–
good. By Proposition 2, because k′/k is separable, φ is k–good.

The wild inertia group Gal(Ks/Kmod) is a pro–p group. If p is a good prime for G, i.e. if p
is not a torsion prime of G, we know that H1(Kmod, G) = 1 [Se2, th 4”]. The last proposition
together with Proposition 2 gives then another proof of Tits’ result [T2, cor. 2.6].

COROLLARY 1. — Assume p = char(k) 6∈ S(G). Then any unipotent subgroup U of G(k) is
k–embeddable in the unipotent radical of a k–parabolic subgroup of G.

2.3. — The case [k : kp] ≤ p

THEOREM 2. — Assume char(k) = p > 0, [k : kp] ≤ p and that G is semisimple simply
connected. Then every unipotent subgroup of G(k) is k–embeddable in the unipotent radical of a
k-parabolic subgroup of G.

We recall Kato’s definition [K] of the p–dimension dimp(k) of k by means of cohomology
groups H i

p(k). Let Ωk be the k-vector space of the 1–differential forms of the Z-algebra k. For

any nonnegative integer i, we set Ωi
k =

∧i
Ωk and the exterior differential d maps Ωi

k to Ωi−1k .
There exists an unique additive p–linear application γ : Ωi

k → Ωik/dΩ
i−1
k such that γ(xω) = xpw
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for any logarithmic differential form ω = dy1/y1 ∧ · · · ∧ dyi/yi. The operator ω is inverse of the
Cartier operator. We set

Hi+1
p (k) = Coker

(
γ − 1 : Ωik → Ωik/dΩ

i−1
k

)
.

If [k : kp] =∞, one sets dimp(k) =∞. If [k : kp] = pr, one sets :
- dimp(k) = r if Hr+1

p (k′) = 0 for any finite extension k′/k,
- dimp(k) = r + 1 otherwise.

Proof of Theorem 2 : Assume [k : kp] ≤ p. By Proposition 2, one can assume that k = ks,
that G is split and almost simple and that U is generated by a unipotent element of order q.
One has pBr(k

′) = H2
p (k

′) = 0 for any finite extension k′/k because k is separably closed, so
dimp(k) ≤ 1. Then dimp(K) ≤ 2 by [K, corollary to th. 3] where K = k((t)) as in § 2. By
definition, one has H3

p (K
′) = 0 for any finite field extension K ′/K. As the wild inertia group

Gal(Ks/Kmod) is a pro–p group, the main result of [Gi1] gives then

H1(Kmod, G) = 1.

Then Proposition 3.b shows that u is k–good.

2.4. — Bad unipotents and torsors on the affine line. Raghunathan has conjectured
that if G is semisimple simply connected, then G–torsors on the affine line A1

k are constant,
i.e. come from G–torsors on Spec(k) [R, p. 189]. It turns out that bad unipotent elements yield
counterexamples to this conjecture.

PROPOSITION 4. — Assume that G/k admits a bad unipotent element u of order p. Let
P : A1

k → A1
k be the Artin–Schreier covering, which is Galois of group Fp and defined by

t = P(x) = xp − x. Let us define the 1–cocycle h = (hσ)σ∈Fp
for this covering by

hσ = uσ ∈ G(k[x]) (σ ∈ Fp)

Then the cocycle h defines a G–torsor on A1
k which is not isomorphic to a constant torsor.

Proof : One can assume k = ks. So H
1(k,G) = 1 and we have to show that the torsor defined

by h is not trivial. We lift our cocycle h in G
(
k(( 1x ))

)
and we observe that k(x)/k(t) is wildly

ramified at∞. As u is a bad unipotent element, Proposition 3.b shows that [h]k(( 1

t
)) is not trivial

in H1(k(( 1t )), G), and a fortiori [h] is not trivial in H1(A1
k, G).

Remark 2 : Theorem 1 (§ I.2) yields non constant G–torsors on the affine line for G split
semisimple simply connected provided p divides dG and [k : kp] ≥ p2.

3. — Conjugacy classes of k–anisotropic automorphisms of split groups
From now on, we assume that G/k is split and semisimple. So G is the extension of Z to k of

the corresponding Chevalley group scheme G/ Spec(Z). For any ring A, we denote by simplicity
G×Z A = GJ ×Spec(Z) Spec(A).

