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Abstract. We prove Hoffmann’s conjecture determining the possible val-
ues of the first Witt index of anisotropic quadratic forms of any given dimen-
sion. The proof makes use of the Steenrod type operations on the modulo
2 Chow groups constructed by P. Brosnan.

Let F be a field of characteristic 6= 2. For an anisotropic quadratic form
φ over F with dim(φ) ≥ 2, the first Witt index i1(φ) is the Witt index (i.e.,
the dimension of a maximal totally isotropic subspace) of the form φF (φ) over
the function field F (φ) = F (Xφ) of the projective quadric given by φ. Clearly,
this i1(φ) is the minimal positive Witt index of φE, when E runs over all field
extension of F .

We are going to prove the following

Conjecture 0.1 (Hoffmann). Let us write the integer dimφ − 1 as a sum of
powers of 2:

dim(φ)− 1 = 2n1 + 2n2 + · · ·+ 2nr

with 0 ≤ n1 < n2 < · · · < nr. Then the integer i1(φ) − 1 is a partial sum of
this sum (including the empty one and not including the whole sum):

i1(φ)− 1 = 2n1 + 2n2 + · · ·+ 2ns

for some 0 ≤ s ≤ r − 1.

We remark that for any given n ≥ 2, all the values of i1(φ), prescribed by
Conjecture 0.1 for forms φ with dim(φ) = n, are really possible, that is, do oc-
cur for suitable φ over suitable F . To see it, we take a field k with an anisotropic
r-fold Pfister form 〈〈a1, . . . , ar〉〉. Then we take indeterminates t0, . . . , tm, set
F = k(t0, . . . , tm), and notice that the first index of the quadratic F -form
q = 〈〈a1, . . . , ar〉〉⊗ 〈t0, . . . , tm〉 is equal to 2r. Therefore, by [4, lemma 7.3], for
every j = 0, 1, . . . , 2r − 1, the first Witt index of certain j-codimensional sub-
form φ ⊂ qF̃ over certain purely transcendental field extension F̃ /F is 2r − j
(while dim(φ)− i1(φ) is still 2

rm). 1

We prove Conjecture 0.1 in §3. In §1 and §2 we introduce two different tools
needed in the proof.
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1By a theorem of A. Vishik, one may even take F̃ = F with any j-codimensional subform

φ ⊂ q.
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All the time we are working with Chow group CH∗(Y ) of various equidi-
mensional F -varieties (in fact, Y is always a projective quadric or a product of
projective quadrics here). We underline that this Chow group CH∗(Y ) is the

modulo 2 Chow group. It is graded in the usual way: CH∗(Y ) =
⊕d

i=0CH
i(Y )

(d = dimY ), where CHi(Y ) is the group of classes of cycles of codimension i.
Sometimes, the lower indices CHi(Y ) = CHd−i(Y ), indicating the dimension
of cycles, are used. If we consider CH∗(Y ) as a usual group (or ring), not a
graded one, in a place, we write simply CH(Y ), omitting ∗ in the notation.

Acknowledgements: I am grateful to A. S. Merkurjev who explained me Bros-
nan’s construction.

1. Vishik’s principle

In this section we formulate and prove an extremely useful observation,
due to A. Vishik, concerning correspondences on projective quadrics. We
refer to this as to Vishik’s principle. Since originally neither the formulation
nor the proof are not in the elementary terms used here, we give a different
formulation and a complete proof. We restrict ourself to the case of odd-
dimensional quadrics: this is enough for our purposes and slightly simplifies
the consideration.

Let X be the projective quadric over F given by an anisotropic quadratic
form φ. We set d = dim(X) (that is, d = dim(φ) − 2) and assume that this
integer is odd. Therefore, over an algebraic closure F̄ of F , the variety X̄ = XF̄

is cellular with one cell in each dimension. Moreover, writing ei ∈ CHi(X̄)
(i = 0, 1, . . . , d) for the classes of the closures of the cells, we have: for i < d/2,
the element ei is represented by an i-codimensional linear section of X̄ (and
therefore is defined over F ), while the element ei = ed−i is represented by an
i-dimensional linear subspace of X̄. In particular, the product e1 · ei is ei+1 for
i 6∈ {(d− 1)/2, d} and is 0 otherwise.

It follows that the exterior products ei × ej form a basis of the Chow group
CH∗(X̄ × X̄) (considered as a vector space over the field Z/2Z). For any
α ∈ CH∗(X×X) we define αij ∈ {0, 1} as the coefficients in the representation
of ᾱ = αF̄ ∈ CH∗(X̄ × X̄) as a linear combination of the basis elements, so
that we have

ᾱ =
∑

i,j

αij(e
i × ej) .

