Hasse principle for Classical groups over function fields of curves over number fields

R. Parimala, R. Preeti

Abstract

In ([CT]), Colliot-Thélène conjectures the following:

Let F be a function field in one variable over a number field, with field of constants k and G be a semisimple simply connected linear algebraic group defined over F. Then the map $H^1(F,G) \to \prod_{v \in \Omega_k} H^1(F_v,G)$ has trivial kernel, Ω_k denoting the set of places of k.

The conjecture is true if G is of type ${}^{1}A^{*}$, i.e., isomorphic to $SL_{1}(A)$ for a central simple algebra A over F of square free index, as pointed out by Colliot-Thélène, being an immediate consequence of the theorems of Merkurjev-Suslin ([S1]) and Kato ([K]). Gille ([G]) proves the conjecture if G is defined over k and F = k(t), the rational function field in one variable over k. We prove that the conjecture is true for groups G defined over k of the types ${}^{2}A^{*}$, B_{n} , C_{n} , D_{n} (D_{4} nontrialitarian), G_{2} or F_{4} ; a group is said to be of type ${}^{2}A^{*}$, if it is isomorphic to $SU(B,\tau)$ for a central simple algebra B of square free index over a quadratic extension k' of k with a unitary k'|k involution τ .

1 Introduction

Let k be a number field and G a semisimple, simply connected linear algebraic group defined over k. Then the Hasse principle holds for principal homogeneous spaces for G over k, i.e., the natural map $H^1(k,G) \to \prod_{v \in V_k} H^1(k_v,G)$ is injective, V_k denoting the set of real places of k and for $v \in V_k$, k_v is the completion of k with respect to v, (cf. [PR]).

Let X be a smooth, geometrically integral curve over a number field. Let k(X) be the function field of X, with field of constants k. Let Ω_k denote the set of places of k and for $v \in \Omega_k$, let $k_v(X)$ denote the function field of the curve X_{k_v} . Let G be a linear algebraic group defined over k(X). Let $\operatorname{III}^1(k(X), G)$ be the kernel of the map of pointed sets

$$H^1(k(X),G) \to \prod_{v \in \Omega_k} H^1(k_v(X),G).$$

The following conjecture was made by Colliot-Thélène ([CT]) in the 2-dimensional context.

Conjecture: If G is a semisimple, simply connected linear algebraic group defined over k(X), then $\operatorname{III}^{1}(k(X), G)$ is trivial.

In the case when G is defined over k and X is \mathbb{P}^1 , Gille [G] has shown that $\operatorname{III}^1(k(X), G)$ is trivial. The fact that $\operatorname{III}^1(k(X), G)$ is trivial, if G is of type ${}^{1}A_{n}$, isomorphic to $SL_{1}(A)$ where A is a central simple algebra with square free index, follows immediately from the theorems of Merkurjev-Suslin (cf. 2.1) and Kato (cf. 2.3) and is known to experts for a long time. In this article we study $\operatorname{III}^{1}(k(X), G)$, for G defined over the number field k. We show that this set is trivial if G is of type B_n , C_n and D_n (D_4 non-trialitarian). We also prove that if G is of type ${}^{2}A^{*}$, i.e., isomorphic to $SU(B,\tau)$ where B is a central simple algebra over a quadratic extension k' of k of square free index with a k'|kinvolution τ , then $\operatorname{III}^1(k(X), G)$ is trivial. We show from the structure theorems of Cayley algebras and exceptional Jordan algebras due to Springer, that if Gis of type G_2 or F_4 , then $\operatorname{III}^1(k(X), G)$ is again trivial. The main ingredients in the proofs of the theorems stated above are higher dimensional class field theory results due to Kato (cf. [K]) and Jannsen (cf. [J]), results of Arason, Elman and Jacob concerning Witt groups of function fields in one and two variables over number fields (cf. [AEJ2], [AEJ3]), results of Merkurjev-Suslin on reduced norm criterion in terms of cohomology (cf. [S1], §24), theorems of Merkurjev on norm principle for algebraic groups (cf. [M2]) and results of Suresh on the structure of mod 2 Galois cohomology in degree 3 (cf. [Su]). The original conjecture is open for G defined over k(X); it is open even when G is defined over k.

2 Some known results

We record in this section several results which we shall use in this paper. The first theorem is a result of Merkurjev and Suslin. It gives a criterion for an element in a central division algebra over a field E, to be a reduced norm, in terms of the Galois cohomology group $H^3(E, \mathbb{Q}/\mathbb{Z}(2))$.

Theorem 2.1 (Suslin, [S1], §24, Theorem.24.4). Let E be a field of characteristic $p \ge 0$. Let D be a central division algebra of square free index n over E, with n coprime to p. Then $\lambda \in E^*$ is a reduced norm from D if and only if $(\lambda) \cup (D) = 0$ in $H^3(E, \mu_n^{\otimes 2})$.

The next theorem is a norm principle due to Merkurjev for Spin groups. Let A be a central simple algebra of degree $2n \ge 4$ over a field E of characteristic different from 2 and σ be an orthogonal involution on A. Let h be a hermitian form over (A, σ) . We have an exact sequence of algebraic groups (cf. §4 and §5 for details),

$$1 \to \mu_2 \to Spin(h) \to SU(h) \to 1$$

which induces the cohomology exact sequence,

$$SU(h)(E) \xrightarrow{\circ} E^*/E^{*2} \to H^1(E, Spin(h)) \to H^1(E, SU(h))$$

The map δ is the spinor norm map and we abbreviate $Sn(h_E) =$ image of δ in E^*/E^{*2} . The norm principle of Merkurjev states:

Theorem 2.2 (Merkurjev, [M2], 6.2) With notation as above, the image of the spinor norm homomorphism $Sn(h_E)$ is equal to the subgroup of E^*/E^{*2} generated by the images of the norm groups $N_{L|E}(L^*)$ over all finite extensions L|E such that the algebra A_L is split and the hermitian form h_L is isotropic.

We next state a theorem due to Kato. Let X be a proper smooth geometrically integral curve defined over a number field k. Let F be the function field of X and F_v the function field of X_{k_v} .

Theorem 2.3 (Kato, [K]) With notation as above and for any positive integer n, the canonical map

$$H^3(F, \mathbb{Z}/n(2)) \to \prod_{v \in \Omega_k} H^3(F_v, \mathbb{Z}/n(2))$$

is injective.

The following theorem due to Jannsen is an analogue of Kato's theorem for surfaces.

Theorem 2.4 (Jannsen, ([J]) Let E be a function field in two variables over a number field k, then the restriction map

$$H^4(E, \mathbb{Q}/\mathbb{Z}(3)) \to \bigoplus_{v \in \Omega_k} H^4(E.k_v, \mathbb{Q}/\mathbb{Z}(3))$$

is injective.

Theorem 2.4 is true if we replace $\mathbb{Q}/\mathbb{Z}(3)$ by $\mathbb{Z}/2\mathbb{Z}$. This follows from the above result of Jannsen and due to the surjectivity of the map $K_3^M(E) \to H^3(E, \mathbb{Z}/2\mathbb{Z})$, where $K_3^M(E)$ is the Milnor K group, which is a consequence of theorems of Merkurjev-Suslin ([MS]) and Rost.

For a field E we denote the mod 2 Galois cohomology ring $H^*(E, \mathbb{Z}/2\mathbb{Z})$ by $H^*(E)$. Let $GW(E) = \bigoplus_{n=0}^{\infty} I^n(E)/I^{n+1}(E)$ be the graded Witt ring of E. We identify $H^1(E)$ with E^*/E^{*2} and for $a \in E^*$, we denote by (a) the corresponding element in $H^1(E)$. Arason (cf. [A], Satz 4.8) has shown that the assignment $< 1, -a_1 > \otimes \cdots \otimes < 1, -a_n > \mapsto (a_1) \cup \cdots \cup (a_n)$, for $a_1, \cdots, a_n \in E^*$ is a well defined map e_E^n from the set of *n*-fold Pfister forms to $H^n(E)$. The group $I^n(E)$ is generated by *n*-fold Pfister forms. The Milnor conjecture says that for every positive integer *n*, the maps e_E^n on the set of *n*-fold Pfister forms extend to homomorphisms from $I^n(E) \mapsto H^n(E)$, which are again denoted by e_E^n and the induced maps $\overline{e}_E^n : I^n(E)/I^{n+1}(E) \to H^n(E)$ are isomorphisms. Arason, Elman

and Jacob have proved Milnor conjecture for function fields in two variables over a number field, (cf. [AEJ1], proposition 5.9 and [AEJ3], theorem 1.5). The deep theorems of Merkurjev-Suslin and Rost (cf. [MS]) and Jacob-Rost (cf. [JR]) are used in the proof. In particular, they prove the following:

Theorem 2.5 Let *E* be a field of transcendence degree at most 2 over a number field. Then the map \bar{e}_E^* induces an isomorphism of the graded Witt ring GW(E) with the mod 2 Galois cohomology ring $H^*(E)$.

Finally, we shall state a theorem of Suresh which will be used in this paper.

Theorem 2.6 With the same notations as in (2.3), for any element ξ in $H^3(F)$ and a ternary form $\langle a, b, c \rangle$ over F, there exists $f \in F^*$ such that

- 1. f is a value of $\langle a, b, c \rangle$
- 2. For every finite non-dyadic place v of k, $\xi_{F_v(\sqrt{f})} = 0$.
- 3. For every dyadic place v of k, such that -abc is a square in F_v , $\xi_{F_v(\sqrt{f})} = 0$.

For a proof, see [Su].

3 The cases of inner type A_n and C_n

Let D be a central division algebra of index n over a field E with n coprime to the characteristic of E. We have an invariant (cf. [Se2]), for elements of $H^1(E, SL_{n,D})$ with values in $H^3(E, \mu_n^{\otimes 2})$, defined as follows. The set $H^1(E, SL_{n,D})$ is in bijection with $E^*/Nrd(D^*)$. Given $\lambda \in E^*$, the invariant associated with its class $(\lambda) \in E^*/Nrd(D^*)$ in $H^3(E, \mu_n^{\otimes 2})$ is the element $(\lambda) \cup (D)$.

Throughout this section, k denotes a number field and F the function field of a smooth geometrically integral curve X over k. Let Ω_k denote the set of places of k and for $v \in \Omega_k$, let $F_v = k_v(X)$ be the function field of the curve X_{k_v} . Let D be a central division algebra of square free index n over F. Then the map $H^1(F, SL_{n,D}) \to H^3(F, \mu_n^{\otimes 2})$ defined by this invariant is injective (cf. 2.1). By a theorem of Kato, the map $H^3(F, \mu_n^{\otimes 2}) \to \prod_{v \in \Omega_k} H^3(F_v, \mu_n^{\otimes 2})$ is injective (cf. 2.3). Hence the map $H^1(F, SL_{n,D}) \to \prod_{v \in \Omega_k} H^1(F_v, SL_{n,D})$ is injective. Thus, we have,

Proposition 3.1 Let k be a number field and X a smooth geometrically integral curve over k. Let F = k(X) be the function field of X. Let $G = SL_n(D)$, with D a central division algebra over F with square free index. Then, $\operatorname{III}^1(F,G)$ is trivial.

For non zero elements a, b in a field E, with char $E \neq 2$, we denote by $(a, b)_E$, the quaternion algebra over E, generated by the elements i, j, with $i^2 = a, j^2 = b$ and ij = -ji.

We now consider linear algebraic groups of type C_n . Let D be a quaternion division algebra over F and τ_0 the standard involution on D. Let h be a hermitian form over (D, τ_0) and G = Sp(h), the symplectic group of h. Then G is a simply connected group of type C_n . The set $H^1(F, Sp(h))$ is in bijection with the set of isomorphism classes of hermitian forms over (D, τ_0) of the same rank as h. Given a hermitian form h' over (D, τ_0) , there is an associated quadratic form $q_{h'}$ over F defined by $q_{h'}(y) = h'(y, y)$, for y in the underlying space which supports h'. In fact, if h' is represented by the diagonal matrix $< \lambda_1, \dots, \lambda_r >$, $q_{h'}$ is represented by the matrix $< \lambda_1, \dots, \lambda_r > \otimes n_D$, where n_D denotes the norm form on the quaternion algebra D. By a theorem of Jacobson (cf. [S], pg. 352), two hermitian forms h and h' are isomorphic over (D, τ_0) if and only if q_h and $q_{h'}$ are isomorphic as quadratic forms.

Let h_1 and h_2 be hermitian forms of the same rank as h, representing elements ξ_1 and ξ_2 in $H^1(F, Sp(h))$. Then $q_{h_1} \perp (-q_{h_2})$ is an element of $I^3(F)$. If $(\xi_1)_v = (\xi_2)_v$ in $H^1(F_v, Sp(h))$, for every $v \in \Omega_k$, then $h_1 \perp (-h_2)$ is hyperbolic over F_v , for all $v \in \Omega_k$. This implies that the class of $q_{h_1} \perp (-q_{h_2})$ is equal to zero in $I^3(F_v)$, for all $v \in \Omega_k$. By ([AEJ2], theorem 4), $q_{h_1} \perp (-q_{h_2})$ is hyperbolic over F; i.e., $h_1 \cong h_2$ and $\xi_1 = \xi_2$ in $H^1(F, Sp(h))$. Thus the map $H^1(F, Sp(h)) \to \prod_{v \in \Omega_k} H^1(F_v, Sp(h))$ is injective. In particular, we have

Proposition 3.2 Let k be a number field and F be the function field of a smooth geometrically integral curve X over k. Let G be a simply connected group of type C_n defined over k. Then $\operatorname{III}^1(F, G)$ is trivial.

Proof. We just need to remark that the only division algebras with involutions of first kind over number fields are quaternion algebras (cf. [S], 10.2.3). \Box

4 The case of quadratic and hermitian forms

We continue with the same notation as in §2. The aim of this section is to prove the following two theorems.

Theorem 4.1 Let q be a quadratic form of rank greater than or equal to 3, over a number field k. Then $\operatorname{III}^1(F, \operatorname{Spin}(q))$ is trivial.

Let $K = k(\sqrt{d})$ be a quadratic field extension of k. Let $FK = F(\sqrt{d})$ and let τ denote the non-trivial automorphism of FK over F.

Theorem 4.2 Let h be a hermitian form over (FK, τ) , of rank at least 2. Then $\operatorname{III}^1(F, SU(h))$ is trivial.

We begin with the following

Proposition 4.3 Let q be a quadratic form of rank greater than or equal to 3, over a number field k. The map

$$\frac{F^*/F^{*2}}{Sn(q_F)} \to \prod_{v \in \Omega_k} \frac{F_v^*/F_v^{*2}}{Sn(q_{F_v})}$$

is injective.

Proof. case.1. rank(q) = 3: For any $\lambda \in F^*$, since $Sn(\lambda q) = Sn(q)$, after scaling we may assume that $q = \langle 1, a, b \rangle$, for some $a, b \in k^*$. Let $D = (-a, -b)_F$. Then $Sn(q_F) = Nrd(D^*)$ modulo squares. If $\alpha \in F^*$ is a local spinor norm then α is a reduced norm from D locally and by (3.1), α is a reduced norm from D and hence a spinor norm from q_F .

case.2. rank(q) = 4: Suppose disc(q) = 1. After scaling we assume that $q = \langle 1, a, b, ab \rangle$. Then $Sn(q_F) = Nrd((-a, -b)_F^*)$ modulo squares and the proof follows as in case 1.

