
AN INVARIANT OF SIMPLE ALGEBRAIC GROUPS

R. SKIP GARIBALDI

Abstract. The Rost invariant associated with a simple simply connected

algebraic group G is used to define an invariant of strongly inner forms of G.

This invariant takes values in a quotient of H3(k, Q/Z(2)). It is used to answer

a question of Serre about groups of type E6 and to prove a generalization of

Gille’s splitting criterion for groups of type E6 and E7.

For G a semisimple algebraic group over a field k with Dynkin diagram ∆, there
is a k-map Aut(G) → Aut(∆) and it is natural to ask: What is the image of
Aut(G)(k) → Aut(∆)(k)? This question is easily reduced to the case where G is
simply connected, so we assume henceforth that G is such. The Tits algebras (see
§2 and 3.3) of G provide an obvious obstruction to the surjectivity of the map, and
we say that G is flayed if they are the only obstruction (see §3).

For flayed simple groups, we can use Rost’s invariant for G-torsors to give an
invariant aG of groups which are strongly inner forms of G, see §5. This invariant
has already been constructed by ad hoc means in some special cases (see 5.3 and
5.4). As an application, we obtain an isomorphism criterion which generalizes a
result of Gille’s (see 7.2).

Notation and conventions. For a field k, we write ksep and kalg for separable and
algebraic closures respectively and Gal(k) for the Galois group of ksep/k. Typically
we make no restrictions on the characteristic of k.

We say that an algebraic group is simple if it is 6= 1, is connected, and has no
nontrivial connected normal subgroups over an algebraic closure. (Such groups are
sometimes called “absolutely almost simple”.)

1. Background on flat cohomology

In order to obtain characteristic-free results, we use flat cohomology as in [Car66]
and [Wat79] instead of Galois cohomology. Let G be an affine group scheme over
a field k, or more generally an fpqc sheaf in the sense of [Wat79, 15.6]. We set
H0(k,G) = G(k) and

Z1(k,G) = {g ∈ G(⊗2
kkalg) | (d

0g)(d2g) = d1g},

where di : ⊗n
kkalg → ⊗n+1

k kalg is the map which inserts a 1 after the i-th place.
Two 1-cocycles (= elements of Z1(k,G)) g, g′ are cohomologous if there is some
h ∈ G(kalg) such that g′ = (d0h)g(d1h)−1 in G(⊗2

kkalg). This defines an equivalence
relation on Z1(k,G), and the quotient set is denoted H1(k,G). It has base point
the class of the 1-cocycle g = 1. If G is abelian, one can define Hq(k,G) for all
q ≥ 0 using Čech cohomology, see [Wat79, p. 139] for a concrete definition.

If G is smooth, then Hq(k,G) is canonically identified with the Galois cohomology
set Hq(Gal(ksep/k), G(ksep)) by [Wat79, 17.8]. Consequently, if you wish to avoid
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flat cohomology, you may skip to the beginning of §2; all of the results will still hold
if one adds some minor restrictions on the characteristic. For example, H1(k,µn) =
k∗/k∗n in all characteristics, but for Galois cohomology this is only true when n is
not divisible by char(k).

The most useful results in Galois cohomology from §I.5 of Serre’s classic [Ser02]
all hold for flat cohomology. Presumably this can be seen using the massive ma-
chinery of [Gir71], but we view these results as consequences of direct cocycle
computations as in [Ser02]. Details are left to the reader.

If 1→ F → G→ H → 1 is an exact sequence of algebraic affine group schemes
over k, Waterhouse [Wat79, 18.1] proves the existence of the corresponding exact
sequence in cohomology ending with · · · → H1(k,G) → H1(k,H). If additionally
F is central in G, this sequence may be extended so as to end with

· · · → H1(k,H)
δ1

−→ H2(k, F )

by setting

δ1(h) = (d0g)(d2g)(d1g)−1

for g ∈ G(⊗2
kkalg) any inverse image of h ∈ Z1(k,H). (Such a g exists because the

map G(⊗2
kkalg)→ H(⊗2

kkalg) is surjective, see [Sha64, pp. 418–420].)

