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Abstract

Let D be a noncommutative division algebra of finite dimension over
its centre F'. Given a maximal subgroup M of GL, (D) with n > 1, it is
proved that either M contains a noncyclic free subgroup or there exists
a finite family {K;}] of fields properly containing F' with K C M for
all 1 <4 <r such that M/A is finite if CharF = 0 and M /A is locally
finite if CharF = p > 0, where A = K{ x --- x K.

1 Introduction

Let D be a division algebra of finite dimension over its centre F'. Denote by
M,,(D) the n x n matrix ring over D and SL, (D) the commutator subgroup of
the multiplicative group GL, (D) = M, (D)*. Given a subgroup G of GL,(D),
we shall say that G is mazimal in GL, (D) if for any subgroup H of GL, (D)
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with G C H, one concludes that H = GL,(D). We know, by Corollary 1
of [11], that G(A) := A*/RN(A*)A’, where A := M, (D), A" = SL,(D), and
RN (A*) is the image of A* under the reduced norm of A to F', is an abelian tor-
sion group of a bounded exponent dividing the degree of A over F'. This group
is not trivial in general. For example, if A is the algebra of real quaternions,
then G(A) is trivial whereas for rational quaternions G(A) is isomorphic to a
direct product of copies of Z, as it is easily checked. Assume that G(A) is not
trivial, then by Prufer-Baer Theorem (cf. [13, p. 105]), we conclude that G(A)
is isomorphic to a direct product of Z,,, where r; divides the index of A over
F. In this way one may obtain normal maximal subgroups of finite index in
GL, (D). So, if G(A) is not trivial, then GL,,(D) contains maximal subgroups.
For some examples of non-normal maximal subgroups of GL, (D), see [12] or
[3, p. 140]. It is shown in [12] that even for the case G(A) = 1 we may have
maximal subgroups in GL, (D). But the question of whether GL, (D) has a
maximal subgroup for any noncommutative division algebra D, is still open.
Now, let D be a noncommutative division ring not necessarily of finite dimen-
sion over its centre F. The problem of whether GL, (D) contains a noncyclic
free subgroup seems to be posed first by Lichtman in [8]. Stronger versions of
this problem which essentially deal with the existence of noncyclic free sub-
groups in normal or subnormal subgroups of GL, (D) have been investigated
in [4] and [5]. It is known so far that these problems have positive answers
as long as we work with a division algebra of finite dimension over its centre.
Further investigations for the infinite dimensional case are also dealt with in [4]
and [5]. The study of maximal subgroups of GL,,(D) begins in [2] in relation
with an investigation of the structure of finitely generated normal subgroups
of GL, (D), where D is of finite dimension over its centre F. In [2] and [10] we
actually show that maximal subgroups arise naturally in GL, (D), n > 1, and
finitely generated subnormal subgroups of GL,(D), n > 1, are central. This
result is used to prove that a maximal subgroup of GL, (D) can not be finitely
generated for n > 1. Therefore, we are not able to apply directly Tits’ result,
that any finitely generated linear group either is soluble-by-finite or contains

a noncyclic free group (cf. [19]), to a maximal subgroup M of GL,(D) to
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explore the structure of M. In [2], it is also shown that there is a similarity
between the behaviour of normal or subnormal subgroups of GL, (D) and the
maximal ones. So, it is natural to ask if there exists a noncyclic free group in
a maximal subgroup of GL, (D). In this direction, we observe that not every
subgroup of GL, (D) satisfies the Tits” Theorem though any normal subgroup
does so (cf. [16, p. 154]). We also mention that the soluble subgroups of
the multiplicative group of a finite dimensional division algebra were studied
in 1962 by Suprunenko [17] and the soluble subgroups of the multiplicative
group of a finite dimensional simple algebra were considered by Zalesskii [22].
Inspired by Suprunenko’s results, it is shown in [12] that given a noncommu-
tative maximal subgroup M of GL(D), then either M contains a noncyclic
free subgroup or there exists a maximal subfield K of D which is Galois over
F such that K* is normal in M and M/K* = Gal(K/F). Using some results
of algebraic groups and skew linear groups, in the present note our aim is to
extend this result for n > 1, i.e., to prove a variation of Tits’ Theorem for
maximal subgroups of GL, (D). To be more precise, let D be a noncommu-
tative division algebra of finite dimension over its centre F. Given a maximal
subgroup M of GL, (D), it is proved that either M contains a noncyclic free
subgroup or there exists a finite family {K;}} of fields properly containing F
with K € M for all 1 < i < r such that M/A is finite if CharF = 0 and
M/A is locally finite if CharF =p > 0, where A = K} x ... x K.

