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Abstract

In ([CT]), Colliot-Thélène conjectures the following:
Let F be a function field in one variable over a number field, with field
of constants k and G be a semisimple simply connected linear algebraic
group defined over F . Then the map H1(F,G) →

∏
v∈Ωk

H1(Fv, G) has
trivial kernel, Ωk denoting the set of places of k.

The conjecture is true if G is of type 1A∗, i.e., isomorphic to SL1(A)
for a central simple algebra A over F of square free index, as pointed out
by Colliot-Thélène, being an immediate consequence of the theorems of
Merkurjev-Suslin ([S1]) and Kato ([K]). Gille ([G]) proves the conjecture
if G is defined over k and F = k(t), the rational function field in one
variable over k. We prove that the conjecture is true for groups G defined
over k of the types 2A∗, Bn, Cn, Dn (D4 nontrialitarian), G2 or F4; a
group is said to be of type 2A∗, if it is isomorphic to SU(B, τ) for a central
simple algebra B of square free index over a quadratic extension k′ of k

with a unitary k′|k involution τ .

1 Introduction

Let k be a number field and G a semisimple, simply connected linear algebraic
group defined over k. Then the Hasse principle holds for principal homogeneous
spaces for G over k, i.e., the natural map H1(k,G) → ∏

v∈Vk H
1(kv, G) is

injective, Vk denoting the set of real places of k and for v ∈ Vk, kv is the
completion of k with respect to v, (cf. [PR]).

Let X be a smooth, geometrically integral curve over a number field. Let
k(X) be the function field of X, with field of constants k. Let Ωk denote the set
of places of k and for v ∈ Ωk, let kv(X) denote the function field of the curve
Xkv . Let G be a linear algebraic group defined over k(X). Let

� 1(k(X), G) be
the kernel of the map of pointed sets

H1(k(X), G)→
∏

v∈Ωk
H1(kv(X), G).

The following conjecture was made by Colliot-Thélène ([CT]) in the 2-dimensional
context.
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Conjecture: If G is a semisimple, simply connected linear algebraic group
defined over k(X), then

� 1(k(X), G) is trivial.

In the case when G is defined over k and X is P1, Gille [G] has shown that
� 1(k(X), G) is trivial. The fact that

� 1(k(X), G) is trivial, if G is of type
1An, isomorphic to SL1(A) where A is a central simple algebra with square
free index, follows immediately from the theorems of Merkurjev-Suslin (cf. 2.1)
and Kato (cf. 2.3) and is known to experts for a long time. In this article
we study

� 1(k(X), G), for G defined over the number field k. We show that
this set is trivial if G is of type Bn, Cn and Dn (D4 non-trialitarian). We also
prove that if G is of type 2A∗, i.e., isomorphic to SU(B, τ) where B is a central
simple algebra over a quadratic extension k′ of k of square free index with a k′|k
involution τ , then

� 1(k(X), G) is trivial. We show from the structure theorems
of Cayley algebras and exceptional Jordan algebras due to Springer, that if G
is of type G2 or F4, then

� 1(k(X), G) is again trivial. The main ingredients in
the proofs of the theorems stated above are higher dimensional class field theory
results due to Kato (cf. [K]) and Jannsen (cf. [J]), results of Arason, Elman and
Jacob concerning Witt groups of function fields in one and two variables over
number fields (cf. [AEJ2], [AEJ3]), results of Merkurjev-Suslin on reduced norm
criterion in terms of cohomology (cf. [S1], §24), theorems of Merkurjev on norm
principle for algebraic groups (cf. [M2]) and results of Suresh on the structure
of mod 2 Galois cohomology in degree 3 (cf. [Su]). The original conjecture is
open for G defined over k(X); it is open even when G is defined over k.

2 Some known results

We record in this section several results which we shall use in this paper. The
first theorem is a result of Merkurjev and Suslin. It gives a criterion for an
element in a central division algebra over a field E, to be a reduced norm, in
terms of the Galois cohomology group H3(E,Q/Z(2)).

Theorem 2.1 (Suslin, [S1], §24, Theorem.24.4). Let E be a field of charac-
teristic p ≥ 0. Let D be a central division algebra of square free index n over
E, with n coprime to p. Then λ ∈ E∗ is a reduced norm from D if and only if
(λ) ∪ (D) = 0 in H3(E,µ⊗2n ).

The next theorem is a norm principle due to Merkurjev for Spin groups. Let
A be a central simple algebra of degree 2n ≥ 4 over a field E of characteristic
different from 2 and σ be an orthogonal involution on A. Let h be a hermitian
form over (A, σ). We have an exact sequence of algebraic groups (cf. §4 and §5
for details),

1→ µ2 → Spin(h)→ SU(h)→ 1

which induces the cohomology exact sequence,

SU(h)(E)
δ→ E∗/E∗2 → H1(E,Spin(h))→ H1(E,SU(h))
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The map δ is the spinor norm map and we abbreviate Sn(hE) = image of δ in
E∗/E∗2. The norm principle of Merkurjev states:

Theorem 2.2 (Merkurjev, [M2], 6.2) With notation as above, the image of
the spinor norm homomorphism Sn(hE) is equal to the subgroup of E∗/E∗2

generated by the images of the norm groups NL|E(L
∗) over all finite extensions

L|E such that the algebra AL is split and the hermitian form hL is isotropic.

We next state a theorem due to Kato. Let X be a proper smooth geomet-
rically integral curve defined over a number field k. Let F be the function field
of X and Fv the function field of Xkv .

Theorem 2.3 (Kato, [K]) With notation as above and for any positive integer
n, the canonical map

H3(F,Z/n(2))→
∏

v∈Ωk
H3(Fv,Z/n(2))

is injective.

The following theorem due to Jannsen is an analogue of Kato’s theorem for
surfaces.

Theorem 2.4 (Jannsen, ([J]) Let E be a function field in two variables over a
number field k, then the restriction map

H4(E,Q/Z(3))→
⊕

v∈Ωk
H4(E.kv,Q/Z(3))

is injective.

Theorem 2.4 is true if we replace Q/Z(3) by Z/2Z. This follows from the
above result of Jannsen and due to the surjectivity of the map KM

3 (E) →
H3(E,Z/2Z), where KM

3 (E) is the Milnor K group, which is a consequence of
theorems of Merkurjev-Suslin ([MS]) and Rost.

For a field E we denote the mod 2 Galois cohomology ring H∗(E,Z/2Z) by
H∗(E). Let GW (E) =

⊕∞
n=0 I

n(E)/In+1(E) be the graded Witt ring of E. We
identifyH1(E) with E∗/E∗2 and for a ∈ E∗, we denote by (a) the corresponding
element in H1(E). Arason (cf. [A], Satz 4.8) has shown that the assignment
< 1,−a1 > ⊗ · · · ⊗ < 1,−an >7→ (a1) ∪ · · · ∪ (an), for a1, · · · , an ∈ E∗ is a
well defined map enE from the set of n-fold Pfister forms to Hn(E). The group
In(E) is generated by n-fold Pfister forms. The Milnor conjecture says that for
every positive integer n, the maps enE on the set of n-fold Pfister forms extend to
homomorphisms from In(E) 7→ Hn(E), which are again denoted by enE and the
induced maps ēnE : In(E)/In+1(E)→ Hn(E) are isomorphisms. Arason, Elman
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and Jacob have proved Milnor conjecture for function fields in two variables over
a number field, (cf. [AEJ1], proposition 5.9 and [AEJ3], theorem 1.5). The deep
theorems of Merkurjev-Suslin and Rost (cf. [MS]) and Jacob-Rost (cf. [JR]) are
used in the proof. In particular, they prove the following:

Theorem 2.5 Let E be a field of transcendence degree at most 2 over a number
field. Then the map ē∗E induces an isomorphism of the graded Witt ring GW (E)
with the mod 2 Galois cohomology ring H∗(E).

Finally, we shall state a theorem of Suresh which will be used in this paper.

Theorem 2.6 With the same notations as in (2.3), for any element ξ in H3(F )
and a ternary form < a, b, c > over F , there exists f ∈ F ∗ such that

1. f is a value of < a, b, c >

2. For every finite non-dyadic place v of k, ξFv(
√
f) = 0.

3. For every dyadic place v of k, such that −abc is a square in Fv, ξFv(
√
f) =

0.

For a proof, see [Su].

3 The cases of inner type An and Cn

Let D be a central division algebra of index n over a field E with n co-
prime to the characteristic of E. We have an invariant (cf. [Se2]), for ele-
ments of H1(E,SLn,D) with values in H3(E,µ⊗2n ), defined as follows. The set
H1(E,SLn,D) is in bijection with E∗/Nrd(D∗). Given λ ∈ E∗, the invari-
ant associated with its class (λ) ∈ E∗/Nrd(D∗) in H3(E,µ⊗2n ) is the element
(λ) ∪ (D).

Throughout this section, k denotes a number field and F the function field of
a smooth geometrically integral curve X over k. Let Ωk denote the set of places
of k and for v ∈ Ωk, let Fv = kv(X) be the function field of the curve Xkv . Let
D be a central division algebra of square free index n over F . Then the map
H1(F, SLn,D)→ H3(F, µ⊗2n ) defined by this invariant is injective (cf. 2.1). By
a theorem of Kato, the map H3(F, µ⊗2n ) → ∏

v∈Ωk H
3(Fv, µ

⊗2
n ) is injective (cf.

2.3). Hence the map H1(F, SLn,D)→∏
v∈Ωk H

1(Fv, SLn,D) is injective. Thus,
we have,

Proposition 3.1 Let k be a number field and X a smooth geometrically integral
curve over k. Let F = k(X) be the function field of X. Let G = SLn(D), with
D a central division algebra over F with square free index. Then,

� 1(F,G) is
trivial.
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For non zero elements a, b in a field E, with char E 6= 2, we denote by
(a, b)E , the quaternion algebra over E, generated by the elements i, j, with
i2 = a, j2 = b and ij = −ji.

We now consider linear algebraic groups of type Cn. Let D be a quaternion
division algebra over F and τ0 the standard involution on D. Let h be a her-
mitian form over (D, τ0) and G = Sp(h), the symplectic group of h. Then G is
a simply connected group of type Cn. The set H1(F, Sp(h)) is in bijection with
the set of isomorphism classes of hermitian forms over (D, τ0) of the same rank
as h. Given a hermitian form h′ over (D, τ0), there is an associated quadratic
form qh′ over F defined by qh′(y) = h′(y, y), for y in the underlying space which
supports h′. In fact, if h′ is represented by the diagonal matrix < λ1, · · · , λr >,
qh′ is represented by the matrix < λ1, · · · , λr > ⊗nD, where nD denotes the
norm form on the quaternion algebra D. By a theorem of Jacobson (cf. [S], pg.
352), two hermitian forms h and h′ are isomorphic over (D, τ0) if and only if qh
and qh′ are isomorphic as quadratic forms.

Let h1 and h2 be hermitian forms of the same rank as h, representing ele-
ments ξ1 and ξ2 in H1(F, Sp(h)). Then qh1

⊥ (−qh2
) is an element of I3(F ). If

(ξ1)v = (ξ2)v in H1(Fv, Sp(h)), for every v ∈ Ωk, then h1 ⊥ (−h2) is hyperbolic
over Fv, for all v ∈ Ωk. This implies that the class of qh1

⊥ (−qh2
) is equal

to zero in I3(Fv), for all v ∈ Ωk. By ([AEJ2], theorem 4), qh1
⊥ (−qh2

) is
hyperbolic over F ; i.e., h1 ∼= h2 and ξ1 = ξ2 in H1(F, Sp(h)). Thus the map
H1(F, Sp(h))→

∏
v∈Ωk H

1(Fv, Sp(h)) is injective. In particular, we have

Proposition 3.2 Let k be a number field and F be the function field of a smooth
geometrically integral curve X over k. Let G be a simply connected group of type
Cn defined over k. Then

� 1(F,G) is trivial.

Proof. We just need to remark that the only division algebras with involutions
of first kind over number fields are quaternion algebras (cf. [S], 10.2.3). 2

4 The case of quadratic and hermitian forms

We continue with the same notation as in §2. The aim of this section is to prove
the following two theorems.

Theorem 4.1 Let q be a quadratic form of rank greater than or equal to 3, over
a number field k. Then

� 1(F, Spin(q)) is trivial.

Let K = k(
√
d) be a quadratic field extension of k. Let FK = F (

√
d) and

let τ denote the non-trivial automorphism of FK over F .

Theorem 4.2 Let h be a hermitian form over (FK, τ), of rank at least 2. Then
� 1(F, SU(h)) is trivial.
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We begin with the following

Proposition 4.3 Let q be a quadratic form of rank greater than or equal to 3,
over a number field k. The map

F ∗/F ∗2

Sn(qF )
→

∏

v∈Ωk

F ∗v /F
∗2
v

Sn(qFv )

is injective.