1.1. Change of base point. A 1-cocycle γ ∈ Z1(k,G) acts by conjugation
on G, and so defines a 1-cocycle Int (γ) ∈ Z1(k,Aut(G)). The set H1(k,Aut(G))
classifies kalg/k-forms of G, and we write Gγ for the group corresponding to the
class of Int (γ). There is a kalg-isomorphism

αγ : Gγ × kalg
∼
−→ G× kalg.

The map τγ : H
1(k,Gγ)→ H1(k,G) given by τγ(g

′) = γ αγ(g
′) is a bijection which

maps the base point in H1(k,Gγ) to the class of γ ∈ H1(k,G).

1.2. Action by the center. Let Z denote the (schematic) center of the affine
group scheme G over k. For 1-cocycles ζ ∈ Z1(k, Z) and γ ∈ Z1(k,G), we define
ζ ·γ to be the product ζγ ∈ G(kalg⊗kalg). This is a 1-cocycle with values in G and
its equivalence class in H1(k,G) depends only on the equivalence classes of ζ and
γ in H1(k, Z) and H1(k,G) respectively. Hence · defines an action of the group
H1(k, Z) on the pointed set H1(k,G).

Now fix α ∈ Z1(k,G). Since Int (α) restricts to the identity on Z, the center
of Gα is canonically identified with the center Z of G. Moreover, the map τα is
compatible with · in the sense that

ζ · τα(γ) = τα(ζ · γ)

for every ζ ∈ H1(k, Z) and γ ∈ H1(k,G).

1.3. One really wants to twist exact sequences of the form 1→ F → G→ H → 1
where F is central in G. Let η be a 1-cocycle with values in H and let γ ∈ G(⊗2

kkalg)
be any inverse image of η. This γ may not be a 1-cocycle, but Int (γ) is a 1-cocycle
with values in Aut(G). This gives a “twisted” exact sequence 1 → F → Gγ →
Hη → 1. The two short exact sequences give exact sequences in cohomology such
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that the following diagram is commutative:

H1(k,H)
δ1

−−−−→ H2(k, F )

τη

x





x




?+δ1(η)

H1(k,Hη)
δ1
η

−−−−→ H2(k, F )

Here δ1
η denotes the connecting map coming from the twisted sequence. The proof

is the same as for Galois cohomology.

2. The Tits class

In this section and for the rest of the paper G denotes a simply connected
semisimple algebraic group over k.

The set H1(k,Aut(G)) classifies k-forms of G, i.e., k-groups G′ which are iso-
morphic to G over kalg. The natural map H1(k,Aut(G)◦) → H1(k,Aut(G)) need
not be injective, but there is a unique element νG which maps to the class of the
unique quasi-split inner form of G in H1(F,Aut(G)). (This is standard, see for
example [KMRT98, 31.6] or [MPW96, p. 531].)

The exact sequence

1→ Z → G→ Aut(G)◦ → 1(2.1)

induces an exact sequence

H1(k, Z)→ H1(k,G)→ H1(k,Aut(G)◦)
δ1

−→ H2(k, Z).(2.2)

The Tits class tG of G is defined to be

tG = −δ1(νG) in H2(k, Z).

2.3. The map Aut(∆) → Aut(Z). Let Λ be a lattice of weights and let Λr be
the root lattice for G with respect to some maximal torus. For Z the (schematic)
center of G, Λ/Λr is canonically identified with the Cartier dual Z∗ = Hom(Z,Gm)
of Z. This gives rise to a commutative diagram

Aut(G) −−−−→ Aut(Z)




y

∥

∥

∥

Aut(∆) −−−−→ Aut(Z∗),

(2.4)

where the left-hand arrow is the “∗-action” from [Tit66b]. Consequently, we have
an action of Aut(∆) on Z.

Since G is simply connected, the sequence

1→ Aut(G)◦ → Aut(G)→ Aut(∆)→ 1(2.5)

is exact. This gives a map Aut(∆)(k)→ H1(k,Aut(G)◦).