2 Notations and conventions

Let D be a division ring with centre F. Given a subgroup G of GL, (D), we
denote by F[G] the F-algebra generated by elements of G over F'. We shall say
that G is absolutely irreducible if M, (D) = F|[G]. For any group G we denote
its centre by Z(G). Given a subgroup H of G, Ng(H) means the normalizer
of H in G, [G : H| denotes the index of H in G, and < H, K > the group
generated by H and K, where K is a subgroup of G. We shall say that H is
soluble-by-finite if there is a soluble normal subgroup K of H such that H/K



is finite. Let S be a subset of M, (D), then the centralizer of S in M,(D)
is denoted by Chy,(py(S). We shall identify the centre F'I of M, (D) with F.
Some notations and conventions for linear groups and skew linear groups from

[15], [16] and [18] are frequently used throughout.

3 Free subgroups in maximal subgroups

Given a division ring D with centre F', let M be a maximal subgroup of
GL,(D). This section essentially deals with maximal subgroups of GL, (D)
and how they sit in GL, (D) with respect to F* and SL, (D). We then present
some commutativity theorems that enable us to prove our main result. To be
more precise, let D be a noncommutative division ring not necessarily of finite
dimension over its centre F'. It is shown that there exists no maximal subgroup
M of GL, (D), n > 1, containing F** such that [M : F*] < oco. It is then proved
that M is nilpotent if and only if M is the multiplicative group of a maximal
subfield of M, (D). We then use these results to show that given a maximal
subgroup M of GL,(D),n > 1, if M is soluble, then there exists a finite family
{K;}} of fields properly containing F' with K C M, 1 <i < r, such that M/A
is finite, where A = K} x --- x K, and so M is abelian-by- finite. Using this
fact, we then obtain the same conclusion when M NSL,, (D) is commutative or
M /M N F* is torsion for any maximal subgroup of GL, (D). Finally, we apply
these results to prove our main theorem that if M is a maximal subgroup of
GL,(D), n > 1, then either M contains a noncyclic free subgroup or there
exists a finite family {K;}] of fields properly containing F' with K; C M for
all 1 < i <r such that M/A is finite if CharF = 0 and M /A is locally finite
if CharF =p > 0, where A = K} x ... x K¥. We begin our material with

LEMMA 1. Let D be a division ring not necessarily of finite dimension
over its centre F. If either n = 1 and D is noncommutative or n > 1 and
D is infinite, then there exists no mazximal subgroup M of GL,(D), n > 1,
containing F* such that [M : F*] < co.



PROOF. Assume on the contrary that there is a maximal subgroup M
such that M/F* is finite and first suppose that [D : F| < co. Let zy,..., 2y
be the representatives for cosets of F* in M, i.e., M = F*x; U...U F*xy.
Then, we have M =< xq,...,x; > F*, where < xy,...,x; > is the group
generated by xz1,...,2;. Take x € GL,(D)\M. By maximality of M, we
obtain GL,(D) =< xy,...,z4,x > F*. Put H =< xy,...,2¢,x >. Thus,
GL,(D) = HF* and consequently we have SL,(D) = H' C H, ie., H is
normal in GL,(D). Now, by Corollary 1 of [10], we conclude that H C F*,
i.e., GL,(D) = F* which means that n = 1 and D = F that is a contradiction.
This takes care of the finite dimensional case.

Now consider the case [D : F] = co. As above, we may assume M =
F*zyU...U F*rzy. Put A = {37, fizi; fi € F}. Tt is clearly seen that A
is a finite dimensional F-algebra and we have M C A*. Since A is of finite
dimension over F' we conclude that A # M, (D) and so M = A* by maximality
of M in GL,(D). If n =1, then it is easily seen that A is a division algebra.
Thus we have [A* : F*] < co. If A is infinite, then, by a result of Faith (cf. [7,
p. 225]), A= F and so M = F* which is a contradiction. So, we may assume
that A is finite. Now, Wedderburn’s Theorem implies that A is a finite field.
So there exists an element a € D* such that A* =< a >, i.e., a” = 1 for some
positive integer n. Since a is non-central in D, by Herstein’s Lemma (cf. [7]),
there is an element b € D* such that bab™' = a' # a. Thus, b € Np«(A*)
and so < M,b >C Np+(A*). Now, by maximality of M, we conclude that
Np-(A*) = D*. Therefore, by Cartan-Brauer-Hua’s Theorem, we have either
A C For A= D, and it is clear that none of these cases can occur. This
completes the proof for the case n =1 and [D : F] = co.