Proof. case.1. rank(q) = 3 : For any λ ∈ F ∗, since Sn(λq) = Sn(q), after
scaling we may assume that q =< 1, a, b >, for some a, b ∈ k∗. Let D =
(−a, −b)F . Then Sn(qF ) = Nrd(D∗) modulo squares. If α ∈ F ∗ is a local
spinor norm then α is a reduced norm from D locally and by (3.1), α is a
reduced norm from D and hence a spinor norm from qF .

case.2. rank(q) = 4 : Suppose disc(q) = 1. After scaling we assume that
q =< 1, a, b, ab >. Then Sn(qF ) =Nrd((−a, −b)∗F ) modulo squares and the
proof follows as in case 1.

Suppose disc(q) = d. By scaling we may assume that q =< 1, a, b, abd >.
We have Sn(qF ) = Nrd((−a, −b)F (√d)) ∩ F ∗ modulo squares (cf. [KMRT],

15.11). Let α ∈ F ∗ be such that α ∈ Sn(qFv ), for every v ∈ Ωk. Then α
is a reduced norm from (−a, −b)(F (√d))w

, for all w ∈ Ωk(
√
d). By (3.1), α ∈

Nrd(−a, −b)F (√d) ∩ F ∗ = Sn(qF ) modulo squares.

case.3. rank(q) = 5 : Let d = disc(q). Then the form q ⊥< −d > is a
six dimensional form over the number field k, which is indefinite and hence is
isotropic (cf. [S], 6.6.6). Thus, q represents d and after scaling, we may assume
that q ∼=< d, 1, a, b, ab >. Hence q is a Pfister neighbour for the Pfister form
q1 =< 1, a > ⊗ < 1, b > ⊗ < 1, d >. By the norm principle (cf. 2.2), spinor
norms for qF are products of norms from finite extensions of F where qF is
isotropic. As qF is isotropic if and only (q1)F is hyperbolic, spinor norms for qF
are products of norms from finite extensions of F where (q1)F is hyperbolic. Let
α ∈ F ∗ be a spinor norm locally for all v ∈ Ωk, for qF . Then for every v ∈ Ωk, α
is a similarity factor for (q1)Fv (cf. [L], Ch. 7, 4.5). Hence the form < 1,−α > q1
in I4(F ) is zero in I4(Fv), for every v ∈ Ωk. As I4(F ) → ∏

v∈Ωk I
4(Fv) is

injective (cf. [AEJ2], theorem 4), we have < 1,−α > q1 is zero in W (F ), i.e.,
α is a similarity factor for q1 over F . Hence α is represented by q1 over F . As
q1 is a Pfister form, α is a spinor norm of q1 over F . By the norm principle (cf.
2.2), Sn(q1F ) = Sn(qF ) and hence α is a spinor norm of q over F .

case.4. rank(q) ≥ 6 : We complete the proof by induction on rank(q). Let
q = q1 ⊥ q2, with rank(q1) = 5. Let disc(q1) = d. After scaling q, we assume
that q1 ∼=< d, 1, a, b, ab >, as in case.3. Let α ∈ F ∗ be a spinor norm locally for
qF . Let l(Y ) = F (

√
−α), with l denoting the field of constants in F (

√
−α) and

Y a curve over l.
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Let q′ =< d, 1, a, b >⊥ q2. Since rank(q′) ≥ 5, q′ is isotropic over lw and
hence over lw(Y ), for every finite place w of l. Let w be a real place, where q′

is definite. Since q′ represents 1, the elements a, b and hence ab are all positive
at lw and hence over kv, where v is the restriction of w to k. Since α is a spinor
norm of q over Fv, α is a sum of squares in Fv and hence in lw(Y ). Since −α is
a square in lw(Y ), it follows that −1 is a sum of squares in lw(Y ), i.e., lw(Y ) has
no ordering. This implies that cd(lw(Y )) ≤ 1, (cf. [Se1]). Thus q′ is isotropic
over lw(Y ). In particular, for each w ∈ Ωl, every element of lw(Y )∗ is a spinor
norm for (q′)lw(Y ). By induction hypothesis, Sn(q′) = l(Y )∗/l(Y )∗2. By the
norm principle (cf. 2.2), α being a norm from l(Y ), is a spinor norm for q′ and
hence for q. 2

Remark 4.4 In the case of quadratic forms of rank 3 or 4, the proposition 4.3
holds more generally for forms over the function field F , i.e., if q is a quadratic
form over F of rank 3 or 4, then the map

F ∗/F ∗2

Sn(qF )
→

∏

v∈Ωk

F ∗v /F
∗2
v

Sn(qFv )

is injective. The proof given in the proposition works as well in these cases.

Proof of theorem 4.1. We have an exact sequence of algebraic groups:

1 �� µ2 �� Spin(q)
η

�� SO(q) �� 1

which gives rise to an exact sequence of pointed sets:

SO(q)(F )
δ0

�� F ∗/F ∗2 �� H1(F, Spin(q))
η

�� H1(F, SO(q))
δ1

�� H2(F, µ2).

The map δ0 is induced by the spinor norm. The set H1(F, SO(q)) classifies
isomorphism classes of quadratic forms, with the same rank and discriminant as
q. For a class [q′] ∈ H1(F, SO(q)), δ1([q′]) = c(q′ ⊥ (−q)), where c is the Clifford
invariant of (q′ ⊥ (−q)). Thus the image H1(F, Spin(q)) → H1(F, SO(q)),
consists of classes of quadratic forms q′ with the same rank, discriminant and
Clifford invariant as q; in particular, q′ ⊥ (−q) ∈ I3(F ). We have a commutative
diagram with exact rows:

1 ��
F∗/F∗2

Sn(qF )

��

δ0

�� H1(F, Spin(q))

��

η
�� H1(F, SO(q))

��

1 ��
∏

v∈Ωk
F∗
v /F

∗2
v

Sn(qFv )

δ0

��
∏

v∈Ωk H
1(Fv, Spin(qFv ))

η
��
∏

v∈Ωk H
1(Fv, SO(qFv ))

Let ξ ∈ H1(F, Spin(q)) be such that ξv = 1, for all v ∈ Ωk. The element
η(ξ) corresponds to the class of a quadratic form q′ over F with q′ ⊥ (−q) ∈
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I3(F ). By the commutativity of the above diagram, (q′ ⊥ (−q))Fv is zero in
I3(Fv), for all v ∈ Ωk. By ([AEJ2], theorem 4), we have an injection I3(F ) →∏

v∈Ωk I
3(Fv). Thus q

′ ⊥ (−q) is equal to zero in I3(F ). By Witt’s cancellation
theorem, q′ ∼= q and ξ lies in the kernel of η. Hence there exists α ∈ F ∗, such
that δ0([α]) = ξ. From the commutativity of the above diagram, it follows that
α is locally a spinor norm, for all v ∈ Ωk. The theorem now follows from the
proposition 4.3. 2

Recall that if E is a field of characteristic different from 2 and L is a
quadratic extension of E, with σ denoting the non trivial automorphism of
L over E, W (L|E, σ) denotes the Witt group of σ-hermitian forms. We have
a homomorphism of groups W (L|E, σ) → W (E), given by associating to any
h ∈ W (L|E, σ), the quadratic form qh defined as qh(x, x) = h(x, x), for any x
in the space supporting h. This gives rise to the following exact sequence:

1→W (L|E, σ)→W (E)→W (L)

where the map W (E) → W (L) is given by scalar extension from E to L. In
fact if L = E(

√
d), for some d ∈ E∗, then the image of W (L|E, σ) in W (E) is

the subgroup W (E). < 1,−d >, (cf. [S], 10.1.3).

Proof of theorem 4.2. We have the following exact sequence of algebraic
groups

1→ SU(h)→ U(h)→ R1FK|F (Gm)→ 1

where for any extension L of F ,

R1FK|F (Gm)(L) = (LK)∗1 = {x ∈ (LK)∗ | NLK|L (x) = 1 }.

As Nrd : U(h)(F )→ (FK)∗1 is surjective, the above sequence gives rise to the
following exact sequence of pointed sets,

1→ H1(F, SU(h))
η→ H1(F,U(h)).

The set H1(F,U(h)) classifies isomorphism classes of hermitian forms, with the
same rank as h. An element of H1(F, SU(h)) maps under η to the class of a
hermitian form with the same rank and discriminant as h. We have the following
commutative diagram,

1 �� H1(F, SU(h))

��

η
�� H1(F,U(h))

��

1 ��
∏

v∈Ωk H
1(Fv, SU(h))

η
��
∏

v∈Ωk H
1(Fv, U(h))

Let ξ ∈ H1(F, SU(h)) be locally trivial in H1(Fv, SU(h)), for every v ∈ Ωk.
The element η(ξ) corresponds to the class of a hermitian form h′ over (FK, τ)
with rank and discriminant of h′ same as those of h. Moreover, (h ⊥ (−h′))Fv
is the hyperbolic form locally, for every v ∈ Ωk. The hermitian forms h and
h′ correspond to quadratic forms qh and qh′ over F respectively such that the
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rank, discriminant and Clifford invariants of qh′ are the same as those of qh.
Hence the form qh ⊥ (−qh′) ∈ I3(F ). Further, the form qh ⊥ (−qh′) is locally
zero in I3(Fv), for every v ∈ Ωk. By ([AEJ2], theorem 4), qh ⊥ (−qh′) is zero in
I3(F ). Hence h ∼= h′ over (FK, τ) and η(ξ) is trivial. Since kernel(η) is trivial,
ξ is trivial. 2

5 A classification theorem for hermitian forms
over division algebras with an orthogonal in-
volution

Let E be a field of characteristic different from 2 and L a quadratic field ex-
tension of E with σ denoting the nontrivial automorphism of L over E. Let

U2n(L, σ) denote the unitary group of the hyperbolic form

(
0 In
−In 0

)
over

(L, σ). If h is a hermitian form over (L, σ) of rank 2n, it defines an element ξh ∈
H1(E,U2n(L, σ)). The set H1(E,SU2n(L, σ)) injects into H1(E,U2n(L, σ)),
the image consisting of hermitian forms over (L, σ) of rank 2n and trivial
discriminant. Hence if h has trivial discriminant, ξh defines an element in
H1(E,SU2n(L, σ)). The Rost invariant of ξh is the Arason invariant of the
quadratic form qh associated to h (see §4 and [BP2], §3); i.e., the Rost invariant
of an even rank hermitian form over (L, σ), with trivial discriminant is the same
as the Arason invariant of the associated quadratic form in I3(E).

We next recall (cf. [BP2], §3) the Rost invariant associated to a hermitian
form over a central division algebra D over any field E, with an orthogonal
involution τ . Let h be a hermitian form over (D, τ). We denote by Rh the Rost
invariant on H1(E,Spin(h)) which takes values in H3(E,Q/Z(2)). Its values on

the subset E∗/E∗2

Sn(hE)
⊂ H1(E,Spin(h)) are given by [λ] 7→ (λ)∪(D), (cf. [KMRT],

§31.B, pp. 437). If h is a hermitian form of rank 2n, trivial discriminant and
trivial Clifford invariant, the class of h defines an element in H1(E,U2n(D, τ)),

where U2n(D, τ) is the unitary group of the hyperbolic form

(
0 In
−In 0

)
,

which admits a lift ξ ∈ H1(E,Spin2n(D, τ)) under the composite map :

H1(E,Spin2n(D, τ))→ H1(E,SU2n(D, τ))→ H1(E,U2n(D, τ))

The Rost invariant of h, denoted as R(h) is defined to be R(h) = [R(ξ)] ∈
H3(E,Q/Z(2))/H1(E,µ2) ∪ (D), (cf. [BP2], §3). If D = E this invariant
coincides with the Arason invariant. We recall the following lemma, (cf. [BP2],
3.6).

Lemma 5.1 Let (D, τ) be a central division algebra with an orthogonal in-
volution over a field E. Let h be a hermitian form over (D, τ). Let ξ ∈
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H1(E,Spin(h)) and h′ the hermitian form over (D, τ), associated to the im-
age of ξ in H1(E,U(h)). Then [Rh(ξ)] = R(h′ ⊥ (−h)) in
H3(E,Q/Z(2))/H1(E,µ2) ∪ (D).

Let k be a number field. We denote by Vk, the set of real places of k.

Lemma 5.2 Let k be a number field and M a function field in two variables
over k. Then the map Hn(M)→

∏
v∈Vk H

n(M.kv) is injective, for n ≥ 5.

Proof. Let n ≥ 5. Let ξ ∈ Hn(M) be trivial in Hn(M.kv), for every v ∈ Vk.
As every real closure of M contains a real closure of k, by ([AEJ1], 2.2), ξ is a
(−1)-torsion element in Hn(M). We have the following exact sequence,

Hn(M(
√
−1)) cores

�� Hn(M)

(−1)∪
��

Hn+1(M(
√
−1)) Hn+1(M)res

��

As k is a number field, vcd(k) ≤ 2 and hence vcd(M) ≤ 4 andHr(M(
√
−1)) = 0,

for r ≥ 5. In view of the above exact sequence, as n ≥ 5, we have (−1)∪ :
Hn(M) → Hn+1(M) is an isomorphism. As ξ is (−1)-torsion in Hn(M), ξ is
zero in Hn(M). 2

We record the following lemma, which is a consequence of a theorem of
Jannsen (cf. 2.4) and a theorem of Arason-Elman-Jacob (cf. [AEJ1], 2.2).

