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Abstract

For a nonreal field F of characteristic different from 2, we compare
several properties which F may have with respect to an anisotropic
n-fold Pfister form π over F . In particular, we consider the situation
where the subforms of π are all the anisotropic quadratic forms over
F ; then π is said to be supreme. We further apply our results to the
case where π is the form 2n × 〈1〉 (n ≥ 1). In this way we obtain new
examples of nonreal fields with prescribed level and with additional
properties.

1 Introduction

Throughout this paper let F be a field of characteristic different from 2. We
denote by F× the multiplicative group of F and by F×2

the subgroup of
nonzero squares in F . Their quotient F×/F×2

may be considered as a vector
space over F2, the field with two elements. Let

h : F×/F×2 × F×/F×2 −→ F2

denote the map which associates to a couple (aF×2
, bF×2

) the value 0 if the
equation aX2 + bY 2 = 1 has a solution over F and the value 1 otherwise. If
F is a local field then h is closely related to the Hilbert symbol of F .

Fröhlich investigated in [6] when the field F satisfies the following condi-
tion: F is not quadratically closed and for any quadratic extension K/F the
group N(K/F ) of nonzero norms has index two in F×. This turns out to be
equivalent to the condition that the map h is F2-bilinear and nondegenerate.
Further, in this situation h determines to a large extent the quadratic form
structure of the field F . Fröhlich calls F a generalized local field if it satisfies
his condition. Apart from local fields, also real closed fields fall under this
definition.

Inspired by Fröhlich’s observations, Kaplansky defined in [9] generalized
Hilbert fields as fields of characteristic not 2 which have a unique anisotropic
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2-fold Pfister form. He shows that F is a generalized Hilbert field if and only
if the map h is F2-bilinear and nontrivial. Kaplansky explains that one can
then carry out “abstract” quadratic form theory modulo the radical R(F ) of
F , a subgroup of F× taking the place of F×2

. (If F is a generalized Hilbert
field then R(F ) is such that R(F )/F×2

is the radical of the bilinear form h.)
Later, Szymiczek considered in [20] fields which have a unique anisotropic

n-fold Pfister form, where n is any positive integer. Extending an observation
of Kaplansky for n = 2, he shows that such a form exists over F if and only
if 2 is the maximal index in F× of the subgroup consisting of the elements
represented by an (n−1)-fold Pfister form over F . Further, for any n he gives
examples of such fields with prescribed square class number, at least equal
to 2n.

This article discusses other possible generalizations of the property for
fields studied by Fröhlich. We introduce and compare several properties
which the field F may have with respect to an anisotropic Pfister form and
we try to determine the consequences for the quadratic form structure of
F . All the considered properties hold in particular for any local field (of
characteristic different from 2) together with its unique anisotropic 2-fold
Pfister form. In the first place we will investigate the condition that F has a
supreme form, i.e. an anisotropic Pfister form π which contains every other
anisotropic form over F as a subform. We shall see how examples of such
fields may be obtained. Apart from the aforementioned results, this work
has been inspired by the author’s interest in the study of levels of fields. The
last section of the paper is therefore devoted to fields having as supreme form
the form 2n × 〈1〉; such fields exist and they have level 2n and some further
properties.

Before giving a more detailed description of the content of the following
sections, we make some conventions. By a “quadratic form” or even just a
“form” we always mean a nondegenerate finite-dimensional quadratic form.
We distinguish quadratic forms only up to isometry. So we may say that two
forms ϕ1 and ϕ2 over F are equal if they are isometric; we write ϕ1

∼= ϕ2

in this case, however, in order to avoid confusion with Witt equivalence.
In particular, by the uniqueness of a form subject to certain conditions we
always mean uniqueness up to isometry. Further, we will not consider the
trivial form (on the zero space) as anisotropic, thus anisotropic forms are
understood to be of positive dimension.

We denote the Witt ring of F by W (F ) and its fundamental ideal by
I(F ). For m ≥ 0, we use the notations ImF for (I(F ))m, the m-th power of
the fundamental ideal, and ĪmF for the quotient ImF/Im+1F .
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We define the level of F as

s(F ) := sup {s ∈ N | s × 〈1〉 is anisotropic over F}.

This is equivalent to the usual definition of the level, that is, s(F ) is the least
positive integer s such that −1 is a sum of s squares in F whenever such an
integer exists and s(F ) is equal to ∞ otherwise. Recall that s(F ) = ∞
is equivalent to the existence of an ordering on F and that F is called a
(formally) real field in this case. If s(F ) < ∞, i.e. if −1 is a sum of squares
in F , then the field F is said to be nonreal.

Suppose now that F is nonreal. For s := s(F ) < ∞ we call the form
s × 〈1〉 over F the level form of F . It follows from the crucial properties of
Pfister forms that the level form of F is a Pfister form, so in particular that
s is a power of 2, as demonstrated by Pfister [17].

The u-invariant of the field F , here assumed to be nonreal, is defined by

u(F ) := sup {dim(ϕ) | ϕ is an anisotropic quadratic form over F}.

Whenever finite, u(F ) is the smallest integer u such that any form of dimen-
sion at least u is universal.

In Section 3 we investigate when there exists an anisotropic form ϕ over F
such that every anisotropic form over F is a subform of ϕ. In our terminology
this means that ϕ is the supreme form of F . We show that a supreme form
is necessarily a Pfister form (3.2). The existence of a supreme form over F
implies immediately that F is a nonreal field of finite u-invariant. In (3.5)
we obtain further consequences of the condition that F has a supreme n-fold
Pfister form, in particular concerning the powers of the fundamental ideal in
the Witt ring of F . In order to show that a certain anisotropic n-fold Pfister
form π is supreme, it is actually sufficient to check that π is universal and
that anisotropic forms of certain dimensions over F are similar to subforms
of π (3.6).

We will denote by S(n) the class of fields of characteristic not 2 which have
a supreme n-fold Pfister form. Very simple examples of fields with supreme
form can be obtained from the following observation: if F ∈ S(n−1) then
F ((X)), the field of Laurent series in one variable X over F , belongs to S(n)
(3.7). Later we shall obtain examples of an essentially different kind; in fact,
any anisotropic Pfister form π over the field F becomes a supreme form by
scalar extension to a suitable field extension of F (6.2).

If π is a supreme n-fold Pfister form over F , then it is in particular the
unique anisotropic n-fold Pfister form over F and π becomes hyperbolic over
every quadratic extension of F . Sections 4 and 5 deal with these two weaker
conditions on F and π.
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In Section 4 we investigate when an anisotropic form π over F be-
comes isotropic over any nontrivial 2-extension of F . We then say that F
is 2-maximal with respect to π. We obtain equivalent characterizations for
2-maximality (4.2). In particular, when π is a Pfister form, we obtain such a
characterization in terms of the elements of F× represented by the pure part
of π (4.4). In (6.3) we shall see that a field can be simultaneously 2-maximal
with respect to an arbitrarily large number of n-fold Pfister forms, provided
that n ≥ 2.

