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Abstract. In our previous paper we describe the Galois module
structures of pth-power class groups K×/K×p, where K/F is a
cyclic extension of degree p over a field F containing a primitive
pth root of unity. Our description relies upon arithmetic invariants
associated with K/F . Here we construct field extensions K/F with
prescribed arithmetic invariants, thus completing our classification
of Galois modules K×/K×p.

Let F be a field of characteristic not p containing a primitive pth
root of unity ξp. For a cyclic field extension K/F with Galois group
Gal(K/F ) of order p, let J = K×/K×p, and let N denote the norm
map from K to F .

In [MS], we proved that the structure of the Fp[Gal(K/F )]-module
J is determined by the following three arithmetic invariants:

• d = d(K/F ) := dimFp
F×/N(K×),

• e = e(K/F ) := dimFp
N(K×)/F×p, and

• Υ(K/F ) := 1 or 0 according to whether ξp ∈ N(K×) or not.

Now if G = Z/pZ, then J may be considered an Fp[G]-module via
any isomorphism G ∼= Gal(K/F ), and the module structure of J is
independent of the choice of isomorphism. It is a fundamental problem
to classify the isomorphism classes of modules J for all K/F in our
context. This problem is solved in Theorem 1 below. Corollaries 1 and
2 of Theorem 1 describe all modules J in an explicit way.
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In the following theorem we determine the sets of invariants (d, e, Υ)
which may be realized by an extension K/F and in so doing classify
all Fp[G]-modules J = J(K/F ) up to isomorphism.

Theorem 1. Let p be a prime number. For arbitrary cardinal numbers
d, e, and for Υ ∈ {0, 1}, there exists a cyclic field extension K/F of
degree p containing a primitive pth root of unity with invariants (d, e, Υ)
if and only if

• if Υ = 0, then 1 ≤ d,
• if p > 2 then 1 ≤ e, and
• if p = 2 and Υ = 1 then 1 ≤ e.

From the theorem above and from [MS, Theorem 3 and Corollary 2]
we immediately obtain the following corollaries. We denote by Mi,j the
jth cyclic module Fp[G] such that dimFp

Mi,j = i, where j is a suitable
index.

Corollary 1. Let p > 2 be a prime number, and let G be a cyclic group
of order p. Then an Fp[G]-module J is realizable as an Fp[Gal(K/F )]-
module K×/K×p for some cyclic G-extension K/F such that F con-
tains a primitive pth root of unity if and only if there exist cardinal
numbers d, e, and Υ ∈ {0, 1} such that

(i) If Υ = 0, then 1 ≤ d;
(ii) 1 ≤ e; and

(iii)

J =

(

⊕

j∈K1

M1,j

)

⊕

(

⊕

j∈K2

M2,j

)

⊕





⊕

j∈Kp

Mp,j



 ,

where

(1) |K1| + 1 = 2Υ + d,
(2) |K2| = 1 − Υ, and
(p) |Kp| + 1 = e.

The invariants d, e, and Υ determine the module J uniquely.

For p = 2 using [MS, Theorem 3 and Corollary 3], along with our
theorem above, we obtain the next corollary.

Corollary 2. Now let G be a cyclic group of order 2. Then an F2[G]-
module J is realizable as an F2[Gal(K/F )]-module K×/K×2 for some
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quadratic extension K/F with its arithmetic invariants d(K/F ), e(K/F ),
and Υ(K/F ) coinciding with d, e, and Υ ∈ {0, 1}, respectively, if and
only if d, e, and Υ satisfy the conditions below.

• if Υ = 0, then 1 ≤ d,
• if Υ = 1, then 1 ≤ e.

In this case

J =

(

⊕

j∈K1

M1,j

)

⊕

(

⊕

j∈K2

M2,j

)

where

(1) |K1| + 1 = 2Υ + d and
(2) |K2| + Υ = e.

Moreover, such a module J is determined uniquely by the invariants
2Υ + d and by e − Υ if e is finite and by e alone if e is infinite.

If p > 2 then two Fp[G]-modules are isomorphic if and only if their
invariants d, e, and Υ are the same, by [MS, Corollary 2]. Thus we see
in particular that if p > 2, then the arithmetic invariants of J depend
only upon the isomorphism type of the Fp[G]-module J .