Lemma 5.3 Let k be a number field and M a function field in two variables
over k. Then the map I4(M)→∏

v∈Vk I
4(M.kv) is injective.

Proof. Let q ∈ I4(M) with qM.kv = 0 locally for all v ∈ Ωk. Since enM is well
defined (cf. [AEJ1], 1.2), we have the following commutative diagram for each
n:

In(M) ��

enM
��

∏
v∈Ωk I

n(M.kv)

enM
��

Hn(M) ��
∏

v∈Ωk H
n(M.kv)

In view of this commutative diagram, the remark following (2.4) and since ē4M
is an isomorphism (2.5), it follows that q ∈ I5(M). Since q is locally zero, using
the above commutative diagram for n = 5, we see that e5M (q) is locally trivial
in H5(M.kv), for every v ∈ Ωk. By the preceding lemma (5.2), we have e5M (q)
is zero in H5(M). Hence q ∈ I6(M). Repeating this argument, we get that
q ∈ ⋂n≥5 I

n(M) and hence is zero, by Arason-Pfister’s theorem (cf. [S], 4.5.6).
2
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Theorem 5.4 Let k be a number field and let F = k(X) be the function field of
a smooth, geometrically integral curve X over k. Let D be a quaternion division
algebra over F , with an orthogonal involution σ. Let h1 and h2 be two hermitian
forms over (D,σ) with the same rank and discriminant. Suppose further that
c(h1 ⊥ (−h2)) = 0 and R(h1 ⊥ (−h2)) = 0. Suppose h1 and h2 are equivalent
over Fv for all v ∈ Ωk, then h1 ∼= h2.

Proof. Let L be a quadratic extension of F contained inD such that σ restricted
to L is identity. Let µ ∈ D∗ be such that σ(µ) = −µ and Int(µ) restricted to L
is the non-trivial automorphism τ0 of L over F (cf. [BP2], §3.2). The involution
τ = Int(µ) ◦ σ on D, being symplectic is the canonical involution on D. Let
L = l(Y ), where l is the field of constants in L. For v ∈ Ωk, let Fv = kv(X) be
the function field of the curve Xkv and Lv = L ⊗F Fv. We have the following
commutative diagram with exact rows, (cf. [BP2], 3.2).

W (D, τ)
π1

��

��

W (L|F, τ0)
ρ̃

��

��

W (D,σ)
π̃2

��

��

W (L)

��∏
v∈Ωk W (DFv , τ)

π1
��
∏

v∈Ωl W (Lv|Fv, τ0)
ρ̃

��
∏

v∈Ωv W (DFv , σ)
π̃2

��
∏

v∈Ωl W (Lv)

Let h = h1 ⊥ (−h2). Then h has even rank, trivial discriminant, trivial
Clifford invariant and trivial Rost invariant. Further h is zero in W (DFv , σ), for
every v ∈ Ωk. The element π̃2(h) ∈ W (L) has even rank, trivial discriminant
and trivial Clifford invariant and hence belongs to I3(L). Further, π̃2(h) is
zero in W (Lw), for every w ∈ Ωl. By ([AEJ2], theorem 4), π̃2(h) is zero in
I3(L). Thus there exists h0 ∈ W (L|F, τ0) such that ρ̃(h0) = h. The rank
of h0 is even. We show that the lift h0 ∈ W (L|F, τ0) may be modified so
as to have trivial discriminant. Let α = disc(h0) ∈ F ∗/NL|F (L

∗). We have
c(ρ̃(h0)) = (L)∪(α) ∈ Br(F )/(D), (cf. [BP1], 3.2.3). Since c(ρ̃(h0)) = c(h) = 0,
we have (L) ∪ (α) = 0 or (L) ∪ (α) = (D) ∈ Br(F ). If (L) ∪ (α) = 0, then
disc(h0) = 1. Suppose (L) ∪ (α) = (D). Let L = F (

√
a) so that D = (a, α)F .

The image of the form < 1 >∈ W (D, τ) under the map π1 in W (L|F, τ0), is
simply (< 1,−α >), which has discriminant α in F ∗/NL|F (L

∗). Modifying h0
by π1(< 1 >), we may assume that disc(h0) = 1.

We now show that the lift h0 of h may be modified to have trivial Rost
invariant. Let rank(h0) = 2n. Let SU(µ−1

√
aH2n) be the special unitary

group with respect to the hermitian form µ−1
√
aH2n over (D,σ). The inclusion

SU2n(L|F, τ0) → SU(µ−1
√
aH2n) gives rise to an injection SU2n(L|F, τ0) →

SU2n(D,σ) (by a choice of an isomorphism µ−1
√
aH2n ∼= H2n (cf. [BP2], pg.

671). This lifts to a homomorphism ρ0 : SU2n(L|F, τ0) → Spin2n(D,σ). We
have the following commuting diagram:

SU2n(L|F, τ0)
ρ0

��

˜̃ρ �
�

�
��

�
�

��
�

��
�

Spin2n(D,σ)

�
��

�
�

�
�

�
�

�
� �

�

U2n(D,σ)

11



which yields a corresponding diagram:

H1(F, SU2n(L|F, τ0))
ρ0

��

˜̃ρ �����������������
H1(F, Spin2n(D,σ))

��� � � � � � � � � � � � � � �

H1(F,U2n(D,σ))

The map ρ̃ at the level of Witt groups is induced by the map ˜̃ρ, (for varying
n). Indeed for the hermitian form h0, R(h0) = RSpin2n(D,τ)(ρ0(h0)), (cf. [BP2],

3.20). Since R(˜̃ρ(h0)) = R(h) = 0, there exists λ ∈ F ∗, such that R(h0) =
(λ) ∪ (D). The element, π1(< 1,−λ >) has the associated quadratic form
< 1,−λ > ⊗nD, nD denoting the norm form of D over F and has Rost invariant
(λ) ∪ (D). Modifying h0 by π1(< 1,−λ >), we may assume that R(h0) = 0.
Thus, the quadratic form associated to h0, qh0

, defines an element in I4(F ).

The image of π1 consists of hermitian forms f whose associated quadratic
forms qf , are multiples of nD. Since h = ρ̃(h0) is locally trivial over Fv, for
every v ∈ Ωk, h0Fv is in the image of π1 and hence qh0

is a multiple of nD over
Fv, for every v ∈ Ωk.

Let C be the conic defined by aX2
1 + bX2

2 − 1 over F . Then F (C) is a 2
dimensional field over k and nD is zero over F (C) (cf. [S], 5.2, (iv)). Hence
the class of qh0

in I4(Fv(C)) is zero, for all v ∈ Ωk. The map I4(F (C)) →∏
v∈Ωk I

4(Fv(C)) being injective (cf. 5.3), qh0
is zero in I4(F (C)) and hence is

a multiple of of nD (cf. [S], 5.4, (iv)). It follows that h0 is in the image of π1
and hence ρ(h0) = h = 0 in W (D,σ). 2

6 Hasse principle for groups of type Dn (D4 non-
trialitarian)

Let (D,σ) be a central simple algebra over a field E with an orthogonal in-
volution. Let L|E be an extension which splits D and let φ : (D,σ) ⊗E L ∼=
(Mn(L), τq0) be a splitting with σ ⊗ 1 transported to the adjoint involution on
Mn(L) corresponding to a quadratic form q0 over L. The form q0 is determined
upto a scalar. Let h be a hermitian form over (D,σ) ⊗E L. Then by Morita
theory with respect to φ, h is equivalent to a quadratic form q over L. The sim-
ilarity class of q is uniquely determined by h and is independent of the choice
of φ and q0. The form h is isotropic if and only if q is isotropic. In particular,
Sn(hL) = Sn(qL).

Lemma 6.1 Let (D,σ) be a quaternion algebra with an orthogonal involution
over a local field k. Let h be a hermitian form of rank 3 over (D,σ) and σh the
involution on M3(D), adjoint with respect to h. Suppose disc(σh) 6∈ k∗2. Then
h is isotropic.

12



Proof. Let τ be the canonical symplectic involution on D. Let σ = Int u◦τ , for
some u ∈ D∗, such that τ(u) = −u. The hermitian form h corresponds under
scaling by u, to a skew hermitian form h1 with respect to τ (cf. [BP1], §1.3).
The involution τh1

on M3(D) adjoint with respect to h1, corresponds with σh.
Then det(h1) = disc(τh1

) = disc(σh) (cf. [KMRT], 7.2). By the hypothesis on
h, disc(σh) 6∈ k∗2. Hence det(h1) is not in k

∗2 and by ([S], 10.3.6), h1 and hence
h is isotropic. 2

Theorem 6.2 Let (D,σ) be a quaternion division algebra over a number field
k with an orthogonal involution σ and let h be a hermitian form over (D,σ) of
rank at least 2. Let F = k(X) be the function field of a smooth geometrically
integral curve X over k. For each v ∈ Ωk, let Fv be the function field of the
curve Xkv . Then the map

F ∗/F ∗2

Sn(hF )
→

∏

v∈Ωk

F ∗v /F
∗2
v

Sn(hFv )

is injective.

Proof. Suppose rank(h) = 2. Let δ = disc(h) ∈ k∗/k∗2. The Clifford al-
gebra C = C(M2(D), τh)), is a quaternion algebra over k(

√
δ) and Sn(hF ) =

Nrd(CF (
√
δ))∩F ∗ modulo squares, (cf. [KMRT], 15.11). Let λ ∈ F ∗ be a local

spinor norm for hF . Then λ is a reduced norm from C ⊗F Fv, for every place
v of k and by (3.1), C being a quaternion algebra, λ is a reduced norm from
CF (

√
δ) and belongs to Nrd(CF (

√
δ)) ∩ F ∗ = Sn(hF ) modulo squares.

Let rank(h) = n ≥ 3. Let λ ∈ F ∗ be a local spinor norm for hF . Then λ is a
reduced norm from DF , (cf. 2.2 and 3.1). Let L be a quadratic extension of F
such that DL is split and λ = NL|F (µ), for some µ ∈ L∗. The element λ is also a

norm from F (
√
−λ). By ([W], Lemma 2.13), there exists θ ∈ L(

√
−λ) such that

NL(
√
−λ)|F (θ) = ν2λ, for some ν ∈ F ∗. By (2.2), it suffices to show that every

element of L(
√
−λ)∗ modulo squares is contained in Sn(hL(

√
−λ)). We note that

for every ordering v of k where Dkv is split and hkv is definite, λ ∈ F ∗v being a
spinor norm of hFv is a sum of squares so that L(

√
−λ) . kv has no orderings.

In particular, if l is the field of constants of L(
√
−λ) and L(

√
−λ) = l(Y ), Y

a curve over l, for any ordering w of l extending v, lw(Y ) has no ordering. We
rename l = k and Y = X and assume that D ⊗k k(X) is split and for every
ordering v of k where Dkv is split and hkv is definite, kv(X) has no orderings;
in particular, cd(kv(X)) ≤ 1. We then show that every λ ∈ k(X)∗ is a spinor
norm for hk(X). This is done by induction on rank(h).