Lemma 2.6. Fix π ∈ Aut(∆)(k) and let γ be a 1-cocycle representing the image
of π in H1(k,Aut(G)◦). Then π2(tGγ

) = tG.

Since γ takes values in Aut(G)◦, the centers of G and Gγ are canonically iden-
tified, so it is sensical to compare π2(tGγ

) ∈ H2(k, Z(Gγ)) with tG ∈ H2(k, Z(G)).
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Proof. Note that Aut(G)◦ and Aut(G) are smooth, so we may view their corre-
sponding H1’s as Galois cohomology. The group Gγ has the same ksep-points as G,
but a different Galois action ◦ given by σ ◦ g = γσσg for g ∈ G(ksep), σ ∈ Gal(k),
and where juxtaposition denotes the usual Galois action on G.

Since γ has trivial image in H1(k,Aut(G)), there is some f ∈ Aut(G)(ksep) such

that γσ = f−1 σf for every σ ∈ Gal(k). This map f gives a k-isomorphism Gγ
∼
−→ G.

Sequence (2.1) gives a commutative diagram

H1(k,Aut(Gγ)
◦)

δ1
γ

−−−−→ H2(k, Z)

f1





y
f2





y

H1(k,Aut(G)◦)
δ1

−−−−→ H2(k, Z).

Let η ∈ Z1(k,Aut(Gγ)
◦) be a 1-cocycle representing νGγ

. Then f(η) is a 1-cocycle

in Z1(F,Aut(G)◦). Moreover, f is a k-isomorphism f : (Gγ)η
∼
−→ Gf(η). Since

(Gγ)η is k-quasi-split, we have f1(νGγ
) = νG. The commutativity of the diagram

gives f2(tGγ
) = tG. ¤

A standard twisting argument also gives:

Lemma 2.7. Let γ be a 1-cocycle in H1(k,Aut(G)◦). Then tGγ
= tG+δ1(γ). ¤

3. Flayed groups

Recall that G denotes a semisimple simply connected group.
The exactness of (2.5) and Lemma 2.6 immediately give:

Proposition 3.1. Let π be in Aut(∆)(k). If π is in the image of Aut(G)(k), then
π2(tG) = tG. ¤

Definition 3.2. We say that G is flayed if every π ∈ Aut(∆)(k) such that π2(tG) =
tG lies in the image of Aut(G)(k) (that is, if the converse to Prop. 3.1 holds for
every π ∈ Aut(∆)(k)).

3.3. One can still make a characteristic-free definition of “flayed” without resorting
to flat cohomology. Let λ be a dominant weight of G. The absolute Galois group
acts on the cone of dominant weights Λ+, and we write k(λ) for the extension
of F corresponding to the stabilizer of λ by Galois theory. Over k(λ), there is a
unique simple k(λ)-representation (Vλ, ρλ) of G such that (Vλ, ρλ) ⊗ ksep contains
the simple ksep-representation with highest weight λ as a direct summand [Tit71].

The group Aut(∆) acts on Λ+ in a manner compatible with the Galois action.
Since π is k-defined, we have k(λ) = k(π(λ)) for all λ ∈ Λ+. The condition
“π2(tG) = tG” is equivalent to:

EndG(Vλ, ρλ) is isomorphic to EndG(Vπ(λ), ρπ(λ)) as k(λ)-algebras

for every λ ∈ Λ+.

These endomorphism algebras are the Tits algebras of G, up to Brauer equivalence.

Example 3.4. Quasi-split simple simply connected groups are always flayed.
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Example 3.5 (6D4). For G simple of type 6D4, the Galois group acts as S3 on the
diagram

@
@

¡
¡

r r

r

r

Thus Aut(∆)(k) = 1, and G is (trivially) flayed.

Example 3.6. For G simple, the material in [KMRT98] easily gives that G is flayed
except perhaps when G is of type 2An for n + 1 ≡ 0 (mod 4); is of type 2Dn for
n ≥ 4; or is a strongly inner form of a quasi-split group of type 3D4 or 2E6.