Clearly, for a homogeneous α ∈ CHn(X × X) the coefficient αij can be
non-zero only if j = n− i. For such α, we set αi = αi n−i.

Proposition 1.1 (Vishik’s principle). Setting i1 = i1(φ), for every element
α ∈ CHd(X ×X) and every i = 0, 1, . . . , i1 − 1, we have:

αi = αd−i1+1+i .

Proof. Let us first consider the case of i1 = 1. Here we have only one equality
to prove, namely, α0 = αd. Since α0 coincides with the index (sometimes also
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called degree, [3, def. of example 16.1.4]) of the correspondence α, while αd is
the index of the transposition of α, the equality needed is given by [4, th. 6.4].

In the general case (i1 is arbitrary), let us take a subquadric X ′ ⊂ X of codi-
mension i1− 1 such that i1(X

′) = 1. We can certainly find such a subquadric,
at least if we extend the scalars up to a purely transcendental extension of the
base field, according to [4, lemma 7.3] (in fact, by a stronger [4, cor. 8.3], which
we do not really need here, any subquadric X ′ ⊂ X of codimension i1 − 1 has
this property).

Since the Witt index of the quadratic form φF (X) is greater that i, the quadric
XF (X′) contains a linear subspace of dimension i. Its closure in X ′ ×X gives

an element β ∈ CHd−i(X ′ ×X) (this β is a preimage of the class of the linear
subspace under the surjective flat pull-back CHd−i(X ′×X)→→ CHd−i(XF (X′))
with respect to the evident injective morphism of schemes XF (X′) → X ′×X).
We may consider β as a correspondence from X ′ to X (see [3, §16.1]). Note
that the dimension of the cycle representing β is not the same as the dimension
of the graphs of morphisms X ′ → X (which is equal to dimX ′), that is, the
degree ([3, example 16.1.1]) of β is not 0. More precisely, deg β = −i.

Let now Y ⊂ X be a subquadric of codimension i. Then the quadric
X ′
F (Y ) has a rational point, and its closure in Y × X ′ gives an element γ ∈

CHd+i−i1+1(X ×X ′) (the push-forward of the element in CHd−i1+1(Y ×X ′)).
This γ, viewed as a correspondence from X back to X ′, is of degree i. The
composition ([3, def. 16.1.1]) γ ◦ α ◦ β of the three correspondences (note that
the degree of the correspondence α is 0) is a correspondence from X ′ to X ′ of
degree −i+0+ i = 0. It is then an exercise on the calculus of correspondences
(note that all the computations needed can be done over F̄ ) to check that
the index of this correspondence is αi, while the index of its transposition is a
multiple of αd−i1+1+i. Thus we are done by [4, th. 6.4]. ¤

2. Brosnan’s construction

Here we recall the construction and basic properties of the cohomological
Steenrod type operations on the modulo 2 Chow groups given in [1]. Certainly,
the idea that it could be possible and useful to construct in an algebraic context
something similar to the well-known topological Steenrod operations, is due to
Voevodsky. Brosnan’s construction described bellow is completely independent
of and much simpler than those of Voevodsky, however.

Let X be a smooth quasi-projective scheme over a field F . Let G be the
group of 2-roots of unity viewed as an algebraic group over F . Since charF 6= 2
as everywhere in the paper, G is identified with the finite group Z/2Z and
therefore acts on the product X × X by the factors exchange. For any n-
codimensional cycle α on X, the product α×α is a 2n-codimensional cycle on
X ×X invariant with respect to the action of G. Therefore, α×α determines
an element of the equivariant Chow group CH2n

G (X × X) as defined in [2].
The map to CH2n

G (X × X) one obtains this way factors through the rational
equivalence ([1, prop. 4.2]) and therefore gives a map CHn(X)→ CH2n

G (X×X).
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Furthermore, the diagonal imbedding δ : X → X × X is equivariant with
respect to the trivial action of G on X, giving a pull-back of the equivariant
Chow groups:

δ∗ : CH2n
G (X ×X)→ CH2n

G (X) .