So, we may assume that n > 2 and [D : F] = co. We claim that A
is simple. To see this, we first observe that the Jacobson radical J(A) = J
of A is nilpotent since A is left Artinian. It is known that a multiplicative
semi-group of nilpotent matrices over a division ring can be simultaneously
triangularized (cf. [6, p. 135]). Thus, we may assume that each element of
J is upper triangular. Now, denote by L the subring of all elements = in
M, (D) such that zJ C J. It is clear that A C L. For any d € D we see
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that [ + dey, € L. We claim that M contains only a finite number of these
elementary matrices. To prove this, assume that I + dieq,, [ 4+ dsey, € F*x;
for some dy,ds € D*. Then, we have I + diey,, = Ax; and I + dsey,, = px;
for some A\, € F*. This implies that d; = dy and A\ = u. Thus, at most ¢
elementary matrices of the form I + dey, belong to M. Since M = A* C L*
and D is infinite we conclude that there is an element d € D* such that
I +dey, € L*\ M. By maximality of M, this implies that L = M, (D), i.e.,
J is a left ideal of M, (D). A similar argument applied to the subring R of
all elements x € M, (D) such that Jx C J, we conclude that .J is also a right
ideal of M, (D), i.e., J is a two sided ideal of M,,(D) which means that J = 0.
So A is semisimple. Now, we observe that the centre Z(A) does not contain
any nonzero zero-divisor. For otherwise, if 0 # u € Z(A) is a zero-divisor in
A, consider [ = [(u), the left annihilator of u in A. We have [ # 0 since u is
a zero-divisor. Now, since u € Z(A) we conclude that [ is an ideal of A and
we have [u = 0. Since entries of each element of [ belong to a division ring
we may reduce the j-th column of each element of [ to zero. Now, the subring
R of M, (D) consisting of all elements z € M, (D) such that lx C [ contains
A and we have le;; = 0. Thus, we conclude that I + dej; € R for all d € D.
Now, since F™* is of finite index in M = A*, we conclude as above that there
exists an element d € D* such that I 4+ dej;; € R*\ M. Since M = A* C R*
by maximality of M we obtain R = M, (D), i. e., [ is a right ideal of M, (D).
Since [ is a two sided ideal of A, a similar argument applied to the subring L of
M,,(D) consisting of all elements x € M, (D) such that zl C [, we may conclude
that L is also a left ideal of M, (D), i. e., Il = 0 which is a contradiction and
so no nonzero element of Z(A) is a zero-divisor. Now, since A is a semisimple
Artinian ring we conclude that A is simple as claimed. Therefore, there is
a positive integer n; such that M = GL,, (D,), for some division ring D; of
finite dimension over its centre K, say. We know that F™* is of finite index
in M. Thus, the image of F* in GL,, (D), which is a subfield of K, is also
of finite index in GL,,(D;). We identify this image by F*. Thus, Di/K* is
torsion and so, by a result of Kaplansky (cf. [7, 259]), we obtain Dy = K, i. e.,
A = M,, (K), where K is of finite dimension over F'. Now, since M /F* is finite,
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we conclude that GL,, (K)/F* is finite. Thus, we have GL,,, (K) = U. F*u; for
some u; € GL,, (K). Take an elementary matrix I + be;; € GL,, (K), where
b € K*. As observed above, for each b, I + be;; may be contained in only
one coset F"u;. Therefore, there is a finite number of elements I + be;; which
occur in M = GL,,(K). Thus, there are at most n*t elementary matrices in
G Ly, (K). This means that SL,, (K), which is generated by I + be;;, is finitely
generated. Now, by Corollary 1 of [10], we conclude that SL,, (K) C K*. This
in turn implies that n; = 1 and consequently M = K* i. e., K*/F* is finite.
But it is known that this is not possible unless M = K* is finite. Now, by
Theorem 4 of [1], that asserts that a normal subgroup of GL, (D) does not
contain a finite maximal subgroup, we arrive at a contradiction and so the

proof is completes.

In the next result we show how maximal subgroups of GL,(D) sit in
G L, (D) with respect to F* and SL,(D).

PROPOSITION 2. Let D be a division ring not necessarily of finite dimen-
sion over its centre F. Assume that M is a maximal subgroup of GL,(D),
n > 1. Then we have
(i) M contains F* or SL,(D).

(ii) Either M is (absolutely) irreducible or M is the group of units of a proper
subring of My (D).
(iii) Assume that D is noncommutative and [D : F| < oo. Then M is nilpotent

if and only if M is the multiplicative group of a mazimal subfield of M, (D).

PROOF. (i) Assume that M does not contain F*. Then we must have
GL,(D) = F*M, and consequently SL,(D)= M*‘C M.

(ii) Consider the F- algebra F[M] generated by M over F. By maximality
of M, we have either GL, (D) = F[M]|* or M = F[M]*. In the first case we
obtain M, (D) = F[M], and the second case implies that M is the group of
units of a proper subring of M, (D).