Example 3.7 (isotropic D4). If G is a simple isotropic group of type D4 over a
field of characteristic 6= 2, it is flayed. When G is of classical (i.e., 1D4 or 2D4) type,
it is isomorphic to Spin(A, σ) for A a central simple algebra of degree 8 and σ an
isotropic orthogonal involution. It is easy to see that G is flayed, except when G
is of type 2D4 and A is split by the quadratic extension k′ which makes G of type
1D4. In that case, Aut(∆)(k) has a unique nontrivial element, which has order 2;
an outer automorphism of G of order 2 may be constructed using [MT95, §1.4.2].

Otherwise G is trialitarian, i.e., of type 3D4 or 3D6. If the Tits class tG is 0,
then G is quasi-split [Gar98, 5.6], hence flayed. If tG is nonzero, the only element
of Aut(∆) which preserves tG is the identity, and G is again flayed.

Proposition 3.8. Let G be a semisimple simply connected algebraic group over k.
Then G is flayed if and only if the sequence

H1(k, Z)→ H1(k,G)→ H1(k,Aut(G))

is exact.

Proof. Suppose first that G is flayed and let γ̂ ∈ H1(k,G) lie in the kernel. Write
γ for its image in H1(k,Aut(G)◦). Since γ̂ is in the kernel, γ is the image of some
π ∈ Aut(∆)(k). Moreover, Gγ is isomorphic to G, hence π2(tG) = π2(tGγ

) = tG
by Lemma 2.6. Since G is flayed, γ is trivial in H1(k,Aut(G)◦), hence γ̂ lies in the
image of H1(k, Z) by the exactness of (2.2). Since the displayed sequence is always
a 0-sequence, we have proved that it is exact.

Conversely, suppose that the sequence is exact and take π ∈ Aut(∆)(k) such
that π2(tG) = tG. For γ a 1-cocycle representing the image of π in H1(k,Aut(G)◦),
we have tGγ

= tG by Lemma 2.6, hence δ1(γ) = 0 by Lemma 2.7. That is, γ is the

image of some γ̂ in H1(k,G). The image of γ̂ in H1(k,Aut(G)) is the same as the
image of π under the composition

Aut(∆)(k)→ H1(k,Aut(G)◦)→ H1(k,Aut(G)),

which is trivial. By exactness, γ̂ lies in the image of H1(k, Z), hence γ is trivial in
H1(k,Aut(G)◦) and π is in the image of Aut(G)(k)→ Aut(∆)(k). ¤

4. The Rost invariant

Recall that Z/mZ(2) is the Gal(k)-module µ⊗2
m if m is not divisible by char(k)

and is defined in terms of Milnor K-theory (or Witt vectors) otherwise, see [Mer03,
App. A]. The colimit lim

−→
Z/mZ(2) is denoted by Q/Z(2), and we write

H3(k) = H3(k,Q/Z(2)) and H3(k,m) = H3(k,Z/mZ(2)).
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These are abelian groups and H3(k,m) is identified with the m-torsion in H3(k).
For G a simple simply connected algebraic group, Rost constructed a canonical

morphism of functors H1(∗, G) → H3(∗). It is known as the Rost invariant, and
we denote it by rG. The image of rG(k) is always a torsion subgroup of H3(k) of
exponent dividing a natural number nG, the Dynkin index of G. These numbers
and details of the definition of the Rost invariant may be found in [Mer03].

A fundamental property of the Rost invariant is its compatibility with twisting:

Proposition 4.1. (See [Gil00, p. 76, Lem. 7] or [MPT01]) For α ∈ Z1(k, Z), the
diagram

H1(k,Gα)
∼

−−−−→
τα

H1(k,G)

rGα





y





y

rG

H3(k)
?+rG(α)
−−−−−→ H3(k)

commutes. ¤

For Z the center of G, we write rG also for the composition

H1(∗, Z)→ H1(∗, G)
rG−−→ H3(∗).