The goal of this section is to give a powerful cohomological criterion analogous to Proposition
3 for distinguishing conjugacy classes of k–anisotropic automorphisms. We denote by T/Z a
maximal split torus of G/Z and by B/Z a Borel subgroup containing T . Let J ⊂ Aut(G,B, T )
be a subgroup and let us consider the semi-direct product GJ/Z = G/ZoJ . We have a natural
map GJ/Z→ Aut(G)/Z with kernel the center of G/Z and we note that if G/Z is adjoint and
J = Aut(G,B, T ), one has GJ/Z = Aut(G)/Z. Let us introduce the following notation :

- W = NG(T )/T and WJ = NGJ (T )/T = W o J (the Weyl groups),
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- T̂ = HomZ−gr(T,Gm), T̂ 0 = HomZ−gr(Gm, T ).

PROPOSITION 5. — Let φ ∈ Homgr

(
I,GJ (k)

)
.

a) The following assertions are equivalent
i) φ is k–anisotropic,

ii)
[
fφ
GJ (OL̃

)
]Ĩ

=
(
fφ
GJ

)
(K),

iii) the group fφGJ/K is K–anisotropic.

b) Assume φ is k–anisotropic. Let φ′ : I → GJ be another group morphism. The following
assertions are equivalent :

i) φ′ is conjugate to φ under GJ (k),
ii) γ(φ) = γ(φ′) in H1(K,GJ ).

c) Let k′/k be a Galois extension such that φ/k′ : I → GJ is a k′–anisotropic morphism.
With the notation ZG(φ) = ZG(Im(φ)), one has an injection

H1(k′/k, ZGJ (φ)) ↪→ H1(K.k′/K,fφ GJ ).

Proof : Let us begin by the second assertion.
b) The implication i) =⇒ ii) is obvious. Conversely, assume that γ(φ) = γ(φ′) inH1(L̃/K,G).

Then there exists g ∈ G(L) such that

g−1φ(σ) σg = φ′(σ) (σ ∈ Ĩ).

Let B be the Bruhat–Tits building of the group G
L̃
[BrT,§ I.7.4] which is a metric space. This

building is equipped with an (isometric) left action of the group GJ(L̃) and an action of the

Galois group Ĩ = Gal(L̃/K) denoted by x 7→ σx for any σ ∈ Ĩ. We denote by c the center of the

building, i.e. the vertex of B fixed by G(O
L̃
). One defines a twisted action of Ĩ on B by

σ.x = φ(σ).σx (σ ∈ Ĩ).

This action is isometric and simplicial (i.e. maps a facet on a facet). Clearly, because Im(φ) ⊂
GJ (k), the center c is fixed under the twisted action of Ĩ. Due to

σ.(g.c) = φ(σ)(σg).c = gφ′(σ).c = g.c,

we see that g.c is also fixed by Ĩ for the twisted action. Assume that g.c 6= c. As the segment
[c, g.c] is fixed pointwise by Ĩ, there exists a facet of B containing strictly c which is stabilized

by the twisted action of Ĩ. Hence there exists (by the isomorphim between the link of c in B
and the spherical building of GJ/k(µm)) a facet of the spherical building of GJ/k(µm) which is

stabilized by Ĩ. In other words, there exists a proper k–parabolic subgroup P of G such that

[
fφ

(
GJ(k(µm))/NGJ (P )(k(µm))

)]Ĩ
6= ∅, i.e

{
[ϕ] ∈ GJ(k(µm))/NGJ (P )(k(µm)) | ϕ−1 Im(φ)ϕ ∈ NGJ (P )(k(µm))

}Gal(k(µm)/k)

6= ∅,

which means that φ normalizes the k–parabolic subgroup ϕ(P ). This contradicts the anisotropy
of φ. We conclude that g.c = c, i.e. g ∈ GJ (OL). Reducing the identity g−1φ(σ)(σg) = φ′(σ) to
GJ (k(µm)), one gets g−1φg = φ′ with g ∈ G(k).