(iii) One way is clear. So, assume that M is nilpotent. By (i), we have
either F* C M or SL,(D) C M. If the second case occurs, then SL, (D) is

nilpotent. Thus, in particular, the derived group D’ of D* is nilpotent and so



D* is soluble. Therefore, by Hua’s Theorem (cf. [7, 223]), D is commutative
which is a contradiction. So, we may assume that F* C M but SL,(D) ¢ M.
The case n = 1 follows from Theorem 7 of [2]. Thus, we may suppose n > 1 and
consider the F-algebra A := F[M] which is left Artinian since [D : F] < co.
We may also view M as a linear group since [D : F] < co. By (ii), we conclude
that either M is (absolutely) irreducible or A* = M. If the first case happens,
i. e., M,(D) = A, then it is clear that Z(M) = F* and M is an irreducible
linear group (cf. [18, p. 100]). Now, it is known that if a linear group M is
irreducible and nilpotent, then [M : Z(M)] < oo (cf. [17, p. 57]). But this is
not possible by Lemma 1. Thus, we must have A* = F[M]* = M. If we prove
that A is simple, then we obtain M = GL,,(A) for some positive integer m
and division ring A. Consequently, by Hua’s Theorem as above, we conclude
that m = 1 and A = K is a field and therefore M is the multiplicative group of
a field. Furthermore, we then have Cyy, (py(A) = A by maximality of M, and
this shows that M is the multiplicative group of a maximal subfield of M, (D).
So, it remains to prove that A is simple. To do this, we first observe that the
Jacobson radical of A, J(A) = J, is nilpotent. As noted in the proof of Lemma
1, the elements of J may be assumed to be upper triangular. Now, let L be the
subring of all elements x € M, (D) such that zJ C J. It is clear that A C L.
For any d € D* we see that the matrix D, (d) = I + (d — 1)e,, belongs to L.
If M contains all matrices D,,(d) for d € D*, then M contains a copy of D*.
But this is not possible by Hua’s Theorem unless D is commutative which is
a contradiction. Therefore, by maximality of M, we obtain L = M, (D), i.e.,
J is a left ideal of M, (D). A similar argument applied to the subring of all
elements z in M, (D) such that J= C J, we conclude that J is a right ideal and
thus J = 0. This means that J is semisimple. A similar argument as used in
the proof of Lemma 1, one can show that Z(A) is a field and thus A is simple

and the result follows.
To prove our next result, we need the following theorems:

THEOREM A.(Rosenberg, [14]) If A is a simple ring with unit, the only

subrings of M,,(A), n > 2, invariant under all inner automorphisms of M, (A),



are subrings of the centre or M, (A) itself.

THEOREM B.(Snider, [16]) Let G be an absolutely irreducible subgroup of
GL,(D), let N be a normal subgroup of G and K a subring of M, (D) nor-
malized by G with F' C K. If G/N is locally finite, then K[N] is semisimple

Artinian.

THEOREM C. Let D be a division ring that is not a locally finite field and
let n > 1 be an integer. If N is any non-central normal subgroup of GL, (D),
then N contains a noncyclic free subgroup(cf. [16, p.154]).

THEOREM D. Every irreducible soluble subgroup of GL,(F') has an abelian
normal subgroup of finite index(cf. [18, p. 135]).

The next result gives a criterion for when a maximal subgroup M of
GL,(D) is soluble, i. e., M is soluble if and only if there exists an abelian
normal subgroup A such that M /A is finite and soluble.

THEOREM 3. Let D be a noncommutative division algebra of finite di-
mension over its centre F. Suppose M is a mazximal subgroup of GL,(D),
n > 1. If M is soluble, then there exists a finite family {K;}] of fields prop-
erly containing F with K} C M, 1 < i < r, such that M/A is finite, where
A=K} x---x K, and so M 1is abelian-by-finite.

PROOF. The case n = 1 follows from Corollary 4 of [12]. So, we may assume
that n > 2. By Proposition 2, we know that either F* C M or SL, (D) C M.
If SL,(D) C M, then SL, (D) is soluble. But, by Theorem C, we know that
SL,(D) contains a noncyclic free subgroup which is a contradiction. So, we
may assume that F* C M but SL,(D) is not contained in M. Now, consider
the F-algebra A := F[M]. By Proposition 2, we have either A = F[M] =
M, (D) which implies that M is (absolutely) irreducible or A* = M. If the
first case occurs, then since [D : F| < oo we conclude that M is an irreducible
linear group (cf. [18, p. 100]). Therefore, by Theorem D, M contains an
abelian normal subgroup B, say, of finite index. Now, consider K := F[B].
By Theorem B, we conclude that F[B] is semisimple Artinian. If F[B]* ¢ M,
then by maximality of M we have GL, (D) =< F[B]*, M >C N¢r,,p)(F[B]*).