We will denote by H(n) the class of fields of characteristic not 2 which
have a unique n-fold Pfister form. Suppose that F ∈ H(n). Then ĪnF can
be identified uniquely with F2. Hence the multiplication of forms induces an
F2-bilinear pairing Ī iF × Īn−iF −→ F2 for any 0 ≤ i ≤ n. If for a certain
i this pairing is nondegenerate, then there is a natural duality between Ī iF
and Īn−iF . Further, if F ∈ H(2) then identification of ĪF with F×/F×2

turns the pairing ĪF × ĪF −→ F2 into the map h defined above.
We will denote by D(n) the class of nonreal fields F ∈ H(n) for which the

above pairings are all nondegenerate. In Section 5 we study the class D(n)
and compare it with S(n). Trivially one has S(1) = D(1). In the process
of showing that S(2) = D(2), we obtain further descriptions of the fields in
this class; this is done in Theorem 5.6 which reformulates some of the crucial
observations of Fröhlich in [6], combining them with a result of KozioÃl in [10].
We prove that this class is closed under quadratic field extensions (5.9). The
inclusion S(n) ⊂ D(n) remains valid at least when going up to n = 3 (5.4).
However, we then have a proper inclusion, as we shall see in (6.8).

The core of Section 6 is a fairly general construction of fields having
certain properties with respect to quadratic forms (6.1). This construction is
applied to produce several examples which illustrate the results of Sections
3–5. It further allows us to give examples for any n ≥ 3 of nonreal fields with
a single anisotropic n-fold Pfister form and with u-invariant equal to ∞ or
to any even number greater than or equal to 2n (6.5). This is certainly not
surprising in view of Merkurjev’s u-invariant construction, which actually
inspired (6.1); the case n = 3 has been studied before by Meurer [14].

The last two sections give applications of the results obtained so far to
the study of two particular field invariants. In Section 7 we consider the
2-symbol length λ2(F ) and inquire about the range of its values for fields with
a supreme n-fold Pfister form. Using the construction given in Section 6 we
give new examples of nonreal fields F where ĪnF 6= 0 for a certain n > 0 and
where the value of λ2(F ) is determined (7.4).

In the final section we assume that F is nonreal and study the condition
that the level form of F is supreme, and further the weaker condition that
F is 2-maximal with respect to the level form. As fields with supreme form
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2n × 〈1〉 exist for any n ≥ 0 (8.6), we obtain new examples of nonreal fields
F of prescribed level s(F ) and with particular properties concerning the
number of squares necessary to express elements and their negatives as sums
of squares in F (8.2). We further give examples showing that a field with
supreme form 〈〈1, 1〉〉 may have finite or infinite square class number (8.10).

2 Preliminaries

A comprehensive introduction to the algebraic theory of quadratic forms may
be found in the books of Lam [12] and Scharlau [19]. We will generally follow
the terminology established there, but we recall some of it.

A diagonalized quadratic form overF with coefficients a1, . . . , am∈ F× is
denoted by 〈a1, . . . , am〉. An m-fold Pfister form is a quadratic form of the
shape 〈1, a1〉 ⊗ · · · ⊗ 〈1, am〉, written as 〈〈a1, . . . , am〉〉 for short.

Let ϕ be a quadratic form over F . By DF (ϕ) one denotes the set of
nonzero elements of F represented by ϕ. If DF (ϕ) = F× then ϕ is called uni-
versal. Further, ϕ is called multiplicative if either ϕ is hyperbolic or ϕ is an-
isotropic and such that aϕ ∼= ϕ holds for every a ∈ DF (ϕ); in this case DF (ϕ)
is a subgroup of F×. Pfister forms are multiplicative [19, Lemma 4.10.4.].
We will frequently use the following fact:

2.1 Lemma. Suppose that ϕ is universal and multiplicative. Then any
quadratic form over F which is similar to a subform of ϕ is itself a sub-
form of ϕ.

Proof. Let ψ be a form over F , similar to a subform of ϕ. Then there exists
a ∈ F× such that ψ is a subform of aϕ. As ϕ is universal and multiplicative,
aϕ is equal to ϕ, whence ψ is a subform of ϕ.

If K/F is a field extension, then we denote by ϕK the quadratic form
over K obtained from ϕ by scalar extension from F to K. Suppose that ϕ
is of dimension at least 2. Then we denote by F (ϕ) the function field of the
projective quadric defined by ϕ over F . Up to F -isomorphism, the field F (ϕ)
depends only on the similarity class of ϕ. Note that ϕ has a nontrivial zero
over F (ϕ), i.e. ϕF (ϕ) is isotropic. Furthermore, ϕF (ϕ) is hyperbolic if and
only if ϕ is hyperbolic or similar to a Pfister form [19, Theorem 4.5.4.(i)]. In
case dim(ϕ) ≤ 1 we define F (ϕ) := F .

Suppose that v is a discrete valuation on F . Let u ∈ F× be a uniformizer.
Then any quadratic form over F can be written as an orthogonal sum ϕ1 ⊥
uϕ2 where the forms ϕ1 and ϕ2 each have a diagonalization over F with only
units as entries. If ϕ is a quadratic form over F having a diagonalization
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〈a1, . . . , am〉, where a1, . . . , am ∈ F× are units, then we denote the form
〈ā1, . . . , ām〉 over the residue field F̄ by ϕ̄.

Recall that v is said to be 2-henselian if v has a unique extension to the
quadratic closure of F .

2.2 Lemma. Suppose that v is a 2-henselian discrete valuation on F with
residue field F̄ of characteristic different from 2. Let u ∈ F be a uniformizer.
Let ϕ1 and ϕ2 be quadratic forms over F which have a diagonalization with
only units as entries. The form ϕ1 ⊥ uϕ2 is anisotropic over F if and only
if the residue forms ϕ̄1 and ϕ̄2 over F̄ are anisotropic.

Proof. This is proven in [12, Ch. VI, Proposition 1.9] under the stronger
hypothesis that F is complete with respect to v. However, the proof just relies
on the fact that u induces an isomorphism between W (F ) and W (F̄ )[Z/2Z],
mapping the Witt equivalence class of ϕ1 ⊥ uϕ2 to the couple of Witt equi-
valence classes of ϕ̄1 and of ϕ̄2. This hypothesis is satisfied as soon as the
valuation v is 2-henselian, as explained in [22, p. 488].

3 Fields with supreme forms

Let ϕ be a quadratic form over F . We say that ϕ is supreme if ϕ is anisotropic
and if every anisotropic form over F is similar to a subform of ϕ. If ϕ is
supreme then it is in particular an anisotropic form of maximal dimension
over F , so F must be a nonreal field with u(F ) = dim(ϕ).

3.1 Examples. (1) The form 〈1〉 over F is supreme if and only if F is
quadratically closed.

(2) For a ∈ F×, the form 〈〈a〉〉 = 〈1, a〉 over F is supreme if and only
if F is a nonreal field with exactly two square classes, represented by 1 and
−a. In particular, any finite field of odd characteristic has a supreme 1-fold
Pfister form.

(3) Let n be a positive integer. Over C((X1)) . . . ((Xn)), the iterated power
series field in n variables over the field of complex numbers, the Pfister form
〈〈X1, . . . , Xn〉〉 is supreme.

3.2 Proposition. Suppose that the form ϕ is supreme. Then ϕ is a Pfister
form and every anisotropic form over F is a subform of ϕ.

Proof. Since ϕ is supreme, every quadratic form over F of dimension greater
than dim(ϕ) is isotropic. Hence we may choose an anisotropic Pfister form π
over F of maximal dimension. This choice implies that for every b ∈ F× the
Pfister form π⊗〈〈−b〉〉 is hyperbolic, i.e. bπ ∼= π. Hence π must be universal.
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Since the form ϕ is supreme, it contains a subform which is similar to π and
this can only be π itself. On the other hand, as a universal form π cannot
be a proper subform of any anisotropic form. Therefore ϕ and π are equal.
Now we know that ϕ is a supreme, universal Pfister form and conclude with
(2.1) that every anisotropic form over F is a subform of ϕ.