7



P. GILLE

a) i) =⇒ ii) : Assume φ is k–anisotropic. The same argument as before with φ′ = φ shows
that (

fφ
GJ

)
(K) = {g ∈ GJ(L̃) | φ(s)(σg)φ(σ)−1 = g ∀σ ∈ Ĩ} ⊂ GJ(OL̃

),

so
(
fφ
GJ

)
(K) =

[
fφ
GJ(OL̃

)
]Ĩ
.

ii) =⇒ iii) : As
(
fφ
G
)
(K) ⊂ GJ(OL̃

) is bounded, the group fφG/K does not contain any non

trivial K–split torus, hence it is K–anisotropic.
iii) =⇒ i) : We prove not i) =⇒ not iii). Assume φ is k–isotropic, i.e. there exists a k–
parabolic subgroup P such that Im(φ) ⊂ NGJ (P )(k). Then the class γ(φ) in H1(K,GJ) comes
from H1(K,NGJ (P )), and the twisted group fφG/K is isotropic.

c) We set K ′ = K ⊗k k′, O′ = L ⊗k k′, etc.. The first assertion shows that
(
fφ
GJ

)
(K ′) =

[
fφ
GJ(OL̃′

)
]Ĩ
. But the map of Gal(k′/k) groups ZGJ (φ)(k

′) →
[
fφ
GJ(OL̃′

)
]Ĩ

is split, so the

map H1(k′/k, ZGJ (φ))→ H1(K.k′/K, fφGJ ) is injective.

First, we give the following corollary of the proposition and of Lemma 3 (§ 1.3).
COROLLARY 2. — Assume that the adjoint group Gad of G is simple. Assume m is an integer

such that k contains a primitive m-th root of unity and such that there exists a k–anisotropic
automorphism of order m. Then m ∈ S(G).

Proof : One can assume that G = Gad. Let α be a k–anisotropic automorphism of order
m and assume that m 6∈ S(G). The exact sequence 1 → G → Aut(G) → Out(G) → 1
and the fact that Out(G) is a finite group such that the prime divisors of ]Out(G) are bad
primes shows that α is an inner automorphism. By Lemma 3, there exists a maximal torus
S which contains α. The choice of a primitive m–root of unity ζ induces an isomorphim
Z/mZ ∼−→ µm ; taking L = k( m

√
t)/K and θ = (t) ∈ H1(K,µm) as in section 2, we see that

γ(α) ∈ Im
(
H1(L/K,S) → H1(L/K,G)

)
. But H1(L/K,S) is an S(G)-primary torsion group,

so H1(L/K,S) = 1 and γ(α) = 1. By Proposition 5.a, α is then k–isotropic. Contradiction.

Questions : Assume p > 0. We lack an analogue of Proposition 2 (§ 3.1) for k–anisotropic
automorphisms of order p. More precisely, we ask the following :

1) Let α be a k–anisotropic automorphism of G of order p. Is αks ks–anisotropic ?
2) Let α, α′ be k–anisotropic automorphisms of G of order p such that α and α′ are

conjugate under Aut(G)(ks). Are α and α′ conjugate under Aut(G)(k) ?

4. — Anisotropic automorphisms are special
In this section, we prove conjecture 2’ ; as mentionned earlier, this proves Tits original

conjecture is proven as the case E8, p = 5 has already been done in [Gi3].

THEOREM 3. — Conjecture 2’ is true for all types excepting possibly case E8, l = 5 6= p.

The steps have been described in section 1.2 and we take into account cases done by Tits in
the wild case. Their proof works also in the tame case, which is much simpler.

4.1. — Special automorphisms

DEFINITION 3. — A k–automorphism f of a torus S/k is anisotropic if the k–group Sf of
fixed points of S by f is finite.
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UNIPOTENT SUBGROUPS

DEFINITION 3’. — a) An element w of WJ is special if the automorphism w : T → T defined
by t 7→ w.t is anisotropic.

b) An element of GJ(k) of order n is special (relative to the split torus T ) if it lies in
NGJ (T )(k) and its image in WJ is a special element of order n.