Suppose rank(h) = 3. Let S1 be the set of real places of k such that Dkv is
split and hkv is indefinite. Let S2 be the set of dyadic places of k such that Dkv

is split and disc(σh) 6∈ k∗2v . Let S3 be the set of dyadic places of k such that
Dkv is not split and disc(σh) 6∈ k∗2v . For v ∈ S1 ∪ S2, hkv corresponds under
Morita equivalence to a quadratic form of rank 6 over kv, which is isotropic. We
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choose a rank 1 subform < X3v > of hkv , such that under Morita equivalence,
< X3v > corresponds to the quadratic form < 1,−1 > over kv. For v ∈ S1∪S2,
let < X1v, X2v > denote the orthogonal complement of < X3v > in hkv . For
v ∈ S3, since Dkv is not split and disc(σh) 6∈ k∗2v , hkv is isotropic in view of 6.1.
We choose a rank 1 subform < X1v > of hkv such that < X1v >

⊥∼=< X2v, X3v >
is hyperbolic. Using weak approximation, one can find a rank 1 subform < X1 >
of h over k, such that for each v ∈ S1 ∪ S2 ∪ S3, < X1 >kv

∼=< X1v >. One can
choose a subform < X2 > in < X1 >

⊥ such that < X2 >kv
∼=< X2v >, for each

v ∈ S1 ∪ S2 ∪ S3. Let < X1, X2 >
⊥∼=< X3 >. Clearly, < X3 >kv

∼=< X3v >, for
v ∈ S1∪S2∪S3. Thus h ∼=< X1, X2, X3 >. Since D is split over F , we choose an
isomorphism φ : (DF , σ)→ (M2(F ), τq0), q0 being a rank 2 quadratic form over
F . The isomorphism φ yields a Morita correspondence between hermitian forms
over DF and quadratic forms over F . Let < X1 >F correspond to < a′, b′ >
over F , < X2 >F correspond to < c′, d′ > over F and < X3 >F correspond
to < e′, f ′ > over F . Thus hF corresponds to the rank 6 quadratic form q =<
a′, b′, c′, d′, e′, f ′ >. Since the spinor norm group is insensitive to scaling, we
replace q by the form (a′b′c′) . q =< b′c′, c′a′, a′b′, d′a′b′c′, e′a′b′c′, f ′a′b′c′ >.
Renaming, we set q =< −a,−b, ab, c, d,−cdδ >, δ = disc(q) = disc(σh) ∈
k∗/k∗2. We note that the form < d,−cdδ >= a′b′c′ < e′, f ′ >. We choose
g ∈ F ∗ such that g is a value of the quadratic form < a δ, b δ,−ab δ > and
such that for ξ = (λ) ∪ (c δ) ∪ (d δ) ∈ H3(F ), ξFv(

√
g) = 0, for every finite

nondyadic v ∈ Ωk and for every dyadic v ∈ Ωk where δ ∈ k∗2v , (cf. 2.6). Set
α = g δ ∈ F ∗. Then α is a value of the quadratic form < a, b,−ab > over F . The
form < −a,−b, ab > being isotropic over F (

√
α), we have, q ∼= γ < 1,−α >⊥<

−α >⊥< c, d,−cdδ >, for some γ ∈ F ∗. Let q1 =< −α, c, d,−cdδ >. Then
disc(q1) = g ∈ F ∗/F ∗2. We claim that λ is a spinor norm for q1 locally, for
every v ∈ Ωk. Over F (

√
g), q1 ∼=< −δ, c, d,−cd δ > and the Clifford algebra

C(q1) ∼= (c δ, d δ)F (√g). For a finite v ∈ Ωk such that v is nondyadic or v is

dyadic and δ ∈ k∗2v , over Fv(
√
g), (λ) ∪ C(q1) = ξFv(

√
g) = 0. As C(q1) is a

quaternion algebra over Fv(
√
g), λ is a reduced norm from C(q1) and hence

[λ] ∈ Sn((q1)Fv ), (cf. [KMRT], 15.11). For v ∈ S1 ∪ S2, by choice, the form
< d,−cdδ >= a′b′c′ < e′, f ′ >∼= a′b′c′ < X3v >∼=< 1,−1 > over Fv. Hence
q1 being isotropic over Fv, λ ∈ Sn((q1)Fv ). For v ∈ S3, over Fv, a

′b′c′ <
ab, c, d,−cdδ > corresponds under Morita equivalence to < X2v, X3v >. The
form < X2v, X3v > being hyperbolic, < ab, c, d,−cdδ > is hyperbolic and hence
< c, d,−cd δ > is isotropic over Fv. In particular, q1 is isotropic and λ ∈
Sn((q1)Fv . For a real v ∈ Ωk such that Dkv is split and hkv is equivalent to
a definite quadratic form, cd(kv(X)) ≤ 1 and (q1)kv being 4 dimensional is
isotropic. Hence λ ∈ Sn((q1)Fv ). Let v ∈ Ωk be a real place such that Dkv is
not split. We claim that (q1)Fv is isotropic. Since every form of rank greater
than 1 over Dkv is isotropic, we have < X3v >∼=< −X3v >. As < X3v >
corresponds to the quadratic form < e′, f ′ > over Fv, we have 2 < e′, f ′ >= 0.
Since < d,−cdδ >∼= a′b′c′ < e′, f ′ >, we have < d,−cdδ > is torsion in W (Fv).
To show that (q1)Fv is isotropic, it is enough to show that q1 is isotropic over
Fv(
√
g). Over Fv(

√
g), q1 ∼=< −δ, c, d,−cdδ >∼= d (< 1,−c δ > ⊗ < 1, cd >).
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As < 1,−c δ > is torsion, we have < 1,−c δ > ⊗ < 1, cd > is torsion over
Fv(
√
g). As vcd(Fv(

√
g)) ≤ 1, I2(Fv(

√
g)) is torsion free. Hence q1 is isotropic

over Fv(
√
g) and hence over Fv. Thus λ is a spinor norm for q1 over Fv, for

every place v of k and hence by (4.4), λ is a spinor norm for q1 and hence for
h.

Suppose rank(h) = n ≥ 4. Let S1 be the set of real places of k where Dkv

is split and hkv is isotropic. Let S2 be the set of finite places of k where Dkv

is not split. Let v ∈ S2. The form hkv being n dimensional, n ≥ 4, is isotropic
over Dkv . Let < αv > be a 1 dimensional subform of hkv such that < αv >

⊥

is isotropic. Let v ∈ S1. Since hkv is isotropic, choose a 1 dimensional subform,
< αv > of hkv , such that < αv >⊥ is isotropic. By weak approximation, one
may choose a 1 dimensional subform < α > of h such that < α >Fv

∼=< αv >,
for v ∈ S1 ∪ S2. Let h1 =< α >⊥. We claim that (h1)Fv is isotropic over Fv,
for every place v ∈ Ωk. This is by choice for v ∈ S1 ∪ S2; in fact, (h1)kv itself is
isotropic. If v 6∈ S1 ∪S2, v real and Dkv is split, then hkv is definite, cd(Fv) ≤ 1
and (h1)Fv being equivalent to a quadratic form of rank ≥ 3, is isotropic. If
v 6∈ S1 ∪ S2, v real and Dkv is not split, (h1)Fv being of rank ≥ 2 is isotropic.
If v 6∈ S1 ∪ S2, v finite, Dkv being split, (h1)Fv corresponds to a quadratic form
of rank at least 6 and hence is isotropic. Thus (h1)Fv is isotropic and since
DFv is split, Sn((h1)Fv ) = F ∗v modulo squares, for every v ∈ Ωk. By induction,
Sn((h1)F ) = F ∗/F ∗2. This completes the proof of the theorem. 2

Corollary 6.3 With the same notation as in (6.2), let B be a central simple
algebra of degree 4 over k. If λ ∈ F ∗ is such that λ2 is a reduced norm from
BFv , for all v ∈ Ωk, then λ2 is a reduced norm from BF .

Proof. With notation as in [KMRT], there is an equivalence of categories
1A3 ∼= 1D3, (cf. [KMRT], 15.32). Under this equivalence, let the degree 4
algebra (B × Bop) over (k × k), with the switch involution, correspond to the
degree 6 algebra A over k with an orthogonal involution σ, i.e., C(A, σ) ∼=
(B × Bop). We note that (A, σ) ∼= (M3(H), τh), H a quaternion algebra over
k and h a rank 3 skew hermitian form over (H, τ), τ denoting the standard
involution of H. Further, Spin(A, σ) = Spin(h). We denote the extension of
these algebras with involution to F by (BF × Bop

F ) and (AF , σ) respectively.
Then,

Sn(hF ) = {ρ ∈ F ∗ | ρ2 ∈ NrdBF (B
∗
F ) },modulo squares,

(cf. [KMRT], 15.34). Hence, the element λ as in the statement of the corollary,
is locally a spinor norm for (AFv , σ), for every v ∈ Ωk. By the above theorem
(6.2), λ is a spinor norm for (AF , σ). By the description for the spinor norms
of (AF , σ) given above, λ2 is a reduced norm for BF . This completes the proof
of the corollary. 2

Remark 6.4 One does not know, even in the setting of the corollary, whether
local reduced norms are reduced norms from BF .

15



Theorem 6.5 With the same notation as in (6.2), let G be a semisimple simply
connected linear algebraic group defined over k, of type Dn (non-trialitarian).
Then the map

H1(F,G)→
∏

v∈Ωk
H1(Fv, G)

has trivial kernel.

Proof. We may assume without loss of generality that G is absolutely almost
simple. Hence G is isomorphic to Spin(h), where h is a hermitian form over
(D,σ), for some central division algebra D with an orthogonal involution σ over
k. Since D is 2 torsion, D is either a quaternion division algebra over k or
D = k. If D = k, then h is a quadratic form over k with rank(h) ≥ 3 and the
theorem is proved in (4.1). So we may assume that D is a division algebra over
k. Let rank(h) = n. We have an exact sequence of linear algebraic groups,

1→ µ2 → Spin(h)→ SU(h)→ 1

which in turn gives rise to the following commutative diagram with exact rows:

SU(h)(F )

��

�� F ∗/F ∗2

��

�� H1(F, Spin(h))

��

�� H1(F, SU(h))

��∏
v∈Ωk SU(h)(Fv) ��

∏
v∈Ωk F

∗
v /F

∗2
v ��

∏
v∈Ωk H

1(Fv, Spin(h)) ��
∏

v∈Ωk H
1(Fv, SU(h))

Let ξ ∈ H1(F, Spin(h)) be locally trivial in H1(Fv, Spin(h)), for all v ∈ Ωk.
Then under the composite map,

H1(F, Spin(h))→ H1(F, SU(h))→ H1(F,U(h))

the image of ξ in H1(F,U(h)), defines a hermitian form h′ which has the same
rank and discriminant as h and further c(h′ ⊥ (−h)) = 0. Let Spin2n(D,σ)
and U2n(D,σ) denote respectively the spin and unitary groups of the hyper-

bolic form

(
0 In
−In 0

)
. Let ξ′ ∈ H1(F, Spin2n(D,σ)) be a lift of h′ ⊥ (−h)

in H1(F,U2n(D,σ)). Then R(ξ′) = Rh(ξ), where Rh : H1(F, Spin(h)) →
H3(F,Q/Z(2)) is the Rost invariant map (cf. 5.1). Since ξ is locally triv-
ial, Rh(ξ) ∈ H3(F,Q/Z(2)) is locally trivial. Since D is a quaternion al-
gebra, Rh(ξ) in fact belongs to H3(F,Z/4Z) and the map H3(F,Z/4Z) →∏

v∈Ωk H
3(Fv,Z/4Z) is injective (cf. 2.3). HenceRh(ξ) is trivial inH

3(F,Z/4Z).
Hence by the classification theorem (cf. 5.4), h ∼= h′ and the image of ξ
in H1(F,U(h)) is trivial. Let η be the image of ξ in H1(F, SU(h)). Since
the nontrivial element in H1(F, SU(h)) which maps to the trivial element in
H1(F,U(h)) is not in the image of H1(F, Spin(h)) (cf. [BP2], 7.11), it follows
that η is trivial and hence in view of the exact sequence above, ξ comes from an

element ξ̃ ∈ F∗/F∗2

Im(Sn(hF ))
. By the commutative diagram above, ξ̃ is locally trivial

and by (6.2), ξ̃ and hence ξ is trivial. 2
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7 Rost invariant for special unitary groups

Let E be a field of characteristic different from 2 and L a quadratic field ex-
tension of E. Let (D, τ) be a quaternion division algebra over L with a unitary
L|E involution. Let D0 ⊂ D be a quaternion division algebra over E such that
D = D0. L and τ restricted to D0 is the canonical symplectic involution on
D0. For a hermitian form h over (D, τ), we denote the unitary and the special
unitary group with respect to h by U(h) and SU(h) respectively. We have the
following exact sequence of algebraic groups,

1→ SU(h)→ U(h)→ R1L|E(Gm)→ 1

which gives rise to the following exact sequence in Galois cohomology,

U(h)(E)
Nrd→ L∗1

δ→ H1(E,SU(h))→ H1(E,U(h)) (?)

The next proposition computes the Rost invariant on the image of δ. The
proposition is also a consequence of ([MPT], theorem 1.9) (see Appendix).

Proposition 7.1 With the notation as above, for µ ∈ L∗1, R(δ(µ)) = NL|E(ν)∪
(D0) ∈ H3(E,Q/Z(2)), where ν ∈ L∗ is such that µ = ν−1 τ(ν).

Proof. The element NL|E(ν) ∪ (D0) is well defined with respect to µ, since for
any λ ∈ E∗, NL|E(ν) ∪ (D0) = NL|E(λν) ∪ (D0) in H3(E,Q/Z(2)). Let Xµ be
the torsor corresponding to δ(µ). Let E(Xµ) denote the function field of Xµ.
Rost has shown (cf. [G1], §2.3, theorem 1) that the kernel Kµ of the map

H3(E,Q/Z(2))
res→ H3(E(Xµ),Q/Z(2)),

is a finite cyclic group generated by R(δ(µ)). We claim that R(δ(µ)) has order
at most 2. We choose a quadratic extension fieldM of E such that D0M is split.
SetML = M⊗EL. Then DML is split and Nrd : U(h)(M)→ (ML)∗1 is surjec-
tive. Hence res(R(δ(µ))) is trivial inH3(M,Q/Z(2)) and cores(res(R(δ(µ)))) =
2. R(δ(µ)) = 0.