This implies, by Theorem A, that either F[B] = M,,(D) or F[B] C F. The first
case can not happen since n > 1 and the second case implies that [M : F*] < oo
which contradicts Lemma 1. Thus, we must have F[B]* C M. Now, since F'[B]
is commutative we have K = K X --- x K, for some fields K;. It is now clearly
seen that M/K* is finite and the result follows in this case.

Therefore, suppose A* = M. Since [D : F] < oo, A is left Artinian.
We claim that A is semisimple. To see this, we first note that the Jacobson
radical J(A) = J of A is nilpotent. As observed in the proof of Lemma 1,
we may assume that each element of J is upper triangular. Now, denote by
L the subring of all elements z € M, (D) such that xJ C J. It is clear
that A € L. For any d € D* we see that the dilatation matrix D, (d) =
I+ (d—1)ey, € L. If M contains D,,(d) for all d € D*, then M contains a
copy of D*. Now, by Hua’s Theorem (cf.[7, p. 223]), this reduces to D = F
which is a contradiction. Therefore, there is an element d € D* such that
D, (d) € L*\ M. By maximality of M, this implies that L = M, (D), i. e., J
is a left ideal of M, (D). A similar argument applied to the subring R of all
elements © € M, (D) such that Jz C J, one concludes that J is also a right
ideal of M, (D). Thus, J is two-sided and we have J = 0. Therefore, A is
semisimple, i. e., there exist positive integers n; such that A = M,, (D;) X
-+ X M, (D,) for some division rings D;, 1 < i < r. This means that M =
A*=GL,, (D) X -+ x GL,,(D,). But this is not possible since M is soluble
whereas GL,,(D;), by Theorem C, contains a noncyclic free subgroup unless
n; = 1 for all 1 <17 <r. Now, use Hua’s Theorem to conclude that D; = K;
for some fields K;. This implies that M = K x --- x K and so the result

follows.

In the following result we show that if M N SL, (D) is commutative, then
M is abelian-by-finite. This is used later on to prove that if M/M N F* is

torsion, then M is abelian-by-finite.

LEMMA 4. Let D be a noncommutative division algebra of finite dimension
over its centre F' and n > 1. Suppose M is a maximal subgroup of GL, (D). If
M N SL,(D) is commutative, then there exists a finite family {K;}| of fields
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properly containing F with K C M, 1 <i <1 such that M /A is finite, where
A=K x---x K}

T

and so M 1is abelian-by- finite.

PROOF. Assume that M N SL,(D) is commutative. It is clear that
SL,(D) ¢ M. We have M' C M N SL,(D) and so M is soluble. Now,

by Theorem 3, the result follows.

THEOREM 5. Let D be a noncommutative division algebra of finite dimen-
sion over its centre F'. Assume that M is a mazimal subgroup of GL, (D) with
n>1. If M/M N0 F* is torsion, then there exists a finite family {K;}} of fields
properly containing F with K C M, 1 <i <1 such that M /A is finite, where
A=K} x---x K, and so M 1is abelian-by-finite.

PrROOF. The case n = 1 follows from Theorem 6 of [12]. So, we may
assume that n > 2. By Proposition 2, we know that either F* C M or
SL,(D) € M. If SL,(D) C M, then PSL,(D) = SL,(D)/Z(SL,(D)) is
torsion. Thus, by Corollary 2 of [9], we obtain D = F which is a contradiction.
So, we may assume that F* C M but SL,(D) ¢ M. Consider the F-algebra
A := F[M]. Since M is maximal in GL, (D) we conclude that either A* = M
or A* = GL, (D). We now deal with these cases separately:

Case 1. If A* = GL,(D), then we clearly have A = F[M]| = M, (D)
which means that M is an irreducible linear group since [D : F| < oo (cf. [18,
p.100]). We now consider two subcases:

SUBCASE 1. Char F' = 0. By Theorem 1 of [19], either M contains a
noncyclic free subgroup or it is soluble-by-finite. The first case can not occur
since M/F* is torsion. Thus, there is a soluble normal subgroup S in M
such that [M : S] < co. Now, consider the F-algebra F[S]. We know that
< F[S]*, M >C Ngr,p)(F[S]).