Some special elements of WJ are listed in [Sp] for any simple type.
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LEMMA 4. — Let w be a special element of WJ of order n.

a) The homomorphism N(w) = 1 + w + ...+ wn−1 : T → T is trivial.

b) Let g be a special element relative to T mapping to w. Then for any τ ∈ T (k), τg is
a special element of GJ(k) of order n and is NG(T )(k)–conjugate to g.

c) Let g be an element in NG(T )(k) such that g is k–anisotropic in G. Then g acts
anisotropically on T . Moreover, if char(k) = p > 0 and g has order pr, then g is special (relative
to T ).

d) Assume that n is odd. Let A be a complete discrete valuation ring with residue field
k and fraction field FA. Let g be a special element of GJ(k) (relative to T ) mapping to w.
Then there exists g̃ ∈ NGJ×Z

A(T )(A) of order n mapping to g in GJ(k) such that g̃ is a special
element of GJ(FA) (relative to T ) and mapping to w in WJ .

Proof : a) As (1 − w).N(w) = 0 and 1 − w is an invertible automorphism of T̂ ⊗Z Q, then
N(w) = 0 as an automorphism of T̂ ⊗Z Q, hence N(w) : T → T is trivial.

b) Let us denote by w the image of g in WJ . We have to show that τg has order n ; it is given
by the computation

(τg)n = τ × gτg−1 × g2τg−2 · · · × gn−1τg(−n+1) = τ × (w.τ)× · · · × (wn−1.τ) = N(w).τ = 1.

So the order of τg divides n and as w has order n, the order of τg is exactly n. We consider the
equation

τg = xgx−1 (x ∈ T (k)),

or equivalently
τ = xgx−1g−1 = x× w.x−1 (x ∈ T (k)).

As the group morphism T → T given by t 7→ t×w.t−1 has finite kernel, it is surjective, so there
exists x ∈ T (k) such that τg = xgx−1.

c) Let g be an element of NGJ (T )(k) such that g is k–anisotropic. Assume that g acts
isotropically on T , then T 〈g〉 = Ker(1−g : T → T ) has dimension greater than 1, so there exists
a k–split subtorus S of T such that g ∈ ZG(S)(k). As ZG(S) is a k–Levi subgroup of a proper
k–parabolic subgroup, g is k–isotropic. So g acts anisotropically on T . Assume moreover that g
has order pr ; we have to show that the image of g in WJ , say w0, has order p

r. If not, gp
r−1

is
an element of order p of T (k), and as µp(k) = 1, this leads to a contradiction.

d) As GJ is a Chevalley group defined over Z, the sequence 1 → T → NGJ (TJ) → WJ → 1

can be defined over Z, and as H1
ét(Z, T )

∼−→
(
Pic(Z)

)rank(G)
= 1, one has the exact sequence

1→ T (Z)→ NGJ (TJ)(Z)→WJ → 1

and an isomorphism T (Z) ≈ (Z/2Z)rank(G) (see [T1]). So the class of the preceeding extension
is killed by 2. Let g ∈ NGJ (TJ)(k) be of odd order n. Then there exists g0 ∈ NGJ (TJ)(Z) of
order n with same image in WJ as g. There thus exists τ ∈ T (k) such that α = τα0, where α0

is the reduction in k of α0 via the map NGJ (TJ)(Z)→ NGJ (TJ)(A)→ NGJ (TJ)(k). As T ×Z A
is a smooth group scheme, the map T (A) → T (k) is surjective by Hensel’s lemma. We pick
τ̃ ∈ T (A) mapping to τ . The element g̃ := τ̃α0 of NGJ (TJ)(A) lifts g = τα0, maps to w in WJ

and by assertion b), g̃ is a special element of GJ(FA) relative to T .

4.2. — Triality
In this section, we handle the case l = 3 assuming then that k contains a primitive

third root of unity. First, let us remark that we can assume that G is adjoint, so the group
Aut(G) = G o Aut(G,B, T ) is of the type we studied before. Let α ∈ Aut(G)(k) be a k–
anisotropic automorphism of order 3. We shall use the following triality argument.
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LEMMA 5. — Assume that G has type D4 (resp. F4, E6, E7, E8). Then α normalizes a k–Levi
subgroup of a k–parabolic subgroup of G of type A2 (resp. A2, A2 ×A2, E6, E7).

Proof : Let P be a k–parabolic subgroup of G such that Pred has type A3 (resp. C3, D5, E6,
E7). Then codimG(P ) = 6 (resp. 15, 16, 27, 57). Let us define the k–group

C = P ∩ α(P ) ∩ α2(P ).