As the torsor Xµ has a rational point over the field E(Xµ), δ(µ) is trivial
in H1(E(Xµ), SU(h)). Hence µ ∈ Nrd(U(h)(E(Xµ))) and by (cf. [KMRT], pg.
202), µ = θ−1 τ(θ), for some θ ∈ Nrd(DE(Xµ)). Thus, NL|E(ν) ∪ (D0E(Xµ)) =

NL⊗E E(Xµ) |E(Xµ)(θ)∪(D0E(Xµ)) inH
3(E(Xµ),Q/Z(2)). Since θ ∈ Nrd(DE(Xµ)),

by the norm principle (2.2), NL⊗E E(Xµ) |E(Xµ)(θ) ∈ Nrd(D0E(Xµ)). Hence

NL|E(ν)∪(D0E(Xµ)) = 0 inH3(E(Xµ),Q/Z(2)) andNL|E(ν)∪(D0) ∈ Kµ. Since
Kµ is generated by R(δ(µ)), NL|E(ν) ∪ (D0) = R(δ(µ)) or NL|E(ν) ∪ (D0) = 0.
Suppose NL|E(ν) ∪ (D0) = 0. Then there exists a quadratic extension P of
E, such that D0 is split over P and NL|E(ν) = NP |E(α), for some α ∈ P ∗.
Set PL = P ⊗E L. By (cf. [W], lemma 2.13), there exist β ∈ (PL)∗ and
δ ∈ E∗, such that NPL |L(β) = ν. δ. As D is split over PL, by the norm prin-
ciple, (2.2), ν. δ ∈ Nrd(D). As µ = (ν. δ)−1τ(ν. δ), by (cf. [KMRT], pg. 202),
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µ ∈ Nrd(U(h)(E)), δ(µ) is trivial and R(δ(µ)) = 0. Hence if µ ∈ L∗1 is not
in Nrd(U(h)(E)), then NL|E(ν) ∪ (D0) is not zero and hence coincides with
R(δ(µ)). Thus in either case, NL|E(ν) ∪ (D0) = R(δ(ν)). 2

Let U2n(D0, τ0) denote the unitary group of the hyperbolic form

(
0 In
In 0

)

over (D0, τ0). We denote the unitary group and the special unitary group with

respect to the hyperbolic form

(
0 In
In 0

)
by U2n(D, τ) and SU2n(D, τ) re-

spectively. We have a natural inclusion U2n(D0, τ0) ↪→ U2n(D, τ). Since τ0 is
symplectic, the reduced norm of an element in U2n(D0, τ0) has reduced norm 1
and we have the following diagram

U2n(D0, τ0)
ρ0

��

˜̃ρ �
�

�
�

�
�

�
�

�
�

�
�

�

SU2n(D, τ)

�
��

�
�

�
�

�
�

�
�

�
�

U2n(D, τ)

which induces the following commutative diagram

H1(E,U2n(D0, τ0))
ρ0

��

˜̃ρ ���
�

�
�

�
�

�
�

�
�

�
�

�
�

H1(E,SU2n(D, τ))

��� � � � � � � � � � � � � �

H1(E,U2n(D, τ))

Proposition 7.2 With the notation as above, if [h] ∈ H1(E,U(D0, τ0)) then
R(h) = R(ρ0(h)).

Proof. By (cf. [KMRT], pg. 436), there exists an integer nρ0
such that

nρ0
R(h) = R(ρ0(h)). We show that nρ0

= 1. Let X = RL|E(XD) where
XD is the Brauer Severi variety of D over L. Let M = E(X)(X1, · · · , X2n).
Then D0M is not split, since Br(E)→ Br(E(X)) is injective, (cf. [MT], corol-
lary 2.12) and D0ML = DM is split. Let L = E(

√
d). Then D0M = (a, d)M , for

some a ∈ M∗. Let i, j ∈ D0M be such that i2 = a, j2 = d, ij = −ji. We have
the splitting φ : D0M ⊗M ML ∼= M2(ML), defined by,

φ(i⊗ 1) =

(
0 1
a 0

)
, φ(j ⊗ 1) =

( √
d 0

0 −
√
d

)
.

An explicit computation shows that φ ◦ τML ◦ φ−1 = Int(q1) ◦ T , where

T

(
x y
z w

)
=

(
τ(x) τ(z)
τ(y) τ(w)

)

and q1 =< 1,−a >. Under Morita equivalence, through φ, every τ -hermitian
form over (DML, τ) corresponds to a ML|M hermitian form. The (DML, τ)
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hermitian form h =< X1, · · · , X2n > corresponds to an ML|M hermitian form
represented by < X1, · · · , X2n > ⊗ < 1,−a >, whose Rost invariant is
((−1)nX1. · · · X2n) ∪ (a) ∪ (d) = Pf(h) ∪ (D0M ) 6= 0, where Pf(h) is the
Pfaffian norm of h (cf. [KMRT], pg. 19). Since R(h) = Pf(h) ∪ (D0) (cf.
[KMRT], pg. 440), it follows that nρ0

= 1. 2

8 Classification theorems for hermitian forms
over quaternion division algebras with a uni-
tary involution

Let K = k(
√
d) be a quadratic field extension of a field k of characteristic

different from 2 and (D, τ) be a quaternion algebra overK with aK|k involution
τ . Let D0 ⊂ D be a quaternion k algebra such that τ restricted to D0 is τ0, the
canonical involution of D0 and D = D0K. We have D = D0 ⊕D0

√
d. For any

hermitian form h over (D, τ), let

h(x, y) = h1(x, y) + h2(x, y)
√
d, hi(x, y) ∈ D0, for i = 1, 2.

Since τ(h(y, x)) = h(x, y) and τ(
√
d) = −

√
d, it follows that τ0(h1(y, x)) =

h1(x, y) and τ0(h2(y, x)) = −h2(x, y). Thus h1 is a hermitian form over (D0, τ0)
and h2 is a skew-hermitian form over (D0, τ0). Let p1(h) = h1 and p2(h) = h2.
Clearly pi(h ⊥ h′) = pi(h) ⊥ pi(h

′) for i = 1, 2. Suppose that h is hyperbolic.
Let W be a totally isotropic subspace of h, then W is also a totally isotropic
subspace for pi(h), for i = 1, 2. Thus we have homomorphisms

p1 : W (D, τ)→W (D0, τ0)

and
p2 : W (D, τ)→W−1(D0, τ0).

Let ρ̃ : W (D0, τ0) → W (D, τ) be the homomorphism defined as follows: Let
f be a hermitian form over D0 and V0 its underlying D0 vector space. Let
V = V0 ⊗k K and write V = V0 ⊕ V0

√
d. Define

ρ̃(f)(x1⊕y1
√
d, x2⊕y2

√
d) = f(x1, x2)+f(x1, y2)

√
d−f(y1, x2)

√
d−f(y1, y2)d.

It is easy to check that ρ̃ is a well defined homomorphism. We also have
homomorphisms πi : W (K) → W (k), for i = 1, 2, defined as follows. For
any quadratic form q over K, write q(x, y) = q1(x, y) + q2(x, y)

√
d, where,

qi(x, y) ∈ k, for i = 1, 2. Then q1 and q2 are quadratic forms over k and

πi(q) = qi, for i = 1, 2. Let π̃1 be the compositionW (K)
π1→W (k)→W (D0, τ0),

where the map W (k)→W (D0, τ0) is induced by base change.
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Proposition 8.1 (Suresh) The following sequence:

W (K)
π̃1→W (D0, τ0)

ρ̃→W (D, τ)
p2→W−1(D0, τ0) (??)

is exact.

Proof. Let f be a hermitian form over D0 and V0 its underlying D0-vector
space. Then the underlying vector space for p2ρ̃(f) is V0⊗kK = V0⊕V0

√
d and

p2ρ̃(f)(x1⊕y1
√
d, x2⊕y2

√
d) = f(x1, y2)−f(y1, x2). Thus the space W = {x⊕

0 | x ∈ V0} is a totally isotropic subspace for p2ρ̃(f) and W⊥ = W . Therefore
p2ρ̃(f) = 0. Let h be an anisotropic hermitian form over D such that p2(h) = 0.
In particular, there exists a vector x 6= 0 such that p2(h)(x, x) = h2(x, x) = 0.
This implies that h(x, x) = h1(x, x) = α ∈ k. Since h is anisotropic α 6= 0.
Therefore we can write h =< α >⊥ h′. It is easy to see that ρ̃(< α >) =< α >
and induction on the rank of h, yields the exactness at W (D, τ). We next show
that ρ̃ π̃1 = 0. For θ = a + b

√
d ∈ K∗, with a, b ∈ k∗, π̃1(< θ >) ∈ W (D0, τ0)

is represented by the matrix

(
a bd
bd ad

)
, which is equivalent to the diagonal

form < a, adNK|k(θ) >. The form ρ̃ π̃1(< θ >) ∈ W (D, τ), is also represented
by the form < a, adNK|k(θ) >. Since < 1, dNK|k(θ) > is equivalent to < 1,−1 >
over (D, τ), ρ̃ π̃1(< θ >) = 0. Thus ρ̃ π̃1 = 0. Suppose (V0, h) is an anisotropic
hermitian form over (D0, τ0) such that ρ̃(h) = 0. Then there exists a vector
x1 + y1

√
d 6= 0 ∈ V0 ⊕ V0

√
d such that ρ̃(h)(x1 + y1

√
d, x1 + y1

√
d) = 0. Then

h(x1, x1) = h(y1, y1)d and h(x1, y1) = h(y1, x1). Set a = h(y1, y1) and bd =

h(x1, y1). Then π̃1(< a + b
√
d >) is represented by the matrix

(
a bd
bd ad

)
,

which is the matrix representing h restricted to the subspace of V0 spanned by
(x1, y1). The proof of the proposition now follows by induction on the rank of
h. 2

Let K = k(
√
d) be a quadratic field extension of a field k of characteristic

different from 2 and letD be a central division algebra overK with an involution
τ of second kind over K|k. Let SU2n(D, τ) be the special unitary group with

respect to the hyperbolic form H2n =

(
o In
In 0

)
. Let h be a hermitian

form over (D, τ) of even rank 2n and trivial discriminant. Then there exists
ξ ∈ H1(k, SU2n(D, τ)), such that the image of ξ in H1(k, U2n(D, τ)) is the
class of h. We say that the Rost invariant R(h) of h is zero, if there exists a
ξ ∈ H1(k, SU2n(D, τ)) lifting the class of h and such that R(ξ) = 0, where R(ξ)
is the Rost invariant associated to ξ.

Lemma 8.2 Let K be a field such that vcd(K) = n. For any field exten-
sion E of K, with [E : K] ≤ 2 assume that the maps er : Ir(E)/Ir+1(E) →
Hr(E) are well defined isomorphisms for all r ≥ 0. Then the map In+1(K)→
C(XK , 2

n+1Z) is surjective, XK denoting the space of orderings of K.

Proof. Let φ ∈ C(XK , 2
n+1Z). By ([S], 3.6.1), there exists a quadratic form

q ∈ W (K), such that sgn(q) = 2m φ, for some m ≥ 0. Multiplying q by
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< 1, 1 >⊗s, if necessary, we may assume that q ∈ In+1(K). Suppose m > 0.
We have the following commutative diagram:

In+1(K)
sgn→ C(XK , 2

n+1Z)
↓ en+1 ↓ mod2n+2

Hn+1(K)
hn+1→ C(XK ,Z/2Z)

where hn+1 is as defined in (cf. [AEJ1], remark following theorem 2.3). Since
m > 0, the signature of q modulo 2n+2 is zero. We have an exact sequence in
Galois cohomology,

Hr(K(
√
−1)) cores→ Hr(K)

∪(−1)→ Hr+1(K)→ Hr+1(K(
√
−1)).

Since vcd(K) ≤ n, Hr(K(
√
−1)) = 0, for r ≥ n + 1, so that ∪(−1) is an

isomorphism. Thus Hn+1(K) is (−1)-torsion free. By ([AEJ1], 2.2 and 2.3),
hn+1 is injective. Since hn+1(en+1(q)) = 0, en+1(q) = 0. Since en+1 is an iso-

morphism, q ∈ In+2(K). Since the map In+1(K)
⊗<1,1>→ In+2(K) is surjective

(cf.[AEJ1], pg. 22, remark following 1.16), there exists q1 ∈ In+1(K), such that
[< 1, 1 > ⊗q1] = [q]. We have sgn(q1) = 2m−1φ. Repeating the process, we
arrive at q ∈ In+1(K) with sgn(q) = φ. 2

We have the following classification theorem for hermitian forms.