If F[S]* ¢ M, then, by Theorem A, we conclude that either F[S]* C F*
or F[S] = M, (D). If F[S|* C F*, then S is central and so [M : F*] < oc.
Thus, by Lemma 1, we obtain a contradiction. Now, if F'[S] = M, (D), then
S is an irreducible linear group (cf. [18, p. 100]). Therefore, by Theorem
D, we conclude that S contains an abelian normal subgroup of finite index,

consequently, M contains an abelian normal subgroup B, say, of finite index.
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Put K = F[B]. Then, we have F[B|* # GL,(D) since n > 1. Thus, K* =
F[B]* ¢ M. If K* C F*, then [M : F*] < oo which contradicts Lemma 1.
So, assume that F* C K* C M. By 1.2.5 of [16, p.11], we conclude that
K is semiprime and since [D : F| < oo we conclude that K is semiprime
Artinian. Therefore, by Theorem 10.24 of [7, p.173], K is semisimple. Thus,
there exist fields K;, 1 < ¢ < r, and positive integers n; such that K* =
GL,, (Ky) X -+ x GL,,(K;), where for each i, K; contains a copy of F'. Since
K* ¢ M and M/F* is torsion we conclude that K; is radical over F. By
Kaplansky’s Lemma (cf. [7]), we conclude that char F = p > 0 which is a
contradiction.

So, we may suppose F[S|* C M. Now, by 1.2.5 of [16, p.11] again, we
conclude that F[S] is semiprime and as above F[S] is semisimple Artinian
since [D : F] < oco. Therefore, F[S]* = GLy,,(Dy) X -+ X GLy, (Dy) for
some positive inegers m; and division rings D;. This case, via a theorem of
Kaplansky (cf. [7]), also leads to a contradiction. This takes care of subcase
1.

SUBCASE 2. Char F' = p > 0. Consider the group G := SL,,(D)NM which
is normal in M. If G C F*, then by Lemma 4, the result follows. So, we may
assume that G is not central. Now, take z € G. We know that 2% = q € F*.
Taking the redaced norm RN of M, (D) to F from both sides of the last
equation, we conclude that 1 = RN(z)"®) = ¢™, where m = \/dimyM, (D).
This means that G is a torsion group. Since [D : F] < oo, we conclude that G
is a torsion linear group. Thus, by Schur’s Theorem (cf.[7, p. 154]), G is locally
finite. Now, consider the P-algebra S = P|G|, where P is the prime subfield
of F. By 1.1.14 of [17, p. 9], we conclude that S is a semisimple Artinian ring.
Therefore, S = Sy x - -+ x S,, where S; is simple Artinian. Suppose that r = 1.
Then S is a matrix ring, S = M,;(K), say, for some locally finite field K. If
S* ¢ M, then GL, (D) =< S*, M >C N¢r,(p)(S*). This means, by Theorem
A, that either S* C F or GL,(D) = S*. If S* C F, then G C F* and so,
by Lemma 4, the result follows. Otherwise, S = M;(K) = M, (D), for some
positive integer ¢ and locally finite field K. This implies that D is algebraic
over its prime subfield and so D = F', by a result of Jacobson (cf. [7]), which is
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a contradiction. Therefore, we may assume that r > 1 and set 7' = N] Ny (.5;).
Consider the F-algebra F[T| = B. Then B is semiprime by 1.2.5 of [16,
p.11], and it is also left Artinian since [D : F] < oo. Thus, B is semisimple
Arinian. The central idempotents of S are central in B, and so B is not simple.
Therefore, we have in particular B # M, (D). Thus, B = By X - -- X B, where
B; is simple Artinian. Now, consider B* = GL,,(Dy) X -+ x GL,,(D;) for
some positive integers n; and division rings D;. If B* ¢ M, then GL, (D) =<
B*, M >C N¢r,(p)(B*). This means, by Theorem A, that either B = M, (D)
which is impossible or B* C F* which is nonsense since B is not simple.
Therefore, F* C B* C M. Since M/F* is torsion, by Kaplansky’s Theorem
(cf. [7]), we conclude that D; = K; is commutative for all ¢. If for some i,
n; > 1, then the matrix Dy(k) = I + (k — 1)ey1, k € K; is torsion modulo F™*.
Thus, K; is algebraic over the prime subfield and since K; contains a copy of
F we conclude that F'is algebraic over the prime subfield, i. e., D is algebraic
over P and so D = F' by Jacobson Theorem. This contradiction allows us
to assume n; = 1 for all i and D; = K; for some fields, where K; contains a
copy of F' for all <. Thus, B is commutative and this in turn implies that G is
commutative. Now, by Lemma 4, the result follows. This establishes Case 1.
CASE 2. Assume that A* = M. Then F[M] is left Artinian since [D :
F] < oco. We claim that F[M] is simple. To prove this, we first observe that
the Jacobson radical of A, J(A) = J, is nilpotent. As we observed in the proof
of Lemma 1, the elements of J may be assumed to be upper triangular. Now,
let L be the subring of all elements x € M, (D) such that zJ C J. It is clear
that A C L. For any d € D* we see that the matrix D, (d) belongs to L. If
M contains all D, (d) for d € D*, then D*/F* is torsion and by Kaplansky’s
Theorem, we conclude that D = F which is a contradiction. Otherwise, by
maximality of M, we obtain L = M, (D), i. e., J is a left ideal of M, (D). A
similar argument applied to the subring of all elements x in M, (D) such that
Jx C J, we conclude that J is a right ideal and thus J = 0. This means that
A is semisimple. A similar argument as used in the proof of Lemma 1, one can
show that Z(A) is a field and thus A is simple, i. e., A = M,(A), for some