3.3 Corollary. The form ϕ is supreme over F if and only if F is nonreal
with finite u-invariant and ϕ is the unique universal anisotropic form over F .

Proof. Suppose that ϕ is supreme. Hence F is nonreal with u(F ) = dim(ϕ) <
∞. Further ϕ is universal and anisotropic. Let now ψ be any universal
anisotropic form over F . By (3.2), ψ is a subform of ϕ. Since a universal
form cannot be a proper subform of an anisotropic form, ψ must be equal to
ϕ. This shows that ϕ is the only universal anisotropic form over F .

Suppose now that F is nonreal with u(F ) < ∞. Then every anisotropic
form over F is contained in a universal anisotropic form. So, if ϕ is actually
the only universal anisotropic form over F then every anisotropic form over
F is contained in ϕ, which means that ϕ is supreme.

3.4 Remark. In view of the last statement, it is worth pointing out that a
nonreal field may have a unique universal anisotropic form without being of
finite u-invariant. To obtain such an example one may start with F nonreal
and such that no anisotropic universal forms over F exists (e.g. F is the
direct limit of the fields C((X1)) . . . ((Xi)), i ∈ N). By [2, Théorème 8.4]
there exists a field extension K/F together with an element r ∈ K× such
that the form 〈1,−r〉 is anisotropic and universal over K and such that the
homomorphism W (F ) → W (K) defined by scalar extension gives an exact
sequence 0 → W (F ) → W (K) → Z/2Z → 0. It is then easy to conclude
that K is nonreal with u(K) = u(F ) = ∞ and that 〈1,−r〉 is the unique
universal anisotropic form over K.

Whenever a quadratic form over F is supreme, it is unique with this
property (3.3), so we may refer to it as the supreme form of F .

3.5 Proposition. Let n ≥ 1. Suppose that F has a supreme n-fold Pfister
form π. Then

(a) F is nonreal with u(F ) = 2n,

(b) In+1F = 0,

(c) π is the unique anisotropic n-fold Pfister form over F ,

(d) every anisotropic form in In−1F is either equal to π or similar to an
(n−1)-fold Pfister form,
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(e) for every nonhyperbolic form ϕ over F there exists a Pfister form ψ
over F such that ϕ ⊗ ψ is Witt equivalent to π; moreover, if ϕ ∈ I iF
and dim(ϕ) < 2i+1 for some i ≤ n then ψ is an (n−i)-fold Pfister form.

Proof. (a) We already know that F is nonreal and that u(F ) = dim(π) = 2n.
(b) Since π is supreme, every (n+1)-fold Pfister form over F is hyperbolic.

Hence the ideal In+1F , generated by the (n+1)-fold Pfister forms, is zero.
(c) Any anisotropic n-fold Pfister form over F is a subform of π by (3.2)

and of dimension 2n, hence equal to π.
(d) Suppose that ϕ is an anisotropic form in In−1F , not equal to π. Then

ϕ is a proper subform of π, by (3.2), i.e. we may decompose π into ϕ ⊥ ψ
where ψ is some anisotropic form over F . Now ψ belongs to In−1F , as ϕ and
π do. By the Arason-Pfister-Hauptsatz [19, Theorem 4.5.6.], ϕ and ψ are
each of dimension at least 2n−1. Since dim(ϕ ⊥ ψ) = 2n, we conclude that
dim(ϕ) = dim(ψ) = 2n−1. A well-known corollary of the Arason–Pfister–
Hauptsatz then says that ϕ is similar to an (n−1)-fold Pfister form.

(e) Let ϕ be an anisotropic form over F . We choose an m-fold Pfister
form ψ over F such that ϕ⊗ψ is not hyperbolic and where m ≥ 0 is as large
as possible. Let ρ denote the anisotropic part of ϕ ⊗ ψ. By the choice of ψ
and m, the form ϕ ⊗ ψ ⊗ 〈〈a〉〉 is hyperbolic for any a ∈ F×. Thus for every
a ∈ F× one has ρ ∼= aρ, in particular ρ is universal. Since π is the unique
universal anisotropic form over F it follows that ρ is equal to π, whence ϕ⊗ψ
is Witt equivalent to π.

Suppose now that we had ϕ ∈ I iF with dim(ϕ) < 2i+1. It follows that
2n = dim(π) ≤ dim(ϕ ⊗ ψ) < 2m+i+1 and thus m ≥ n − i. Since ϕ ⊗ ψ is a
nonhyperbolic form in Im+iF and since In+1F = 0 by (b), we need to have
m = n − i. Hence ψ is an (n−i)-fold Pfister form.

3.6 Proposition. Let π be an anisotropic n-fold Pfister form over F where
n ≥ 1. The following are equivalent:

(i) π is supreme,

(ii) every anisotropic form over F of dimension at least 2n−1 + 1 is similar
to a subform of π,

(iii) π is universal and every anisotropic form over F of dimension at most
2n−1 + 1 is similar to a subform of π.

Proof. The implication (i ⇒ ii) is clear from the definition of a supreme
form.

(ii ⇒ iii) Suppose that every anisotropic quadratic form ϕ over F with
dim(ϕ) ≥ 2n−1 + 1 is similar to a subform of π. Then π ⊥ 〈−a〉 is isotropic
for any a ∈ F×, thus π is universal.
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Let now ψ be an anisotropic form over F with dim(ψ) ≤ 2n−1+1. We want
to show that ψ is a subform of π. If dim(ψ) = 2n−1 + 1 then this is already
clear from the hypothesis and from (2.1). Suppose now that dim(ψ) ≤ 2n−1.
Let ϕ denote the anisotropic part of the form π ⊥ −ψ. We have dim(ϕ) ≥
dim(π)− dim(ψ) ≥ 2n−1. If these are equalities then the forms π and ψ ⊥ ϕ
both have dimension 2n and since they are Witt equivalent they are also
isometric, so ψ is a subform of π. In the remaining case we have dim(ϕ) >
2n−1. Then, by the hypothesis and by (2.1), there exists a form ψ′ over
F such that ϕ ⊥ ψ′ is equal to π, hence Witt equivalent to ϕ ⊥ ψ. By
Witt cancellation, ψ and ψ′ are Witt equivalent and, since both forms are
anisotropic, they are isometric. Thus ψ is a subform of π.

(iii ⇒ i) We suppose that π is not supreme. Then there exists an
anisotropic form ϕ over F which is not a subform of π. We choose ϕ of
the least possible dimension under this condition. We may decompose ϕ
into ϕ′ ⊥ 〈a〉 where a ∈ F× and where ϕ′ is a form over F with dim(ϕ′) =
dim(ϕ)−1. By the choice of ϕ, it is possible to write π ∼= ϕ′ ⊥ ψ′ with a form
ψ′ over F . Since ϕ is not a subform of π, the form ψ′ cannot represent a,
i.e. the form ψ := ψ′ ⊥ 〈−a〉 is anisotropic. Now, if we had ψ ⊥ ϕ′′ ∼= π for
some form ϕ′′ over F , then ϕ′ would be isometric to 〈−a〉 ⊥ ϕ′′, in particular,
ϕ′ would represent −a; this is impossible since ϕ ∼= ϕ′ ⊥ 〈a〉 is anisotropic.
Therefore ψ is not a subform of π. From our choice of ϕ we deduce that
dim(ψ) ≥ dim(ϕ). Since dim(ϕ) = dim(ϕ′) + 1, dim(ψ) = dim(ψ′) + 1 and
dim(ϕ′) + dim(ψ′) = dim(π) = 2n, we conclude that dim(ϕ) ≤ 2n−1 + 1. By
(2.1), either π is not universal or ϕ is not even similar to a subform of π. So
(iii) is not satisfied. This shows the implication (iii ⇒ i) .