Theorem 8.3 Let K = k(
√
d) be a quadratic extension of a number field k. Let

k(X) be the function field of a smooth geometrically integral curve X over k and
K(X) = K ⊗k k(X). Let (D, τ) be a quaternion division algebra over K(X),
with a K(X)|k(X) unitary involution τ . Let h1 and h2 be hermitian forms over
(D, τ) which have the same rank, discriminant and such that R(h1 ⊥ (−h2)) =
0. Suppose further that h1 and h2 are equivalent over kv(X), for every v ∈ Ωk.
Then h1 ∼= h2.

Proof. Let h = h1 ⊥ (−h2). Let D0 = (a, b)k(X) ⊂ D be a quaternion algebra
over k(X), such that D = D0 .K(X) and τ restricted to D0 is τ0, τ0 denoting
the canonical involution on D0. Let C be the conic, aX2

1 + bX2
2 − 1 = 0.

The algebra D ⊗k(X) k(X)(C) is split and the hermitian form h over Dk(X)(C)

corresponds by Morita equivalence to a hermitian form over K(X)(C)|k(X)(C),
which in turn corresponds to a quadratic form q(h) over k(X)(C), of even rank,
trivial discriminant and trivial Clifford and Rost invariants. Hence [q(h)] ∈
I4(k(X)(C)). Further, [q(h)] is zero in W (kv(X)(C)), for every v ∈ Ωk. By
(5.3), I4(k(X)(C)) → ∏

v∈Ωk I
4(kv(X)(C)) is injective. Hence h is zero in

W (Dk(X)(C), τ). We have the following commutative diagram:

W (D, τ)
p2→ W−1(D0, τ0)

↓ ↓
W (Dk(X)(C), τ)

p2→ W−1(D0k(X)(C)
, τ0)

with the second vertical map injective by (cf. [PSS]), so that p2(h) is zero in
W−1(D0, τ0). Hence by 8.1, there exists h′ ∈ W (D0, τ0), such that ρ̃(h′) = h.
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We show that h′ can be chosen to have trivial Pfaffian norm (cf. [KMRT],
pg. 19). Since R(h) = 0, there exists a lift ξ ∈ H1(k(X), SU2n(D, τ)) of h
such that R(ξ) = 0. Since ρ0(h

′) is also a lift of h in H1(k(X), SU2n(D, τ)),
by (cf. [KMRT], pg. 387, last paragraph), there exists µ ∈ K(X)∗1 such
that ρ0(h

′)ξ̃ = δ(µ), where ξ̃ is a cocycle representing the cohomology class ξ
and δ is the connecting map in (?) for the groups (SU2n(h))ξ̃ and (U2n(h))ξ̃.
By (cf. [G1], §2.3, lemma 7), R(ρ0(h

′)ξ̃) = R(ρ0(h
′)) + R(ξ). As R(ξ) = 0

we have, R(δ(µ)) = R(ρ0(h
′)). By (7.2), R(ρ0(h

′) = Pf(h′) ∪ (D0). Let
µ = ν−1τ(ν), for some ν ∈ K(X)∗. Then by (7.1), R(δ(µ)) = NK(X) |k(X)(ν) ∪
(D0) = Pf(h′) ∪ (D0). Hence Pf(h′) = NK(X) |k(X)(ν). Nrd(x), for some
x ∈ D0. If h′ ∼=< λ1, · · · , λ2n >, then replacing h′ by the equivalent form
< λ1 xτ(x), · · · , λ2n >, we assume that Pf(h′) = NK(X) |k(X)(ν). Now replac-
ing h′ by the form h′ ⊥< 1,−NK(X) |k(X)(ν) >, we assume that Pf(h′) is trivial,
noting that ρ̃(< 1,−NK(X) |k(X)(ν) >) = 0 in W (D, τ).

We have,W (D0, τ0) ∼= W (k(X)).nD0
, under the map f 7→ qf , where qf (x, x) =

f(x, x) and nD0
denotes the norm form of D0, (cf. §3). If f ∼=< λ1, · · · , λn >∈

W (D0, τ0) then qf =< λ1, · · · , λn > ⊗nD0
. We set Qf =< λ1, · · · , λn > as an

element of W (k(X)). We note that for f ∈W (D0, τ0), Pf(f) = disc(Qf ).

As Pf(h′) = 1, we have Qh′ ∈ I2(k(X)). We claim that h′ is in the image
of π̃1.

Consider the exact sequence (??) locally, for a real place v of k such that
Kv = K ⊗ kv is a proper quadratic extension of kv. Since ρ̃((h′)kv(X)) = 0,
there exists fv ∈ W (Kv(X)) such that [(h′)kv(X)] = [π̃1(fv)]. Hence [qh′ ] =
[(Qh′ ⊗ nD0

)kv(X)] = [π1(fv) ⊗ nD0
]. Since cd(Kv(X)) ≤ 1, Br(Kv(X)) = 0,

so that D0Kv(X) is split. Hence π1(fv) ⊗ nD0
= π1(fv ⊗ nD0Kv(X)

) = 0. In
particular, (h′)kv(X) = 0. Consider a real place v of k, such that Kv = K⊗kv is
isomorphic to Kw1

×Kw2
, where w1 and w2 are two orderings of K, extending

the ordering v of k. Then the map I2(Kv(X))
π1→ I2(kv(X)) is surjective, so

that there exists fv ∈ I2(Kv(X)), such that π1(fv) = (Qh′)kv(X). Let fv =
(fw1

, fw2
). We define a continuous function φ on XK(X), as follows. The space

XK(X) is the union of open and closed sets XKw(X), w varying over the real
orderings of K. For an ordering w of K lying over an ordering v of k, we set
φw = sgnw(fv ⊗ (nD0

)Kv(X)). Since fv ∈ I2(Kv(X)), φw ∈ C(XKw(X), 16Z),
for every w ∈ XKw(X). By (8.2), there exists a quadratic form q2 ∈ I4(K(X)),
such that sgnw(q2) = φw. We claim that q2 is a multiple of nD0

. Consider the
following commutative diagram:

I4(K(X))
iC→ I4(K(X)(C))

↓ ↓∏
w∈XK I4(Kw(X)) → ∏

w∈XK I4(Kw(X)(C))

If w is a finite place of K, I4(Kw(X)) is zero, so that, (iC(q2))w is zero. Let
w be a real place of K. Since sgnw(q2) = sgnw(fw ⊗ nD0

), q2 is Witt equiva-
lent to fw ⊗ nD0

, since the signature is the only invariant for quadratic forms
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in I4(Kw(X)). Hence q2 is split over Kw(X)(C) and the element iC(q2) ∈
I4(K(X)(C)) is locally zero, for every w ∈ XK . By (5.3), iC(q2) = 0. Hence
q2 = q3 ⊗ nD0

, for some q3 ∈ W (K(X)). Clearly, q3 is even dimensional. Since
q2 = q3 ⊗ nD0

∈ I4(K(X)) and (q3 ⊥< 1,−disc(q3) >) ⊗ nD0
∈ I4(K(X)),

< 1,−disc(q3) > ⊗nD0
∈ I4(K(X)) and being of rank 8 is zero. Replacing q3

by q3 ⊥< 1,−(disc(q3)) > if necessary, we assume that q3 ∈ I2(K(X)). We
have,

sgnv(π̃1(q3)) = sgnv(π1(q3)⊗ nD0
)

= sgnv(π1(q3 ⊗ nD0
))

= sgnv(π1(q2))
= sgnv(π1(fv ⊗ nD0

))
= sgnv((Qh′)kv(X) ⊗ nD0

).

Hence the form qh′ ⊥ (−qπ̃1(q3)) ∈ I4(K(X)) is torsion. Since I4(K(X)) is
torsion free (cf. [AEJ2], cor.3), qh′ ⊥ (−qπ̃1(q3)) is equivalent to zero. Hence
h′ = π̃1(q3) and ρ̃(h′) = h is zero in W (D, τ). 2

9 A classification theorem for hermitian forms
over division algebras of odd degree with a
unitary involution

Let k be a number field and X a smooth geometrically integral curve over k.
Let k(X) be the function field of X and for v ∈ Ωk, let kv(X) denote the
function field of the curve Xkv . Let K be a quadratic field extension of k and
K(X) = K ⊗k k(X) and for v ∈ Ωk, let Kv(X) = K ⊗k kv(X). Let (D, τ)
denote a central division algebra of odd degree over K(X) with a K(X)|k(X)
unitary involution τ . We prove the following classification theorem:

Theorem 9.1 Let the notation be as in the previous paragraph. Let h1 and h2
in W (D, τ) be hermitian forms of the same rank and discriminant and such that
h1 ∼= h2, locally over kv(X), for every v ∈ Ωk. Then h1 ∼= h2 over k(X).

Proof. Let h = h1 ⊥ (−h2). Then h has even rank, trivial discriminant and is
locally zero in W (DKv(X), τ). Let L be an odd degree field extension of k(X)
such that DL⊗k(X)K(X) is split, (cf. [BP1], 3.3.1). Let L = l(Y ), where l is the
field of constants of L. By Morita equivalence h corresponds to a hermitian form
over L ⊗k(X) K(X) |L and hence to a quadratic form q(h) over L. Moreover,
q(h) has even rank, trivial discriminant, trivial Clifford invariant and is locally
zero inW (lw(Y )), for every w ∈ Ωl. Hence q(h) ∈ I3(l(Y )) and is locally zero in
I3(lw(Y )), for every w ∈ Ωl. By ([AEJ2], theorem 4), q(h) is zero in W (l(Y )).
As L is an odd degree extension of k(X), by ([BL], theorem 2.1), h is zero in
W (D, τ). Hence h1 ∼= h2. 2
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10 Hasse principle for some groups of type 2An

We begin with a result on the Hasse principle for special unitary groups of
hermitian forms over quaternion algebras with unitary involutions.

Theorem 10.1 Let (D, τ) be a quaternion division algebra over a number field
K, with a K|k unitary involution τ . Let X be a smooth geometrically integral
curve over k. Let k(X) be the function field of X and for each v ∈ Ωk, let kv(X)
be the function field of the curve Xkv . Let K(X) = K⊗kk(X) and for v ∈ Ωk, let
Kv(X) = K⊗kkv(X). Let h be a hermitian form over (D, τ). Let SU(h) denote
the special unitary group of h. Then the natural map H1(k(X), SU(h)) →∏

v∈Ωk H
1(kv(X), SU(h)) has trivial kernel.

Proof. Let ξ ∈ H1(k(X), SU(h)) be such that ξ is locally trivial in
H1(kv(X), SU(h)), for every v ∈ Ωk. Under the map H1(k(X), SU(h)) →
H1(k(X), U(h)), let ξ map to the hermitian form h′. Then the hermitian form
h′ ⊥ (−h) has even rank, trivial discriminant and is locally trivial. We claim
that the Rost invariant, R(h′ ⊥ (−h)) is trivial. We first note that as ξ is
locally trivial, R(ξ) is locally trivial in H3(kv(X),Q/Z(2)) for every v ∈ Ωk.
Hence R(ξ) is zero in H3(k(X),Q/Z(2)), by (2.3). We now consider the map
SU(h) → SU(h ⊥ (−h)), given by, f 7→ (f, 1). This gives rise to a map from

H1(F, SU(h))
i→ H1(F, SU(h ⊥ (−h))), and the image of ξ under this map

corresponds to the hermitian form h′ ⊥ −h in H1(k(X), U(h ⊥ −h)). By (cf.
[KMRT], pg. 436), there exists an integer ni, such that niR(ξ) = R(i(ξ)). By
going over to a suitable field extension of k, where D is split and the Rost
invariant is computed, we see that ni = 1. Hence R(i(ξ)) = 0 and in particular,
R(h′ ⊥ (−h)) = 0. Since h′ ⊥ (−h) is a hermitian form of even rank, trivial
discriminant, trivial Rost invariant and is locally trivial, by (8.3), we have h′ ∼= h
in W (D, τ). We have the following exact sequence of algebraic groups,

1→ SU(h)→ U(h)→ R1K(X)|k(X)(Gm)→ 1

The above sequence gives rise to the following cohomology exact sequence,

U(h)(k(X))
Nrd→ K∗1 → H1(k(X), SU(h))→ H1(k(X), U(h)).

Since ξ maps to the trivial element in H1(k(X), U(h)), there exists ν ∈ K(X)∗1

such that under the connecting map K(X)∗1 → H1(k(X), SU(h)), the image
of ν is ξ. Since ξ is locally trivial, we have ν ∈ Nrd(U(h)(kv(X))) for every
v ∈ Ωk. We show that the natural map

K(X)∗1/Nrd(U(h)(k(X)))→
∏

v∈Ωk
Kv(X)∗1/Nrd(U(h)(kv(X)))

is an injection. By (cf. [KMRT], pg. 202), we have,

Nrd(U(h)(k(X))) = {z τ(z)−1 | z ∈ Nrd(D)}
= Nrd(U2(D, τ)(k(X))),
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where U2(D, τ) is the unitary group of the hyperbolic form

(
0 1
1 0

)
, in di-

mension 2. We have the following commutative diagram,

1 �� K(X)∗1/Nrd(U(h)(k(X)))

��

�� H1(k(X), SU2(D, τ))

(? ? ?)��

1 ��
∏

v∈Ωk Kv(X)∗1/Nrd(U(h)(kv(X))) ��
∏

v∈Ωk H
1(kv(X), SU2(D, τ))

Thus, to complete the proof of the theorem, we show that the natural map

H1(k(X), SU2(D, τ))→
∏

v∈Ωk
H1(kv(X), SU2(D, τ))

has trivial kernel.