positive integer r and some division ring A. As in the Case 1, we conclude
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that A is commutative by Kaplansky’s Theorem since M/F* is torsion. So,
M = GL,(K) for some field K. If r > 1, then Dy(k) =1+ (k — 1)eyy, k € K*
must be torsion modulo F*. This implies, as before, that D is algebraic over
its prime subfield and so D = F' which is a contradiction. Thus, we must have
r =1and so M = K* is commutative and this completes the proof of the

theorem.
We are now in a position to prove our main result as

THEOREM 6. Let D be a noncommutative division algebra of finite dimen-
sion over its centre F. Assume that M is a maximal subgroup of GL, (D),
n > 1. Then either M contains a noncyclic free subgroup or there exists
a finite family {K;}, of fields properly containing F with K C M for all
1 <i < r such that M/A is finite if CharF = 0 and M/A is locally finite if
CharF =p >0, where A = K{ x ... x K.

PrROOF. If M is commutative, the result follows from (iii) of Proposition
2. Thus, we may suppose that M is noncommutative. Now, the case n = 1
follows from Theorem 8 of [12]. So, we may assume that n > 1. Suppose M is
a noncommutative maximal subgroup of GL,(D). We know, by Proposition
2, that either SL,(D) C M or F* C M. If SL,(D) C M, then M contain a
noncyclic free subgroup by Theorem C. Thus, we may assume that F* C M
but SL,(D) ¢ M. Since [D : F| < oo we may view M as a linear group over
F. Now, consider the F-algebra F[M]| generated by M over F. Since M is
maximal we have either F[M]* = M or F|[M]| = M,(D), i.e., M is absolutely
irreducible. We consider these cases separately and assume that M does not
contain a noncyclic free subgroup.

CASE 1. Assume that M is absolutely irreducible. If Char F' = 0 and M
does not contain a noncyclic free subgroup we conclude, by Theorem 1 of [19],
that M contains a soluble normal subgroup 7" of finite index, i.e., [M : T] < oo.
If T'C F*, then by Lemma 1 we obtain a contradiction. Now, by 1.1.7 of [16],
T is completely reducible, and hence it contains an abelian normal subgroup
A, say, of finite index. Set K = F[A]. Then, we have K* = F[A]* # GL,(D)

since n > 1. If K* C F*, then [M : F*] < oo and we arrive at a contradiction
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by Lemma 1. So, assume that F* C K* C M. Now, by 1.2.5 of [16, p. 11], we
conclude that K is semiprime. Since we are in the finite dimensional case K
is semiprime Artinian, i.e., K is semisimple. Therefore, there exist fields K,
such that K = K; x Ky X -+ x K, and we clearly have [M : K*] < oo and so
the result follows.

Now let Char FF = p > 0. If M does not contain a noncyclic free sub-
group, then every finitely generated subgroup of M does not contain a non-
cyclic free subgroup. By Tit’s Theorem (cf. [19]), we conclude that every
finitely generated subgroup of M contains a soluble normal subgroup of finite
index. Therefore, by a result of Wehrfritz (cf. [20]), M/R(M) is a torsion
linear group, where R(M) is the unique maximal soluble normal subgroup ob-
tained by Zassenhaus-Maltsev Theorem (cf. [21]). Thus, by Schur’s Theorem,
M/R(M) is locally finite. Set S = R(M). If S = F*, then M/F* is torsion.
Thus, by Theorem 5, the result follows. So, we may assume that F* C S C M.
Since S is completely reducible it has an abelian normal subgroup V of finite
index. We can assume in fact that it is the unique maximal abelian normal
subgroup and because of this it is normal in M. If V C F*, as above we obtain
a contradiction. Now, the quotient group M/V is locally finite. By a similar
argument used above, we see that the linear envelope F[V] is a direct sum of
fields. This completes the proof of the case F[M| = M, (D).