In the case p = 2, we see from [MS, Corollary 2] again that the
arithmetic invariants d, e, and Υ determine our module F2[G], but two
isomorphic F2[G]-modules may have different arithmetic invariants; see
[MS, Corollary 3]. Here is a very simple, concrete example illustrating
this possibility. Let K1/F1 be a quadratic extension of finite fields
of characteristic not 2, F2 = R((t)) be a field of power series with
coefficients in real numbers R, and K2 = F2(

√
−1). Then both modules

K×
1 /K×2

1 and K×
2 /K×2

2 are isomorphic to a trivial F2[G]-module F2, but
their arithmetic invariants (di, ei, Υi) are (0, 1, 1) for i = 1 and (2, 0, 0)
for i = 2.

1. Notation and Strategy

In all that follows F denotes a field, F× = F \{0} the multiplicative
group of F , p a prime number, and F×/F×p the group of pth-power
classes of F . For each f ∈ F× we denote by [f ] the class of f in
F×/F×p. For each subset A of F× we denote by [A] the set of classes
{[a] | a ∈ A} and by 〈[A]〉 the subgroup of F×/F×p generated by [A].
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We denote by ξp a primitive pth root of unity in F . (Some fields will
be assumed to contain such a primitive pth root; for the other fields in
this paper, we will prove that a primitive pth root is contained in the
field.) Observe that our assumption that there exists a primitive pth
root of unity implies that char(F ) 6= p.

For a Galois extension K/F , Gal(K/F ) denotes the Galois group
and NK/F denotes the norm map from K to F . We denote by F s the
separable closure of F and GF the absolute Galois group Gal(F s/F ).
As usual, H i(GF , Fp) are Galois cohomology groups of F with coef-
ficients in Fp. Since all absolute Galois groups will be pro-p-groups,
all considered Fp modules are trivial. Finally, let |B| be the cardinal
number of a set B.

First observe that the conditions on d, e, and Υ listed in our theorem
above are necessary:

(1) If Υ = 0, then ξp /∈ NK/F (K×) and hence

d = dimFp
F×/NK/F (K×) ≥ 1;

(2) If p > 2 and K = F ( p
√

a) for a suitable a ∈ F× \ F×p, then
a = NK/F ( p

√
a) and hence

e = dimFp
NK/F (K×) > 0.

(3) If p = 2, Υ = 1, and K = F (
√

a) for a suitable a ∈ F× \
F×2, then −1 ∈ NK/F (K×) since Υ = 1. Consequently a ∈
NK/F (K×), and thus 1 ≤ e.

Therefore in order to prove Theorem 1 when p > 2, it is sufficient to
show, for each cardinal numbers d, e as above, for each Υ ∈ {0, 1}, and
for each prime number p > 2, the existence of a field F such that:

• F contains a primitive pth root ξp;
• F×/F×p decomposes intro a direct sum of subgroups

F×/F×p = D ⊕ 〈[a]〉 ⊕ E,

where dimFp
(〈[a]〉 ⊕ E) = e and, setting K = F ( p

√
a),

(1) [NK/F (K×)] = 〈[a]〉 ⊕ E;
(2) dimFp

(F×/NK/F (K×)) = dimFp
D = d; and

(3) Υ = 0 if and only if ξp /∈ NK/F (K×).

In the case p = 2 and Υ = 1 we use the same conditions as above,
and if p = 2 and Υ = 0 we require instead that e = dimF2

E and
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d = dimF2
(D ⊕ 〈[a]〉). The latter condition is imposed because −1 /∈

NF (
√

a)/F (F (
√

a)×) if and only if a /∈ NF (
√

a)/F (F (
√

a)×).

Our strategy is to interpret the required conditions on F×/F×p above
in terms of Galois cohomology. We then observe that these conditions
are satisfied if GF is a free product, in the category of pro-p-groups,
of suitable pro-p-groups G1 and G2, and finally we use the very nice
theorem proved by Efrat and Haran which guarantees the existence of
a field with GF above. This is one of the key results used in our paper.

Theorem 2. (Efrat-Haran; see [EH, Proposition 1.3]) Let F1, . . . , Fn

be fields of equal characteristic such that GF1
, . . . , GFn

are pro-p-groups.
Then there exists a field F of the same characteristic such that

GF
∼= GF1

? · · · ? GFn
,

where the product is free in the category of pro-p-groups.

In order to apply this theorem, we show the existence of the fields F1

and F2 such that GF1
and GF2

are prescribed Galois groups G1 and G2.
We use the techniques of henselian valuations and formal power series
to construct fields F1 and F2.

2. Lemmas

2.1. Valued fields F1 with prescribed residue field F0 and val-

uation group Γ.