Corollary 4.2. For every ζ ∈ H1(k, Z) and γ ∈ H1(k,G), we have

rG(ζ · α) = rG(ζ) + rG(α)

Proof. Pick a 1-cocycle z ∈ Z1(k, Z) representing ζ. We have a diagram

H1(k,G) H1(k,Gz)
∼

−−−−→
τz

H1(k,G)

rG(k)





y

rGz (k)





y





y

rG(k)

H3(k) H3(k)
?+rG(ζ)
−−−−−→ H3(k).

The groups G and Gz are smooth, so we may view their H1’s as Galois cohomology.
The right-hand square commutes by Prop. 4.1. The left-hand square commutes
because the Rost invariant is canonical. Hence the whole diagram commutes. The
composition in the top row maps γ 7→ ζ · γ (1.2), so the commutativity gives the
desired formula. ¤

The proof is the same as that for [Gar01, 7.1], but we have included it here for
the convenience of the reader. This result is stronger, since the group H1(k, Z)
carries more information when Z is not smooth.

Corollary 4.3. Fix α ∈ Z1(k,G). Write Z for the (canonically identified) centers
of G and Gα. The maps rG and rGα

agree on H1(k, Z).

Proof. Fix ζ ∈ H1(k, Z). By the preceding corollary,

rG(ζ) = rG(ζ · α)− rG(α).

By 1.2, we have ζ · α = τα(ζ · 1) = τα(ζ), hence

rG(ζ) = rG(τα(ζ))− rG(α) = rGα
(ζ),

where the last equality is by Proposition 4.1. ¤
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4.4. We say that the Rost invariant has central kernel (over k) if the kernel of
rG(k) is contained in the image of H1(k, Z) → H1(k,G). In that case, Corollary
4.2 gives: If γ ∈ H1(k,G) has rG(γ) ∈ rG(H

1(k, Z)), then γ is in the image of
H1(k, Z).

Example 4.5. Let q denote the 6-dimensional unit quadratic form 〈1, 1, 1, 1, 1, 1〉
over R, and write C for the kernel of Spin(q) → SO(q). The kernel of the Rost
invariant rSpin(q) is the image of H1(R, C) by [Gar01, 1.2], hence it is central. On

the other hand, the map SO(q)(R) → H1(R, C) ∼= R∗/R∗2 is the spinor norm,
which is not surjective. Thus the kernel of the Rost invariant is not trivial, but it
is central.

5. The invariant aG

Recall that for an algebraic group G′, the set H1(k,Aut(G)) classifies k-forms of
G′. We say that G′ is a strongly inner form of G if G lies in the image of the map
H1(k,G′) → H1(k,Aut(G′)). This defines an equivalence relation on the class of
simply connected semisimple groups.

For α an inverse image of G in H1(k,G′), we define

aG(G
′) = −rG′(α) in

H3(k)

rG(H1(k, Z))
.(5.1)

The denominator rG(H
1(k, Z)) is a group by 4.2.

If we identify G with G′α, then G′ is isomorphic to G twisted by β = τ−1
α (1),

where τα denotes the isomorphism H1(k,G)
∼
−→ H1(k,G′). By Proposition 4.1,

rG(β) = −rG′(α).

Theorem 5.2. Let G be a simple, simply connected, and flayed algebraic group.
The element aG(G

′) in (5.1) is well-defined (i.e., does not depend on the choice of
α). This defines a map

aG :
isomorphism classes of strongly
inner forms of G

−→
H3(k)

rG(H1(k, Z))
.

The Rost invariant of G has central kernel if and only if the kernel of aG is {G}.

This sort of invariant is not really new. An analogue of it can be found in [BP98,
p. 664] where the Rost invariant is used to give an invariant of hermitian forms. The
construction is the same, except that here we push rG forward along G→ Aut(G)
instead of, for example, along Spin(h)→ O(h).