Then codimG(C) ≤ 3 × codimG(P ), so dimG(C) ≥ 28 − 10 (resp. 7, 30, 52, 77) (cf. [PR] p.
380). We claim that C is a k–Levi subgroup of some k–parabolic subgroup of G. Let Q be a k–
parabolic subgroup such that C ⊂ Q ⊂ P and minimal for this property. Then the k–parabolic
subgroup Ru(Q).

(
Q ∩ α(Q)

)
contains C and is contained in Q, so Ru(Q).

(
Q ∩ α(Q)

)
= Q and

M := Q∩α(Q) is a k–Levi subgroup of G ([BT1], proposition 4.10). But C = M ∩α2(Q) is a k–
parabolic subgroup of M ; if C 6= M , then α normalizes the split k–unipotent group Ru(C), and
by Proposition 3.1 of [BT2], α normalizes a k–proper parabolic subgroup of G, which contradicts
the assumption of anisotropy. So C is a k–Levi subgroup of Q/k and the restriction of α is still
k–anisotropic (Lemma 2). As dimk(C) ≥ 10, the only possibility is that C has type A2. Other
cases are considered on a case-by-case basis using Corollary 2 and we leave the details of the
argument to the reader.

Let us recall that Theorem 3 is true for A2 and prove it inductively in the cases considered
in Lemma 5. Lemma 5 gives a k–Levi subgroup C of a k–parabolic proper subgroup of G
normalized by α. So the connected center ZG(C)0 is a k–split torus normalized by α and, by
induction, the derived group DC contains a k–split maximal torus S normalized by α. It follows
that ZG(C)0.S is a maximal k-split torus of C (and G) normalized by α.

4.3. — Lifting in characteristic 0.

LEMMA 6. — Assume p = char(k) > 0. Let A be a complete discrete valuation ring with
residue field k and fraction field FA. Let φ : I → GJ be a group homomorphism which lifts to
φ̃ : I → GJ ×Spec(Z) Spec(A).

a) If φ̃ : I → GJ ×Z FA is a FA–isotropic morphism, then φ is a k–isotropic morphism.

b) Assume φ is k–anisotropic. If φ̃ normalizes some maximal FA–split torus of GJ,FA ,
then φ normalizes some maximal k–split torus of GJ/k. Moreover, let φ′ : I → GJ be a group

homomorphism which lifts to φ̃ : I → GJ ×Spec(Z) Spec(A) such that φ̃ and φ̃′ are conjugate
under GJ(FA). Then φ and φ′ are conjugate under GJ(k) and φ′ normalizes some maximal
k–split torus of GJ/k.

Proof : a) Assume that φ̃ is a k–isotropic element of GJ(FA). This means that there exists a

standard parabolic subgroup P/Z of G/Z such that I (through φ̃) has a fixed point in X(FA),
where X = GJ/NGJ (P ) is the projective Z–scheme of parabolic subgroups of GJ of the same
type as P . As X(A) = X(FA), then I has a fixed point in X(k), and φ is k–isotropic.

b) Assume that φ is k–anisotropic and that φ̃ normalizes a FA–maximal split torus, i.e. there
exists g ∈ GJ(FA) such that

(∗) g−1φ̃(σ)g = f̃(σ) ∈ NGJ (T )(FA) (σ ∈ I),

where f̃ : I → NGJ (T )(FA) is a group homomorphism. We consider the Bruhat–Tits building
B of the group GJ,FA with center c, which is the vertex stabilized by GJ(A). We denote by BI
the fixed point of X by I (through φ̃), which is convex and contains c. The torus T defines an

apartment A = T̂ ⊗Z R ⊂ X. From (∗), we get g.A ⊂ BI . Let us denote by π(c) the projection
of c on the apartment g.A.