Let v be a valuation on a field F1, written additively. Then we
denote by Av the valuation ring {f ∈ F1 | v(f) ≥ 0}; by Mv the unique
maximal ideal {f ∈ Av | v(f) > 0} of Av; by Fv the residue field Av/Mv

of v; by Γ the valuation group v(F×
1 ) of v; and by U the group Av \Mv

of units of v.

The following lemma is well known and we shall omit its straightfor-
ward proof.

Lemma 1. Let F1 be a valued field with valuation v, valuation group
Γ = v(F×

1 ), and group of units U . For each prime p 6= char(F1) there
exists an isomorphism

ϕ : F×
1 /F×p

1 −→ U/Up ⊕ Γ/pΓ.

In particular

dimFp
F×

1 /F×p
1 = dimFp

U/Up + dimFp
Γ/pΓ.
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It is well-known that for each field F0 and for each totally ordered
abelian group Γ, there exists a field F1 with a valuation v : F1 →
Γ ∪ {∞} such that the residue field Fv is isomorphic to F0 and the
valuation group is Γ.

In order to construct such a field, set

F1 = F0((Γ)) := {f : Γ → F0 | supp(f) is well-ordered}.
Thus a typical element f ∈ F1 can be written as a formal sum f =
∑

g∈Γ agt
g such that the set supp(f) := {g ∈ G | ag 6= 0} is a well-

ordered subset of G. The valuation v on f is defined as: v(0) = ∞ and
v(f) = min supp(f) for f 6= 0. An important property of the valued
field F1 as above is the fact that it is henselian. (See for example [Rib,
(1.3)].) In what follows we will identify Fv with F0. We will also assume
that char F0 6= p.

We will be particularly interested in controlling the pth-power classes
of such a field. To do so, we choose particular groups Γ for our valuation
groups. These groups will be direct sums of

Z(p) :=
{a

b
∈ Q

∣

∣ a, b ∈ Z, b 6= 0; if a 6= 0 then (a, b) = 1, p - b
}

.

Observe that Z(p) is the valuation ring of a p-adic valuation on Q. Let
I be any non-empty, well-ordered set. Then set

Γ = Z
(I)
(p) :=

{

γ : I → Z(p)

∣

∣

∣ | supp(γ)| < ∞
}

.

Thus Γ is a direct sum of |I| copies of Z(p). Observe that Z(p) carries
a natural ordering induced from Q, and then we may order Γ lexico-
graphically, as follows. Let γ1 6= γ2 ∈ Γ. Then γ1 < γ2 if and only if
γ1(i) < γ2(i) for the least element i ∈ I such that γ1(i) 6= γ2(i). Then
Γ is a linearly ordered abelian group. Recall that each non-empty set
can be well-ordered. (See [La, Appendix 2, Theorem 4.1].)

We choose Γ as above because GF0((Γ)) will be pro-p (see Lemma 3
below) and because we may control the pth-power classes with the
following lemma. This well-known lemma follows from Lemma 1 and
the fact that the valued field F1 is henselian. It is also an immediate
consequence of [W, Lemma 1.4]. Therefore we shall omit its proof.

Lemma 2. Let F1 = F0((Γ)) as above. Then

dimFp
F×

1 /F×p
1 = dimFp

F×
0 /F×p

0 + dimFp
Γ/pΓ

= dimFp
F×

0 /F×p
0 + |I|.
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Finally, we record a criterion for GF1
being pro-p:

Lemma 3. Let F1 = F0((Γ)) as above with char(F0) = 0 and GF0

pro-p. Then GF1
is pro-p as well.

Proof. From basic valuation theory, nicely summarized in [K, pages 3
and 4], and the fact that F1 above is henselian,

GF1

∼= T o GF0
,

where the action of GF0
on T is uniquely determined by the cyclotomic

character mapping GF0
into a group of automorphisms of a group of

roots of unity contained in F s
0 , and T ∼= ZI

p, the topological product of
|I| copies of Zp. In particular, if GF0

is a pro-p-group, so is GF1
. ¤

2.2. H2(GF1
, Fp) for henselian valued fields F1.

Now we study H2(GF1
, Fp) for our henselian valued fields F1. The

next lemma, taken from [W], will be used in the proof of Theorem 1 to
show that norm groups of cyclic p-extensions of F1 are not too large.