3.7 Proposition. Suppose that F carries a 2-henselian valuation v with
residue field F̄ of characteristic different from 2. Let u ∈ F× be a uniformizer
and a1, . . . , an−1 ∈ F× units, n > 1. The Pfister form 〈〈u, a1, . . . , an−1〉〉 over
F is supreme if and only if the Pfister form 〈〈ā1, . . . , ān−1〉〉 over F̄ is supreme.
In particular, F ∈ S(n) if and only of F̄ ∈ S(n−1).

Proof. The proof is straightforward, using (2.2).

From the proposition and from (3.1, (2)) it is clear that any nondyadic
local field has a supreme 2-fold Pfister form. In (5.8) we will obtain this for
any local field.

3.8 Remark. Let n ≥ 1. Let (Fi)0≤i≤n be a sequence of fields such that F0

is finite and Fi is complete with respect to a discrete valuation with residue
field Fi−1 for 1 ≤ i ≤ n. Then Fn is called an n-dimensional local field.
From the last proposition and from (5.8) one sees that Fn has an (n+1)-
fold supreme Pfister form provided that char(F1) 6= 2. The author ignores
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whether this is equally true in the case where there is a number m < n such
that char(Fi) = 2 for 0≤ i≤m and char(Fi) = 0 for m<i≤n.

4 2-Maximality

A field extension of F which can be embedded into a quadratic closure of F
is called a 2-extension. Let ϕ be a quadratic form over F . We say that F
is 2-maximal with respect to ϕ if ϕ is anisotropic and if ϕK is isotropic for
every nontrivial 2-extension K/F .

4.1 Proposition. For any anisotropic form ϕ over F there is a 2-extension
K/F such that K is 2-maximal with respect to ϕK.

Proof. Let Fq denote a quadratic closure of F . Among the subfields of Fq

which contain F we choose K maximal under the condition that ϕK is aniso-
tropic. Since Fq is also a quadratic closure of K, the choice of K implies that
ϕL is isotropic for any nontrivial 2-extension L/K. Hence K is 2-maximal
with respect to ϕK .

4.2 Theorem. Let ϕ be an anisotropic form over F . The following condi-
tions are equivalent:

(i) F is 2-maximal with respect to ϕ,

(ii) for every extension K/F such that ϕK is anisotropic, F is quadratically
closed in K,

(iii) every anisotropic binary form over F is similar to a subform of ϕ.

Proof. (i ⇒ ii) Let K/F be an extension such that ϕK is anisotropic. Let
F ′ denote the quadratic closure of F in K. Then F ′/F is a 2-extension and
ϕF ′ is anisotropic. Thus, if F is 2-maximal with respect to ϕ then F ′ = F ,
i.e. F is quadratically closed in K.

(ii ⇒ iii) Let β be an anisotropic binary form over F . Then β is simi-
lar to 〈1,−a〉 for some a ∈ F× \ F×2

. Condition (ii) implies that ϕF (
√

a)

is isotropic. By [19, Lemma 3.5.1.], ϕ then contains a subform similar to
〈1,−a〉, hence similar to β.

(iii ⇒ i) Let K/F be a nontrivial 2-extension. By basic Galois theory,
K then contains a quadratic extension of F . Hence there is some a ∈ F×

which is a square in K but not in F . In other words, the binary form 〈1,−a〉
is anisotropic over F but isotropic over K. By the hypothesis (iii), over F
the form 〈1,−a〉 is similar to a subform of ϕ. Therefore ϕK is isotropic.
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4.3 Corollary. Let ϕ be a quadratic form over F . If ϕ is supreme then F
is 2-maximal with respect to ϕ.

Proof. If ϕ is supreme then condition (iii) in (4.2) is satisfied.

4.4 Corollary. Let π be an anisotropic Pfister form over F and let π′ denote
the pure subform of π. The field F is 2-maximal with respect to π if and only
if DF (π′) = F× \ −F×2

.

Proof. By the definition of the pure subform, π is equal to 〈1〉 ⊥ π′. Since π
is anisotropic, π′ cannot represent −1, thus we have DF (π′) ⊂ F× \ −F×2

.
Equality DF (π′) = F× \ −F×2

means that 〈1, a〉 is a subform of π for every
a ∈ F× \ −F×2

. Since π is multiplicative the last is equivalent to condition
(iii) in (4.2) for ϕ = π. Now the statement follows using the equivalence
(i ⇔ iii) of (4.2).

The field F is called real euclidean if F×2
is an ordering of F , i.e. if F is

real and F× = F×2 ∪ −F×2
.

4.5 Corollary. Let F be real and π a nontorsion n-fold Pfister form over
F , where n ≥ 1. The field F is 2-maximal with respect to π if and only if F
is real euclidean and π is equal to 2n × 〈1〉.

Proof. Suppose that F is real euclidean. Then every anisotropic binary form
over F is similar to 〈1, 1〉, a subform of 2n × 〈1〉. Thus, by (4.2) F is 2-
maximal with respect to 2n × 〈1〉, which is an anisotropic nontorsion n-fold
Pfister form over F .

For the converse, suppose that F is 2-maximal with respect to π. As π is
a nontorsion Pfister form, Pfister’s local-global principle [19, Theorem 3.6.2.]
shows that there exists a real closure K/F for which πK is anisotropic. Then,
by the theorem, F is quadratically closed in K, showing that F is real eu-
clidean. In particular, 2n × 〈1〉 is the unique anisotropic n-fold Pfister form
over F , hence equal to π.

We will show in (6.3) that F can be 2-maximal with respect to many
different n-fold Pfister forms simultaneously when n ≥ 2.

5 Comparison of the classes S(n) and D(n)

Let n be a positive integer. We denote by H(n) the class of fields of char-
acteristic different from 2 having a unique anisotropic n-fold Pfister form.
Note that the class H(n) is not closed under quadratic field extensions. For
every n ≥ 0 one has R ∈ H(n) but C /∈ H(n), for example. A less trivial
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phenomenon is the existence, for any n ≥ 2, of field extensions K/F where
F is nonreal and belongs to H(n) while K has three different anisotropic n-
fold Pfister forms. The different possibilities for the number of n-fold Pfister
forms over K where K/F is a quadratic field extension with F ∈ H(n) have
been determined by KozioÃl in [10, Theorem 1]. From his result we easily
derive the following consequence:

5.1 Proposition. Suppose that F ∈ H(n). Let π denote the unique aniso-
tropic n-fold Pfister form over F . All quadratic extensions of F belong to
H(n) if and only if F is nonreal and 2-maximal with respect to π.

Proof. By [10, Theorem 1], if K/F is a quadratic extension then K has a
unique n-fold Pfister form if and only if F is nonreal and πK is hyperbolic.
By (4.2), πK is hyperbolic for every quadratic extension K/F if and only if
F is 2-maximal with respect to π.