Proof. Let α, α′ be two inverse images of G in H1(k,G′). Then τ−1
α (α′) and

τ−1
α (α) = 1 in H1(k,G) have trivial image in H1(k,Aut(G)). Since G is flayed,
they lie in the same H1(k, Z)-orbit. Action by the center is compatible with inner
twists by 1.2, so α and α′ are in the same H1(k, Z)-orbit. By Proposition 4.1,
rG′(α) and rG′(α′) differ by an element of rG′(H1(k, Z)). But this last group is
equal to rG(H

1(k, Z)) by Corollary 4.3, so aG(G
′) is well-defined.

Suppose that rG has central kernel. If G′ lies in the kernel of aG, i.e., rG(β) is
in rG(H

1(k, Z)), then β is in the image of H1(k, Z) by 4.4.
Suppose finally that the kernel of aG is {G}. If β is in the kernel of rG, then

aG(G
′) = 0 for G′ isomorphic to Gβ . Prop. 3.8 gives that β is in the image of

H1(k, Z). ¤
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Example 5.3 (Groups of type Ceven). Let G be simply connected of type Cn for
n even. The Rost invariant restricts to be trivial on the center of G and nG = 2,
hence aG takes values in H3(k, 2). The invariant aG was constructed in this case in
[KMRT98, pp. 440, 441] and was studied in the case where char(k) 6= 2 in [BMT02].

Example 5.4 (Relative primality). We define the exponent of a finite abelian affine
group scheme H in the obvious way: it is the smallest natural number (if such
exists) such that the kernel of multiplication by n on H is all of H. For example,
the exponent of µn is n regardless of the characteristic of k.

Suppose that G is simple and flayed, and let nZ denote the exponent of the
center Z. Suppose also that nG factors as nZ ·m for m a natural number relatively
prime to nZ . There is a canonical factorization

H3(k, nG) = H3(k, nZ)×H3(k,m).

Since rG(H
1(k, Z)) is nZ-torsion, aG induces a map

(aG)m :
isomorphism classes of strongly
inner forms of G

−→ H3(k,m).

This occurs, for example, when G is of type An−1 for n odd, in which case m = 2
and (aG)2 was constructed in [KMRT98, pp. 438, 439]. Other groups for which such
a “reduced” invariant exists are those of type D4 with m = 3; E6 with m = 2 or 4;
and E7 with m = 3.

If G, G′, and G′′ are simple algebraic groups which are strongly inner forms
of each other and G and G′ are flayed, then the method used in the proof of 5.2
immediately gives:

aG(G
′′) = aG(G

′) + aG′(G′′).(5.5)

In the special case where the groups are of type Cn for n even and char(k) 6= 2,
this was proved in [BMT02, Prop. 1b].

6. An application to groups of type E6

In this section, we assume that k has characteristic 6= 2, 3.
Tits gave a construction which takes an Albert k-algebra and a quadratic étale

k-algebra and produces a Lie algebra of type E6, see [Tit66a] or [Jac71]. In terms
of Galois cohomology, there are compatible maps

F4 → E6 and F4 × Z/2→ Aut(E6) ∼= Aut(E6)
◦ o Z/2

where F4 and E6 denote the split simply connected groups of those types, and Tits’
construction corresponds to the induced map

H1(k, F4 × Z/2)→ H1(k,Aut(E6)).

Serre asked: Is Tits’ construction complete up to odd degree extensions? That
is: Let γ be in H1(k,Aut(E6)). Is it necessarily true that there exists an extension
L of k of odd degree such that resL/k(γ) lies in the image of H1(L,F4 × Z/2) →

H1(L,Aut(E6))?
Since the image of F4 lies in the simply connected group E6, every group arising

from the Tits construction has trivial Tits class. However, for every group of type
E6 over k, there is some odd-degree extension of k which kills the Tits class. (This
requires a small argument for groups of type 2E6.) Therefore, the Tits class does
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not present an obstruction to Tits’ construction being complete, and to answer
Serre’s question we may focus on groups with trivial Tits class.

Let k be a field (of characteristic 6= 2, 3) with a quadratic extension K and asso-
ciated quasi-split simply connected group G of type 2E6. As described in Example
5.4, there is an invariant (aG)4 of strongly inner forms of G with values in H3(k, 4).