Suppose that F1 is a field endowed with a henselian valuation v
with valuation group Γ = v(F×

1 ). Let F nr
1 denote the maximal un-

ramified extension of F1 in its separable closure F s
1 . Then GF0

∼=
GF1

/ Gal(F s
1 /F nr

1 ). Therefore, after identifying these groups, we have
the inflation map

inf = inf F1

F0
: H∗(GF0

, Fp) −→ H∗(GF1
, Fp).

(See [W, page 483].)

Moreover, from basic Kummer theory we have the canonical isomor-
phism

ϕF : F×/F×p −→ H1(GF , Fp),

as well as the corresponding canonical isomorphisms ϕFi
, i = 1, 2. We

will denote by (f)F or (fi)Fi
the images ϕF ([f ]) or ϕFi

([fi]). If the
context is clear we will omit the subscript.

Assume next that {πj, j ∈ J } is a set of elements of F×
1 such that

their images in Γ/pΓ form a basis of Γ/pΓ over Fp. Then we have the
following lemma, obtained as a special case of a theorem of Wadsworth.

Lemma 4. [W, Theorem 3.6, page 483]. Let F1 and F0 be as above.
Then

H2(GF1
, Fp) = inf(H2(GF0

, Fp)) ⊕j∈J
(

inf(H1(GF0
, Fp)) ∪ (πj)

)

⊕{j1,j2}⊂J , j1 6=j2 ((πj1) ∪ (πj2)) .



8 JÁN MINÁČ AND JOHN SWALLOW

Moreover, for each j ∈ J ,

inf(H1(GF0
, Fp)) ∼= inf(H1(GF0

, Fp)) ∪ (πj)

and for each j1, j2 ∈ J such that j1 6= j2, we have (πj1) ∪ (πj2) 6= 0.

Note that in the last summand of Lemma 4 the sum ranges over
subsets {j1, j2}, j1 6= j2 of J and a choice between (πj1) ∪ (πj2) and
(πj2) ∪ (πj1) is arbitrary but fixed.

2.3. Residue fields F0 with prescribed absolute Galois group.

In our construction of F we choose a residue field F0 depending on
Υ and p. If Υ = 1 we will simply put F0 = C, but when Υ = 0 we
require some special properties of F0. In particular, in order that our
cyclic extension K = F ( p

√
a) have the desired invariant Υ = 0, we

require that K does not embed in a cyclic Galois extension L over F
with degree [L : F ] = p2, for this is equivalent to ξp /∈ NK/F (K×) by
[A, Theorem 3].

To ensure that this nonembeddability condition holds, as well as
to ensure that a certain nonabelian group of order p3 does not occur
as a Galois group over the field, we choose residue fields F0 with ab-
solute Galois groups taking a special form, and it is also convenient
to require that |F×

0 /F×p
0 | is small. As it turns out, we may choose

some suitable algebraic infinite extension of Q. Finitely generated pro-
p-absolute Galois groups over Q and more generally any global field,
were nicely classified in [E2]. (See also [E1] and [JP] for related results
and techniques.)

The extensions we will need for p > 2 are given in the following

Lemma 5. [E2, page 84] For each prime p > 2 there exists an algebraic
extension F0,p of Q such that

GF0,p
= 〈σ, τ | στσ−1 = τ p+1〉pro-p

where the presentation is in the category of pro-p-groups.

Observe that the maximal abelian extension F ab
0,p of F0,p has Gab

F0,p
:=

Gal(F ab
0,p/F0,p) equal to

Gab
F0,p

∼= 〈σ̄, τ̄ | τ̄ p = 1〉 = Zp × Z/pZ

for all primes p > 2.
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2.4. Field arithmetic and free pro-p products.

In this section we collect lemmas giving information about a field F
derived from the structure of GF , especially when GF is a free pro-p
product of two pro-p groups GF1

and GF2
.

First we record a lemma detecting the presence of primitive pth roots
of unity in a field F , based only on the structure of GF .

Lemma 6. Suppose that p > 2 and that F is a field with char(F ) 6= p
and GF pro-p. Then ξp ∈ F×.

Proof. Because char(F ) 6= p, there exists a primitive pth root ξp of unity
in F s. If ξp ∈ F s \ F then F (ξp)/F is a nontrivial Galois extension of
degree [F (ξp) : F ] < p. Therefore GF has a nontrivial finite quotient
of order coprime with p. This contradicts our assumption that GF is a
pro-p-group. Hence ξp ∈ F× as asserted. ¤

Now suppose that GF = GF1
? GF2

for pro-p absolute Galois groups
GF , GF1

, and GF2
, where the free product is taken in the category of

pro-p-groups. From [N, (4.3) Satz] we see that the restriction homo-
morphism

res : H1(GF , Fp) −→ H1(GF1
, Fp) ⊕ H1(GF2

, Fp) (1)

is an isomorphism. Now given (f)F in H1(GF , Fp), we denote the image
res(f)F by

res(f)F = (f)GF1
⊕ (f)GF2

.