Suppose that F ∈ H(n). As the group ĪnF consists of two elements it
can be uniquely identified with F2. Thus for every 0 ≤ i ≤ n multiplication
of forms in I iF with forms in In−iF induces a canonical F2-bilinear pairing
Ī iF × Īn−iF −→ F2. Trivially, this pairing is nondegenerate for i = 0 and
i = n. Further, for F ∈ H(2) the canonical pairing ĪF × ĪF −→ F2 is
the same as the map h defined at the beginning of the introduction if one
identifies ĪF with F×/F×2

via the discriminant (signed determinant).

5.2 Proposition. Let F be a nonreal field with a unique anisotropic n-fold
Pfister form π. The following are equivalent:

(i) for every 1 ≤ i < n the canonical F2-bilinear pairing Ī iF×Īn−iF −→ F2

is nondegenerate,

(ii) for every 1 ≤ i < n and every form ϕ ∈ I iF \ I i+1F there exists an
element a ∈ F× such that ϕ ⊗ 〈〈a〉〉 /∈ I i+2F ,

(iii) for every 1 ≤ i < n and every form ϕ ∈ I iF \ I i+1F there exists an
(n−i)-fold Pfister form ψ such that ϕ ⊗ ψ is Witt equivalent to π.

Proof. (i ⇒ ii) Let ϕ be a form in I iF \ I i+1F , where 1 ≤ i < n. Condition
(i) implies that ϕ ·In−iF 6⊂ In+1F and therefore ϕ ·IF 6⊂ I i+2F . Hence there
exists a ∈ F× such that ϕ ⊗ 〈〈a〉〉 /∈ I i+2F .

(ii ⇒ iii) Let ϕ be a form in I iF \ I i+1F , where 1 ≤ i < n. By repeated
application of (ii), there are elements ai+1, . . . , an ∈ F× such that the form
ϕ⊗〈〈ai+1, . . . , an〉〉 belongs to InF \ In+1F ; then this form is Witt equivalent
to π, the only anisotropic form in InF .

(iii ⇒ i) This is clear.
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We denote by D(n) the class of nonreal fields in H(n) for which the
equivalent conditions in (5.2) hold. We want to compare this class with
S(n), the class of fields with a supreme n-fold Pfister form.

For n = 1 the conditions in (5.2) are empty, so D(1) contains just the non-
real fields in H(1). Hence D(1) is the class of all nonreal fields of characteristic
different from 2 with exactly two square classes and therefore coincides with
S(1).

5.3 Proposition. Suppose that F ∈ S(n). Then F is a nonreal field in H(n)
and the canonical pairing ĪF × Īn−1F −→ F2 is nondegenerate.

Proof. We already know that F must be nonreal (3.5, a) and that F ∈ H(n)
(3.5, c). By (3.5, d), for i = n − 1 any nontrivial class in Ī iF is represented
by an i-fold Pfister form, thus by a form in I iF of dimension smaller than
2i+1. The same holds trivially for i = 1 as well. Using (3.5, e), we conclude
that the pairing ĪF × Īn−1F −→ F2 is nondegenerate.

5.4 Corollary. For 1≤n≤3 the class S(n) is contained in D(n). ¤

5.5 Question. Does the inclusion S(n)⊂D(n) also hold for n>3?

The following theorem shows that S(2) = D(2) and further contains some
of the crucial observations made by Fröhlich in [6]. We want to provide a
complete proof, even if most ideas in it originate from the articles of Fröhlich
[6] and Kaplansky [9].

5.6 Theorem (Fröhlich). The following conditions on F are equivalent:

(i) F ∈ S(2),

(ii) F ∈ D(2),

(iii) F and all quadratic extensions of F belong to H(2),

(iv) F is nonreal, has a unique anisotropic 2-fold Pfister form and is 2-
maximal with respect to this form,

(v) F is nonreal and not quadratically closed, and for any a ∈ F× \ F×2

the group DF (〈1,−a〉) has index 2 in F×.

Proof. (i ⇒ ii) By (5.4) we have S(2) ⊂ D(2).
(ii ⇒ v) Suppose that F ∈ D(2). Then F is nonreal and not quadrati-

cally closed and the pairing h : F×/F×2×F×/F×2 → F2 defined in the intro-
duction is F2-bilinear and nondegenerate. Therefore, for any a ∈ F× \ F×2
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the map F× → F2, b 7→ h( aF×2
, bF×2

) is a surjective homomorphism, so
its kernel, which is DF (〈1,−a〉), has index 2 in F×.

(v ⇒ iv) Assume that F is not quadratically closed and that DF (〈1,−a〉)
has index 2 in F× for any a ∈ F×\F×2

. Then every anisotropic 1-fold Pfister
form over F is contained in exactly one anisotropic 2-fold Pfister form.

Since F is not quadratically closed we may choose a ∈ F× \ F×2
. Let π

be the anisotropic 2-fold Pfister form over F which contains 〈1,−a〉.
Let b be another element of F×\F×2

. Since DF (〈1,−a〉) and DF (〈1,−b〉)
are both proper subgroups of F× their union cannot be F×. Hence we may
choose c ∈ F× such that the 2-fold Pfister forms 〈〈−a,−c〉〉 and 〈〈−b,−c〉〉 are
both anisotropic. However, these 2-fold Pfister forms both contain 〈1,−c〉,
hence they must be equal. But π is the only anisotropic 2-fold Pfister form
containing 〈1,−a〉. This shows that 〈1,−b〉 is contained in π and in no other
anisotropic 2-fold Pfister form.

This shows that π is the only anisotropic 2-fold Pfister form over F and
that its pure subform represents all elements of F× \ −F×2

. By (4.4) this
means that F is 2-maximal with respect to π.

(iv ⇔ iii) This equivalence has been established in (5.1).
(iv ⇒ i) Assume that F is nonreal and has a unique anisotropic 2-fold

Pfister form π and that F is 2-maximal with respect to π. Let π′ denote the
pure subform of π. Since F is nonreal and since π′ is a proper subform of the
anisotropic form π, we know that DF (π′) ( DF (π). (This argument is known
as Kneser’s Lemma.) On the other hand, we have DF (π′) = F× \ −F×2

, by
(4.4). We conclude that DF (π) = F×, i.e. π is universal.

Further, if ϕ is an anisotropic form over F with dim(ϕ) ≤ 3 then ϕ is
similar to a subform of π. Indeed, for dim(ϕ) = 1 this is trivial, if dim(ϕ) = 2
then this follows by (4.2) from the fact that F is 2-maximal with respect to π,
and finally, if dim(ϕ) = 3 then ϕ is similar to a subform of some anisotropic
2-fold Pfister form over F which by hypothesis must be π.

Using (3.6) we conclude that π is supreme.

5.7 Remark. The conditions (iv) and (v) remain equivalent if the assump-
tion that F be nonreal is removed in each of them. The real fields which
then satisfy these (modified) conditions are precisely those which are real
euclidean.

5.8 Corollary (Fröhlich). Let F be a local field with char(F ) 6= 2. Then F
satisfies the equivalent conditions of (5.6). The supreme 2-fold Pfister form
of F is the norm form of the unique quaternion division algebra over F .

Proof. Every finite extension of F is again a local field and thus belongs to
H(2). Therefore condition (iii) in the theorem holds for F .
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We give an alternative argument which covers the entire statement. It
is well known that there exists a unique quaternion division algebra Q over
F [12, Ch. VI, Theorem 2.10] and that Q ⊗F K is split for every quadratic
extension K/F [12, Ch. VI, Lemma 2.14]. Let π be the norm form of Q.
Using the standard correspondence between quaternion algebras and 2-fold
Pfister forms (cf. [12, Ch. III, Proposition 2.5]), we conclude that π is the
unique anisotropic 2-fold Pfister form over F and that π becomes hyperbolic
over every quadratic extension of F . Hence F satisfies condition (iv) and the
proof of (iv ⇒ i) shows that π is the supreme form of F .