Finally, the equivariant graded Chow ring CH∗G(X) is identified with the
graded ring CH∗(X)[t] of polynomials in one variable t over the usual modulo
2 Chow ring CH∗(X), where t is of degree 1 ([1, th. 6.1]). In particular,

δ∗(α× α) =
∑

i≥0

Sn−i(α) · ti

with some Si(α) ∈ CHn+i(X).
The maps Si : CH∗(X)→ CH∗+i(X) with i ≥ 0 obtained this way, one calls

them Steenrod operations; their sum (which is in fact finite because S i = 0 for
i > dimX)

S = SX = S0 + S1 + · · · : CH(X)→ CH(X)

is the total Steenrod operation (we omit the ∗ in the notation of the Chow group
to notify that S is not homogeneous). They have the following basic properties
(see [1] for the proofs): for any smooth quasi-projective F -scheme X, the total
operation S : CH(X) → CH(X) is a (non-homogeneous) ring homomorphism
such that for every morphism f : Y → X of smooth quasi-projective F -schemes
and for every field extension E/F , the squares

CH(Y )
SY−−−→ CH(Y )

x





f∗ f∗

x





CH(X)
SX−−−→ CH(X)

and

CH(XE)
SXE−−−→ CH(XE)

x





resE/F resE/F

x





CH(X)
SX−−−→ CH(X)

are commutative. Moreover, the restriction S i|CHn(X) is 0 for n < i and the
squaring for n = i; finally S0 is the identity.

Since S is a ring homomorphism commuting with the pull-backs, one has the
Cartan formula: SX1×X2

(α1×α2) = SX1
(α1)×SX2

(α2) for any αi ∈ CH(Xi)
with Xi smooth quasi-projective.

Also, the total Steenrod operation satisfies the following Riemann-Roch

type formula:

f∗
(

SY (α) · c(−TY )
)

= SX
(

f∗(α)
)

· c(−TX)

(in other words, S corrected by c(−T ) this way, commutes with the push-
forwards) for any proper f : Y → X and any α ∈ CH(Y ), where f∗ : CH(Y )→
CH(X) is the push-forward, c is the total Chern class, TX is the tangent bundle
of X, and c(−TX) = c−1(TX) (the expression −TX has a sense if one considers
TX as the element of K0(X)). This formula is proved in [1]. Also it follows
from the previous formulated properties of S by the general Riemann-Roch
theorem of Panin-Smirnov.

A particular case of the Riemann-Roch formula (f is a closed imbedding
and α is the class of Y itself) is the Wu formula: for every closed imbedding
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i : Y ↪→ X with smooth quasi-projective X and Y , one has S([Y ]) = i∗
(

c(N)
)

,
where N is the normal bundle of the imbedding i.

3. Hoffmann’s conjecture

Conjecture 0.1 is proved after some preliminary computations.

Lemma 3.1. Let X be a smooth projective quadric of dimension d and let
i : X ↪→ P its imbedding in the (d + 1)-dimensional projective space P . We
write e ∈ CH1(X) for the class of a hyperplane section of X, that is, e = i∗(h)
with h ∈ CH1(P ) being the class of a hyperplane in P . Finally, we write TX
for the tangent bundle of X. Then the total Chern class c(TX) in the modulo
2 Chow group CH(X) is equal to (1 + e)d+2.

Proof. The exact sequence of vector X-bundles

0→ TX → i∗(TP )→ i∗(OP (2))→ 0

gives the equality c(TX) · i
∗
(

c(OP (2))
)

= i∗
(

c(TP )
)

. Since c(OP (2)) = 1+2h =

1 (we are working with the modulo 2 Chow groups) and c(TP ) = (1 + h)d+2,
we get c(TX) = (1 + e)d+2. ¤

Corollary 3.2. Let X be a smooth isotropic projective quadric of dimension
d with the Witt index iW (X) > n for some n ≥ 0. Let i : P ↪→ X be the class
of an n-dimensional projective space lying on X (P is given by an (n + 1)-
dimensional totally isotropic subspace of the quadratic space defining X). Then
the total Chern class c(N) of the normal bundle N of the imbedding P ⊂ X is
equal to (1 + h)d+1−n, where h ∈ CH1(P ) is the class of a hyperplane.

Proof. The exact sequence of vector P -bundles ([3, B.7.2])

0→ TP → i∗(TX)→ N → 0

gives the equality c(N) = i∗
(

c(TX)
)

· c(TP )
−1. Since i∗(e) = h, we get by

Lemma 3.1 that i∗(c(TX)) is equal to (1 + h)d+2 . Since c(TP ) = (1 + h)n+1,
we get the equality required. ¤

Corollary 3.3. In the situation of Corollary 3.2, one has

S([P ]) = [P ] · (1 + e)d+1−n ,

where [P ] ∈ CHn(X) is the class of P , while S : CH(X)→ CH(X) is the total
Steenrod operation.

Proof. By the Wu formula (see §2), we have S([P ]) = i∗(c(N)). Using Corol-
lary 3.2 we get

i∗(c(N)) = i∗((1 + h)d+1−n) = (i∗ ◦ i
∗)(1 + e)d+1−n .