This notation distinguishes, then, between (f)F1
, which denotes ϕF1

(f)
for f ∈ F×

1 , and (f)GF1
, which denotes the projection of res ϕF (f) onto

the first summand.

One way of interpreting this restriction map is with the following

Lemma 7. Let GF = GF1
?GF2

be pro-p absolute Galois groups of fields
containing a pth root of unity, and suppose that we have the following
sequence:

GF
can // // GF1

// // Z/pZ.

Here the canonical map can is an identity on GF1
and contains GF2

in
its kernel.

Then the right-hand surjection and the composed surjection corre-
spond to fields K1 = F1( p

√
a1) and K = F ( p

√
a), respectively, where

(a)GF1
= (a1)F1

and (a)GF2
= 0.
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Proof. The surjections are continuous homomorphisms, hence elements
of H1(GF1

, Fp) and H1(GF , Fp), respectively, and the right-hand surjec-
tion is clearly the restriction of the composed surjection. The remainder
follows by Kummer theory. ¤

Lemma 8. Let GF = GF1
? GF2

be pro-p absolute Galois groups and
suppose that (a)F and (b)F satisfy (a)GF1

= (b)GF2
= 0. Then

(a)F ∪ (b)F = 0 ∈ H2(GF , Fp).

The lemma follows from [N, (4.1) Satz] and from [Ris, Prop. 7.3,
page 191]. However, we prove our lemma by translating the cup prod-
ucts into obstructions to basic Galois embedding problems, yielding an
interesting Galois-theoretic variant of the proof.

Proof. If (a) = 0 or (b) = 0, we are done. Otherwise, the conditions
(a)GF1

= (b)GF2
= 0 imply that (a) and (b) are linearly independent in

H1(GF , Fp).

Now let Hp3 be the Heisenberg group of order p3:

Hp3 = 〈v1, v2, w | vp
1 = vp

2 = wp = 1, v2v1 = wv1v2,

[v1, w] = [v2, w] = 1〉
In the case p = 2, H8 is the familiar dihedral group D4.

By [M, Corollary, page 523 and Theorem 3(A)], if (a) and (b) are
linearly independent, then (a)∪ (b) = 0 if and only if Hp3 is the Galois

group Gal(M/F ) of a Galois extension M of F containing F ( p
√

a, p
√

b)
in such a way that

Hp3/〈v1, w〉 = Gal(F ( p
√

a)/F ) and Hp3/〈v2, w〉 = Gal(F (
p
√

b)/F ).

Now consider the commutative diagram

GF

δ1

||||zz
zz

zz
zz

β

²²²²

δ2

"" ""DD
DD

DD
DD

GF1

α1

{{{{xxxxxxxx

GF2

α2

## ##FFFFFFFF

Z/pZ Â Ä 17→v1 // Hp3

〈v1,w〉7→0; v2 7→1

88

〈v2,w〉7→0; v1 7→1

ff
Z/pZ? _

17→v2oo
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Let a2 ∈ F×
2 and b1 ∈ F×

1 satisfy (a2)F2
= (a)GF2

and (b1)F1
= (b)GF1

.

Then set K1 = F1(
p
√

b1) and K2 = F2( p
√

a2); these are Z/pZ-extensions
of F1 and F2, respectively. We may then identify the left-hand Z/pZ in
the diagram with Gal(K1/F1) so that α1 is the surjection of Galois the-
ory. Similarly, the right-hand Z/pZ may be identified with Gal(K2/F2)
with α2 the surjection of Galois theory. Finally, the topmost surjections
δ1 and δ2 are canonical.

By Lemma 7, the surjections δ1α1 and δ2α2 correspond to fields
F ( p

√
b) and F ( p

√
a), respectively. Now because GF = GF1

? GF2
, there

exists a homomorphism β : GF → Hp3 , and because v1 and v2 generate
Hp3 , β is a surjection.