The various descriptions in (5.6) of the fields in the class S(2) = D(2)
now make it possible to show, using the Norm Principle, that this class is
closed under quadratic extensions.

5.9 Theorem. If F ∈ S(2), then K∈ S(2) for any quadratic extension K/F .

Proof. Let K/F be a quadratic extension where F ∈ S(2). Then all the
conditions in (5.6) hold for F . In particular condition (iii) tells us that
K ∈ H(2), i.e. K has a unique anisotropic 2-fold Pfister form. We will show
that K satisfies condition (v) in (5.6), which by (5.6) implies that K ∈ S(2).
It is clear that K is nonreal and not quadratically closed.

Let x ∈ K×. We want to show that DK(〈1,−x〉) has index 2 in K× unless
x is a square in K. Since 〈1,−x〉 is a subform of at most one anisotropic
2-fold Pfister form over K we know that DK(〈1,−x〉) has index 1 or 2 in K×.

Now we assume that DK(〈1,−x〉) = K× and have to show that then x
must be a square in K. The assumption can be reformulated by saying that
x is represented over K by every binary form 〈1, y〉 with y ∈ K×. Having
this in particular for all y ∈ F× we conclude by [5, Norm Principle 2.13.]
that NK/F (x) ∈ F×, the norm of x over F , is represented over F by every
binary form 〈1, a〉 with a ∈ F×. This means that the form 〈1,−NK/F (x)〉
over F is universal. Since condition (v) in (5.6) holds for F , it follows that
NK/F (x) ∈ F×2

. Therefore we have x ∈ F×K×2
[12, Ch. VII, Theorem 3.4].

Hence we may assume that x ∈ F×. Again by [5, Norm Principle 2.13.],
since 〈1,−x〉 is universal over K, the same form over F represents all nonzero
norms of K/F . In other terms, if we write K = F (

√
d) with d ∈ F×\F×2

,
then we have DF (〈1,−d〉) ⊂ DF (〈1,−x〉). But condition (v) in (5.6) says
that DF (〈1,−d〉) has index 2 in F×. Hence DF (〈1,−x〉) is either equal to
F× or to DF (〈1,−d〉). In the first case, by condition (v) in (5.6), x must be
a square in F , hence also in K. Assume now that we are in the case where
DF (〈1,−x〉) = DF (〈1,−d〉). For any b ∈ F×, the form 〈〈−x, b〉〉 over F is
hyperbolic if and only if 〈〈−d, b〉〉 is hyperbolic; at any rate both forms are
equal because F has only one anisotropic 2-fold Pfister form, and we conclude
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that 〈〈−xd, b〉〉 must be hyperbolic. This shows that 〈1,−xd〉 is universal over
F . By condition (v) in (5.6) this is only possible if xd ∈ F×2

. Hence also in
the second case x is a square in K = F (

√
d).

5.10 Question. Let n ≥ 3. Are the classes S(n) and D(n) closed under
quadratic extensions?

5.11 Proposition. Let n > 1 and suppose that F carries a 2-henselian
valuation v with residue field F̄ of characteristic different from 2. Then
F ∈ D(n) if and only if F̄ ∈ D(n−1).

Proof. Let u ∈ F× be a uniformizer for v. From (2.2) one easily deduces,
first, that F ∈ H(n) if and only if F̄ ∈ H(n − 1), and second, that F is
nonreal if and only if F̄ is nonreal.

Assume that F̄ ∈ D(n−1). To show that F ∈ D(n) it is sufficient to
check condition (ii) in (5.2). Let ϕ ∈ I iF \ I i+1F , where 1 ≤ i < n. Now, ϕ
is Witt equivalent to ϕ0 ⊥ 〈〈u〉〉 ⊗ϕ1 where ϕ0 and ϕ1 are forms over F with
diagonalizations with only units as entries. Then we must have ϕ0 ∈ I iF and
ϕ1 ∈ I i−1F . If now ϕ0 /∈ I i+1F , then ϕ ⊗ 〈〈−u〉〉, which is Witt equivalent
to ϕ0 ⊗ 〈〈−u〉〉, cannot lie in I i+2F . To do the other case, we assume now
that ϕ0 ∈ I i+1F . Then we have necessarily ϕ1 /∈ I iF , so the residue form ϕ̄1

over F̄ lies in I i−1F̄ \ I iF̄ . Since F̄ ∈ D(n − 1) we conclude with (5.2) that
there exists some unit a ∈ F× such that ϕ̄1 ⊗ 〈〈ā〉〉 /∈ I i+1F̄ . Then over F
we have 〈〈u〉〉 ⊗ ϕ1 ⊗ 〈〈a〉〉 /∈ I i+2F , while ϕ0 ⊗ 〈〈a〉〉 ∈ I i+2F , and therefore
ϕ ⊗ 〈〈a〉〉 /∈ I i+2F , what we wanted to show.

Assume now that F ∈ D(n). Any form over F̄ is of the shape ϕ̄ where ϕ is
a form over F with a diagonalization with only units as entries. Suppose that
ϕ ∈ I iF̄ \I i+1F̄ where 1 ≤ i < n−1. Then we have ϕ⊗〈〈u〉〉 ∈ I i+1F \I i+2F .
By our assumption and by (5.2) there is a ∈ F× such that ϕ⊗〈〈u, a〉〉 /∈ I i+3F .
Further, since v(u)=1 we may choose a as a unit. Then it follows that
ϕ̄ ⊗ 〈〈ā〉〉 /∈ I i+2F̄ . By (5.2) this shows that F̄ ∈ D(n−1).

We finish this section with a statement that will be used later to show that
S(3) ( D(3). It gives a condition on F which implies that F ∈ D(3) \ S(3).
That fields subject to this condition exist will be shown in (6.7).

Recall that an Albert form is by definition a 6-dimensional quadratic form
of determinant −1.
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5.12 Proposition. Suppose that there exist an anisotropic 3-fold Pfister
form π and an anisotropic Albert form α over F such that every anisotropic
form over F is similar to a subform of π or of α. Then

(a) F is nonreal with u(F ) = 8,

(b) there exist exactly three universal anisotropic forms over F and these
are π, α and some form similar to α,

(c) any anisotropic form over F of dimension at most 4 is a subform of π,

(d) F has no supreme form,

(e) F ∈ D(3) \ S(3).

Proof. (a) By hypothesis, every form over F of dimension greater than 8 is
isotropic. Thus F is nonreal and u(F ) = dim(π) = 8.

(b) As α has determinant −1 and dimension 6, it cannot be similar to a
subform of any anisotropic 3-fold Pfister form. It follows from the hypothesis
that an anisotropic form over F is universal if and only it is similar either to
π or to α.

Since π is universal we have aπ ∼= π for every a ∈ F×. In particular π is
the only anisotropic form in I3F . Further for any a ∈ F× the form 〈1, a〉⊗α
lies in I3F , hence it is either hyperbolic or Witt equivalent to π. Therefore
there is at most one form which is similar but not isometric to α.

Let β denote the anisotropic part of the form π ⊥ α. This form lies in
I2F and its Clifford algebra is Brauer equivalent to the Clifford algebra of
α, in particular it is of index 4. Therefore β is of dimension at least 6 and
not similar to a subform of π. From the hypothesis we conclude that β is
similar to α. However, β ⊥ −α is Witt equivalent to π, so α and β are not
isometric.