Let β be a class in H1(k,Aut(G)) arising from Tits’ construction. Inspecting the
construction, we find that (aG)4(Gβ) is 2-torsion, i.e., lies in the subgroup H3(k, 2)
of H3(k, 4), and is a symbol in H3(k, 2). (These statements are true because the
same statements hold for the Rost invariant of F4-torsors.)

By modifying the construction given in [Fer69, pp. 64, 65] or by looking in
[Che02], one can find a particular field k with quadratic extension K and a class
γ in H1(K/k,G) such that (aG)4(Gγ) also lies in H3(k, 2) ⊆ H3(k, 4) but is not a
symbol.

Non-symbols inH3(k, 2) remain non-symbols after an odd-degree extension [Ros99].
Hence Gγ provides an example of a group of type 2E6 which does not arise from
Tits’ construction, even after a field extension of odd degree.

7. The isomorphism criterion

Lemma 7.1. Let G be a simple, simply connected, and flayed algebraic group over
k. For E a finite extension of k, the kernel of the natural map

H3(k)

rG(H1(k, Z))
−→

H3(E)

rG(H1(E,Z))
.

is [E : k]2-torsion.

Proof. Let ρ ∈ H3(k) lie in the kernel of the map, i.e., there is ζ ∈ H1(E,Z) such
that resE/k(ρ) = rGE

(ζ). Set ζ0 = corE/k(ζ) in H1(k, Z). (The corestriction may
be defined for flat cohomology in a manner entirely analogous to that for Galois
cohomology. For example, we have that corE/k ◦ resE/k is multiplication by [E : k].)
Since the Rost invariant is compatible with scalar extension, we have:

resE/k rG(ζ0) = rGE
(resE/k corE/k ζ).

The term resE/k corE/k ζ is a sum of Galois conjugates of multiples of ζ. Since the
Rost invariant is functorial, it is compatible with the Galois action, hence

resE/k rG(ζ0) = resE/k corE/k rGE
(ζ) = [E : k] resE/k(ρ),

and

[E : k]2ρ = corE/k[E : k] resE/k(ρ) = corE/k resE/k rG(ζ0) = [E : k]rG(ζ0).

This last term is in rG(H
1(k, Z)), which proves the claim. ¤

For G a simple algebraic group, recall the set S(G) of primes associated with G
from [Ser95, §2.2]:

type of G elements of S(G)
An 2 and prime divisors of n+ 1

Bn, Cn, Dn (n ≥ 5), G2 2
D4, F4, E6, E7 2, 3

E8 2, 3, 5
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Theorem 7.2. Let G be a simple, simply connected, and flayed group over k such
that the Rost invariant rG has central kernel. Let G′ be a strongly inner form of G
defined over k such that there exist finite extensions E1, . . . , Er of k such that

(1) G and G′ are isomorphic over Ei for all i; and
(2) gcd{[E1 : k], . . . , [Er : k]} is not divisible by any prime in S(G).

Then G and G′ are k-isomorphic.

Proof. Hypotheses (1) and (2) combined with 7.1 give that aG(G
′) is `-torsion for

some natural number ` not divisible by any prime in S(G).
However, aG(G

′) is nG-torsion, and every prime factor of nG is in S(G). There-
fore, aG(G

′) has order dividing gcd(nG, `) = 1. Hence G′ is in the kernel of aG,
and the conclusion follows by 5.2. ¤

Gille had previously obtained this conclusion for the cases where G is split of
type E6 or E7 [Gil97, p. 116, Thm. C]. We get his result as a consequence of the
general fact that the Rost invariant has trivial kernel for such groups [Gar01]. Note
that our result here is somewhat broader than Gille’s. For example, it also applies
to quasi-split groups of type 2E6 and D4.

Conversely, Chernousov [Che02] used Gille’s result to prove that the Rost invari-
ant has trivial kernel for quasi-split groups of type E6 and E7.

Acknowledgements. Thanks to Vladimir Chernousov for his comments on an
earlier version of this paper. I also thank Alexander Merkurjev for answering a
farrago of questions.
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