Hence Hp3 is a Galois group over F corresponding to a normal sub-
group H of GF . Consider the smallest normal subgroup H1 of GF

containing H and GF2
. Then by the diagram, GF /H1 is the left-hand

Z/pZ, which corresponds to F ( p
√

b), and H1/H is 〈v2, w〉. Now consider
the smallest normal subgroup H2 of GF containing H and GF1

. Then
by the diagram, GF /H2 is the right-hand Z/pZ, which corresponds to
F ( p

√
a), and H2/H is 〈v1, w〉.

Hence (a) ∪ (b) = 0. ¤

Finally, we close with with a companion to Lemma 7. In Lemma 9
below, π denotes the canonical homomorphism of G to G1 which is an
identity on G1, and is trivial on G2.

Lemma 9. Let G = G1 ? G2 be a free product of G1 and G2 in the
category of pro-p-groups. Suppose that A ∼= Z/pZ is a factor group of
G1 such that the surjection G1 → Z/pZ does not factor through Z/p2Z.
Then the following commutative diagram cannot occur:

G
π // //

²²²²

G1

²²²²
Z/p2Z // // A.

Proof. Suppose that contrary to our statement, such a diagram as the
above exists. Then by passing to quotients by commutator subgroups
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we obtain

Gab
πab

// //

α
²²²²

Gab
1

γ
²²²²

Z/p2Z
β

// // A.

But Gab ∼= Gab
1 ×Gab

2 and the canonical surjection onto Gab
1 is given by

the projection map. Let δ be a splitting map of the projection map.
Then γ = βαδ, contradicting the hypothesis. ¤

3. Proof of the Theorem

First we define fields F0, F1, F2, and F using our given cardinal
numbers d, e, and Υ, as well as the prime number p. Then we define the
cyclic Galois extension K/F of degree p and check that the arithmetic
invariants of K/F coincide with d, e, and Υ.

3.1. Constructing F0, F1, F2, and F .

If Υ = 1 then let F0 = C. If Υ = 0 and p = 2, let F0 = R. (See
Proposition 1 for alternative choices in these two cases.) If Υ = 0 and
p > 2 then let F0,p be the algebraic extension of Q of Lemma 5. In the
first two cases we see trivially that ξp ∈ F0, and in the last case ξp ∈ F0

by Lemma 6. Observe that

dimFp
F×

0 /F×p
0 =











0, if Υ = 1;

1, if Υ = 0, p = 2;

2, if Υ = 0, p > 2.

(2)

We next construct the field F1. Because Υ = 0 implies 1 ≤ d, for
either choice of Υ ∈ {0, 1} there exists a well-ordered set I1 such that

|I1| + 1 = d + 2Υ. Let Γ1 = Z
(I1)
(p) be a direct sum of |I1| copies of Z(p).

Then Γ1 is a linearly ordered abelian group. Finally set F1 := F0((Γ1)).
From Lemmas 2 and 3 it follows that GF1

is a pro-p-group and

dimFp
F×

1 /F×p
1 = dimFp

F×
0 /F×p

0 + |I1|.
Hence

dimFp
F×

1 /F×p
1 =











d + 1, if Υ = 1;

d, if Υ = 0, p = 2;

d + 1, if Υ = 0, p > 2.

(3)
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Similarly, we construct F2 as follows. Because p > 2 and also p = 2
and Υ = 1 implies e > 0, there exists a well-ordered set I2 such that
1 + |I2| = e in either of the cases p > 2 or Υ = 1, p = 2, and |I2| = e

in the case Υ = 0, p = 2. Then again Γ2 = Z
(I2)
(p) is a linearly ordered

abelian group. We set F2 := C((Γ2)). Then from [K, pages 3 and 4] it
follows that GF2

∼= ZI2
p , the topological product of |I2| copies of Zp. In

particular

e =

{

dimFp
F×

2 /F×p
2 + 1, if p > 2 or p = 2 and Υ = 1;

dimFp
F×

2 /F×p
2 , if p = 2, Υ = 0.

(4)

From Theorem 2 we see that there exists a field F of characteristic
zero, such that GF = GF1

?GF2
is a free product of GF1

and GF2
in the

category of pro-p-groups. In particular GF is again a pro-p-group, and
from Lemma 6 we see that F contains a primitive pth root of unity.

3.2. Constructing K/F .

We define the cyclic extension K/F of degree p as K = F ( p
√

a) where
[a] ∈ F×/F×p is chosen via the isomorphism (1).

If Υ = 1 then let (a1)F1
be any nontrivial element in H1(GF1

, Fp),
which is possible since 1 ≤ dimFp

H1(GF1
, Fp) = d + 1. Let (a2)F2

= 0
in H2(GF2

, Fp).