All this together shows that π, α and β are the only anisotropic universal
forms over F and that they are distinct.

(c) Let ϕ be an anisotropic form over F . Let ψ denote the anisotropic
part of π ⊥ −ϕ. Then π is Witt equivalent to ϕ ⊥ ψ. Hence ϕ is a subform of
π if and only if ψ is a subform of π, if and only if dim(ϕ)+dim(ψ) = dim(π).
Suppose now that ϕ is of dimension at most 4 but not a subform of π. Then ψ
is not a subform of π either and we have dim(ψ) ≥ dim(π)−dim(ϕ)+2 ≥ 6.
Note that π is universal and multiplicative. Thus by (3.2), ψ is not similar
to a subform of π. Hence the hypothesis implies that ψ is similar to α. It
follows that ϕ is similar to the anisotropic part of π ⊥ α, which is β. This is
impossible since dim(β) = 6 > dim(ϕ).
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(d) By (b) there is more than one universal anisotropic form over F .
Therefore F has no supreme form.

(e) We know that F is nonreal and that π is the unique anisotropic 3-fold
Pfister form over F .

Let ϕ be an anisotropic form in IF \ I2F . Then the signed determinant
d := d±(ϕ) is not a square in F . Hence 〈1,−d〉 is anisotropic, but not
universal by (b). Let a ∈ F× be such that 〈〈−d, a〉〉 is anisotropic. Then
ϕ⊗ 〈〈b〉〉 lies in the same nontrivial class of Ī2F as 〈〈−d, a〉〉, thus ϕ⊗ 〈〈a〉〉 /∈
I3F . Let now ϕ be an anisotropic form in I2F \ I3F . Then ϕ is similar to α
or to some 2-fold Pfister form. It follows from (b) and (c) that there exists
a ∈ F× such that ϕ ⊗ 〈1, a〉 is Witt equivalent to π and does therefore not
lie in I4F . By (5.2) this shows that F ∈ D(3). But F /∈ S(3) by (d).

6 Construction of examples

Let C be a class of field extensions of F , i.e. a class of fields having F as a
subfield. We say that C is admissible if the following conditions are satisfied:

(i) C is closed under direct limits,

(ii) if K ∈ C and if K ′ is a subfield of K which contains F then K ′ ∈ C,

(iii) C is not empty.

Note that, in view of (ii), condition (iii) means that F ∈ C.

6.1 Theorem. Let C be an admissible class of field extensions of F . There
exists a field K containing F such that K ∈ C but K(ϕ) /∈ C for any aniso-
tropic quadratic form ϕ over K of dimension at least 2. Moreover, if F is
infinite then K may be chosen of the same cardinality as F .

Note that if for example C is the class of all field extensions of F , then
we may take for K any quadratically closed field containing F ; since every
quadratic form of dimension at least 2 over K is isotropic, the second condi-
tion will be trivially satisfied.

Proof. As a first step we show that every field F ′ ∈ C has an extension F ′′ ∈ C
such that for any anisotropic quadratic form ϕ over F ′ of dimension at least
2, either ϕF ′′ is isotropic or F ′′(ϕ) /∈ C. Let F ′ ∈ C. Let M be a subset of
W (F ′). Each nonzero class in W (F ′) is represented by some anisotropic form
over F , uniquely determined up to isometry. In the case where M is finite,
let ϕ1, . . . , ϕm be anisotropic forms over F representing the distinct nonzero
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classes in M and denote by F ′(M) the function field F ′(ϕ1) . . . (ϕm), up to
F -isomorphism only depending on M. More generally, let F ′(M) denote
the direct limit of all fields F ′(M′) where M′ ⊂ M is finite. By hypothesis
C is closed under direct limits. Thus by Zorn’s Lemma, there is a subset
M of W (F ′) which is maximal under the condition that F ′(M) ∈ C. We
denote the field F ′(M) by F ′′. Let ϕ be an anisotropic form of dimension
at least 2 over F ′. If ϕF ′′ is anisotropic, then the Witt equivalence class [ϕ]
does not belong to M and F ′′(ϕ) is F -isomorphic to F ′(M ∪ [ϕ]). So, by
the maximality of M, we have F ′′(ϕ) /∈ C. Moreover, if F ′ is infinite, then
the field F ′′ constructed here is of the same cardinality as F ′. (Note that the
cardinality of W (F ′) is at most equal to the cardinality of F ′.)

By the first step, we may now choose a sequence of fields (Fi)i∈N in C
such that for i ∈ N one has Fi ⊂ Fi+1 and for every anisotropic form ϕ
over Fi of dimension at least 2 either ϕFi+1

is isotropic or Fi+1(ϕ) /∈ C. Let
K be the union of all the fields Fi. Since C is closed under direct limits,
K ∈ C. Let ϕ be an anisotropic form of dimension at least 2 over K. Then
ϕ is defined over Fi for some i ∈ N. Since ϕ is anisotropic over Fi+1 we
must have Fi+1(ϕ) /∈ C. As the field K(ϕ) contains Fi+1(ϕ), condition (ii)
for admissibility shows that K(ϕ) /∈ C. Moreover, if F is infinite, the fields
Fi can be chosen of the same cardinality as F ; then K also has the same
cardinality as F .

6.2 Theorem. Let n ≥ 1 and let π be an anisotropic n-fold Pfister form
over F . There exists a field extension K of F such that

(i) the form πK is supreme over K,

(ii) for every anisotropic form ψ over F of dimension less than or equal to
2n−1, the form ψK is anisotropic over K,

(iii) for every central division algebra D over F whose degree is not divisible
by 22n−2

, the K-algebra D ⊗F K is a division algebra.

Moreover, the field K may be chosen of the same cardinality as F .

Proof. If F is a finite field then, since π is anisotropic, we must have n = 1,
whence π is the supreme form of F ; we may then choose K := F . Now
we suppose that F is infinite. Let C be the class of field extensions K of F
such that πK is anisotropic over K and such that (ii) and (iii) are satisfied.
This class is admissible. By (6.1), we may choose a field extension K of F
which is of the same cardinality as F and such that K ∈ C but K(ϕ) /∈ C
for any anisotropic form ϕ of dimension at least 2 over K. Let now ϕ be an
anisotropic form over K of dimension at least 2n−1 + 1.
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By Hoffmann’s theorem [7, Theorem 1], every anisotropic form over K
of dimension not greater than 2n−1 stays anisotropic over K(ϕ). Therefore
K(ϕ) also satisfies condition (ii).

Let C0(ϕ) be the even part of the Clifford algebra of ϕ over K. C0(ϕ) is a
K-algebra of dimension 2dim(ϕ)−1 ≥ 22n−1

. Let E be a central division algebra
over K such that E⊗K K(ϕ) is not a division algebra. By Merkurjev’s index
reduction criterion [21, Théorème 1], E contains a homomorphic image of
the K-algebra C0(ϕ). Hence the degree of E is divisible by 22n−2

. This shows
that condition (iii) is equally satisfied for the field K(ϕ).

However, K(ϕ) /∈ C by the choice of K, so we conclude that πK(ϕ) is
isotropic. Hence ϕ is similar to a subform of πK by [19, Theorem 4.5.4.(ii)],
because πK is an anisotropic Pfister form. As this holds for every anisotropic
form ϕ over K of dimension at least 2n−1+1, (3.6) shows that πK is supreme.