11
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Claim π(c) = g.c = c : We write c = g.a with a ∈ A. For any σ ∈ I, one has

g.a = φ(σ)g.a = gf̃(σ).a,

so f̃(σ).a = a. As I acts on A trough f̃ , we get a ∈ (T̂ 0 ⊗Z R
)I

= AI . But (T̂ 0 ⊗Z R
)I

=

(T̂ 0
)I ⊗Z R, so if a 6= c, it means then f̃ is k–isotropic, which gives a contradiction to the

anisotropy of φ by a). We conclude that π(c) = g.c.
As BI is convex, the segment [c, π(c)] is fixed pointwise by α. If c 6= π(c), there exists a facet

F of B strictly containing c which is stabilized by I. By the isomorphism between the link of c
and the spherical building of GJ/k, there exists a proper k–parabolic subgroup P of G such that
φ(P ) = P , which again gives a contradiction to the anisotropy of φ. We conclude that π(c) = c,

i.e. c ∈ g.A. So g.c = c, i.e. g ∈ GJ (A) and f̃(σ) ∈ NGJ (T )(A). Reducing (∗) in k, it yields
g−1φ(σ)g ∈ NGJ (T )(k), so φ normalizes the maximal k–split torus g.T . One can then assume

that φ and φ̃ normalizes T .
Now, let φ′ : I → GJ be a group homomorphism which lifts to φ̃ : I → GJ×ZA and such that

φ̃ and φ̃′ are conjugate under GJ (FA). Let g ∈ GJ (FA) be an element such that φ̃′ = gφ̃g−1.

Then φ̃′ normalizes the FA–torus gTg
−1. But φ̃ is anisotropic by assertion a), so φ̃′ is anisotropic

and the proof of assertion b) shows that g ∈ GJ(A). We have then φ̃′ = gφ̃g−1 with g ∈ GJ(A),

so φ = gφ(g)
−1

with g ∈ GJ (k), and φ′ normalizes the maximal k–split torus gTg−1.

LEMMA 7. — Let φ ∈ Homgr(I,GJ (k)) be a k–anisotropic morphism. Then there exists
g ∈ GJ(ks) such that the following hold

i) g−1 Im(φ)g ⊂ NGJ (T )(ks),
ii) g−1sg ⊂ NGJ (T )(ks) ∀s ∈ Gal(ks/k).

The torus g.T is defined over k and normalized by φ. Moreover, in the case I is cyclic, one
can replace condition i) by

i′) g−1 Im(φ)g ∈ NGJ (T )(k),

Remark 3 : Lemma 7 yields conjecture 2 of Tits by an uniform argument in the case k is
separably closed.

Proof of Lemma 7 : It is well–known that the map

H1(K,NGJ (T ))→ H1(K,GJ )

is surjective. In other words, there exists a finite Galois extension M/K such that K ⊂ L ⊂
M ⊂ Ks, an element g ∈ GJ(M) and a cocycle h ∈ Z1

(
Gal(M/K), NGJ (T )(Ks)

)
such that

(∗) g−1φ(s)sg = hs (s ∈ Gal(M/K)).

Let us denote by K ′/K the maximal unramified subextension of M , by O′ its valuation ring

12
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and by k′ its residue field Set L′ = L.K. We may assume K ′ = k′((t)).

M
|
L′

Á Â

K ′ L
Â Á

K

Let B be the Bruhat–Tits building of the group GM [BrT1, § I.7.4]. This building is equipped
with an action of the group GJ (M) and an action of the Galois group Gal(M/K) denoted by
x 7→ sx for any s ∈ Gal(M/K). We denote by c the center of the building, i.e. the vertex of B
fixed by GJ (OM ), where OM is the valuation ring ofM . The torus T ×kM defines an apartment

A = T̂ 0⊗ZR ⊂ B, which contains the center c, and which is fixed pointwise by Gal(M/K). One
defines a twisted action of Gal(M/K) on B by

s.x = φ(s).sx (s ∈ Gal(M/K)).

This action is isometric and simplicial (i.e. maps a facet on a facet). Clearly, since Im(φ) ⊂
GJ (k

′), the center c is fixed under the twisted action of Gal(M/K). We claim that the
apartment gA is stabilised by Gal(M/K) for the twisted action. This follows from the following
computation ; for any x = g.a ∈ A, one has

s.x = φ(s).s(g.a) = g.(hs.a) ∈ gA.

Let us denote by π(c) = g.a the projection of c to the apartment gA.
Claim : π(c) = g.c = c : As c is fixed under the twisted action of Gal(L/K), the projection

π(c) is also fixed. Moreover (observe sa = a), one has π(c) = g.a = s.(g.a) = φ(s).sg.sa =
ghs.a (s ∈ Gal(L/K)), so

a = hs.a (s ∈ Gal(M/K)).