Let D = D0 .K with the restriction of τ to D0 being the canonical involution
on D0. By (cf. [KMRT], 15.35 and 15.36), we have SU2(D, τ) = Spin(q), where
q =< 1,−d >⊥ nD0

, where K = k(
√
d) and nD0

denotes the norm form on the
quaternion algebra D0. Hence there is a bijection

i : H1(k(X), SU2(D, τ))
∼=→ H1(k(X), Spin(q))

and by (cf. 4.1), H1(k(X), Spin(q)) → ∏
v∈Ωk H

1(kv(X), Spin(q)) has triv-

ial kernel and hence H1(k(X), SU2(D, τ))→
∏

v∈Ωk H
1(kv(X), SU2(D, τ)) has

trivial kernel. In particular, in diagram (? ? ?), the left vertical map is injective.
This completes the proof of the theorem. 2

The following proposition will be used in the proof of (10.4).

Proposition 10.2 Let L be a quadratic field extension of a field E of charac-
teristic not 2. Let (A, σ) be a central division algebra over L of even degree,
with a L|E unitary involution. Let h be a hermitian form over (A, σ). Then for
any field extension M of E, we have,

NM⊗EL |L(Nrd(U(h)(M))) ⊂ Nrd(U(h)(E)).

Proof. Set ML = M ⊗E L. Let φL|E and φML |M denote the non trivial
automorphisms of L over E and ML over M respectively. By (cf. [KMRT],

pg. 202), Nrd(U(h)(M)) = {z φML |M (z)
−1 | z ∈ Nrd(DML)}. Let x ∈

NML |L(Nrd(U(h)(M))). Then x = NML |L(y φML |M (y)
−1

), for some y ∈
Nrd(DML). We note that NML |L(φML |M (y)) = φL|E(NML |L(y)). As
NML |L(Nrd(DML)) ⊂ Nrd(D), setting t = NML |L(y), we have t ∈ Nrd(D)
and x = t φL|E(t

−1), proving the proposition. 2

Let (D, τ) be a division algebra with square free index over a number field
K, with a K|k unitary involution τ . Let X be a smooth geometrically integral
curve over k. Let k(X) be the function field of X and for each v ∈ Ωk, let kv(X)
be the function field of the curve Xkv . Let K(X) = K ⊗k k(X) and for v ∈ Ωk,
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let Kv(X) = K ⊗k kv(X). In the next part of this section we prove the Hasse
principle for groups of the form SU(h), where h is a hermitian form over (D, τ).
We begin with the following proposition.

Proposition 10.3 With notation as above, suppose further that (D, τ) has odd
degree over K. Let h be a hermitian form over (D, τ). Let K(X)∗1 = {x ∈
K(X)∗ | NK(X)|k(X) (x) = 1 }. Then the natural map

K(X)∗1/Nrd(U(h)(k(X)))→
∏

v∈Ωk
Kv(X)∗1/Nrd(U(h)(kv(X)))

is injective.

Proof. Let λ ∈ K(X)∗1 be locally in Nrd(U(h)(kv(X))), for every v ∈
Ωk. As degree D is odd, by a result of Suresh, (cf. [KMRT], pg. 202),
Nrd(U(h)(k(X))) = Nrd(D∗k(X)) ∩K(X)∗1. As D has square free index and λ

is locally a reduced norm from Dkv(X), for every v ∈ Ωk, by (3.1), λ is a reduced
norm for Dk(X). Hence λ ∈ Nrd(D∗k(X)) ∩K(X)∗1 = Nrd(U(h)(k(X))). 2

Theorem 10.4 Let (D, τ) be a division algebra with square free index over a
number field K, with a K|k unitary involution τ . Let X be a smooth geomet-
rically integral curve over k. Let k(X) be the function field of X. Let h be
a hermitian form over (D, τ). Let SU(h) denote the special unitary group of
h. Then the natural map H1(k(X), SU(h)) → ∏

v∈Ωk H
1(kv(X), SU(h)) has

trivial kernel.

Proof. Let ξ ∈ H1(k(X), SU(h)) be such that ξ is locally trivial in
H1(kv(X), SU(h)), for every v ∈ Ωk. Under the map H1(k(X), SU(h)) →
H1(k(X), U(h)), let ξ map to the hermitian form h′. Then the hermitian form
h′ ⊥ (−h) has even rank, trivial discriminant and is locally trivial. As ξ is locally
trivial, the Rost invariant of ξ, R(ξ) is locally trivial in H3(kv(X),Q/Z(2)) for
every v ∈ Ωk. Hence R(ξ) is zero in H3(k(X),Q/Z(2)), by (2.3). Consider the
map SU(h) → SU(h ⊥ (−h)), given by, f 7→ (f, 1), which gives rise to a map

from H1(F, SU(h))
i→ H1(F, SU(h ⊥ (−h))). The image of ξ under this map

corresponds to the hermitian form h′ ⊥ −h in H1(k(X), U(h ⊥ −h)). As in
the proof of 10.1, one shows that R(i(ξ)) = 0. In particular, R(h′ ⊥ (−h)) = 0.
Hence h′ ⊥ (−h) is a hermitian form of even rank, trivial discriminant, trivial
Rost invariant and is locally trivial. We claim that h ∼= h′ over k(X).

Suppose the degree of D is odd. Then by the classification theorem (9.1),
h ∼= h′.

Suppose the degree of D is even. Let D ∼= H⊗KD′, where H is a quaternion
division algebra over K and D′ is an odd degree division algebra over K. Let L
be an odd degree extension of k such that (D⊗kL, τ) ∼= (Mr(H⊗kL), σf ), where
σ is a unitary L⊗kK |L involution on H⊗k L and σf , the adjoint involution on
Mr(H ⊗k L) with respect to the hermitian form f over (H ⊗k L, σ), (cf. [BP1],
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3.3.1). Let l(Y ) = L ⊗k k(X), where l is the field of constants in l(Y ). Over
l(Y ), by Morita theory, h′ ⊥ (−h) corresponds to a hermitian form h1 over
(Hl(Y ), σ) of even rank, trivial discriminant, trivial Rost invariant and such
that h1 is locally zero in W (Hlw(Y ), σ), for every w ∈ Ωl. By (8.3), h1 is zero in
W (Hl(Y ), σ) and hence h′ ⊥ (−h) is zero in W (Dl(Y ), τ). Since [l(Y ) : k(X)] =
[L : k] is odd, by ([BL], theorem 2.1), h′ ⊥ (−h) is zero in W (Dk(X), τ) and
hence h ∼= h′ and ξ maps to the trivial element in H1(k(X), U(h)).

We have the following exact sequence of algebraic groups,

1→ SU(h)→ U(h)→ R1K(X)|k(X)(Gm)→ 1

The above sequence gives rise to the following cohomology exact sequence,

U(h)(k(X))
Nrd→ K∗1 → H1(k(X), SU(h))→ H1(k(X), U(h)).

Since ξ maps to the trivial element in H1(k(X), U(h)), there exists ν ∈ K(X)∗1

such that under the natural map K(X)∗1 → H1(k(X), SU(h)), the image of ν
is ξ. Since ξ is locally trivial, we have ν ∈ Nrd(U(h)(kv(X))) for every v ∈ Ωk.
We show that the natural map from

K(X)∗1/Nrd(U(h)(k(X)))→
∏

v∈Ωk
Kv(X)∗1/Nrd(U(h)(kv(X)))

is injective. If the degree of D is odd, then this follows from proposition 10.3.
Hence we assume that the degree of D is even. Let λ ∈ K(X)∗1 be locally in
Nrd(U(h)(kv(X))), for every v ∈ Ωk. Let H, D′, L, l(Y ) and σ be as in the
previous paragraph. As H1(l(Y ), SU(h))→∏

w∈Ωl H
1(lw(Y ), SU(h)) has triv-

ial kernel, (10.1), λ considered as an element of l(Y )∗ is in Nrd(U(h)(l(Y ))). By
proposition (10.2), we haveNl(Y )⊗k(X)K(X) |K(X)(U(h)(l(Y ))) ⊂ Nrd(U(h)(k(X))).

As the dimension of L over k is odd, λ2r+1 ∈ Nrd(U(h)(k(X))), for some pos-
itive integer r. We show that λ2 ∈ Nrd(U(h)(k(X))). We choose a quadratic
field extensionN of k such thatHN⊗kK is split. Then (DN⊗kK , τ) ∼= (M2(D

′
N⊗kK), τ ′),

for someN⊗kK|N unitary involution τ ′. The division algebraD′ has odd degree
and arguing as in the case of odd degree algebras, we have, λ ∈ Nrd(U(h)(N⊗k

k(X))). Hence λ2 ∈ Nrd(U(h)(k(X))). Thus, λ ∈ Nrd(U(h)(k(X))) and the
proof of the theorem is complete. 2

11 The groups G2 and F4

For any field E, characteristic E 6= 2, if G is a semisimple simply connected
absolutely almost simple linear algebraic group defined over E of type G2, G is
isomorphic to Aut(C) where C is a Cayley algebra defined over E. The pointed
set H1(E,G) classifies isomorphism classes of Cayley algebras over E. Given
two Cayley algebras C and C ′, they are isomorphic if and only if their norm
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forms nC and nC′ are isomorphic. The norm form of a Cayley algebra is a 3-fold
Pfister form over E.

Let k be a number field and X be a smooth geometrically integral curve
defined over k. Let F = k(X) be its function field and for every v ∈ Ωk let
Fv = kv(X) be the function field of Xkv . Let G be as above of type G2 over
the field F . Then G ∼= Aut(C) for some Cayley algebra C over F . Let ξ be an
element inH1(F,G) which is trivial inH1(Fv, G), for every v ∈ Ωk. The element
ξ corresponds to a Cayley algebra C(ξ) over F . By hypothesis, nC

∼= nC(ξ) over
Fv for every v ∈ Ωk. Since the map I3(F ) → ∏

v∈Ωk I
3(Fv) is injective, (cf.

[AEJ2], theorem 4), nC ∼= nC(ξ) over F so that C ∼= C(ξ) i.e., ξ is trivial.

For any field E of characteristic not 2 or 3, if G is a semisimple simply
connected absolutely almost simple linear algebraic group defined over E, of type
F4, G is isomorphic to Aut(J), J being a 27 dimensional central simple Jordan
algebra over E. The set H1(E,G) classifies isomorphism classes of exceptional
central simple Jordan algebras over E. Given such a Jordan algebra J over
E, there are three invariants, f3(J) ∈ H3(E), f5(J) ∈ H5(E) and g3(J) ∈
H3(E,Z/3Z), (cf. [Se2], §9). The algebra J is reduced if and only if g3(J) = 0.
If J is reduced, the two invariants f3(J) and f5(J) completely determine the
isomorphism class of J , thanks to the classification theorems of Springer (cf.
[Sp], theorem 1).

Let k be an algebraic number field and k(X) as above. Let J be a 27
dimensional exceptional central simple Jordan algebra over k and G = Aut(J).
Since H1(k(

√
−1), F4) = (1), (cf. [Se2], §9.4), J is split over k(

√
−1). Hence

g3(J) = 0 and J is reduced. Let ξ ∈ H1(F,G) be trivial locally at all places
of k. Let ξ correspond to an exceptional Jordan algebra J ′ over F . Since
J ′ ∼= J ⊗ Fv locally for all v in Ωk, g3(J

′) = g3(J ⊗ Fv), for all v ∈ Ωk. Since
H3(F,Z/3Z)→

∏
vΩk

H3(Fv,Z/3Z) is injective (cf. 2.3), g3(J
′) = g3(J ⊗ F ) =

0. Hence J ′ is reduced. Similarly, as f3(J
′) = f3(J ⊗ Fv), for every v ∈ Ωk, we

have f3(J
′) = f3(J ⊗ F ). Since f5(J

′) = f5(J ⊗ Fv), for every v ∈ Ωk, we have
f5(J

′)−f5(J⊗F ) is in the kernel of the natural map H5(F )→
∏

w∈XF H
5(Fw),

XF denoting all the orderings of F and hence is torsion. As vcd(F ) = 3, H5(F )
is torsion free. Hence f5(J

′) = f5(J ⊗ F ), so that by Springer’s theorem,
J ′ ∼= J ⊗ F and ξ is trivial.