Suppose disc(q) = d. By scaling we may assume that $q = \langle 1, a, b, abd \rangle$. We have $Sn(q_F) = Nrd((-a, -b)_{F(\sqrt{d})}) \cap F^*$ modulo squares (cf. [KMRT], 15.11). Let $\alpha \in F^*$ be such that $\alpha \in Sn(q_{F_v})$, for every $v \in \Omega_k$. Then α is a reduced norm from $(-a, -b)_{(F(\sqrt{d}))_w}$, for all $w \in \Omega_{k(\sqrt{d})}$. By (3.1), $\alpha \in Nrd(-a, -b)_{F(\sqrt{d}}) \cap F^* = Sn(q_F)$ modulo squares.

case.3. rank(q) = 5: Let $d = \operatorname{disc}(q)$. Then the form $q \perp < -d >$ is a six dimensional form over the number field k, which is indefinite and hence is isotropic (cf. [S], 6.6.6). Thus, q represents d and after scaling, we may assume that $q \cong < d, 1, a, b, ab >$. Hence q is a Pfister neighbour for the Pfister form $q_1 = < 1, a > \otimes < 1, b > \otimes < 1, d >$. By the norm principle (cf. 2.2), spinor norms for q_F are products of norms from finite extensions of F where q_F is isotropic. As q_F is isotropic if and only $(q_1)_F$ is hyperbolic, spinor norms for q_F are products of norms from finite extensions of F where q_K , $\alpha \in F^*$ be a spinor norm locally for all $v \in \Omega_k$, for q_F . Then for every $v \in \Omega_k$, α is a similarity factor for $(q_1)_{F_v}$ (cf. [L], Ch. 7, 4.5). Hence the form $< 1, -\alpha > q_1$ in $I^4(F)$ is zero in $I^4(F_v)$, for every $v \in \Omega_k$. As $I^4(F) \to \prod_{v \in \Omega_k} I^4(F_v)$ is injective (cf. [AEJ2], theorem 4), we have $< 1, -\alpha > q_1$ is zero in W(F), i.e., α is a similarity factor for q_1 over F. Hence α is represented by q_1 over F. As q_1 is a Pfister form, α is a spinor norm of q_1 over F. By the norm principle (cf. 2.2), $Sn(q_{1F}) = Sn(q_F)$ and hence α is a spinor norm of q over F.

case.4. rank $(q) \ge 6$: We complete the proof by induction on rank(q). Let $q = q_1 \perp q_2$, with rank $(q_1) = 5$. Let $\operatorname{disc}(q_1) = d$. After scaling q, we assume that $q_1 \cong \langle d, 1, a, b, ab \rangle$, as in case.3. Let $\alpha \in F^*$ be a spinor norm locally for q_F . Let $l(Y) = F(\sqrt{-\alpha})$, with l denoting the field of constants in $F(\sqrt{-\alpha})$ and Y a curve over l.

Let $q' = \langle d, 1, a, b \rangle \perp q_2$. Since $\operatorname{rank}(q') \geq 5$, q' is isotropic over l_w and hence over $l_w(Y)$, for every finite place w of l. Let w be a real place, where q'is definite. Since q' represents 1, the elements a, b and hence ab are all positive at l_w and hence over k_v , where v is the restriction of w to k. Since α is a spinor norm of q over F_v , α is a sum of squares in F_v and hence in $l_w(Y)$. Since $-\alpha$ is a square in $l_w(Y)$, it follows that -1 is a sum of squares in $l_w(Y)$, i.e., $l_w(Y)$ has no ordering. This implies that $cd(l_w(Y)) \leq 1$, (cf. [Se1]). Thus q' is isotropic over $l_w(Y)$. In particular, for each $w \in \Omega_l$, every element of $l_w(Y)^*$ is a spinor norm for $(q')_{l_w(Y)}$. By induction hypothesis, $Sn(q') = l(Y)^*/l(Y)^{*2}$. By the norm principle (cf. 2.2), α being a norm from l(Y), is a spinor norm for q' and hence for q.

Remark 4.4 In the case of quadratic forms of rank 3 or 4, the proposition 4.3 holds more generally for forms over the function field F, i.e., if q is a quadratic form over F of rank 3 or 4, then the map

$$\frac{F^*/F^{*2}}{Sn(q_F)} \to \prod_{v \in \Omega_k} \frac{F_v^*/F_v^{*2}}{Sn(q_{F_v})}$$

is injective. The proof given in the proposition works as well in these cases.

Proof of theorem 4.1. We have an exact sequence of algebraic groups:

$$1 \longrightarrow \mu_2 \longrightarrow Spin(q) \xrightarrow{\eta} SO(q) \longrightarrow 1$$

which gives rise to an exact sequence of pointed sets:

$$SO(q)(F) \xrightarrow{\delta^0} F^*/F^{*2} \longrightarrow H^1(F, Spin(q)) \xrightarrow{\eta} H^1(F, SO(q)) \xrightarrow{\delta^1} H^2(F, \mu_2)$$

The map δ^0 is induced by the spinor norm. The set $H^1(F, SO(q))$ classifies isomorphism classes of quadratic forms, with the same rank and discriminant as q. For a class $[q'] \in H^1(F, SO(q)), \delta^1([q']) = c(q' \perp (-q))$, where c is the Clifford invariant of $(q' \perp (-q))$. Thus the image $H^1(F, Spin(q)) \to H^1(F, SO(q))$, consists of classes of quadratic forms q' with the same rank, discriminant and Clifford invariant as q; in particular, $q' \perp (-q) \in I^3(F)$. We have a commutative diagram with exact rows:

Let $\xi \in H^1(F, Spin(q))$ be such that $\xi_v = 1$, for all $v \in \Omega_k$. The element $\eta(\xi)$ corresponds to the class of a quadratic form q' over F with $q' \perp (-q) \in$

 $I^{3}(F)$. By the commutativity of the above diagram, $(q' \perp (-q))_{F_{v}}$ is zero in $I^{3}(F_{v})$, for all $v \in \Omega_{k}$. By ([AEJ2], theorem 4), we have an injection $I^{3}(F) \rightarrow \prod_{v \in \Omega_{k}} I^{3}(F_{v})$. Thus $q' \perp (-q)$ is equal to zero in $I^{3}(F)$. By Witt's cancellation theorem, $q' \cong q$ and ξ lies in the kernel of η . Hence there exists $\alpha \in F^{*}$, such that $\delta^{0}([\alpha]) = \xi$. From the commutativity of the above diagram, it follows that α is locally a spinor norm, for all $v \in \Omega_{k}$. The theorem now follows from the proposition 4.3.

Recall that if E is a field of characteristic different from 2 and L is a quadratic extension of E, with σ denoting the non trivial automorphism of L over E, $W(L|E,\sigma)$ denotes the Witt group of σ -hermitian forms. We have a homomorphism of groups $W(L|E,\sigma) \to W(E)$, given by associating to any $h \in W(L|E,\sigma)$, the quadratic form q_h defined as $q_h(x,x) = h(x,x)$, for any x in the space supporting h. This gives rise to the following exact sequence:

$$1 \to W(L|E,\sigma) \to W(E) \to W(L)$$

where the map $W(E) \to W(L)$ is given by scalar extension from E to L. In fact if $L = E(\sqrt{d})$, for some $d \in E^*$, then the image of $W(L|E, \sigma)$ in W(E) is the subgroup W(E). < 1, -d >, (cf. [S], 10.1.3).

Proof of theorem 4.2. We have the following exact sequence of algebraic groups

$$1 \to SU(h) \to U(h) \to R^1_{FK|F}(G_m) \to 1$$

where for any extension L of F,

$$R^{1}_{FK|F}(G_{m})(L) = (LK)^{*1} = \{ x \in (LK)^{*} \mid N_{LK|L}(x) = 1 \}.$$

As $Nrd: U(h)(F) \to (FK)^{*1}$ is surjective, the above sequence gives rise to the following exact sequence of pointed sets,

$$1 \to H^1(F, SU(h)) \xrightarrow{\eta} H^1(F, U(h)).$$

The set $H^1(F, U(h))$ classifies isomorphism classes of hermitian forms, with the same rank as h. An element of $H^1(F, SU(h))$ maps under η to the class of a hermitian form with the same rank and discriminant as h. We have the following commutative diagram,

$$\begin{array}{ccc} 1 & \longrightarrow & H^{1}(F, SU(h)) & \xrightarrow{\eta} & H^{1}(F, U(h)) \\ & \downarrow & & \downarrow \\ 1 & \longrightarrow & \prod_{v \in \Omega_{k}} H^{1}(F_{v}, SU(h)) & \xrightarrow{\eta} & \prod_{v \in \Omega_{k}} H^{1}(F_{v}, U(h)) \end{array}$$

Let $\xi \in H^1(F, SU(h))$ be locally trivial in $H^1(F_v, SU(h))$, for every $v \in \Omega_k$. The element $\eta(\xi)$ corresponds to the class of a hermitian form h' over (FK, τ) with rank and discriminant of h' same as those of h. Moreover, $(h \perp (-h'))_{F_v}$ is the hyperbolic form locally, for every $v \in \Omega_k$. The hermitian forms h and h' correspond to quadratic forms q_h and $q_{h'}$ over F respectively such that the rank, discriminant and Clifford invariants of $q_{h'}$ are the same as those of q_h . Hence the form $q_h \perp (-q_{h'}) \in I^3(F)$. Further, the form $q_h \perp (-q_{h'})$ is locally zero in $I^3(F_v)$, for every $v \in \Omega_k$. By ([AEJ2], theorem 4), $q_h \perp (-q_{h'})$ is zero in $I^3(F)$. Hence $h \cong h'$ over (FK, τ) and $\eta(\xi)$ is trivial. Since kernel (η) is trivial, ξ is trivial. \Box

5 A classification theorem for hermitian forms over division algebras with an orthogonal involution

Let E be a field of characteristic different from 2 and L a quadratic field extension of E with σ denoting the nontrivial automorphism of L over E. Let $U_{2n}(L,\sigma)$ denote the unitary group of the hyperbolic form $\begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix}$ over (L,σ) . If h is a hermitian form over (L,σ) of rank 2n, it defines an element $\xi_h \in H^1(E, U_{2n}(L,\sigma))$. The set $H^1(E, SU_{2n}(L,\sigma))$ injects into $H^1(E, U_{2n}(L,\sigma))$, the image consisting of hermitian forms over (L,σ) of rank 2n and trivial discriminant. Hence if h has trivial discriminant, ξ_h defines an element in $H^1(E, SU_{2n}(L,\sigma))$. The Rost invariant of ξ_h is the Arason invariant of the quadratic form q_h associated to h (see §4 and [BP2], §3); i.e., the Rost invariant of an even rank hermitian form over (L,σ) , with trivial discriminant is the same as the Arason invariant of the associated quadratic form in $I^3(E)$.

We next recall (cf. [BP2], §3) the Rost invariant associated to a hermitian form over a central division algebra D over any field E, with an orthogonal involution τ . Let h be a hermitian form over (D, τ) . We denote by R_h the Rost invariant on $H^1(E, Spin(h))$ which takes values in $H^3(E, \mathbb{Q}/\mathbb{Z}(2))$. Its values on the subset $\frac{E^*/E^{*2}}{Sn(h_E)} \subset H^1(E, Spin(h))$ are given by $[\lambda] \mapsto (\lambda) \cup (D)$, (cf. [KMRT], §31.B, pp. 437). If h is a hermitian form of rank 2n, trivial discriminant and trivial Clifford invariant, the class of h defines an element in $H^1(E, U_{2n}(D, \tau))$, where $U_{2n}(D, \tau)$ is the unitary group of the hyperbolic form $\begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix}$, which admits a lift $\xi \in H^1(E, Spin_{2n}(D, \tau))$ under the composite map :

$$H^1(E, Spin_{2n}(D, \tau)) \to H^1(E, SU_{2n}(D, \tau)) \to H^1(E, U_{2n}(D, \tau))$$

The Rost invariant of h, denoted as R(h) is defined to be $R(h) = [R(\xi)] \in H^3(E, \mathbb{Q}/\mathbb{Z}(2))/H^1(E, \mu_2) \cup (D)$, (cf. [BP2], §3). If D = E this invariant coincides with the Arason invariant. We recall the following lemma, (cf. [BP2], 3.6).

Lemma 5.1 Let (D, τ) be a central division algebra with an orthogonal involution over a field E. Let h be a hermitian form over (D, τ) . Let $\xi \in$ $H^1(E, Spin(h))$ and h' the hermitian form over (D, τ) , associated to the image of ξ in $H^1(E, U(h))$. Then $[R_h(\xi)] = R(h' \perp (-h))$ in $H^3(E, \mathbb{Q}/\mathbb{Z}(2))/H^1(E, \mu_2) \cup (D)$.

Let k be a number field. We denote by V_k , the set of real places of k.

Lemma 5.2 Let k be a number field and M a function field in two variables over k. Then the map $H^n(M) \to \prod_{v \in V_k} H^n(M.k_v)$ is injective, for $n \ge 5$.

Proof. Let $n \geq 5$. Let $\xi \in H^n(M)$ be trivial in $H^n(M.k_v)$, for every $v \in V_k$. As every real closure of M contains a real closure of k, by ([AEJ1], 2.2), ξ is a (-1)-torsion element in $H^n(M)$. We have the following exact sequence,

$$\begin{array}{c} H^n(M(\sqrt{-1})) \xrightarrow{cores} H^n(M) \\ & \downarrow^{(-1)} \cup \\ H^{n+1}(M(\sqrt{-1})) \xleftarrow{res} H^{n+1}(M) \end{array}$$

As k is a number field, $vcd(k) \leq 2$ and hence $vcd(M) \leq 4$ and $H^r(M(\sqrt{-1})) = 0$, for $r \geq 5$. In view of the above exact sequence, as $n \geq 5$, we have $(-1) \cup :$ $H^n(M) \to H^{n+1}(M)$ is an isomorphism. As ξ is (-1)-torsion in $H^n(M)$, ξ is zero in $H^n(M)$. \Box

We record the following lemma, which is a consequence of a theorem of Jannsen (cf. 2.4) and a theorem of Arason-Elman-Jacob (cf. [AEJ1], 2.2).

Lemma 5.3 Let k be a number field and M a function field in two variables over k. Then the map $I^4(M) \to \prod_{v \in V_k} I^4(M.k_v)$ is injective.

Proof. Let $q \in I^4(M)$ with $q_{M,k_v} = 0$ locally for all $v \in \Omega_k$. Since e_M^n is well defined (cf. [AEJ1], 1.2), we have the following commutative diagram for each n:

$$\begin{array}{ccc} I^{n}(M) & \longrightarrow \prod_{v \in \Omega_{k}} I^{n}(M.k_{v}) \\ e^{n}_{M} & e^{n}_{M} \\ H^{n}(M) & \longrightarrow \prod_{v \in \Omega_{k}} H^{n}(M.k_{v}) \end{array}$$

In view of this commutative diagram, the remark following (2.4) and since \bar{e}_M^4 is an isomorphism (2.5), it follows that $q \in I^5(M)$. Since q is locally zero, using the above commutative diagram for n = 5, we see that $e_M^5(q)$ is locally trivial in $H^5(M.k_v)$, for every $v \in \Omega_k$. By the preceding lemma (5.2), we have $e_M^5(q)$ is zero in $H^5(M)$. Hence $q \in I^6(M)$. Repeating this argument, we get that $q \in \bigcap_{n \ge 5} I^n(M)$ and hence is zero, by Arason-Pfister's theorem (cf. [S], 4.5.6). \Box

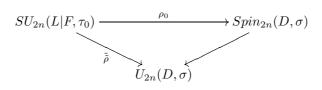
Theorem 5.4 Let k be a number field and let F = k(X) be the function field of a smooth, geometrically integral curve X over k. Let D be a quaternion division algebra over F, with an orthogonal involution σ . Let h_1 and h_2 be two hermitian forms over (D, σ) with the same rank and discriminant. Suppose further that $c(h_1 \perp (-h_2)) = 0$ and $R(h_1 \perp (-h_2)) = 0$. Suppose h_1 and h_2 are equivalent over F_v for all $v \in \Omega_k$, then $h_1 \cong h_2$.