Now suppose Υ = 0 and p > 2. We denote the fixed field of the
factor Zp in Gab

F0

∼= Zp × Z/pZ acting on a maximal abelian extension

F ab
0 of F0 as K0 := F0(

p
√

b). (See the discussion following Lemma 5.)
Because F×

0 /F×p
0 is naturally isomorphic to a subgroup of F×

1 /F×p
1 ,

we may set (a1)F1
= inf(b)F0

6= 0 in H1(GF1
, Fp) and (a2)F2

= 0 in
H2(GF2

, Fp).

Finally assume that Υ = 0 and p = 2. We set (a1)F1
= (−1)F1

6= 0
in H1(GF1

, F2) and (a2)F2
= 0 in H2(GF2

, F2).

Now by (1) there exists a ∈ F× such that (a)F 6= 0 and (a)GFi
=

(ai)Fi
, i = 1, 2. Since we have already determined that ξp ∈ F×, we

see that K = F ( p
√

a) is a cyclic extension of degree p. Hence it remains
to show that the arithmetic invariants d(K/F ), e(K/F ), and Υ(K/F )
coincide with the prescribed cardinal numbers d, e, and Υ respectively.
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3.3. Determining d(K/F ) and e(K/F ) via annihilators.

We first observe some relationships among cup products of elements
in H1(GF , Fp). Recall that Lemma 8 tells us that if c1, c2 ∈ F× with
(c1)GF1

= (c2)GF2
= 0 then

(c1)F ∪ (c2)F = 0 ∈ H2(GF , Fp). (5)

Moreover, recall that by [N, Satz 4.1]

H2(GF , Fp) ∼= H2(GF1
, Fp) × H2(GF2

, Fp),

where the isomorphism is induced by the restriction maps

resi : H2(GF , Fp) → H2(GFi
, Fp), i = 1, 2.

Because these restriction maps commute with cup product maps ([Ris,
Proposition 7.3, page 191]), we see that if c1, c2 ∈ F× such that
(c1)GF2

= (c2)GF2
= 0 in H2(GF2

, Fp) then

(c1)F ∪ (c2)F 6= 0 iff (c1)GF1
∪ (c2)GF1

6= 0, (6)

where the first cup product lies in H1(GF , Fp) and the second cup
product lies in H1(GF1

, Fp). By symmetry the analogous statement
with F1 and F2 exchanged holds as well.

Now we calculate e(K/F ). We adopt the following notation for an
annihilator of φ ∈ H1(GF , Fp):

annF1
φ := {η ∈ H1(GF , Fp) | η ∪ φ = 0}.

For x ∈ F× we have x ∈ NK/F (K×) if and only if (x)F ∪ (a)F = 0 in
H2(GF , Fp). Therefore, using (5) and (6) with the fact that in every
case (a)GF2

= 0,

e(K/F ) = dimFp
N(K×)/F×p

= dimFp
{(x)F ∈ H1(GF , Fp) | (a)F ∪ (x)F = 0}

= dimFp
{(y)F1

∈ H1(GF1
, Fp) | (a)GF1

∪ (y)F1
= 0}

+ dimFp
H1(GF2

, Fp)

= dimFp
annF1

(a)GF1
+ dimFp

F×
2 /F×p

2 .

If Υ = 1 then H1(GF0
, Fp) = 0, and so by Lemma 4 we have

dimFp
annF1

(a)GF1
= 1.

If p > 2 and Υ = 0 then by Lemma 4,

dimFp
annF1

(a)GF1
= dimFp

annF0
(b)F0

,
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where b was chosen so that K0 = F0(
p
√

b) was the fixed field of the factor
Zp in Gab

F0
. Now because (b)F0

∪ (b)F0
= 0 as an identity in H2(GF , Fp)

for p > 2,
1 ≤ dimFp

annF0
(b)F0

≤ 2.

On the other hand, let c ∈ F× \ F×p be defined so that F0( p
√

c) is
contained in the fixed field of the factor Z/pZ in Gab

F0
. Then by (2),

{(b)F0
, (c)F0

} spans H1(GF0
, Fp). Furthermore, since by Lemma 5, Hp3

is not a quotient of GF0,p
, (b)F0

∪ (c)F0
6= 0 by [M, Corollary, page 523

and Theorem 3(A)]. We conclude that dimFp
annF0

(b)F0
= 1.