12 The Hasse principle

The aim of this section is to prove the Hasse principle stated in the introduction.
We say that a semisimple simply connected absolutely simple group over a field
E is of type A∗ if it is isomorphic to SL1(A) for a central simple algebra A over
E of square free index or if it is isomorphic to SU(B, τ) for a central simple
algebra B over a quadratic extension L of E of square free index with an L|E
involution τ .
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Theorem 12.1 Let k be a number field and X a smooth geometrically integral
curve defined over k. Let k(X) denote the function field of X and for every
v ∈ Ωk, let kv(X) denote the function field of the curve Xkv . Let G be a
semisimple simply connected linear algebraic group defined over k, which is the
product of the Weil restrictions of absolutely simple groups of types A∗, Bn, Cn,
Dn (D4 non-trialitarian), G2, and F4. Then the map

H1(k(X), G)→
∏

v∈Ωk
H1(kv(X), G)

has trivial kernel.

Proof. Recall that for a finite field extension L of a field E, if G = RL|E(G
′)

is the Weil restriction of a linear algebraic group G′ defined over L, then
H1(E,G) = H1(L,G′). The theorem is now a consequence of (3.1, 3.2, 4.1,
4.2, 6.5, 10.1, 10.4 and §11). 2

Appendix

Rost invariant for the special unitary groups

Let E be a field of characteristic different from 2 and L = E(
√
d) be a

quadratic field extension of E. Let (D, τ) be a central division algebra over L
with a unitary L|E involution. For a hermitian form h over (D, τ), we denote
the unitary and the special unitary groups with respect to h by U(h) and SU(h)
respectively. We have the following exact sequence of algebraic groups,

1→ SU(h)→ U(h)→ R1L|E(Gm)→ 1

which gives rise to the following exact sequence in Galois cohomology,

U(h)(E)
Nrd→ L∗1

δ→ H1(E,SU(h))→ H1(E,U(h)).

The next theorem computes the Rost invariant on the image of δ.

Theorem With the notation as above, for µ ∈ L∗1,

R(δ(µ)) = CoresL|E((ν) ∪ (D)) ∈ H3(E,Q/Z(2)),

where ν ∈ L∗ is such that µ = ν τ(ν)
−1
.

Proof. We first show that CoresL|E((ν) ∪ (D)) is well defined. Indeed, for
λ ∈ E∗, we have

CoresL|E((ν λ) ∪ (D)) = CoresL|E((ν) ∪ (D)) + CoresL|E((λ) ∪ (D))
= CoresL|E((ν) ∪ (D)) + (λ) ∪ CoresL|E(D)
= CoresL|E((ν) ∪ (D)),

since CoresL|E(D) = 0. Set ξ = CoresL|E((ν) ∪ (D)). If δ(µ) = 1, i.e.,
µ ∈ Nrd(U(h)(E))∗ then ν can be chosen to be in Nrd(D)∗ (cf. [KMRT], pg.
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202). Hence (ν) ∪ (D) = 0 and ξ = 0. Further, R(δ(µ)) = 0. Hence, in this
case, R(δ(µ)) = ξ = 0. We now assume that δ(µ) 6= 1. By ([KMRT], pg.438),
we have, R(δ(µ))L = (µ) ∪ (D) = (ν) ∪ (D) + (τ(ν)) ∪ (D−1) = ξL. Hence
corestricting to E, we get, 2. R(δ(µ)) = 2. ξ.

case.1. Suppose degree (D) is odd. We choose a field extension M of E of
degree n, with n odd, such that D ⊗E (M ⊗E L) is split. Set ML = M ⊗E L.

Since D is split over ML, ξM = 0. Further, U(h)(M)
Nrd→ (ML)∗1 is surjective,

so that δ(µ)M = 1. Hence R(δ(µ))M = 0. Since CoresM |E ◦ res coincides with
multiplication by n, we have n. ξ = n.R(δ(µ)) = 0. As 2. ξ = 2. R(δ(µ)), we
have ξ = R(δ(µ)).

case.2. Suppose degree (D) = 2n, for some positive integer n. Let ν = a+b
√
d,

for some a, b ∈ E. As µ 6∈ Nrd(U(h)(E)), we have, b 6= 0. Consider the rational

function field E(t). We extend the base field E to E(t). Set µt = t+b
√
d

t−b
√
d
and

νt = t+ b
√
d. Let Xµt be the torsor corresponding to δ(µt) ∈ H1(E(t), SU(h)).

Let E(t)(Xµt) denote the function field of Xµt . By a result of Rost (cf. [G1],
§2.3, theorem 1), the kernel Kµt , of the map

H3(E(t),Q/Z(2))
res→ H3(E(t)(Xµt),Q/Z(2)),

is a finite cyclic group generated byR(δ(µt)). Since δ(µt) is trivial over E(t)(Xµt),
µt ∈ Nrd(U(h)(E(t))). Hence there exists λ ∈ E(t)(Xµt)

∗ such that λ. νt ∈
Nrd(DE(t)(Xµt

)) (cf. [KMRT], pg. 202). Set ξt = CoresL(t)|E(t)((νt) ∪ (D)).
Then over E(t)(Xµt), we have,

ξtE(t)(Xµt
) = CoresL(t)(Xµt

)|E(t)(Xµt
)((λ. νt) ∪ (D)) = 0.

Therefore ξt ∈ Kµt . Let s be the order of R(δ(µt)). Then there exists a positive
integer r ≤ s such that ξt = r.R(δ(µt)). Since ξtL(t) = R(δ(µt))L(t), 2. ξt =
2. R(δ(µt)) and hence (2r−2)R(δ(µt)) = 0. Hence 2r−2 = sl, for some positive
integer l and r = sl

2 + 1. If l is even, we have ξt = R(δ(µt)). Suppose l is an
odd integer. Then ξt = ( s2 + 1)R(δ(µt)). In this case, we show that s = 2m,
where m denotes the exponent of D. Suppose s 6= 2m. We first note that
s
2 . R(δ(µt))L(t) = (ξt−R(δ(µt)))L(t) = 0. We have, m.R(δ(µt))L(t) = m. ξL(t) =
m. ((µt) ∪ (D)) = (µt) ∪ (Dm) = 0. Hence over E(t), 2m.R(δ(µt)) = 0. As s is
the order of R(δ(µt)), s divides 2m. As m is a power of 2, s

2 . R(δ(µt))L(t) = 0
and s 6= 2m, we have m

2 . R(δ(µt))L(t) = 0. Let ∂(t−a) : H3(L(t),Q/Z(2)) →
H2(L,Q/Z(1)) denote the residue with respect to the prime (t− a) in L(t) (cf.
[G1], §1.3). We have, ∂(t−a)((µt)∪ (D)) = (D). Since R(δ(µt))L(t) = (µt)∪ (D)

and m
2 . R(δ(µt))L(t) = 0, we have D

m
2 = 0 in Br(L), which is a contradiction.

Hence s = 2m. Since m. ξt = CoresL(t)|E(t)((νt) ∪ (Dm)) = 0, we have

(m+ 1). ξt = ξt
= ( s2 + 1). R(δ(µt))
= (m+ 1). R(δ(µt)).

As 2. ξt = 2. R(δ(µt)) and m+ 1 is odd, we have ξt = R(δ(µt)).
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Let O be the ring of integers of the completion L((t−a)) of L(t) with respect
to the discrete valuation corresponding to the prime (t− a) on L(t). Let G be a
semi simple simply connected O group scheme with the special fibre isomorphic
to SU(h) over the residue field L at the prime (t − a). We have the following
commutative diagram (cf. [G1], theorem 2)

H1(L((t− a)),GL((t−a)))
RL((t−a))→ H3(L((t− a)),Q/Z(2))

↑ ↑
H1

et(O,G)
o ↓

H1(L, SU(h))
RL→ H3(L,Q/Z(2))

The torsor δ(µt) over L((t− a)) comes from a torsor for G over O, since µt is a
unit in O and it specialises to δ(µ) in H1(L, SU(h)). In view of the above com-
mutative diagram, R(δ(µ))L((t−a)) = R(δ(µt)) = CoresL((t−a))|E((t−a))((νt) ∪
(D)). Since characteristic E is coprime to m, νt = b

√
d + t = b

√
d + a +

(t − a) = (a + b
√
d). αm, for some α ∈ L((t − a)). Set M = E((t − a))

and ML = L((t − a)). Hence CoresML|M ((νt) ∪ (D)) = CoresML|M (((a +

b
√
d). αm) ∪ (D)) = CoresL|E((a+ b

√
d) ∪ (D))ML +CoresML|M ((αm) ∪ (D)).

Since CoresML|M ((αm)∪(D)) = CoresML|M ((α)∪(Dm)) = 0, we haveR(δ(µ))ML =

CoresL|E((a+b
√
d)∪(D))ML. Since the mapH3(L,Q/Z(2))→ H3(ML,Q/Z(2))

is injective, (cf. [G1], §1.3), we have R(δ(µ)) = CoresL|E((a+ b
√
d) ∪ (D)).

case.3. Suppose degree (D) = 2l.m, where m is odd. In this case, we
choose an extension M of E of odd degree n such that DM⊗EL has degree
some power of 2. Set ML = M ⊗E L. By the previous case, R(δ(µ))M =
CoresML|M ((ν)∪ (DML)) = CoresL|E((ν)∪ (D))M . Since CoresML|M ◦res co-
incides with multiplication by n, we have n.R(δ(µ)) = n.CoresL|E((ν) ∪ (D)).
As 2. R(δ(µ)) = 2. CoresL|E((ν)∪(D)), we have R(δ(µ)) = CoresL|E((ν)∪(D)).
2

Remark The above result is also a consequence of a theorem of Merkurjev-
Parimala-Tignol, (cf. [MPT], theorem 1.9), in view of the following commutative
diagram

U(h)(E)
Nrd

��

��

L∗1
δ

��

��

H1(E,SU(h)) ��

��

H1(E,U(h))

��

PGU(h)(E)
δ

�� H1(E,µn[L]) �� H1(E,SU(h)) �� H1(E,U(h))

where PGU(h) is the projective unitary group with respect to h and µn[L] =

kernel(RL|E(µn)
NL|E→ µn). The proof of Merkurjev-Parimala-Tignol, uses in-

variants of quasi-trivial tori.
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K-Theory, 21, (2000), 57− 100.

[J] U. Jannsen, Principe de Hasse cohomologique, Séminaire de Théorie
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Birkhäuser Boston, Boston, MA, (1992).

[JR] B. Jacob and M. Rost, Degree four cohomological invariants for
quadratic forms, Invent. Math. 96, no. 3 (1989), 551− 570.

[K] K. Kato, A Hasse principle for two-dimensional global fields, J. reine
angew. Math. 366 (1986), 142− 181.

[KMRT] M.-A. Knus, A. S. Merkurjev, M. Rost, J.-P. Tignol, The Book of
Involutions, AMS Colloquium Publications, vol. 44, 1998.

[L] T. Y. Lam, The Algebraic theory of quadratic forms, W. A. Benjamin,
Inc., 1973.

[M1] A. S. Merkurjev, On the norm residue symbol of degree 2, Doklady
Akad. Nauk SSSR 261 (1981), 542 − 547, English translation: Soviet
Math. Dokl. 24 (1981), 546− 551.

32



[M2] A. S. Merkurjev, Norm principle for algebraic groups, St. Petersburg
J. Math. 7 (1996), 243− 264.

[MPT] A.S. Merkurjev, R. Parimala, J.-P. Tignol, Invariants of quasi-trivial
tori and the Rost invariant, (preprint)

[MT] A. S. Merkurjev and J.-P. Tignol, The multipliers of similitudes and
the Brauer group of homogeneous varieties, J. reine angew. Math. 461
(1995), 13− 47.

[MS] A. S. Merkurjev and A. A. Suslin, Norm residue homomorphism of
degree three. (Russian) Izv. Acad. Nauk SSSR Ser. Mat. 54 (1990), no.
2, 339−356; translation in Math. USSR-Izv. 36 (1991), no. 2, 349−367.

[PR] V. P. Platonov and A. S. Rapinchuk, Algebraic Groups and Number
Theory, Academic Press (1994).

[PSS] R. Parimala, R. Sridharan, V. Suresh, Hermitian Analogue of a theo-
rem of Springer, J. Algebra, 243, (2001), no. 2, 780− 789.

[R] I. Reiner, Maximal Orders, LMS Monographs, no. 5, Academic Press,
London-New York, (1975).

[S] W. Scharlau, Quadratic and Hermitian forms, Grundlehren Math.
Wiss. 270, Springer-Verlag, Berlin (1985).

[S1] A. A. Suslin, Algebraic K-theory and the Norm-Residue Homomor-
phism, J. Soviet Math. 30,(1985), 2556− 2611.

[Se1] J-P. Serre, Cohomologie Galoisienne, Lecture Notes in Mathematics 5,
Springer-Verlag, (1964 and 1994).

[Se2] J-P. Serre, Cohomologie Galoisienne: progrès et problèms, Séminaire
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