Since the composition i∗ ◦ i
∗ coincides with the multiplication by [P ], the

desired formula follows. ¤
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Proof of Conjecture 0.1. Let φ be an anisotropic quadratic form giving a counter-
example to Conjecture 0.1. Then for the integer r such that the difference
dim(φ)−i1(φ) is divisible by 2r and not divisible by 2r+1, one has i1(φ) ≥ 2r+1.
Extending the scalars to certain purely transcendental extension and replac-
ing φ by its certain subform of codimension i1(φ) − (2r + 1), we can come to
the situation where i1(φ) is precisely 2r + 1 ([4, lemma 7.3]). Note that the
difference dim(φ)− i1(φ) is still the same.

Let X be the projective quadric given by φ. We set d = dim(X) (that is,
d = dim(φ) − 2) and notice that this integer is odd. Therefore, we are in the
situation of §1 and for every homogeneous α ∈ CH∗(X × X) the coefficients
αi ∈ Z/2Z are defined.

Since the Witt index of the quadratic form φF (X) is 2
r+1, the quadric XF (X)

contains a linear subspace of dimension 2r. Its closure (or the transposition of
the closure) in X × X gives an element α ∈ CHd−2r

(X × X) with αd−2r = 1
(using Proposition 1.1, it can be easily seen that α0 = 1 as well; we do not
need this statement however). Let us check that α1 = · · · = α2r = 0 for this
α (in fact, the “symmetric” coefficients, namely, αd−2r−1, . . . , αd−2r+1 are 0 as
well, but we do not need this statement).

The product β = α · (e0 × e2
r
) (where we consider e0 and e2

r
as elements

of CH2r

(X) what is possible because 2r < i1(φ) ≤ dim(φ)/2 whereby 2r <
d/2) is an element of CHd(X × X) with βi = αi for i = 0, 1, . . . , d − 2r and
βi = 0 for i = d − 2r + 1, . . . , d. Since βi = 0 for i = d − 2r + 1, . . . , d and
i1(φ) = 2r + 1, Proposition 1.1 says that β1 = · · · = β2r = 0. Since αi = βi for
i = 0, 1, . . . , d− 2r, we get that α1 = · · · = α2r = 0.

Let us keep in mind the last relation and consider the element

γ = S2r

(α) ∈ CHd(X ×X) ,

where S2r
is the Steenrod operation. We are going to show that γ2r = 0

(in fact we will even see that γ1 = · · · = γ2r = 0). By the Cartan formula
(see §2), one has S(ea × eb) = S(ea) × S(eb) for any a, b. Since the non-zero
graded components of the elements S(ea), S(eb) ∈ CH∗(X̄) are in codimensions
≥ a and ≥ b respectively, the element S(ea × eb) is a linear combination of
the elements ei × ej only with i ≥ a and j ≥ b. In particular, for every
i = 2r + 1, . . . , d − 2r, the element S2r

(ei × ed−2
r−i) ∈ CHd(X̄ × X̄) is a

linear combination of the elements ej × ed−j with j > 2r. Besides, since
S is the identity on CH0 and in particular on e0 ∈ CH0(X̄), the element
S2r

(e0 × ed−2
r
) is a multiple of e0 × ed. Now, the relation α1 = · · · = α2r = 0

we dispose means that ᾱ is a linear combination of e0 × ed−2
r
and ei × ed−2

r−i

with i = 2r + 1, . . . , d − 2r. It follows that the element γ = S2r
(α) is a linear

combination of e0 × ed and ej × ed−j with j > 2r. In particular, γ2r = 0.
Applying Proposition 1.1, we get that γd = 0. We are going to get a con-

tradiction showing by a direct computation that γd = 1. Note that γd satisfies
the relation S2r

(ed−2
r
× e0) = γd · (e

d × e0) (here we recall that αd−2r = 1)
and, therefore, the simplified relation S2r

(e2r) = γde0. We recall that the ele-
ment e2r ∈ CH2r(X̄) is the class of a 2r-dimensional projective space P ⊂ X̄.
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Therefore, by Corollary 3.3, we have:

S(e2r) = e2r · (1 + e1)d−2
r+1 .

In particular, S2r
(e2r) =

(

d−2r+1
2r

)

· e0 and we get that γd =
(

d−2r+1
2r

)

mod 2.
Since the integer d − 2r + 1 = dim(φ) − i1(φ) is divisible by 2r and is not
divisible by 2r+1, the binomial coefficient

(

d−2r+1
2r

)

is odd. ¤
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