Proof. Let *L* be a quadratic extension of *F* contained in *D* such that σ restricted to *L* is identity. Let $\mu \in D^*$ be such that $\sigma(\mu) = -\mu$ and $Int(\mu)$ restricted to *L* is the non-trivial automorphism τ_0 of *L* over *F* (cf. [BP2], §3.2). The involution $\tau = Int(\mu) \circ \sigma$ on *D*, being symplectic is the canonical involution on *D*. Let L = l(Y), where *l* is the field of constants in *L*. For $v \in \Omega_k$, let $F_v = k_v(X)$ be the function field of the curve X_{k_v} and $L_v = L \otimes_F F_v$. We have the following commutative diagram with exact rows, (cf. [BP2], 3.2).

$$\begin{array}{ccc} W(D,\tau) & \xrightarrow{\pi_1} & W(L|F,\tau_0) & \xrightarrow{\tilde{\rho}} & W(D,\sigma) & \xrightarrow{\tilde{\pi}_2} & W(L) \\ & \downarrow & \downarrow & \downarrow & \downarrow \\ & \prod_{v \in \Omega_k} W(D_{F_v},\tau) & \xrightarrow{\pi_1} & \prod_{v \in \Omega_l} W(L_v|F_v,\tau_0) & \xrightarrow{\tilde{\rho}} & \prod_{v \in \Omega_v} W(D_{F_v},\sigma) & \xrightarrow{\tilde{\pi}_2} & \prod_{v \in \Omega_l} W(L_v) \end{array}$$

Let $h = h_1 \perp (-h_2)$. Then h has even rank, trivial discriminant, trivial Clifford invariant and trivial Rost invariant. Further h is zero in $W(D_{F_v}, \sigma)$, for every $v \in \Omega_k$. The element $\widetilde{\pi_2}(h) \in W(L)$ has even rank, trivial discriminant and trivial Clifford invariant and hence belongs to $I^3(L)$. Further, $\widetilde{\pi_2}(h)$ is zero in $W(L_w)$, for every $w \in \Omega_l$. By ([AEJ2], theorem 4), $\widetilde{\pi_2}(h)$ is zero in $I^3(L)$. Thus there exists $h_0 \in W(L|F, \tau_0)$ such that $\widetilde{\rho}(h_0) = h$. The rank of h_0 is even. We show that the lift $h_0 \in W(L|F, \tau_0)$ may be modified so as to have trivial discriminant. Let $\alpha = disc(h_0) \in F^*/N_{L|F}(L^*)$. We have $c(\widetilde{\rho}(h_0)) = (L) \cup (\alpha) \in Br(F)/(D)$, (cf. [BP1], 3.2.3). Since $c(\widetilde{\rho}(h_0)) = c(h) = 0$, we have $(L) \cup (\alpha) = 0$ or $(L) \cup (\alpha) = (D) \in Br(F)$. If $(L) \cup (\alpha) = 0$, then $disc(h_0) = 1$. Suppose $(L) \cup (\alpha) = (D)$. Let $L = F(\sqrt{a})$ so that $D = (a, \alpha)_F$. The image of the form $< 1 \geq W(D, \tau)$ under the map π_1 in $W(L|F, \tau_0)$, is simply $(< 1, -\alpha >)$, which has discriminant α in $F^*/N_{L|F}(L^*)$. Modifying h_0 by $\pi_1(< 1 >)$, we may assume that $disc(h_0) = 1$.

We now show that the lift h_0 of h may be modified to have trivial Rost invariant. Let $rank(h_0) = 2n$. Let $SU(\mu^{-1}\sqrt{a}H_{2n})$ be the special unitary group with respect to the hermitian form $\mu^{-1}\sqrt{a}H_{2n}$ over (D,σ) . The inclusion $SU_{2n}(L|F,\tau_0) \rightarrow SU(\mu^{-1}\sqrt{a}H_{2n})$ gives rise to an injection $SU_{2n}(L|F,\tau_0) \rightarrow$ $SU_{2n}(D,\sigma)$ (by a choice of an isomorphism $\mu^{-1}\sqrt{a}H_{2n} \cong H_{2n}$ (cf. [BP2], pg. 671). This lifts to a homomorphism $\rho_0 : SU_{2n}(L|F,\tau_0) \rightarrow Spin_{2n}(D,\sigma)$. We have the following commuting diagram:



which yields a corresponding diagram:

$$\begin{array}{c} H^1(F,SU_{2n}(L|F,\tau_0)) & \xrightarrow{\rho_0} & H^1(F,Spin_{2n}(D,\sigma)) \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & &$$

The map $\tilde{\rho}$ at the level of Witt groups is induced by the map $\tilde{\rho}$, (for varying n). Indeed for the hermitian form h_0 , $R(h_0) = R_{Spin_{2n}(D,\tau)}(\rho_0(h_0))$, (cf. [BP2], 3.20). Since $R(\tilde{\rho}(h_0)) = R(h) = 0$, there exists $\lambda \in F^*$, such that $R(h_0) = (\lambda) \cup (D)$. The element, $\pi_1(< 1, -\lambda >)$ has the associated quadratic form $< 1, -\lambda > \otimes n_D, n_D$ denoting the norm form of D over F and has Rost invariant $(\lambda) \cup (D)$. Modifying h_0 by $\pi_1(< 1, -\lambda >)$, we may assume that $R(h_0) = 0$. Thus, the quadratic form associated to h_0, q_{h_0} , defines an element in $I^4(F)$.

The image of π_1 consists of hermitian forms f whose associated quadratic forms q_f , are multiples of n_D . Since $h = \tilde{\rho}(h_0)$ is locally trivial over F_v , for every $v \in \Omega_k$, h_{0F_v} is in the image of π_1 and hence q_{h_0} is a multiple of n_D over F_v , for every $v \in \Omega_k$.

Let C be the conic defined by $aX_1^2 + bX_2^2 - 1$ over F. Then F(C) is a 2 dimensional field over k and n_D is zero over F(C) (cf. [S], 5.2, (iv)). Hence the class of q_{h_0} in $I^4(F_v(C))$ is zero, for all $v \in \Omega_k$. The map $I^4(F(C)) \rightarrow \prod_{v \in \Omega_k} I^4(F_v(C))$ being injective (cf. 5.3), q_{h_0} is zero in $I^4(F(C))$ and hence is a multiple of n_D (cf. [S], 5.4, (iv)). It follows that h_0 is in the image of π_1 and hence $\rho(h_0) = h = 0$ in $W(D, \sigma)$.

6 Hasse principle for groups of type D_n (D_4 non-trialitarian)

Let (D, σ) be a central simple algebra over a field E with an orthogonal involution. Let L|E be an extension which splits D and let $\phi : (D, \sigma) \otimes_E L \cong (M_n(L), \tau_{q_0})$ be a splitting with $\sigma \otimes 1$ transported to the adjoint involution on $M_n(L)$ corresponding to a quadratic form q_0 over L. The form q_0 is determined upto a scalar. Let h be a hermitian form over $(D, \sigma) \otimes_E L$. Then by Morita theory with respect to ϕ , h is equivalent to a quadratic form q over L. The similarity class of q is uniquely determined by h and is independent of the choice of ϕ and q_0 . The form h is isotropic if and only if q is isotropic. In particular, $Sn(h_L) = Sn(q_L)$.

Lemma 6.1 Let (D, σ) be a quaternion algebra with an orthogonal involution over a local field k. Let h be a hermitian form of rank 3 over (D, σ) and σ_h the involution on $M_3(D)$, adjoint with respect to h. Suppose $disc(\sigma_h) \notin k^{*2}$. Then h is isotropic. **Proof.** Let τ be the canonical symplectic involution on D. Let $\sigma = Int u \circ \tau$, for some $u \in D^*$, such that $\tau(u) = -u$. The hermitian form h corresponds under scaling by u, to a skew hermitian form h_1 with respect to τ (cf. [BP1], §1.3). The involution τ_{h_1} on $M_3(D)$ adjoint with respect to h_1 , corresponds with σ_h . Then $det(h_1) = disc(\tau_{h_1}) = disc(\sigma_h)$ (cf. [KMRT], 7.2). By the hypothesis on $h, disc(\sigma_h) \notin k^{*2}$. Hence $det(h_1)$ is not in k^{*2} and by ([S], 10.3.6), h_1 and hence h is isotropic. \Box

Theorem 6.2 Let (D, σ) be a quaternion division algebra over a number field k with an orthogonal involution σ and let h be a hermitian form over (D, σ) of rank at least 2. Let F = k(X) be the function field of a smooth geometrically integral curve X over k. For each $v \in \Omega_k$, let F_v be the function field of the curve X_{k_v} . Then the map

$$\frac{F^*/F^{*2}}{Sn(h_F)} \to \prod_{v \in \Omega_L} \frac{F_v^*/F_v^{*2}}{Sn(h_{F_v})}$$

is injective.

Proof. Suppose rank(h) = 2. Let $\delta = disc(h) \in k^*/k^{*2}$. The Clifford algebra $C = C(M_2(D), \tau_h))$, is a quaternion algebra over $k(\sqrt{\delta})$ and $Sn(h_F) = Nrd(C_{F(\sqrt{\delta})}) \cap F^*$ modulo squares, (cf. [KMRT], 15.11). Let $\lambda \in F^*$ be a local spinor norm for h_F . Then λ is a reduced norm from $C \otimes_F F_v$, for every place v of k and by (3.1), C being a quaternion algebra, λ is a reduced norm from $C_{F(\sqrt{\delta})}$ and belongs to $Nrd(C_{F(\sqrt{\delta})}) \cap F^* = Sn(h_F)$ modulo squares.

Let $rank(h) = n \geq 3$. Let $\lambda \in F^*$ be a local spinor norm for h_F . Then λ is a reduced norm from D_F , (cf. 2.2 and 3.1). Let L be a quadratic extension of F such that D_L is split and $\lambda = N_{L|F}(\mu)$, for some $\mu \in L^*$. The element λ is also a norm from $F(\sqrt{-\lambda})$. By ([W], Lemma 2.13), there exists $\theta \in L(\sqrt{-\lambda})$ such that $N_{L(\sqrt{-\lambda})|F}(\theta) = \nu^2 \lambda$, for some $\nu \in F^*$. By (2.2), it suffices to show that every element of $L(\sqrt{-\lambda})^*$ modulo squares is contained in $Sn(h_{L(\sqrt{-\lambda})})$. We note that for every ordering v of k where D_{k_v} is split and h_{k_v} is definite, $\lambda \in F_v^*$ being a spinor norm of h_{F_v} is a sum of squares so that $L(\sqrt{-\lambda})$ and $L(\sqrt{-\lambda}) = l(Y)$, Y a curve over l, for any ordering w of l extending v, $l_w(Y)$ has no ordering. We rename l = k and Y = X and assume that $D \otimes_k k(X)$ is split and for every orderings; in particular, $cd(k_v(X)) \leq 1$. We then show that every $\lambda \in k(X)^*$ is a spinor norm for $h_{k(X)}$. This is done by induction on rank(h).

Suppose rank(h) = 3. Let S_1 be the set of real places of k such that D_{k_v} is split and h_{k_v} is indefinite. Let S_2 be the set of dyadic places of k such that D_{k_v} is split and $disc(\sigma_h) \notin k_v^{*2}$. Let S_3 be the set of dyadic places of k such that D_{k_v} is not split and $disc(\sigma_h) \notin k_v^{*2}$. For $v \in S_1 \cup S_2$, h_{k_v} corresponds under Morita equivalence to a quadratic form of rank 6 over k_v , which is isotropic. We

choose a rank 1 subform $\langle X_{3v} \rangle$ of h_{kv} , such that under Morita equivalence, $\langle X_{3v} \rangle$ corresponds to the quadratic form $\langle 1, -1 \rangle$ over k_v . For $v \in S_1 \cup S_2$, let $\langle X_{1v}, X_{2v} \rangle$ denote the orthogonal complement of $\langle X_{3v} \rangle$ in h_{kv} . For $v \in S_3$, since D_{k_v} is not split and $disc(\sigma_h) \notin k_v^{*2}$, h_{k_v} is isotropic in view of 6.1. We choose a rank 1 subform $\langle X_{1v} \rangle$ of h_{k_v} such that $\langle X_{1v} \rangle^{\perp} \cong \langle X_{2v}, X_{3v} \rangle$ is hyperbolic. Using weak approximation, one can find a rank 1 subform $\langle X_1 \rangle$ of h over k, such that for each $v \in S_1 \cup S_2 \cup S_3$, $\langle X_1 \rangle_{k_v} \cong \langle X_{1v} \rangle$. One can choose a subform $\langle X_2 \rangle$ in $\langle X_1 \rangle^{\perp}$ such that $\langle X_2 \rangle_{k_v} \cong \langle X_{2v} \rangle$, for each $v \in S_1 \cup S_2 \cup S_3$. Let $\langle X_1, X_2 \rangle^{\perp} \cong \langle X_3 \rangle$. Clearly, $\langle X_3 \rangle_{k_v} \cong \langle X_{3v} \rangle$, for $v \in S_1 \cup S_2 \cup S_3$. Thus $h \cong < X_1, X_2, X_3 >$. Since D is split over F, we choose an isomorphism $\phi: (D_F, \sigma) \to (M_2(F), \tau_{q_0}), q_0$ being a rank 2 quadratic form over F. The isomorphism ϕ yields a Morita correspondence between hermitian forms over D_F and quadratic forms over F. Let $\langle X_1 \rangle_F$ correspond to $\langle a', b' \rangle$ over $F, \langle X_2 \rangle_F$ correspond to $\langle c', d' \rangle$ over F and $\langle X_3 \rangle_F$ correspond to $\langle e', f' \rangle$ over F. Thus h_F corresponds to the rank 6 quadratic form $q = \langle e', f' \rangle$ a', b', c', d', e', f' >. Since the spinor norm group is insensitive to scaling, we replace q by the form $(a'b'c') \cdot q = \langle b'c', c'a', a'b', d'a'b'c', e'a'b'c', f'a'b'c' \rangle$. Renaming, we set $q = \langle -a, -b, ab, c, d, -cd\delta \rangle$, $\delta = disc(q) = disc(\sigma_h) \in$ k^*/k^{*2} . We note that the form $\langle d, -cd\delta \rangle = a'b'c' \langle e', f' \rangle$. We choose $g \in F^*$ such that g is a value of the quadratic form $\langle a \, \delta, b \, \delta, -ab \, \delta \rangle$ and such that for $\xi = (\lambda) \cup (c \delta) \cup (d \delta) \in H^3(F), \ \xi_{F_v(\sqrt{g})} = 0$, for every finite nondyadic $v \in \Omega_k$ and for every dyadic $v \in \Omega_k$ where $\delta \in k_v^{*2}$, (cf. 2.6). Set $\alpha = g \, \delta \in F^*$. Then α is a value of the quadratic form $\langle a, b, -ab \rangle$ over F. The form $\langle -a, -b, ab \rangle$ being isotropic over $F(\sqrt{\alpha})$, we have, $q \cong \gamma < 1, -\alpha > \perp <$ $-\alpha > \perp < c, d, -cd\delta >$, for some $\gamma \in F^*$. Let $q_1 = < -\alpha, c, d, -cd\delta >$. Then $disc(q_1) = g \in F^*/F^{*2}$. We claim that λ is a spinor norm for q_1 locally, for every $v \in \Omega_k$. Over $F(\sqrt{g}), q_1 \cong < -\delta, c, d, -cd\delta > \text{and the Clifford algebra}$ $C(q_1) \cong (c\,\delta, d\,\delta)_{F(\sqrt{g})}$. For a finite $v \in \Omega_k$ such that v is nondyadic or v is dyadic and $\delta \in k_v^{*2}$, over $F_v(\sqrt{g})$, $(\lambda) \cup C(q_1) = \xi_{F_v(\sqrt{g})} = 0$. As $C(q_1)$ is a quaternion algebra over $F_v(\sqrt{g})$, λ is a reduced norm from $C(q_1)$ and hence $[\lambda] \in Sn((q_1)_{F_v})$, (cf. [KMRT], 15.11). For $v \in S_1 \cup S_2$, by choice, the form $\langle d, -cd\delta \rangle = a'b'c' \langle e', f' \rangle \cong a'b'c' \langle X_{3v} \rangle \cong \langle 1, -1 \rangle$ over F_v . Hence q_1 being isotropic over $F_v, \ \lambda \in Sn((q_1)_{F_v})$. For $v \in S_3$, over $F_v, \ a'b'c' <$ $ab, c, d, -cd\delta >$ corresponds under Morita equivalence to $\langle X_{2v}, X_{3v} \rangle$. The form $\langle X_{2v}, X_{3v} \rangle$ being hyperbolic, $\langle ab, c, d, -cd\delta \rangle$ is hyperbolic and hence $\langle c, d, -cd\delta \rangle$ is isotropic over F_v . In particular, q_1 is isotropic and $\lambda \in I$ $Sn((q_1)_{F_v})$. For a real $v \in \Omega_k$ such that D_{k_v} is split and h_{k_v} is equivalent to a definite quadratic form, $cd(k_v(X)) \leq 1$ and $(q_1)_{k_v}$ being 4 dimensional is isotropic. Hence $\lambda \in Sn((q_1)_{F_v})$. Let $v \in \Omega_k$ be a real place such that D_{k_v} is not split. We claim that $(q_1)_{F_v}$ is isotropic. Since every form of rank greater than 1 over D_{k_v} is isotropic, we have $\langle X_{3v} \rangle \cong \langle -X_{3v} \rangle$. As $\langle X_{3v} \rangle$ corresponds to the quadratic form $\langle e', f' \rangle$ over F_v , we have $2 \langle e', f' \rangle = 0$. Since $\langle d, -cd\delta \rangle \cong a'b'c' \langle e', f' \rangle$, we have $\langle d, -cd\delta \rangle$ is torsion in $W(F_v)$. To show that $(q_1)_{F_v}$ is isotropic, it is enough to show that q_1 is isotropic over $F_v(\sqrt{g})$. Over $F_v(\sqrt{g})$, $q_1 \cong <-\delta, c, d, -cd\delta \geq d (< 1, -c\delta > \otimes < 1, cd >)$.