Now, we consider the maximal torus

nT/K ⊂ nG/K ≈ fφG/K.

The group nG/K ≈fφ G/K is anisotropic by Proposition 5, so the torus nT is anisotropic and

0 = n̂T
0
(K)⊗Z R = {x ∈ A | hs.x = x}. One deduces that a = c, i.e. π(c) = h.c.

Let us assume that π(c) 6= c. Then the segment [c, π(c)] is fixed pointwise by the twisted
action of Gal(M/K). So there exists a facet of B containing strictly c which is stabilized by the
twisted action of Gal(M/K) and there exists (by the isomorphim between the link of c in B and
the spherical building of G/k) a facet of the spherical building of G/k which is pointwise fixed
by Gal(M/K). In other words, there exists a proper k–parabolic subgroup of G such that

[
fφ

(
GJ (k

′)/NGJ (P )(k′)
)]Gal(M/K)

6= ∅.
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The group Gal(M/K) acts on the previous set through Gal(L′/K) = I ×Gal(k′/k). One has

[
fφ

(
GJ(k

′)/NGJ (P )(k′)
)]I

= {[d] ∈ GJ (k
′)/NGJ (P )(k′) | d−1 Im(φ)d ∈ NGJ (P )(k′)},

[
fφ

(
GJ (k

′)/NGJ (P )(k′)
)]Gal(k′/k)

= {[d] ∈ GJ (k
′)/NGJ (P )(k′) | d−1(sd) ∈ NGJ (P )(k′) ∀s ∈ Gal(k′/k)}.

Let d ∈ NGJ (P )(k′) be a coset in the intersection of the two previous sets and let us denote
by z ∈ Z1(k′/k,NGJ (P )) the cocycle defined by zs = d−1(sd). The element d gives rise to a
trivialization βd :z GJ

∼−→ GJ such that Im(φ) ⊂ βd(zNGJ (P )), which gives a contradiction
to the anisotropy of φ. We conclude that π(c) = c. Let us denote by a 7→ a the map
GJ (OM ) → GJ(k

′). The identity (∗) holds in GJ (OM ) and replacing d by d ∈ GJ (k
′), one

can assume that g ∈ GJ(k
′) ⊂ GJ(L

′), that L′ = M and hs ∈ GJ(k
′) ⊂ GJ (L

′) for every
s ∈ Gal(L′/K). So we get i) and ii).

Assume now that I is cyclic with a generator σ. Identity (∗) for σ yields

(∗∗) g−1φ(σ)g = hσ ∈ NGJ (T )(k
′).

Since Gal(k′/k) acts trivially on the Weyl group WJ , the map s 7→ h−1σ (shσ) defines a
Gal(k′/k)–cocycle in T (k′) and by Hilbert’s theorem 90, there exists τ ∈ T (k′) such that
h−1σ (shσ) = τ−1(sτ). Replacing g by gτ in (∗∗), one can assume that hσ ∈ NGJ (k) and taking
h = hσ, the proposition is proved.

LEMMA 8. — Assume that p = char(k) is an odd prime ; let A be a complete discrete valuation
ring with residue field k and fraction field FA. Let H/k be a k–form of GJ , H a A–form of GJ×ZA
with special fiber H/k Let S be a maximal k–torus of H, and let S be a maximal A–torus of H

with special fiber S. Let h ∈ NH(S)(k) be an element of finite order q = pr. Then h lifts to an

element h̃ ∈ NH(S)(A) of order q.

Remark 4 : Such an H exists by Hensel isomorphism H1
ét(A,Aut(GJ))

∼−→ H1(k,Aut(GJ))
and such an A–torus S exists by [SGA3, exp. XV, § 8].

Proof : Let As/A be the étale extension associated to ks/k. We remark first that we can
assume that h generates H/H0. Let us denote by w the image of h in (NH(S)/S)(k), which has
order q.