Finally, if p = 2 and Υ = 0 then again by Lemma 4

dimF2
annF1

(a)GF1
= dimF2

annF0
(−1)F0

.

As F0 = R, dimF2
F×

0 /F×2
0 = 1 and (−1)R ∪ (−1)R 6= 0, yielding

dimF2
annF1

(a)GF1
= 0.

Combining our results with (4), we have that e(K/F ) = e.

Now we turn to a similar calculation of d(K/F ). Again using (5)
and (6) with the fact that in every case (a)GF2

= 0,

d(K/F ) = dimFp
(H1(GF , Fp)/ annF (a)F )

= dimFp
(H1(GF1

, Fp)/ annF1
(a)GF1

)

= d.

For this last equality we use (3) together with calculations of the di-
mension of annF1

(a)GF1
already achieved. Hence d(K/F ) = d in all

cases.

3.4. Determining Υ via quotients of GF .

It remains to show that Υ(K/F ) = Υ. First consider the case Υ = 1.
Since F0 = C, ξp is a pth power in F1, and F1( p

√
a) embeds in a Z/p2Z-

extension F1( p2
√

a) of F1. Then the surjection GF1
→ Gal(K1/F1)

factors through Z/p2Z. Following the surjection with the canonical
surjection GF → GF1

, we see that Z/p2Z is a factor group of GF .
Moreover, by Lemma 7, the surjection GF → Z/pZ corresponds to K.
Hence K/F embeds in a Z/p2Z-extension of F . By [A, Theorem 3],
ξp ∈ NK/F (K×). Therefore Υ(K/F ) = 1 = Υ.

Now consider the case Υ = 0 and p > 2. Because K0 = F0(
p
√

b)
does not embed in a Z/p2Z-extension of F0, ξp /∈ NK0/F0

(K×
0 ). (See

3.2 for the definition of K0.) Hence (b)F0
∪ (ξp)F0

6= 0 in H1(GF0
, Fp),
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and, by Lemma 4, (inf(b))∪ (ξp)F1
6= 0 in H1(GF1

, Fp) as well. Choose
b1 ∈ F×

1 so that (b1)F1
= inf(b)F0

and set K1 = F1(
p
√

b1). Then ξp /∈
NK1/F1

(K×
1 ) and by [A, Theorem 3] the field extension K1/F1 does not

embed in a Z/p2Z-extension of F1. Therefore the surjection GF1
→

Gal(F1(
p
√

b)/F1) does not factor through Z/p2Z. From Lemmas 7 and
9 we see that surjection GF → Gal(K/F ) does not factor through
Z/p2Z. Again by [A, Theorem 3] we conclude that ξp /∈ NK/F (K×)
and therefore Υ(K/F ) = 0 = Υ.

Finally consider the case Υ = 0 and p = 2. Because −1 /∈ NC/R(C)
from Lemma 4 we conclude that −1 /∈ NK1/F1

(K×
1 ). By [A, Theorem 3]

the surjection GF1
→ Gal(K1/F1) does not factor through Z/4Z. As

in the previous case, by Lemmas 7 and 9 we see that K/F does not
embed in a Z/4Z-extension of F . Again by [A, Theorem 3] we see that
−1 /∈ NK/F (K×) and therefore Υ(K/F ) = 0 = Υ.

Hence we have checked in all cases that Υ(K/F ) = Υ, and our proof
of Theorem 1 is now complete. ¤

Remark. In [EH, Lemma 1.2 and Proposition 1.3] Efrat and Haran
construct some fields with prescribed absolute Galois groups together
with some bounds on the transcendence degrees of these fields. These
bounds, together with the replacement of C by an algebraic closure of
Q and of R by a real-closed algebraic number field R in the case when
p = 2 and Υ = 0 in our proof above, yield the following proposition.

Proposition 1. Suppose that p is a prime number, and let d, e, and
Υ ∈ {0, 1} be cardinal numbers such that if Υ = 0 then 1 ≤ d, if p > 2
then 1 ≤ e, and if p = 2 and Υ = 1 then 1 ≤ e. Then there exists a
field F containing Q(ξp) and a cyclic Galois extension K of degree p
over F such that

e(K/F ) = e, d(K/F ) = d, and Υ(K/F ) = Υ.

Moreover
tr. deg(F/Q) ≤ 1 + max{e, d + 1}.

In particular if d, e ∈ N ∪ {0}, there exists a Galois cyclic extension
K/F of degree p with prescribed invariants d, e, and Υ of finite tran-
scendence degree over its prime field Q.
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