As $< 1, -c\delta >$ is torsion, we have $< 1, -c\delta > \otimes < 1, cd >$ is torsion over $F_v(\sqrt{g})$. As $vcd(F_v(\sqrt{g})) \leq 1$, $I^2(F_v(\sqrt{g}))$ is torsion free. Hence q_1 is isotropic over $F_v(\sqrt{g})$ and hence over F_v . Thus λ is a spinor norm for q_1 over F_v , for every place v of k and hence by (4.4), λ is a spinor norm for q_1 and hence for h.

Suppose $rank(h) = n \ge 4$. Let S_1 be the set of real places of k where D_{k_n} is split and h_{k_n} is isotropic. Let S_2 be the set of finite places of k where D_{k_n} is not split. Let $v \in S_2$. The form h_{k_v} being n dimensional, $n \ge 4$, is isotropic over D_{k_v} . Let $\langle \alpha_v \rangle$ be a 1 dimensional subform of h_{k_v} such that $\langle \alpha_v \rangle^{\perp}$ is isotropic. Let $v \in S_1$. Since h_{k_v} is isotropic, choose a 1 dimensional subform, $< \alpha_v > \text{of } h_{k_v}$, such that $< \alpha_v >^{\perp}$ is isotropic. By weak approximation, one may choose a 1 dimensional subform $\langle \alpha \rangle$ of h such that $\langle \alpha \rangle_{F_v} \cong \langle \alpha_v \rangle$, for $v \in S_1 \cup S_2$. Let $h_1 = \langle \alpha \rangle^{\perp}$. We claim that $(h_1)_{F_v}$ is isotropic over F_v , for every place $v \in \Omega_k$. This is by choice for $v \in S_1 \cup S_2$; in fact, $(h_1)_{k_v}$ itself is isotropic. If $v \notin S_1 \cup S_2$, v real and D_{k_v} is split, then h_{k_v} is definite, $cd(F_v) \leq 1$ and $(h_1)_{F_v}$ being equivalent to a quadratic form of rank ≥ 3 , is isotropic. If $v \notin S_1 \cup S_2$, v real and D_{k_v} is not split, $(h_1)_{F_v}$ being of rank ≥ 2 is isotropic. If $v \notin S_1 \cup S_2$, v finite, D_{k_v} being split, $(h_1)_{F_v}$ corresponds to a quadratic form of rank at least 6 and hence is isotropic. Thus $(h_1)_{F_v}$ is isotropic and since D_{F_v} is split, $Sn((h_1)_{F_v}) = F_v^*$ modulo squares, for every $v \in \Omega_k$. By induction, $Sn((h_1)_F) = F^*/F^{*2}$. This completes the proof of the theorem.

Corollary 6.3 With the same notation as in (6.2), let B be a central simple algebra of degree 4 over k. If $\lambda \in F^*$ is such that λ^2 is a reduced norm from B_{F_v} , for all $v \in \Omega_k$, then λ^2 is a reduced norm from B_F .

Proof. With notation as in [KMRT], there is an equivalence of categories ${}^{1}A_{3} \cong {}^{1}D_{3}$, (cf. [KMRT], 15.32). Under this equivalence, let the degree 4 algebra $(B \times B^{op})$ over $(k \times k)$, with the switch involution, correspond to the degree 6 algebra A over k with an orthogonal involution σ , i.e., $C(A, \sigma) \cong (B \times B^{op})$. We note that $(A, \sigma) \cong (M_{3}(H), \tau_{h})$, H a quaternion algebra over k and h a rank 3 skew hermitian form over (H, τ) , τ denoting the standard involution of H. Further, $Spin(A, \sigma) = Spin(h)$. We denote the extension of these algebras with involution to F by $(B_{F} \times B_{F}^{op})$ and (A_{F}, σ) respectively. Then,

 $Sn(h_F) = \{ \rho \in F^* \mid \rho^2 \in Nrd_{B_F}(B_F^*) \}, modulo \ squares,$

(cf. [KMRT], 15.34). Hence, the element λ as in the statement of the corollary, is locally a spinor norm for (A_{F_v}, σ) , for every $v \in \Omega_k$. By the above theorem (6.2), λ is a spinor norm for (A_F, σ) . By the description for the spinor norms of (A_F, σ) given above, λ^2 is a reduced norm for B_F . This completes the proof of the corollary.

Remark 6.4 One does not know, even in the setting of the corollary, whether local reduced norms are reduced norms from B_F .

Theorem 6.5 With the same notation as in (6.2), let G be a semisimple simply connected linear algebraic group defined over k, of type D_n (non-trialitarian). Then the map

$$H^1(F,G) \to \prod_{v \in \Omega_k} H^1(F_v,G)$$

has trivial kernel.

Proof. We may assume without loss of generality that G is absolutely almost simple. Hence G is isomorphic to Spin(h), where h is a hermitian form over (D, σ) , for some central division algebra D with an orthogonal involution σ over k. Since D is 2 torsion, D is either a quaternion division algebra over k or D = k. If D = k, then h is a quadratic form over k with $rank(h) \ge 3$ and the theorem is proved in (4.1). So we may assume that D is a division algebra over k. Let rank(h) = n. We have an exact sequence of linear algebraic groups,

$$1 \to \mu_2 \to Spin(h) \to SU(h) \to 1$$

which in turn gives rise to the following commutative diagram with exact rows:

$$\begin{array}{ccc} SU(h)(F) & \longrightarrow F^*/F^{*2} & \longrightarrow H^1(F, Spin(h)) & \longrightarrow H^1(F, SU(h)) \\ & \downarrow & \downarrow & \downarrow & \downarrow \\ \prod_{v \in \Omega_k} SU(h)(F_v) & \longrightarrow \prod_{v \in \Omega_k} F_v^*/F_v^{*2} & \longrightarrow \prod_{v \in \Omega_k} H^1(F_v, Spin(h)) & \longrightarrow \prod_{v \in \Omega_k} H^1(F_v, SU(h)) \end{array}$$

Let $\xi \in H^1(F, Spin(h))$ be locally trivial in $H^1(F_v, Spin(h))$, for all $v \in \Omega_k$. Then under the composite map,

$$H^1(F, Spin(h)) \to H^1(F, SU(h)) \to H^1(F, U(h))$$

the image of ξ in $H^1(F, U(h))$, defines a hermitian form h' which has the same rank and discriminant as h and further $c(h' \perp (-h)) = 0$. Let $Spin_{2n}(D, \sigma)$ and $U_{2n}(D,\sigma)$ denote respectively the spin and unitary groups of the hyper-bolic form $\begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix}$. Let $\xi' \in H^1(F, Spin_{2n}(D,\sigma))$ be a lift of $h' \perp (-h)$ in $H^1(F, U_{2n}(D, \sigma))$. Then $R(\xi') = R_h(\xi)$, where $R_h : H^1(F, Spin(h)) \to$ $H^3(F, \mathbb{Q}/\mathbb{Z}(2))$ is the Rost invariant map (cf. 5.1). Since ξ is locally trivial, $R_h(\xi) \in H^3(F, \mathbb{Q}/\mathbb{Z}(2))$ is locally trivial. Since D is a quaternion algebra, $R_h(\xi)$ in fact belongs to $H^3(F, \mathbb{Z}/4\mathbb{Z})$ and the map $H^3(F, \mathbb{Z}/4\mathbb{Z}) \to$ $\prod_{v \in \Omega_k} H^3(F_v, \mathbb{Z}/4\mathbb{Z}) \text{ is injective (cf. 2.3). Hence } R_h(\xi) \text{ is trivial in } H^3(F, \mathbb{Z}/4\mathbb{Z}).$ Hence by the classification theorem (cf. 5.4), $h \cong h'$ and the image of ξ in $H^1(F, U(h))$ is trivial. Let η be the image of ξ in $H^1(F, SU(h))$. Since the nontrivial element in $H^1(F, SU(h))$ which maps to the trivial element in $H^1(F, U(h))$ is not in the image of $H^1(F, Spin(h))$ (cf. [BP2], 7.11), it follows that η is trivial and hence in view of the exact sequence above, ξ comes from an element $\tilde{\xi} \in \frac{F^*/F^{*2}}{Im(Sn(h_F))}$. By the commutative diagram above, $\tilde{\xi}$ is locally trivial and by (6.2), ξ and hence ξ is trivial.

7 Rost invariant for special unitary groups

Let E be a field of characteristic different from 2 and L a quadratic field extension of E. Let (D, τ) be a quaternion division algebra over L with a unitary L|E involution. Let $D_0 \subset D$ be a quaternion division algebra over E such that $D = D_0 L$ and τ restricted to D_0 is the canonical symplectic involution on D_0 . For a hermitian form h over (D, τ) , we denote the unitary and the special unitary group with respect to h by U(h) and SU(h) respectively. We have the following exact sequence of algebraic groups,

$$1 \to SU(h) \to U(h) \to R^1_{L|E}(G_m) \to 1$$

which gives rise to the following exact sequence in Galois cohomology,

$$U(h)(E) \xrightarrow{Nrd} L^{*1} \xrightarrow{\delta} H^1(E, SU(h)) \to H^1(E, U(h)) \tag{(\star)}$$

The next proposition computes the Rost invariant on the image of δ . The proposition is also a consequence of ([MPT], theorem 1.9) (see Appendix).

Proposition 7.1 With the notation as above, for $\mu \in L^{*1}$, $R(\delta(\mu)) = N_{L|E}(\nu) \cup (D_0) \in H^3(E, \mathbb{Q}/\mathbb{Z}(2))$, where $\nu \in L^*$ is such that $\mu = \nu^{-1} \tau(\nu)$.

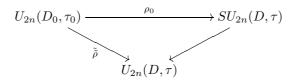
Proof. The element $N_{L|E}(\nu) \cup (D_0)$ is well defined with respect to μ , since for any $\lambda \in E^*$, $N_{L|E}(\nu) \cup (D_0) = N_{L|E}(\lambda\nu) \cup (D_0)$ in $H^3(E, \mathbb{Q}/\mathbb{Z}(2))$. Let X_{μ} be the torsor corresponding to $\delta(\mu)$. Let $E(X_{\mu})$ denote the function field of X_{μ} . Rost has shown (cf. [G1], §2.3, theorem 1) that the kernel \mathcal{K}_{μ} of the map

$$H^{3}(E, \mathbb{Q}/\mathbb{Z}(2)) \xrightarrow{res} H^{3}(E(X_{\mu}), \mathbb{Q}/\mathbb{Z}(2)),$$

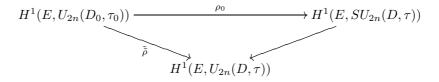
is a finite cyclic group generated by $R(\delta(\mu))$. We claim that $R(\delta(\mu))$ has order at most 2. We choose a quadratic extension field M of E such that D_{0M} is split. Set $ML = M \otimes_E L$. Then D_{ML} is split and $Nrd : U(h)(M) \to (ML)^{*1}$ is surjective. Hence $res(R(\delta(\mu)))$ is trivial in $H^3(M, \mathbb{Q}/\mathbb{Z}(2))$ and $cores(res(R(\delta(\mu)))) =$ $2. R(\delta(\mu)) = 0.$