CASE 2. Assume that F[M]|* = M and M does not contain a noncyclic
free subgroup. We claim that A := F[M] is simple Artinian. Since the proof
is more or less similar to the proof of Theorem 5, we only give the outlines.
We first observe that J(A) = J is nilpotent and we may take the elements of
J to be upper triangular. Denote by L the subring of all elements x € M, (D)
such that xJ C J. If for all d € D* the matrices D, (d) = I+ (d — 1)en, € M,
then M contains a copy of D* and this contradicts the assumption that M
does not contain a noncyclic free subgroup by Goncalves” Theorem as above.
Thus, there is an element d € D* such that D, (d) € L*\ M. By maximality of
M, this implies that J is a left ideal of A. A similar argument, as used above,
shows that J is also a right ideal and so J = 0. Therefore, A is semisimple

Artinian since [D : F] < co. One may easily check as in the proof of Lemma 1
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that Z(A) is a field and so A = M,(A) for some division ring A and positive
integer 7. Since, by our assumption M = A* = GL,.(A) does not contain a
noncyclic free subgroup we obtain r = 1 and A = K for some field K. Thus,
M = K* which contradicts our assumption that M is noncommutative and so

the proof is complete.

The author thanks the referee for his constructive comments. He is also in-

debted to the Research Council of Sharif University of Technology for support.

References

[1]  S. Akbari, R. Ebrahimian, H. Momenaee Kermani, and A. Salehi Golse-
fidy, The group of units of an Artinian ring, Algeb. Colloq., to appear.

[2]  S. Akbari, M. Mahdavi-Hezavehi, M. G. Mahmudi, Mazimal subgroups
of GL1(D), J. Algeb. 217, 422-433 (1999).

3] P. K. Draxl, Skew fields, LMS Lecture Note Series, No.81, Cambridge
University Press, (1982).

[4]  J. Goncalves, and A. Mandel, Are there free groups in division rings,
Israel J. Math. Vol. 51, No. 1, (1986), 69-80.

5] J. Goncalves, Free groups in subnormal subgroups and the residual nilpo-
tence of the group of units of group rings, Can. Math. Bull. 27(1982),
365-370.

6] 1. Kaplansky, Fields and rings, The University of Chicago Press, (1972).

77 T. Y. Lam, A first course in noncommutative rings, GTM, No. 131,
Springer-Verlag, (1991).

[8]  A. E. Lichtman, On subgroups of the multiplicative group of skew fields,
Proc. Amer. Math. Soc. 63(1977), 15-16.

16



[12]

[13]

[15]

[16]

[17]

[18]

[19]

[20]

M. Mahdavi-Hezavehi, and S. Akbari, Some special subgroups of G L, (D)
, Algeb. Colloq., 5:4 (1998), 361-370.

M. Mahdavi-Hezavehi, M. G. Mahmudi, S. Yasamin, Finitely generated
subnormal subgroups of GL,(D) are central, J. Algeb., 225, 517-521
(2000).

M. Mahdavi-Hezavehi, Commutator subgroups of finite dimensional di-
vision algebras, Rev. Roumaine Math. Pures Appl., 43(1998), 9-10, 853-
867.

M. Mahdavi-Hezavehi, Free subgroups in maximal subgroups of GLi(D),
J. Algeb., 241, 720-730 (2001).

Derek J. S. Robinson, A course in the theory of groups, Graduate Text
in Mathematics, No. 80, Springer-Verlag, (1982).

Alex Rosenberg, The Cartan-Brauer-Hua Theorem for matriz and local
matriz rings, Proc. Amer. Math. Soc., 7(1956), 891-898.

L. Rowen, Ring theory, Volume II, Academic Press, INC, (1988).

M. Shirvani, B. A. F. Wehrfritz, Skew linear groups, LMS Lecture Note
Series, No. 118, (1986).

Suprunenko, D. A., On Solvable Subgroups of Multiplicative Groups of
a Field, English Transl., Amer. Math. Soc. Transl., (2)46(1965), p. 153-
161.

D. A. Suprunenko, Matrix groups, Translations of Math. Mono., Amer.
Math. Soc., Providence, Rhode Island, (1976).

J. Tits, Free subgroups in linear groups, J. of Algebra, 20, 250-270 (1972).

B. A. F. Wehrfritz, 2-generator conditions in linear groups, Archiv.
Math. 22, 237-240 (1971).

17



[21]  A. E. Zalesskii, Linear groups, in “Algebra IV,” part II (A. I. Kostrikin,
[. R. Shafarevich, Eds.), Encyclopedia of Mathematics and Science,
Springer-Verlag, Berlin/New York, 1993.

[22] A. E. Zalesskii, Soluble subgroups of the multiplicative group of a simple
algebra, Dokl. Akad. Nauk BSSR 7 (1963), 80-82, (Russian).

18