First case : w acts anisotropically on S ×k ks : First, remark that the lifting assumption
in NH(S)(As) is satisfied by Lemma 4.d (§ 4.1, we use here that p is odd). Let us denote the
Weyl group scheme NH(S)/S by W (S)/A ; that is a twisted finite group, so isomorphic to
NG(S)/S. We also denote by 〈w〉 the cyclic subgroup of W (S) generated by w and by Nw/A
the preimage of 〈w〉 in NH(S). By Hensel’s lemma, one has the following exact commutative
diagram of pointed sets

1 −→ S(A) −→ Nw(A) −→ 〈w〉 −→ H1(A,S)y
y

∥∥∥
y o

1 −→ S(k) −→ Nw(k) −→ 〈w〉 −→ H1(k, S),
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and

1 1
↓ ↓
S = S
↓ ↓

1 −→ S(A) −→ Nw(A) −→ 〈w〉 −→ 1

sp

y sp

y
∥∥∥

1 −→ S(k) −→ Nw(k) −→ 〈w〉 −→ 1,

↓ ↓
1 1

where S := Ker
(
S(A) → S(k)

)
. So, the obstruction to lifting h to an element of order q in

NH(S)(A) is the class, say η in H2(〈h〉,S), of the restriction to the cyclic group 〈h〉 of the
vertical extension. We put µ/A = Ker(1−w : S → S) which is a finite A–multiplicative group,
and we have

H2(〈h〉,S) =
(
S
)〈w〉

/N(w).S = Ker
(
µ(A)→ µ(k)

)
,

because N(w) = 0 (Lemma 4.a). The same approach for k = ks gives an obstruction ηs in µ(As)
which vanishes. As µ(A) ⊂ µ(As), one has η = 0, and h lifts to NH(S)(A).

Second case : h acts isotropically on S ×k ks : This means that dim(S〈h〉) ≥ 1, i.e. there
exists a non–trivial subtorus S0 of S such that h ∈ ZH(S0)(k). We have ZH0(S0) = ZH(S0)

0.
As h generates H/H0, we have an exact sequence 1 → ZH0(S0) → ZH(S0) → H/H0 → 1
which is split by h. The element h acts trivially on the coradical torus (cf. [SGA3], exp. XXII,
§ 6.2) C =: corad(ZH0(S0)) of ZH0(S0), and it defines an extension of the canonical morphism
ZH0(S0)→ C to a morphism ZH(S0)

0 → C. So one can define the group H ′/k by the following
diagram

1 1
↑ ↑
C = Cx

x
1 −→ ZH0(S0) −→ ZH(S0) −→ H/H0 −→ 1x

x
∥∥∥

1 −→ DZH0(S0) −→ H ′ −→ H/H0 −→ 1.

↑ ↑
1 1

So H ′ is a k–form of some G′J ′ and h ∈ H(k) because C(k) has no k–points of p–power
order. Denoting S′ = Ker(S → C) ⊂ H ′, h acts anisotropically on the maximal torus
S′ ×k ks of H ′. Defining H′/A and S′/A by Hensel’s lift, the first case shows that h lifts in
NH′(S

′)(A) = NH(S)(A) ∩ H′(A), so h lifts in NH(S)(A).
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4.4. — End of the proof of Theorem 3
Recall that char(k) = p > 0 and we consider a k–anisotropic automorphism α of prime order

l of G. We can assume that l is odd. Let A be a complete discrete valuation ring with residue
field k and with fraction field FA such that FA contains a primitive p–root of unity. First, we
show that α lifts to Aut(G)(A), i.e. there exists α̃ ∈ Aut(G)(FA) of order l lifting α. If l = p,
this is a consequence of Lemmas 7 and 8. If l 6= p, then Z/lZ is a finite group of multiplicative
type ; as Aut(G) is smooth, the Grothendieck rigidity theorem [SGA3, exp. VI, Cor. 7.3] says
that the map

HomA−gr

(
Z/lZ,Aut(G)

)
→ Homk−gr

(
Z/lZ,Aut(G)

)

is surjective, so α lifts in characteristic zero. By Lemma 6.a, α̃ is an FA–anisotropic automor-
phism of G/FA, the characteristic zero case shows that α̃ is special and finally Lemma 6.b shows
that α is special.
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[BT1] A. BOREL and J. TITS. — Groupes réductifs, Publ. Math. IHES 27, (1965), 55–152.
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