As the torsor X_{μ} has a rational point over the field $E(X_{\mu})$, $\delta(\mu)$ is trivial in $H^{1}(E(X_{\mu}), SU(h))$. Hence $\mu \in Nrd(U(h)(E(X_{\mu})))$ and by (cf. [KMRT], pg. 202), $\mu = \theta^{-1} \tau(\theta)$, for some $\theta \in Nrd(D_{E(X_{\mu})})$. Thus, $N_{L|E}(\nu) \cup (D_{0E(X_{\mu})}) =$ $N_{L\otimes E} E(X_{\mu})|E(X_{\mu})(\theta) \cup (D_{0E(X_{\mu})})$ in $H^{3}(E(X_{\mu}), \mathbb{Q}/\mathbb{Z}(2))$. Since $\theta \in Nrd(D_{E(X_{\mu})})$, by the norm principle (2.2), $N_{L\otimes E} E(X_{\mu})|E(X_{\mu})(\theta) \in Nrd(D_{0E(X_{\mu})})$. Hence $N_{L|E}(\nu) \cup (D_{0E(X_{\mu})}) = 0$ in $H^{3}(E(X_{\mu}), \mathbb{Q}/\mathbb{Z}(2))$ and $N_{L|E}(\nu) \cup (D_{0}) \in \mathcal{K}_{\mu}$. Since \mathcal{K}_{μ} is generated by $R(\delta(\mu))$, $N_{L|E}(\nu) \cup (D_{0}) = R(\delta(\mu))$ or $N_{L|E}(\nu) \cup (D_{0}) = 0$. Suppose $N_{L|E}(\nu) \cup (D_{0}) = 0$. Then there exists a quadratic extension P of E, such that D_{0} is split over P and $N_{L|E}(\nu) = N_{P|E}(\alpha)$, for some $\alpha \in P^{*}$. Set $PL = P \otimes_{E} L$. By (cf. [W], lemma 2.13), there exist $\beta \in (PL)^{*}$ and $\delta \in E^{*}$, such that $N_{PL|L}(\beta) = \nu . \delta$. As D is split over PL, by the norm principle, (2.2), $\nu . \delta \in Nrd(D)$. As $\mu = (\nu . \delta)^{-1} \tau(\nu . \delta)$, by (cf. [KMRT], pg. 202), $\mu \in Nrd(U(h)(E)), \ \delta(\mu)$ is trivial and $R(\delta(\mu)) = 0$. Hence if $\mu \in L^{*1}$ is not in Nrd(U(h)(E)), then $N_{L|E}(\nu) \cup (D_0)$ is not zero and hence coincides with $R(\delta(\mu))$. Thus in either case, $N_{L|E}(\nu) \cup (D_0) = R(\delta(\nu))$. \Box

Let $U_{2n}(D_0, \tau_0)$ denote the unitary group of the hyperbolic form $\begin{pmatrix} 0 & I_n \\ I_n & 0 \end{pmatrix}$ over (D_0, τ_0) . We denote the unitary group and the special unitary group with respect to the hyperbolic form $\begin{pmatrix} 0 & I_n \\ I_n & 0 \end{pmatrix}$ by $U_{2n}(D, \tau)$ and $SU_{2n}(D, \tau)$ respectively. We have a natural inclusion $U_{2n}(D_0, \tau_0) \hookrightarrow U_{2n}(D, \tau)$. Since τ_0 is symplectic, the reduced norm of an element in $U_{2n}(D_0, \tau_0)$ has reduced norm 1 and we have the following diagram



which induces the following commutative diagram



Proposition 7.2 With the notation as above, if $[h] \in H^1(E, U(D_0, \tau_0))$ then $R(h) = R(\rho_0(h))$.

Proof. By (cf. [KMRT], pg. 436), there exists an integer n_{ρ_0} such that $n_{\rho_0} R(h) = R(\rho_0(h))$. We show that $n_{\rho_0} = 1$. Let $X = R_{L|E}(X_D)$ where X_D is the Brauer Severi variety of D over L. Let $M = E(X)(X_1, \dots, X_{2n})$. Then D_{0M} is not split, since $Br(E) \to Br(E(X))$ is injective, (cf. [MT], corollary 2.12) and $D_{0ML} = D_M$ is split. Let $L = E(\sqrt{d})$. Then $D_{0M} = (a, d)_M$, for some $a \in M^*$. Let $i, j \in D_{0M}$ be such that $i^2 = a, j^2 = d, ij = -ji$. We have the splitting $\phi : D_{0M} \otimes_M ML \cong M_2(ML)$, defined by,

$$\phi(i\otimes 1) = \begin{pmatrix} 0 & 1 \\ a & 0 \end{pmatrix}, \quad \phi(j\otimes 1) = \begin{pmatrix} \sqrt{d} & 0 \\ 0 & -\sqrt{d} \end{pmatrix}.$$

An explicit computation shows that $\phi \circ \tau_{ML} \circ \phi^{-1} = Int(q_1) \circ T$, where

$$T\left(\begin{array}{cc} x & y \\ z & w \end{array}\right) = \left(\begin{array}{cc} \tau(x) & \tau(z) \\ \tau(y) & \tau(w) \end{array}\right)$$

and $q_1 = < 1, -a >$. Under Morita equivalence, through ϕ , every τ -hermitian form over (D_{ML}, τ) corresponds to a ML|M hermitian form. The (D_{ML}, τ)

hermitian form $h = \langle X_1, \dots, X_{2n} \rangle$ corresponds to an ML|M hermitian form represented by $\langle X_1, \dots, X_{2n} \rangle \otimes \langle 1, -a \rangle$, whose Rost invariant is

 $((-1)^n X_1. \cdots X_{2n}) \cup (a) \cup (d) = Pf(h) \cup (D_{0M}) \neq 0$, where Pf(h) is the Pfaffian norm of h (cf. [KMRT], pg. 19). Since $R(h) = Pf(h) \cup (D_0)$ (cf. [KMRT], pg. 440), it follows that $n_{\rho_0} = 1$.

8 Classification theorems for hermitian forms over quaternion division algebras with a unitary involution

Let $K = k(\sqrt{d})$ be a quadratic field extension of a field k of characteristic different from 2 and (D, τ) be a quaternion algebra over K with a K|k involution τ . Let $D_0 \subset D$ be a quaternion k algebra such that τ restricted to D_0 is τ_0 , the canonical involution of D_0 and $D = D_0 K$. We have $D = D_0 \oplus D_0 \sqrt{d}$. For any hermitian form h over (D, τ) , let

$$h(x,y) = h_1(x,y) + h_2(x,y)\sqrt{d}, \quad h_i(x,y) \in D_0, \text{ for } i = 1, 2.$$

Since $\tau(h(y, x)) = h(x, y)$ and $\tau(\sqrt{d}) = -\sqrt{d}$, it follows that $\tau_0(h_1(y, x)) = h_1(x, y)$ and $\tau_0(h_2(y, x)) = -h_2(x, y)$. Thus h_1 is a hermitian form over (D_0, τ_0) and h_2 is a skew-hermitian form over (D_0, τ_0) . Let $p_1(h) = h_1$ and $p_2(h) = h_2$. Clearly $p_i(h \perp h') = p_i(h) \perp p_i(h')$ for i = 1, 2. Suppose that h is hyperbolic. Let W be a totally isotropic subspace of h, then W is also a totally isotropic subspace for $p_i(h)$, for i = 1, 2. Thus we have homomorphisms

$$p_1: W(D,\tau) \to W(D_0,\tau_0)$$

and

$$p_2: W(D, \tau) \to W^{-1}(D_0, \tau_0).$$

Let $\tilde{\rho}: W(D_0, \tau_0) \to W(D, \tau)$ be the homomorphism defined as follows: Let f be a hermitian form over D_0 and V_0 its underlying D_0 vector space. Let $V = V_0 \otimes_k K$ and write $V = V_0 \oplus V_0 \sqrt{d}$. Define

$$\tilde{\rho}(f)(x_1 \oplus y_1 \sqrt{d}, x_2 \oplus y_2 \sqrt{d}) = f(x_1, x_2) + f(x_1, y_2) \sqrt{d} - f(y_1, x_2) \sqrt{d} - f(y_1, y_2) d$$

It is easy to check that $\tilde{\rho}$ is a well defined homomorphism. We also have homomorphisms $\pi_i : W(K) \to W(k)$, for i = 1, 2, defined as follows. For any quadratic form q over K, write $q(x, y) = q_1(x, y) + q_2(x, y)\sqrt{d}$, where, $q_i(x, y) \in k$, for i = 1, 2. Then q_1 and q_2 are quadratic forms over k and $\pi_i(q) = q_i$, for i = 1, 2. Let $\tilde{\pi_1}$ be the composition $W(K) \xrightarrow{\pi_1} W(k) \to W(D_0, \tau_0)$, where the map $W(k) \to W(D_0, \tau_0)$ is induced by base change. **Proposition 8.1** (Suresh) The following sequence:

$$W(K) \xrightarrow{\tilde{\pi_1}} W(D_0, \tau_0) \xrightarrow{\tilde{\rho}} W(D, \tau) \xrightarrow{p_2} W^{-1}(D_0, \tau_0) \tag{(\star\star)}$$

is exact.

Proof. Let f be a hermitian form over D_0 and V_0 its underlying D_0 -vector space. Then the underlying vector space for $p_2 \tilde{\rho}(f)$ is $V_0 \otimes_k K = V_0 \oplus V_0 \sqrt{d}$ and $p_2 \tilde{\rho}(f)(x_1 \oplus y_1 \sqrt{d}, x_2 \oplus y_2 \sqrt{d}) = f(x_1, y_2) - f(y_1, x_2)$. Thus the space $W = \{x \oplus y_2 \sqrt{d}\}$ $0 \mid x \in V_0$ is a totally isotropic subspace for $p_2 \tilde{\rho}(f)$ and $W^{\perp} = W$. Therefore $p_2\tilde{\rho}(f) = 0$. Let h be an anisotropic hermitian form over D such that $p_2(h) = 0$. In particular, there exists a vector $x \neq 0$ such that $p_2(h)(x, x) = h_2(x, x) = 0$. This implies that $h(x,x) = h_1(x,x) = \alpha \in k$. Since h is anisotropic $\alpha \neq 0$. Therefore we can write $h = < \alpha > \perp h'$. It is easy to see that $\tilde{\rho}(<\alpha >) = <\alpha >$ and induction on the rank of h, yields the exactness at $W(D, \tau)$. We next show that $\tilde{\rho} \tilde{\pi}_1 = 0$. For $\theta = a + b\sqrt{d} \in K^*$, with $a, b \in k^*$, $\tilde{\pi}_1(\langle \theta \rangle) \in W(D_0, \tau_0)$ is represented by the matrix $\begin{pmatrix} a & bd \\ bd & ad \end{pmatrix}$, which is equivalent to the diagonal form $\langle a, adN_{K|k}(\theta) \rangle$. The form $\tilde{\rho} \tilde{\pi}_1(\langle \theta \rangle) \in W(D, \tau)$, is also represented by the form $\langle a, adN_{K|k}(\theta) \rangle$. Since $\langle 1, dN_{K|k}(\theta) \rangle$ is equivalent to $\langle 1, -1 \rangle$ over (D, τ) , $\tilde{\rho} \tilde{\pi}_1 (\langle \theta \rangle) = 0$. Thus $\tilde{\rho} \tilde{\pi}_1 = 0$. Suppose (V_0, h) is an anisotropic hermitian form over (D_0, τ_0) such that $\tilde{\rho}(h) = 0$. Then there exists a vector $x_1 + y_1\sqrt{d} \neq 0 \in V_0 \oplus V_0\sqrt{d}$ such that $\tilde{\rho}(h)(x_1 + y_1\sqrt{d}, x_1 + y_1\sqrt{d}) = 0$. Then $h(x_1, x_1) = h(y_1, y_1)d$ and $h(x_1, y_1) = h(y_1, x_1)$. Set $a = h(y_1, y_1)$ and $bd = h(y_1, y_1)$ $h(x_1, y_1)$. Then $\tilde{\pi}_1(\langle a + b\sqrt{d} \rangle)$ is represented by the matrix $\begin{pmatrix} a & bd \\ bd & ad \end{pmatrix}$, which is the matrix representing h restricted to the subspace of V_0 spanned by (x_1, y_1) . The proof of the proposition now follows by induction on the rank of h.

Let $K = k(\sqrt{d})$ be a quadratic field extension of a field k of characteristic different from 2 and let D be a central division algebra over K with an involution τ of second kind over K|k. Let $SU_{2n}(D,\tau)$ be the special unitary group with respect to the hyperbolic form $H_{2n} = \begin{pmatrix} o & I_n \\ I_n & 0 \end{pmatrix}$. Let h be a hermitian form over (D,τ) of even rank 2n and trivial discriminant. Then there exists $\xi \in H^1(k, SU_{2n}(D,\tau))$, such that the image of ξ in $H^1(k, U_{2n}(D,\tau))$ is the class of h. We say that the Rost invariant R(h) of h is zero, if there exists a $\xi \in H^1(k, SU_{2n}(D,\tau))$ lifting the class of h and such that $R(\xi) = 0$, where $R(\xi)$ is the Rost invariant associated to ξ .

Lemma 8.2 Let K be a field such that vcd(K) = n. For any field extension E of K, with $[E:K] \leq 2$ assume that the maps $\overline{e_r}: I^r(E)/I^{r+1}(E) \rightarrow H^r(E)$ are well defined isomorphisms for all $r \geq 0$. Then the map $I^{n+1}(K) \rightarrow C(\mathcal{X}_K, 2^{n+1}\mathbb{Z})$ is surjective, \mathcal{X}_K denoting the space of orderings of K.

Proof. Let $\phi \in C(\mathcal{X}_K, 2^{n+1}\mathbb{Z})$. By ([S], 3.6.1), there exists a quadratic form $q \in W(K)$, such that $sgn(q) = 2^m \phi$, for some $m \ge 0$. Multiplying q by

 $< 1, 1 >^{\otimes s}$, if necessary, we may assume that $q \in I^{n+1}(K)$. Suppose m > 0. We have the following commutative diagram:

$$\begin{array}{rcl}
I^{n+1}(K) & \stackrel{sgn}{\to} & C(\mathcal{X}_K, 2^{n+1}\mathbb{Z}) \\
\downarrow e_{n+1} & & \downarrow \mod 2^{n+2} \\
H^{n+1}(K) & \stackrel{h_{n+1}}{\to} & C(\mathcal{X}_K, \mathbb{Z}/2\mathbb{Z})
\end{array}$$

where h_{n+1} is as defined in (cf. [AEJ1], remark following theorem 2.3). Since m > 0, the signature of q modulo 2^{n+2} is zero. We have an exact sequence in Galois cohomology,

$$H^{r}(K(\sqrt{-1})) \stackrel{cores}{\to} H^{r}(K) \stackrel{\cup (-1)}{\to} H^{r+1}(K) \to H^{r+1}(K(\sqrt{-1})).$$

Since $vcd(K) \leq n$, $H^r(K(\sqrt{-1})) = 0$, for $r \geq n+1$, so that $\cup(-1)$ is an isomorphism. Thus $H^{n+1}(K)$ is (-1)-torsion free. By ([AEJ1], 2.2 and 2.3), h_{n+1} is injective. Since $h_{n+1}(e_{n+1}(q)) = 0$, $e_{n+1}(q) = 0$. Since $\overline{e_{n+1}}$ is an isomorphism, $q \in I^{n+2}(K)$. Since the map $I^{n+1}(K) \overset{\otimes < 1, 1>}{\longrightarrow} I^{n+2}(K)$ is surjective (cf.[AEJ1], pg. 22, remark following 1.16), there exists $q_1 \in I^{n+1}(K)$, such that $[< 1, 1 > \otimes q_1] = [q]$. We have $sgn(q_1) = 2^{m-1}\phi$. Repeating the process, we arrive at $q \in I^{n+1}(K)$ with $sgn(q) = \phi$.

We have the following classification theorem for hermitian forms.

Theorem 8.3 Let $K = k(\sqrt{d})$ be a quadratic extension of a number field k. Let k(X) be the function field of a smooth geometrically integral curve X over k and $K(X) = K \otimes_k k(X)$. Let (D, τ) be a quaternion division algebra over K(X), with a K(X)|k(X) unitary involution τ . Let h_1 and h_2 be hermitian forms over (D, τ) which have the same rank, discriminant and such that $R(h_1 \perp (-h_2)) = 0$. Suppose further that h_1 and h_2 are equivalent over $k_v(X)$, for every $v \in \Omega_k$. Then $h_1 \cong h_2$.

Proof. Let $h = h_1 \perp (-h_2)$. Let $D_0 = (a, b)_{k(X)} \subset D$ be a quaternion algebra over k(X), such that $D = D_0 \cdot K(X)$ and τ restricted to D_0 is τ_0 , τ_0 denoting the canonical involution on D_0 . Let C be the conic, $aX_1^2 + bX_2^2 - 1 = 0$. The algebra $D \otimes_{k(X)} k(X)(C)$ is split and the hermitian form h over $D_{k(X)(C)}$ corresponds by Morita equivalence to a hermitian form over K(X)(C)|k(X)(C), which in turn corresponds to a quadratic form q(h) over k(X)(C), of even rank, trivial discriminant and trivial Clifford and Rost invariants. Hence $[q(h)] \in I^4(k(X)(C))$. Further, [q(h)] is zero in $W(k_v(X)(C))$, for every $v \in \Omega_k$. By (5.3), $I^4(k(X)(C)) \to \prod_{v \in \Omega_k} I^4(k_v(X)(C))$ is injective. Hence h is zero in $W(D_{k(X)(C)}, \tau)$. We have the following commutative diagram:

$$\begin{array}{cccc} W(D,\tau) & \xrightarrow{p_2} & W^{-1}(D_0,\tau_0) \\ \downarrow & & \downarrow \\ W(D_{k(X)(C)},\tau) & \xrightarrow{p_2} & W^{-1}(D_{0_{k(X)(C)}},\tau_0) \end{array}$$

with the second vertical map injective by (cf. [PSS]), so that $p_2(h)$ is zero in $W^{-1}(D_0, \tau_0)$. Hence by 8.1, there exists $h' \in W(D_0, \tau_0)$, such that $\tilde{\rho}(h') = h$.

We show that h' can be chosen to have trivial Pfaffian norm (cf. [KMRT], pg. 19). Since R(h) = 0, there exists a lift $\xi \in H^1(k(X), SU_{2n}(D, \tau))$ of h such that $R(\xi) = 0$. Since $\rho_0(h')$ is also a lift of h in $H^1(k(X), SU_{2n}(D, \tau))$, by (cf. [KMRT], pg. 387, last paragraph), there exists $\mu \in K(X)^{*1}$ such that $\rho_0(h')_{\tilde{\xi}} = \delta(\mu)$, where $\tilde{\xi}$ is a cocycle representing the cohomology class ξ and δ is the connecting map in (*) for the groups $(SU_{2n}(h))_{\tilde{\xi}}$ and $(U_{2n}(h))_{\tilde{\xi}}$. By (cf. [G1], §2.3, lemma 7), $R(\rho_0(h')_{\tilde{\xi}}) = R(\rho_0(h')) + R(\xi)$. As $R(\xi) = 0$ we have, $R(\delta(\mu)) = R(\rho_0(h'))$. By (7.2), $R(\rho_0(h') = Pf(h') \cup (D_0)$. Let $\mu = \nu^{-1}\tau(\nu)$, for some $\nu \in K(X)^*$. Then by (7.1), $R(\delta(\mu)) = N_{K(X)|k(X)}(\nu) \cup (D_0) = Pf(h') \cup (D_0)$. Hence $Pf(h') = N_{K(X)|k(X)}(\nu)$. Nrd(x), for some $x \in D_0$. If $h' \cong \langle \lambda_1, \cdots, \lambda_{2n} \rangle$, then replacing h' by the equivalent form $\langle \lambda_1 x \tau(x), \cdots, \lambda_{2n} \rangle$, we assume that $Pf(h') = N_{K(X)|k(X)}(\nu)$. Now replacing h' by the form $h' \perp < 1, -N_{K(X)|k(X)}(\nu) >$, we assume that Pf(h') is trivial, noting that $\tilde{\rho}(\langle 1, -N_{K(X)|k(X)}(\nu) \rangle = 0$ in $W(D, \tau)$.

We have, $W(D_0, \tau_0) \cong W(k(X)).n_{D_0}$, under the map $f \mapsto q_f$, where $q_f(x, x) = f(x, x)$ and n_{D_0} denotes the norm form of D_0 , (cf. §3). If $f \cong \langle \lambda_1, \dots, \lambda_n \rangle \in W(D_0, \tau_0)$ then $q_f = \langle \lambda_1, \dots, \lambda_n \rangle \otimes n_{D_0}$. We set $Q_f = \langle \lambda_1, \dots, \lambda_n \rangle$ as an element of W(k(X)). We note that for $f \in W(D_0, \tau_0)$, $Pf(f) = disc(Q_f)$.

As Pf(h') = 1, we have $Q_{h'} \in I^2(k(X))$. We claim that h' is in the image of $\tilde{\pi}_1$.

Consider the exact sequence $(\star\star)$ locally, for a real place v of k such that $K_v = K \otimes k_v$ is a proper quadratic extension of k_v . Since $\tilde{\rho}((h')_{k_v(X)}) = 0$, there exists $f_v \in W(K_v(X))$ such that $[(h')_{k_v(X)}] = [\tilde{\pi}_1(f_v)]$. Hence $[q_{h'}] =$ $[(Q_{h'} \otimes n_{D_0})_{k_v(X)}] = [\pi_1(f_v) \otimes n_{D_0}].$ Since $cd(K_v(X)) \le 1, Br(K_v(X)) = 0,$ so that $D_{0K_v(X)}$ is split. Hence $\pi_1(f_v) \otimes n_{D_0} = \pi_1(f_v \otimes n_{D_0K_v(X)}) = 0$. In particular, $(h')_{k_v(X)} = 0$. Consider a real place v of k, such that $K_v = K \otimes k_v$ is isomorphic to $K_{w_1} \times K_{w_2}$, where w_1 and w_2 are two orderings of K, extending the ordering v of k. Then the map $I^2(K_v(X)) \xrightarrow{\pi_1} I^2(k_v(X))$ is surjective, so that there exists $f_v \in I^2(K_v(X))$, such that $\pi_1(f_v) = (Q_{h'})_{k_v(X)}$. Let $f_v =$ (f_{w_1}, f_{w_2}) . We define a continuous function ϕ on $\mathcal{X}_{K(X)}$, as follows. The space $\mathcal{X}_{K(X)}$ is the union of open and closed sets $\mathcal{X}_{K_w(X)}$, w varying over the real orderings of K. For an ordering w of K lying over an ordering v of k, we set $\phi_w = sgn_w(f_v \otimes (n_{D_0})_{K_v(X)}). \text{ Since } f_v \in I^2(K_v(X)), \ \phi_w \in C(\mathcal{X}_{K_w(X)}, 16\mathbb{Z}),$ for every $w \in \mathcal{X}_{K_w(X)}$. By (8.2), there exists a quadratic form $q_2 \in I^4(K(X))$, such that $sgn_w(q_2) = \phi_w$. We claim that q_2 is a multiple of n_{D_0} . Consider the following commutative diagram:

$$\begin{array}{ccccc}
I^4(K(X)) & \stackrel{i_C}{\to} & I^4(K(X)(C)) \\
\downarrow & & \downarrow \\
\prod_{w \in \mathcal{X}_K} I^4(K_w(X)) & \to & \prod_{w \in \mathcal{X}_K} I^4(K_w(X)(C))
\end{array}$$

If w is a finite place of K, $I^4(K_w(X))$ is zero, so that, $(i_C(q_2))_w$ is zero. Let w be a real place of K. Since $sgn_w(q_2) = sgn_w(f_w \otimes n_{D_0})$, q_2 is Witt equivalent to $f_w \otimes n_{D_0}$, since the signature is the only invariant for quadratic forms in $I^4(K_w(X))$. Hence q_2 is split over $K_w(X)(C)$ and the element $i_C(q_2) \in I^4(K(X)(C))$ is locally zero, for every $w \in \mathcal{X}_K$. By (5.3), $i_C(q_2) = 0$. Hence $q_2 = q_3 \otimes n_{D_0}$, for some $q_3 \in W(K(X))$. Clearly, q_3 is even dimensional. Since $q_2 = q_3 \otimes n_{D_0} \in I^4(K(X))$ and $(q_3 \perp < 1, -disc(q_3) >) \otimes n_{D_0} \in I^4(K(X))$, $< 1, -disc(q_3) > \otimes n_{D_0} \in I^4(K(X))$ and being of rank 8 is zero. Replacing q_3 by $q_3 \perp < 1, -(disc(q_3)) >$ if necessary, we assume that $q_3 \in I^2(K(X))$. We have,

Hence the form $q_{h'} \perp (-q_{\tilde{\pi}_1(q_3)}) \in I^4(K(X))$ is torsion. Since $I^4(K(X))$ is torsion free (cf. [AEJ2], cor.3), $q_{h'} \perp (-q_{\tilde{\pi}_1(q_3)})$ is equivalent to zero. Hence $h' = \tilde{\pi}_1(q_3)$ and $\tilde{\rho}(h') = h$ is zero in $W(D, \tau)$.

9 A classification theorem for hermitian forms over division algebras of odd degree with a unitary involution

Let k be a number field and X a smooth geometrically integral curve over k. Let k(X) be the function field of X and for $v \in \Omega_k$, let $k_v(X)$ denote the function field of the curve X_{k_v} . Let K be a quadratic field extension of k and $K(X) = K \otimes_k k(X)$ and for $v \in \Omega_k$, let $K_v(X) = K \otimes_k k_v(X)$. Let (D, τ) denote a central division algebra of odd degree over K(X) with a K(X)|k(X) unitary involution τ . We prove the following classification theorem:

Theorem 9.1 Let the notation be as in the previous paragraph. Let h_1 and h_2 in $W(D, \tau)$ be hermitian forms of the same rank and discriminant and such that $h_1 \cong h_2$, locally over $k_v(X)$, for every $v \in \Omega_k$. Then $h_1 \cong h_2$ over k(X).

Proof. Let $h = h_1 \perp (-h_2)$. Then h has even rank, trivial discriminant and is locally zero in $W(D_{K_v(X)}, \tau)$. Let L be an odd degree field extension of k(X)such that $D_{L\otimes_{k(X)}K(X)}$ is split, (cf. [BP1], 3.3.1). Let L = l(Y), where l is the field of constants of L. By Morita equivalence h corresponds to a hermitian form over $L \otimes_{k(X)} K(X) \mid L$ and hence to a quadratic form q(h) over L. Moreover, q(h) has even rank, trivial discriminant, trivial Clifford invariant and is locally zero in $W(l_w(Y))$, for every $w \in \Omega_l$. Hence $q(h) \in I^3(l(Y))$ and is locally zero in $I^3(l_w(Y))$, for every $w \in \Omega_l$. By ([AEJ2], theorem 4), q(h) is zero in W(l(Y)). As L is an odd degree extension of k(X), by ([BL], theorem 2.1), h is zero in $W(D, \tau)$. Hence $h_1 \cong h_2$.

10 Hasse principle for some groups of type ${}^{2}A_{n}$

We begin with a result on the Hasse principle for special unitary groups of hermitian forms over quaternion algebras with unitary involutions.

Theorem 10.1 Let (D, τ) be a quaternion division algebra over a number field K, with a K|k unitary involution τ . Let X be a smooth geometrically integral curve over k. Let k(X) be the function field of X and for each $v \in \Omega_k$, let $k_v(X)$ be the function field of the curve X_{k_v} . Let $K(X) = K \otimes_k k(X)$ and for $v \in \Omega_k$, let $K_v(X) = K \otimes_k k_v(X)$. Let h be a hermitian form over (D, τ) . Let SU(h) denote the special unitary group of h. Then the natural map $H^1(k(X), SU(h)) \to \prod_{v \in \Omega_k} H^1(k_v(X), SU(h))$ has trivial kernel.

Proof. Let $\xi \in H^1(k(X), SU(h))$ be such that ξ is locally trivial in $H^1(k_1(X), SU(h))$ for every $y \in \Omega$. Under the map $H^1(k(X), SU(h))$

 $H^1(k_v(X), SU(h))$, for every $v \in \Omega_k$. Under the map $H^1(k(X), SU(h)) \to H^1(k(X), U(h))$, let ξ map to the hermitian form h'. Then the hermitian form $h' \perp (-h)$ has even rank, trivial discriminant and is locally trivial. We claim that the Rost invariant, $R(h' \perp (-h))$ is trivial. We first note that as ξ is locally trivial, $R(\xi)$ is locally trivial in $H^3(k_v(X), \mathbb{Q}/\mathbb{Z}(2))$ for every $v \in \Omega_k$. Hence $R(\xi)$ is zero in $H^3(k(X), \mathbb{Q}/\mathbb{Z}(2))$, by (2.3). We now consider the map $SU(h) \to SU(h \perp (-h))$, given by, $f \mapsto (f, 1)$. This gives rise to a map from $H^1(F, SU(h)) \xrightarrow{i} H^1(F, SU(h \perp (-h)))$, and the image of ξ under this map corresponds to the hermitian form $h' \perp -h$ in $H^1(k(X), U(h \perp -h))$. By (cf. [KMRT], pg. 436), there exists an integer n_i , such that $n_i R(\xi) = R(i(\xi))$. By going over to a suitable field extension of k, where D is split and the Rost invariant is computed, we see that $n_i = 1$. Hence $R(i(\xi)) = 0$ and in particular, $R(h' \perp (-h)) = 0$. Since $h' \perp (-h)$ is a hermitian form of even rank, trivial discriminant, trivial Rost invariant and is locally trivial, by (8.3), we have $h' \cong h$ in $W(D, \tau)$. We have the following exact sequence of algebraic groups,

$$1 \to SU(h) \to U(h) \to R^1_{K(X)|k(X)}(G_m) \to 1$$

The above sequence gives rise to the following cohomology exact sequence,

$$U(h)(k(X)) \xrightarrow{Nrd} K^{*1} \to H^1(k(X), SU(h)) \to H^1(k(X), U(h)).$$

Since ξ maps to the trivial element in $H^1(k(X), U(h))$, there exists $\nu \in K(X)^{*1}$ such that under the connecting map $K(X)^{*1} \to H^1(k(X), SU(h))$, the image of ν is ξ . Since ξ is locally trivial, we have $\nu \in Nrd(U(h)(k_v(X)))$ for every $v \in \Omega_k$. We show that the natural map

$$K(X)^{*1}/\operatorname{Nrd}(U(h)(k(X))) \to \prod_{v \in \Omega_k} K_v(X)^{*1}/\operatorname{Nrd}(U(h)(k_v(X)))$$

is an injection. By (cf. [KMRT], pg. 202), we have,

$$Nrd(U(h)(k(X))) = \{z \tau(z)^{-1} \mid z \in Nrd(D)\} \\ = Nrd(U_2(D,\tau)(k(X))),$$

where $U_2(D,\tau)$ is the unitary group of the hyperbolic form $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, in dimension 2. We have the following commutative diagram,

Thus, to complete the proof of the theorem, we show that the natural map

$$H^1(k(X), SU_2(D, \tau)) \to \prod_{v \in \Omega_k} H^1(k_v(X), SU_2(D, \tau))$$

has trivial kernel.

Let $D = D_0 \cdot K$ with the restriction of τ to D_0 being the canonical involution on D_0 . By (cf. [KMRT], 15.35 and 15.36), we have $SU_2(D,\tau) = Spin(q)$, where $q = \langle 1, -d \rangle \perp n_{D_0}$, where $K = k(\sqrt{d})$ and n_{D_0} denotes the norm form on the quaternion algebra D_0 . Hence there is a bijection

$$i: H^1(k(X), SU_2(D, \tau)) \xrightarrow{\cong} H^1(k(X), Spin(q))$$

and by (cf. 4.1), $H^1(k(X), Spin(q)) \to \prod_{v \in \Omega_k} H^1(k_v(X), Spin(q))$ has trivial kernel and hence $H^1(k(X), SU_2(D, \tau)) \to \prod_{v \in \Omega_k} H^1(k_v(X), SU_2(D, \tau))$ has trivial kernel. In particular, in diagram ($\star \star \star$), the left vertical map is injective. This completes the proof of the theorem. \Box

The following proposition will be used in the proof of (10.4).

Proposition 10.2 Let L be a quadratic field extension of a field E of characteristic not 2. Let (A, σ) be a central division algebra over L of even degree, with a L|E unitary involution. Let h be a hermitian form over (A, σ) . Then for any field extension M of E, we have,

$$N_{M\otimes_E L \mid L}(Nrd(U(h)(M))) \subset Nrd(U(h)(E)).$$

Proof. Set $ML = M \otimes_E L$. Let $\phi_{L|E}$ and $\phi_{ML|M}$ denote the non trivial automorphisms of L over E and ML over M respectively. By (cf. [KMRT], pg. 202), $Nrd(U(h)(M)) = \{z\phi_{ML|M}(z)^{-1} \mid z \in Nrd(D_{ML})\}$. Let $x \in N_{ML|L}(Nrd(U(h)(M)))$. Then $x = N_{ML|L}(y\phi_{ML|M}(y)^{-1})$, for some $y \in Nrd(D_{ML})$. We note that $N_{ML|L}(\phi_{ML|M}(y)) = \phi_{L|E}(N_{ML|L}(y))$. As $N_{ML|L}(Nrd(D_{ML})) \subset Nrd(D)$, setting $t = N_{ML|L}(y)$, we have $t \in Nrd(D)$ and $x = t\phi_{L|E}(t^{-1})$, proving the proposition.

Let (D, τ) be a division algebra with square free index over a number field K, with a K|k unitary involution τ . Let X be a smooth geometrically integral curve over k. Let k(X) be the function field of X and for each $v \in \Omega_k$, let $k_v(X)$ be the function field of the curve X_{k_v} . Let $K(X) = K \otimes_k k(X)$ and for $v \in \Omega_k$,

let $K_v(X) = K \otimes_k k_v(X)$. In the next part of this section we prove the Hasse principle for groups of the form SU(h), where h is a hermitian form over (D, τ) . We begin with the following proposition.

Proposition 10.3 With notation as above, suppose further that (D, τ) has odd degree over K. Let h be a hermitian form over (D, τ) . Let $K(X)^{*1} = \{x \in K(X)^* \mid N_{K(X)|k(X)}(x) = 1\}$. Then the natural map

$$K(X)^{*1}/Nrd(U(h)(k(X))) \to \prod_{v \in \Omega_k} K_v(X)^{*1}/Nrd(U(h)(k_v(X)))$$

is injective.

Proof. Let $\lambda \in K(X)^{*1}$ be locally in $Nrd(U(h)(k_v(X)))$, for every $v \in \Omega_k$. As degree D is odd, by a result of Suresh, (cf. [KMRT], pg. 202), $Nrd(U(h)(k(X))) = Nrd(D_{k(X)}^*) \cap K(X)^{*1}$. As D has square free index and λ is locally a reduced norm from $D_{k_v(X)}$, for every $v \in \Omega_k$, by (3.1), λ is a reduced norm for $D_{k(X)}$. Hence $\lambda \in Nrd(D_{k(X)}^*) \cap K(X)^{*1} = Nrd(U(h)(k(X)))$. \Box

Theorem 10.4 Let (D, τ) be a division algebra with square free index over a number field K, with a K|k unitary involution τ . Let X be a smooth geometrically integral curve over k. Let k(X) be the function field of X. Let h be a hermitian form over (D, τ) . Let SU(h) denote the special unitary group of h. Then the natural map $H^1(k(X), SU(h)) \to \prod_{v \in \Omega_k} H^1(k_v(X), SU(h))$ has trivial kernel.

Proof. Let $\xi \in H^1(k(X), SU(h))$ be such that ξ is locally trivial in

 $H^1(k_v(X), SU(h))$, for every $v \in \Omega_k$. Under the map $H^1(k(X), SU(h)) \to H^1(k(X), U(h))$, let ξ map to the hermitian form h'. Then the hermitian form $h' \perp (-h)$ has even rank, trivial discriminant and is locally trivial. As ξ is locally trivial, the Rost invariant of ξ , $R(\xi)$ is locally trivial in $H^3(k_v(X), \mathbb{Q}/\mathbb{Z}(2))$ for every $v \in \Omega_k$. Hence $R(\xi)$ is zero in $H^3(k(X), \mathbb{Q}/\mathbb{Z}(2))$, by (2.3). Consider the map $SU(h) \to SU(h \perp (-h))$, given by, $f \mapsto (f, 1)$, which gives rise to a map from $H^1(F, SU(h)) \stackrel{i}{\to} H^1(F, SU(h \perp (-h)))$. The image of ξ under this map corresponds to the hermitian form $h' \perp -h$ in $H^1(k(X), U(h \perp -h))$. As in the proof of 10.1, one shows that $R(i(\xi)) = 0$. In particular, $R(h' \perp (-h)) = 0$. Hence $h' \perp (-h)$ is a hermitian form of even rank, trivial discriminant, trivial Rost invariant and is locally trivial. We claim that $h \cong h'$ over k(X).

Suppose the degree of D is odd. Then by the classification theorem (9.1), $h \cong h'$.

Suppose the degree of D is even. Let $D \cong H \otimes_K D'$, where H is a quaternion division algebra over K and D' is an odd degree division algebra over K. Let Lbe an odd degree extension of k such that $(D \otimes_k L, \tau) \cong (M_r(H \otimes_k L), \sigma_f)$, where σ is a unitary $L \otimes_k K | L$ involution on $H \otimes_k L$ and σ_f , the adjoint involution on $M_r(H \otimes_k L)$ with respect to the hermitian form f over $(H \otimes_k L, \sigma)$, (cf. [BP1], 3.3.1). Let $l(Y) = L \otimes_k k(X)$, where l is the field of constants in l(Y). Over l(Y), by Morita theory, $h' \perp (-h)$ corresponds to a hermitian form h_1 over $(H_{l(Y)}, \sigma)$ of even rank, trivial discriminant, trivial Rost invariant and such that h_1 is locally zero in $W(H_{l_w(Y)}, \sigma)$, for every $w \in \Omega_l$. By (8.3), h_1 is zero in $W(H_{l(Y)}, \sigma)$ and hence $h' \perp (-h)$ is zero in $W(D_{l(Y)}, \tau)$. Since [l(Y) : k(X)] = [L : k] is odd, by ([BL], theorem 2.1), $h' \perp (-h)$ is zero in $W(D_{k(X)}, \tau)$ and hence $h \cong h'$ and ξ maps to the trivial element in $H^1(k(X), U(h))$.

We have the following exact sequence of algebraic groups,

$$1 \to SU(h) \to U(h) \to R^1_{K(X)|k(X)}(G_m) \to 1$$

The above sequence gives rise to the following cohomology exact sequence,

$$U(h)(k(X)) \xrightarrow{Nrd} K^{*1} \to H^1(k(X), SU(h)) \to H^1(k(X), U(h)).$$

Since ξ maps to the trivial element in $H^1(k(X), U(h))$, there exists $\nu \in K(X)^{*1}$ such that under the natural map $K(X)^{*1} \to H^1(k(X), SU(h))$, the image of ν is ξ . Since ξ is locally trivial, we have $\nu \in Nrd(U(h)(k_v(X)))$ for every $v \in \Omega_k$. We show that the natural map from

$$K(X)^{*1}/Nrd(U(h)(k(X))) \to \prod_{v \in \Omega_k} K_v(X)^{*1}/Nrd(U(h)(k_v(X)))$$

is injective. If the degree of D is odd, then this follows from proposition 10.3. Hence we assume that the degree of D is even. Let $\lambda \in K(X)^{*1}$ be locally in $Nrd(U(h)(k_v(X)))$, for every $v \in \Omega_k$. Let H, D', L, l(Y) and σ be as in the previous paragraph. As $H^1(l(Y), SU(h)) \to \prod_{w \in \Omega_l} H^1(l_w(Y), SU(h))$ has trivial kernel, (10.1), λ considered as an element of $l(Y)^*$ is in Nrd(U(h)(l(Y))). By proposition (10.2), we have $N_{l(Y)\otimes_{k(X)}K(X)}|_{K(X)}(U(h)(l(Y))) \subset Nrd(U(h)(k(X)))$. As the dimension of L over k is odd, $\lambda^{2r+1} \in Nrd(U(h)(k(X)))$, for some positive integer r. We show that $\lambda^2 \in Nrd(U(h)(k(X)))$. We choose a quadratic field extension N of k such that $H_{N\otimes_k K}$ is split. Then $(D_{N\otimes_k K}, \tau) \cong (M_2(D'_{N\otimes_k K}), \tau')$, for some $N\otimes_k K|N$ unitary involution τ' . The division algebra D' has odd degree and arguing as in the case of odd degree algebras, we have, $\lambda \in Nrd(U(h)(N\otimes_k k(X)))$. Hence $\lambda^2 \in Nrd(U(h)(k(X)))$. Thus, $\lambda \in Nrd(U(h)(k(X)))$ and the proof of the theorem is complete. \Box

11 The groups G_2 and F_4

For any field E, characteristic $E \neq 2$, if G is a semisimple simply connected absolutely almost simple linear algebraic group defined over E of type G_2 , G is isomorphic to Aut(C) where C is a Cayley algebra defined over E. The pointed set $H^1(E, G)$ classifies isomorphism classes of Cayley algebras over E. Given two Cayley algebras C and C', they are isomorphic if and only if their norm forms n_C and $n_{C'}$ are isomorphic. The norm form of a Cayley algebra is a 3-fold Pfister form over E.

Let k be a number field and X be a smooth geometrically integral curve defined over k. Let F = k(X) be its function field and for every $v \in \Omega_k$ let $F_v = k_v(X)$ be the function field of X_{k_v} . Let G be as above of type G_2 over the field F. Then $G \cong Aut(C)$ for some Cayley algebra C over F. Let ξ be an element in $H^1(F, G)$ which is trivial in $H^1(F_v, G)$, for every $v \in \Omega_k$. The element ξ corresponds to a Cayley algebra $C(\xi)$ over F. By hypothesis, $n_C \cong n_{C(\xi)}$ over F_v for every $v \in \Omega_k$. Since the map $I^3(F) \to \prod_{v \in \Omega_k} I^3(F_v)$ is injective, (cf. [AEJ2], theorem 4), $n_C \cong n_{C(\xi)}$ over F so that $C \cong C(\xi)$ i.e., ξ is trivial.

For any field E of characteristic not 2 or 3, if G is a semisimple simply connected absolutely almost simple linear algebraic group defined over E, of type F_4 , G is isomorphic to Aut(J), J being a 27 dimensional central simple Jordan algebra over E. The set $H^1(E, G)$ classifies isomorphism classes of exceptional central simple Jordan algebras over E. Given such a Jordan algebra J over E, there are three invariants, $f_3(J) \in H^3(E)$, $f_5(J) \in H^5(E)$ and $g_3(J) \in$ $H^3(E, \mathbb{Z}/3\mathbb{Z})$, (cf. [Se2], §9). The algebra J is reduced if and only if $g_3(J) = 0$. If J is reduced, the two invariants $f_3(J)$ and $f_5(J)$ completely determine the isomorphism class of J, thanks to the classification theorems of Springer (cf. [Sp], theorem 1).

Let k be an algebraic number field and k(X) as above. Let J be a 27 dimensional exceptional central simple Jordan algebra over k and G = Aut(J). Since $H^1(k(\sqrt{-1}), F_4) = (1)$, (cf. [Se2], §9.4), J is split over $k(\sqrt{-1})$. Hence $g_3(J) = 0$ and J is reduced. Let $\xi \in H^1(F, G)$ be trivial locally at all places of k. Let ξ correspond to an exceptional Jordan algebra J' over F. Since $J' \cong J \otimes F_v$ locally for all v in Ω_k , $g_3(J') = g_3(J \otimes F_v)$, for all $v \in \Omega_k$. Since $H^3(F, \mathbb{Z}/3\mathbb{Z}) \to \prod_{v\Omega_k} H^3(F_v, \mathbb{Z}/3\mathbb{Z})$ is injective (cf. 2.3), $g_3(J') = g_3(J \otimes F) =$ 0. Hence J' is reduced. Similarly, as $f_3(J') = f_3(J \otimes F_v)$, for every $v \in \Omega_k$, we have $f_3(J') = f_3(J \otimes F)$. Since $f_5(J') = f_5(J \otimes F_v)$, for every $v \in \Omega_k$, we have $f_5(J') - f_5(J \otimes F)$ is in the kernel of the natural map $H^5(F) \to \prod_{w \in \mathcal{X}_F} H^5(F_w)$, \mathcal{X}_F denoting all the orderings of F and hence is torsion. As vcd(F) = 3, $H^5(F)$ is torsion free. Hence $f_5(J') = f_5(J \otimes F)$, so that by Springer's theorem, $J' \cong J \otimes F$ and ξ is trivial.

12 The Hasse principle

The aim of this section is to prove the Hasse principle stated in the introduction. We say that a semisimple simply connected absolutely simple group over a field E is of type A^* if it is isomorphic to $SL_1(A)$ for a central simple algebra A over E of square free index or if it is isomorphic to $SU(B,\tau)$ for a central simple algebra B over a quadratic extension L of E of square free index with an L|E involution τ . **Theorem 12.1** Let k be a number field and X a smooth geometrically integral curve defined over k. Let k(X) denote the function field of X and for every $v \in \Omega_k$, let $k_v(X)$ denote the function field of the curve X_{k_v} . Let G be a semisimple simply connected linear algebraic group defined over k, which is the product of the Weil restrictions of absolutely simple groups of types A^* , B_n , C_n , D_n (D_4 non-trialitarian), G_2 , and F_4 . Then the map

$$H^1(k(X),G) \to \prod_{v \in \Omega_k} H^1(k_v(X),G)$$

has trivial kernel.

Proof. Recall that for a finite field extension L of a field E, if $G = R_{L|E}(G')$ is the Weil restriction of a linear algebraic group G' defined over L, then $H^1(E,G) = H^1(L,G')$. The theorem is now a consequence of (3.1, 3.2, 4.1, 4.2, 6.5, 10.1, 10.4 and §11).

Appendix

Rost invariant for the special unitary groups

Let E be a field of characteristic different from 2 and $L = E(\sqrt{d})$ be a quadratic field extension of E. Let (D, τ) be a central division algebra over L with a unitary L|E involution. For a hermitian form h over (D, τ) , we denote the unitary and the special unitary groups with respect to h by U(h) and SU(h) respectively. We have the following exact sequence of algebraic groups,

$$1 \to SU(h) \to U(h) \to R^1_{L|E}(G_m) \to 1$$

which gives rise to the following exact sequence in Galois cohomology,

$$U(h)(E) \xrightarrow{Nrd} L^{*1} \xrightarrow{\delta} H^1(E, SU(h)) \to H^1(E, U(h))$$

The next theorem computes the Rost invariant on the image of δ .

Theorem With the notation as above, for $\mu \in L^{*1}$,

$$R(\delta(\mu)) = Cores_{L|E}((\nu) \cup (D)) \in H^3(E, \mathbb{Q}/\mathbb{Z}(2)),$$

where $\nu \in L^*$ is such that $\mu = \nu \tau(\nu)^{-1}$. **Proof.** We first show that $Cores_{L|E}((\nu) \cup (D))$ is well defined. Indeed, for $\lambda \in E^*$, we have

$$\begin{array}{lll} Cores_{L|E}((\nu \ \lambda) \cup (D)) &= Cores_{L|E}((\nu) \cup (D)) + Cores_{L|E}((\lambda) \cup (D)) \\ &= Cores_{L|E}((\nu) \cup (D)) + (\lambda) \cup Cores_{L|E}(D) \\ &= Cores_{L|E}((\nu) \cup (D)), \end{array}$$

since $Cores_{L|E}(D) = 0$. Set $\xi = Cores_{L|E}((\nu) \cup (D))$. If $\delta(\mu) = 1$, i.e., $\mu \in Nrd(U(h)(E))^*$ then ν can be chosen to be in $Nrd(D)^*$ (cf. [KMRT], pg.

202). Hence $(\nu) \cup (D) = 0$ and $\xi = 0$. Further, $R(\delta(\mu)) = 0$. Hence, in this case, $R(\delta(\mu)) = \xi = 0$. We now assume that $\delta(\mu) \neq 1$. By ([KMRT], pg.438), we have, $R(\delta(\mu))_L = (\mu) \cup (D) = (\nu) \cup (D) + (\tau(\nu)) \cup (D^{-1}) = \xi_L$. Hence corestricting to E, we get, 2. $R(\delta(\mu)) = 2. \xi$.

case.1. Suppose degree (D) is odd. We choose a field extension M of E of degree n, with n odd, such that $D \otimes_E (M \otimes_E L)$ is split. Set $ML = M \otimes_E L$. Since D is split over ML, $\xi_M = 0$. Further, $U(h)(M) \stackrel{Nrd}{\to} (ML)^{*1}$ is surjective, so that $\delta(\mu)_M = 1$. Hence $R(\delta(\mu))_M = 0$. Since $Cores_{M|E} \circ res$ coincides with multiplication by n, we have $n. \xi = n. R(\delta(\mu)) = 0$. As $2. \xi = 2. R(\delta(\mu))$, we have $\xi = R(\delta(\mu))$.

case.2. Suppose degree $(D) = 2^n$, for some positive integer n. Let $\nu = a + b\sqrt{d}$, for some $a, b \in E$. As $\mu \notin Nrd(U(h)(E))$, we have, $b \neq 0$. Consider the rational function field E(t). We extend the base field E to E(t). Set $\mu_t = \frac{t+b\sqrt{d}}{t-b\sqrt{d}}$ and $\nu_t = t + b\sqrt{d}$. Let X_{μ_t} be the torsor corresponding to $\delta(\mu_t) \in H^1(E(t), SU(h))$. Let $E(t)(X_{\mu_t})$ denote the function field of X_{μ_t} . By a result of Rost (cf. [G1], §2.3, theorem 1), the kernel \mathcal{K}_{μ_t} , of the map

$$H^{3}(E(t), \mathbb{Q}/\mathbb{Z}(2)) \xrightarrow{res} H^{3}(E(t)(X_{\mu_{t}}), \mathbb{Q}/\mathbb{Z}(2)),$$

is a finite cyclic group generated by $R(\delta(\mu_t))$. Since $\delta(\mu_t)$ is trivial over $E(t)(X_{\mu_t})$, $\mu_t \in Nrd(U(h)(E(t)))$. Hence there exists $\lambda \in E(t)(X_{\mu_t})^*$ such that $\lambda . \nu_t \in Nrd(D_{E(t)(X_{\mu_t})})$ (cf. [KMRT], pg. 202). Set $\xi_t = Cores_{L(t)|E(t)}((\nu_t) \cup (D))$. Then over $E(t)(X_{\mu_t})$, we have,

$$\xi_{tE(t)(X_{\mu_t})} = Cores_{L(t)(X_{\mu_t})|E(t)(X_{\mu_t})}((\lambda, \nu_t) \cup (D)) = 0.$$

Therefore $\xi_t \in \mathcal{K}_{\mu_t}$. Let s be the order of $R(\delta(\mu_t))$. Then there exists a positive integer $r \leq s$ such that $\xi_t = r$. $R(\delta(\mu_t))$. Since $\xi_{tL(t)} = R(\delta(\mu_t))_{L(t)}$, 2. $\xi_t = 2$. $R(\delta(\mu_t))$ and hence $(2r-2) R(\delta(\mu_t)) = 0$. Hence 2r-2 = sl, for some positive integer l and $r = \frac{sl}{2} + 1$. If l is even, we have $\xi_t = R(\delta(\mu_t))$. Suppose l is an odd integer. Then $\xi_t = (\frac{s}{2} + 1)R(\delta(\mu_t))$. In this case, we show that s = 2m, where m denotes the exponent of D. Suppose $s \neq 2m$. We first note that $\frac{s}{2} \cdot R(\delta(\mu_t))_{L(t)} = (\xi_t - R(\delta(\mu_t)))_{L(t)} = 0$. Hence over E(t), $2m \cdot R(\delta(\mu_t)) = 0$. As s is the order of $R(\delta(\mu_t))$, s divides 2m. As m is a power of 2, $\frac{s}{2} \cdot R(\delta(\mu_t))_{L(t)} = 0$ and $s \neq 2m$, we have $\frac{m}{2} \cdot R(\delta(\mu_t))_{L(t)} = 0$. Let $\partial_{(t-a)} : H^3(L(t), \mathbb{Q}/\mathbb{Z}(2)) \to H^2(L, \mathbb{Q}/\mathbb{Z}(1))$ denote the residue with respect to the prime (t-a) in L(t) (cf. [G1], §1.3). We have, $\partial_{(t-a)}((\mu_t) \cup (D)) = (D)$. Since $R(\delta(\mu_t))_{L(t)} = (\mu_t) \cup (D)$ and $\frac{m}{2} \cdot R(\delta(\mu_t))_{L(t)} = 0$, we have $D^{\frac{m}{2}} = 0$ in Br(L), which is a contradiction. Hence s = 2m. Since $m \cdot \xi_t = Cores_{L(t)|E(t)}((\nu_t) \cup (D^m)) = 0$, we have

$$\begin{array}{rcl} (m+1).\,\xi_t &=& \xi_t \\ &=& (\frac{s}{2}+1).\,R(\delta(\mu_t)) \\ &=& (m+1).\,R(\delta(\mu_t)). \end{array}$$

As 2. $\xi_t = 2. R(\delta(\mu_t))$ and m + 1 is odd, we have $\xi_t = R(\delta(\mu_t))$.

Let \mathcal{O} be the ring of integers of the completion L((t-a)) of L(t) with respect to the discrete valuation corresponding to the prime (t-a) on L(t). Let \mathcal{G} be a semi simple simply connected \mathcal{O} group scheme with the special fibre isomorphic to SU(h) over the residue field L at the prime (t-a). We have the following commutative diagram (cf. [G1], theorem 2)

$$\begin{array}{ccc} H^{1}(L((t-a)),\mathcal{G}_{L((t-a))}) & \stackrel{R_{L((t-a))}}{\to} & H^{3}(L((t-a)),\mathbb{Q}/\mathbb{Z}(2)) \\ & \uparrow & & \uparrow \\ H^{1}_{et}(\mathcal{O},\mathcal{G}) & & & \uparrow \\ & \downarrow & & & \downarrow \\ H^{1}(L,SU(h)) & \stackrel{R_{L}}{\to} & H^{3}(L,\mathbb{Q}/\mathbb{Z}(2)) \end{array}$$

The torsor $\delta(\mu_t)$ over L((t-a)) comes from a torsor for \mathcal{G} over \mathcal{O} , since μ_t is a unit in \mathcal{O} and it specialises to $\delta(\mu)$ in $H^1(L, SU(h))$. In view of the above commutative diagram, $R(\delta(\mu))_{L((t-a))} = R(\delta(\mu_t)) = Cores_{L((t-a))|E((t-a))}((\nu_t) \cup (D))$. Since characteristic E is coprime to m, $\nu_t = b\sqrt{d} + t = b\sqrt{d} + a + (t-a) = (a + b\sqrt{d}) \cdot \alpha^m$, for some $\alpha \in L((t-a))$. Set M = E((t-a))and ML = L((t-a)). Hence $Cores_{ML|M}((\nu_t) \cup (D)) = Cores_{ML|M}(((a + b\sqrt{d}) \cdot \alpha^m) \cup (D)) = Cores_{L|E}((a + b\sqrt{d}) \cup (D))_{ML} + Cores_{ML|M}((\alpha^m) \cup (D))$. Since $Cores_{ML|M}((\alpha^m) \cup (D)) = Cores_{ML|M}((\alpha) \cup (D^m)) = 0$, we have $R(\delta(\mu))_{ML} = Cores_{L|E}((a + b\sqrt{d}) \cup (D))_{ML}$. Since the map $H^3(L, \mathbb{Q}/\mathbb{Z}(2)) \to H^3(ML, \mathbb{Q}/\mathbb{Z}(2))$ is injective, (cf. [G1], §1.3), we have $R(\delta(\mu)) = Cores_{L|E}((a + b\sqrt{d}) \cup (D))$.

case.3. Suppose degree $(D) = 2^l \cdot m$, where *m* is odd. In this case, we choose an extension *M* of *E* of odd degree *n* such that $D_{M\otimes_E L}$ has degree some power of 2. Set $ML = M \otimes_E L$. By the previous case, $R(\delta(\mu))_M = Cores_{ML|M}((\nu) \cup (D_{ML})) = Cores_{L|E}((\nu) \cup (D))_M$. Since $Cores_{ML|M} \circ res$ co-incides with multiplication by *n*, we have $n. R(\delta(\mu)) = n. Cores_{L|E}((\nu) \cup (D))$. As 2. $R(\delta(\mu)) = 2. Cores_{L|E}((\nu) \cup (D))$, we have $R(\delta(\mu)) = Cores_{L|E}((\nu) \cup (D))$.

Remark The above result is also a consequence of a theorem of Merkurjev-Parimala-Tignol, (cf. [MPT], theorem 1.9), in view of the following commutative diagram

where PGU(h) is the projective unitary group with respect to h and $\mu_{n[L]} = kernel(R_{L|E}(\mu_n) \xrightarrow{N_{L|E}} \mu_n)$. The proof of Merkurjev-Parimala-Tignol, uses invariants of quasi-trivial tori.

References

- [A] J. Kr. Arason, Cohomologische invarianten quadratischer formen, J. Algebra 36 (1975), 448 – 491.
- [AEJ1] J. Kr. Arason, R. Elman, and B. Jacob, The graded Witt ring and Galois cohomology I, Can. Math. Soc. Conf.Proc. 4 (1984), 17 – 50.
- [AEJ2] J. Kr. Arason, R. Elman, and B. Jacob, Fields of cohomological 2dimension three, Math. Ann. 274 (1986), 649 – 657.
- [AEJ3] J. Kr. Arason, R. Elman, and B. Jacob, The graded Witt ring and Galois cohomology II, Trans. AMS, 314 (1989), 745 – 780.
- [BL] E. Bayer-Fluckiger and H. W. Lenstra, Forms in odd degree extensions and self-dual normal bases, Amer. J. Math. 112, (1990), 359 373.
- [BP1] E. Bayer-Fluckiger and R. Parimala, Galois cohomology of the Classical groups over fields of cohomological dimension ≤ 2, Invent. Math. 122 (1995), 195 - 229.
- [BP2] E. Bayer-Fluckiger and R. Parimala, Classical groups and the Hasse principle, Ann. of Math. 147 (1998), 651 693.
- [CT] J.-L. Colliot-Thélène, Letter to J-P. Serre, 12 June, 1991.
- [G] P. Gille, Décomposition de Bruhat-Tits et principe de Hasse, J. reine angew. Math. 518 (2000), 145 – 161.
- [G1] P. Gille, Invariants cohomologiques de Rost en caractéristique positive, K-Theory, 21, (2000), 57 – 100.
- [J] U. Jannsen, Principe de Hasse cohomologique, Séminaire de Théorie des Nombres, Paris, (1989 - 90), 121 - 140, Progr. Math., 102, Birkhäuser Boston, Boston, MA, (1992).
- [JR] B. Jacob and M. Rost, Degree four cohomological invariants for quadratic forms, Invent. Math. 96, no. 3 (1989), 551 570.
- [K] K. Kato, A Hasse principle for two-dimensional global fields, J. reine angew. Math. 366 (1986), 142 – 181.
- [KMRT] M.-A. Knus, A. S. Merkurjev, M. Rost, J.-P. Tignol, The Book of Involutions, AMS Colloquium Publications, vol. 44, 1998.
- [L] T. Y. Lam, The Algebraic theory of quadratic forms, W. A. Benjamin, Inc., 1973.
- [M1] A. S. Merkurjev, On the norm residue symbol of degree 2, Doklady Akad. Nauk SSSR 261 (1981), 542 – 547, English translation: Soviet Math. Dokl. 24 (1981), 546 – 551.

- [M2] A. S. Merkurjev, Norm principle for algebraic groups, St. Petersburg J. Math. 7 (1996), 243 – 264.
- [MPT] A.S. Merkurjev, R. Parimala, J.-P. Tignol, Invariants of quasi-trivial tori and the Rost invariant, (preprint)
- [MT] A. S. Merkurjev and J.-P. Tignol, The multipliers of similitudes and the Brauer group of homogeneous varieties, J. reine angew. Math. 461 (1995), 13 - 47.
- [MS] A. S. Merkurjev and A. A. Suslin, Norm residue homomorphism of degree three. (Russian) Izv. Acad. Nauk SSSR Ser. Mat. 54 (1990), no. 2, 339-356; translation in Math. USSR-Izv. 36 (1991), no. 2, 349-367.
- [PR] V. P. Platonov and A. S. Rapinchuk, Algebraic Groups and Number Theory, Academic Press (1994).
- [PSS] R. Parimala, R. Sridharan, V. Suresh, Hermitian Analogue of a theorem of Springer, J. Algebra, 243, (2001), no. 2, 780 – 789.
- [R] I. Reiner, Maximal Orders, LMS Monographs, no. 5, Academic Press, London-New York, (1975).
- W. Scharlau, Quadratic and Hermitian forms, Grundlehren Math. Wiss. 270, Springer-Verlag, Berlin (1985).
- [S1] A. A. Suslin, Algebraic K-theory and the Norm-Residue Homomorphism, J. Soviet Math. 30,(1985), 2556 – 2611.
- [Se1] J-P. Serre, Cohomologie Galoisienne, Lecture Notes in Mathematics 5, Springer-Verlag, (1964 and 1994).
- [Se2] J-P. Serre, Cohomologie Galoisienne: progrès et problèms, Séminaire Bourbaki, exposé no.783, 1993 – 94; Astérisque 227 (1995), 229 – 257.
- [Sp] T. A. Springer, The classification of reduced exceptional simple Jordan algebras, Indag. Math. 22 (1960), 414 – 422.
- [Su] V. Suresh, Galois cohomology in degree 3 of function fields of curves over number fields, (preprint).
- [W] A. Wadsworth, Merkurjev's elementary proof of Merkurjev's theorem, Contemp. Math. 55 (1986), 741 - 776.

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India. E-mail addresses: parimala@math.tifr.res.in preeti@math.tifr.res.in