6.3 Proposition. Let n ≥ 2 and let P be a set of anisotropic n-fold Pfister
forms over F . There exists a field extension K/F such that

(i) πK is anisotropic for every π ∈ P ,

(ii) every anisotropic form over K is a subform of πK for some π ∈ P ,

(iii) K is 2-maximal with respect to every anisotropic n-fold Pfister form,

(iv) In+1K = 0.

Proof. The class of field extensions K/F such that over K all πK (π ∈ P ) are
anisotropic, is admissible. By (6.1), we may choose a field extension K/F in
this class such that for every anisotropic form ϕ over K of dimension at least
2 there is some π ∈ P for which πK(ϕ) is hyperbolic, whence ϕ is similar to a
subform of πK by [19, Theorem 4.5.4.(ii)]. Thus forms over F of dimension
greater than 2n are isotropic. In particular, any n-fold Pfister form over K
is universal. It follows by (2.1) from above that every anisotropic form over
K is itself a subform of some form πK , with π ∈ P . Further, any (n+1)-fold
Pfister form over K is hyperbolic, i.e. In+1K = 0.

Let now ψ be an anisotropic n-fold Pfister form and let ψ′ denote its
pure subform. For a ∈ F× \ −F×2

, the form ψ′ ⊥ 〈−a〉 over K cannot be a
subform of any n-fold Pfister form, hence it is isotropic, i.e. ψ′ represents a.
We conclude that DK(ψ′) = F× \ −K×2

, which means that K is 2-maximal
with respect to ψ (4.4).

6.4 Remark. Note that, in order to be sure that the forms (πi)K are all
distinct, one should apply the last proposition to a set P such that the
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classes in ĪnF represented by the n-fold Pfister forms π ∈ P and by the
hyperbolic form 2n−1 × 〈1,−1〉 form a subgroup.

6.5 Proposition. Let π be an anisotropic n-fold Pfister form over F , where
n ≥ 3. Let u denote either an even number greater than or equal to 2n or
the symbol ∞. There exists a field extension K/F such that πK is the unique
anisotropic n-fold Pfister form over K and K is nonreal with u(K) = u.

Proof. Let F ′ denote a function field in infinitely many variables over F .
Note that πF ′ is anisotropic and that for any m ≥ 1 there exists a division
algebra Dm over F ′ which is a tensor product of m quaternion algebras
over F ′. Further, for m ≥ 1 there exists an anisotropic quadratic form ϕm

over F ′ of dimension 2m+2 and of trivial discriminant, such that the Clifford
algebra C(ϕm) is Brauer equivalent to Dm. Since ϕm is of the least possible
dimension under these conditions, whenever L/F ′ is a field extension such
that (ϕm)L is isotropic, (Dm)L will not be a division algebra over L.

Suppose now that u = 2m + 2 for some m ≥ 2n−1 − 1. We consider
the class of field extensions K/F ′ such that πK is anisotropic and such that
(Dm)K is a division algebra over K. This class is admissible. Hence by (6.1)
there exists a field extension K/F ′ in this class such that for any anisotropic
form ψ over K of dimension at least two, πK(ψ) is hyperbolic or (Dm)K is
not a division algebra.

Let ψ be an anisotropic form in I3F , hence with trivial Clifford invariant.
By Merkurjev’s index reduction criterion [21, Théorème 1], (Dm)K(ψ) is a
division algebra. Therefore πK(ψ) is hyperbolic, whence ψ is similar to a
subform of πK . This shows in particular that πK is the unique anisotropic
n-fold Pfister form over K and that In+1K = 0, whence K is nonreal.

Since (Dm)K is a division algebra, ϕm stays anisotropic over K. Therefore
u(K) ≥ dim(ϕ) = 2m + 2. On the other hand, for any form ψ over K
with dim(ψ) ≥ 2m + 2 ≥ 2n, πK(ψ) is anisotropic and by [21, Théorème 1],
(Dm)K(ψ) is a division algebra, so the choice of K implies that ψ is isotropic.
This shows that u(K) = 2m + 2 = u.

In the remaining case where u = ∞, the same method works if we consider
instead the admissible class consisting of all field extensions K/F ′ such that
πK is anisotropic and (Dm)K is a division algebra for every m ≥ 1. The
above arguments show that a field K in this class chosen by (6.1) will be
such that πK is the unique anisotropic n-fold Pfister form over K, that K is
nonreal with In+1K = 0 and that all the forms ϕm for m ≥ 1 stay anisotropic
over K, whence u(K) = ∞.

6.6 Corollary. For any n ≥ 3 the class H(n) contains nonreal fields of
u-invariant equal to ∞ or to any even number greater than or equal to 2n. ¤
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For n = 3 the last result is due to Meurer [14], who further proved that
the u-invariant of a field in H(3) cannot be odd. Hence (6.6) gives all the
possible values for the u-invariant of a nonreal field in H(3).

6.7 Proposition. Let π be an anisotropic 2-fold Pfister form and α an an-
isotropic Albert form over F . There exists a field extension K/F such that
πK and αK are anisotropic and such that every anisotropic form over K is
similar to a subform of πK or of αK.

Proof. The class of field extensions K/F such that π and α stay anisotropic
over K is admissible. By (6.1) there exists a field extension K/F such that
πK and αK are anisotropic while for any anisotropic form ϕ over K with
dim(ϕ) ≤ 2 at least one of πK(ϕ) and αK(ϕ) is isotropic. If πK(ϕ) is isotropic
then we know that ϕ is similar to a subform of πK . On the other hand, if
αK(ϕ) is isotropic then a theorem of D. Leep, published in [11, Theorem 1.1],
tells us that ϕ is similar either to a 2-fold Pfister form or to a subform of
αK . Suppose now that ϕ is similar to a 2-fold Pfister form. Let ψ denote
the anisotropic part of πK ⊥ −ϕ. Since ψ is congruent modulo I3K to
an anisotropic 2-fold Pfister form, it cannot be similar to a subform of an
anisotropic Albert form. Hence ψ is similar to a subform of πK or to a 2-fold
Pfister form. Each implies that ϕ ⊥ ψ is equal to πK .

This proves that every anisotropic form over K is similar to a subform of
αK or of πK .

6.8 Corollary. S(3) is a proper subclass of D(3).

Proof. By (5.4) S(3) is contained in D(3). Using (6.7) one can construct
a field F satisfying the hypothesis of (5.12), hence such that F ∈ D(3) \
S(3).

6.9 Remark. As a consequence of (6.8) we obtain that D(n) 6⊂ S(n) for
any n ≥ 3. Indeed, given F ∈ D(3) \ S(3) the iterated power series field
F ((X1)) . . . ((Xn−3)) belongs to D(n) \ S(n), by (3.7) and (5.11).

In view of (6.6) and (6.8) we ask the following:

6.10 Question. Is there a field F ∈ D(3) with u(F ) > 8 ?

7 Symbol length of a field with supreme form

Let Br(F ) denote the Brauer group of F and Br2(F ) the subgroup of Br(F )
consisting of the elements of order at most 2. The elements of Br2(F ) are
the classes (modulo Brauer equivalence) of central simple algebras A over F
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for which A⊗F A is isomorphic to a matrix algebra over F . By Merkurjev’s
theorem [13] every class in Br2(F ) is represented by a tensor product of
quaternion algebras over F . If A is a central simple F -algebra such that
[A] ∈ Br2(F ) then we denote by ℓ(A) the least integer m ≥ 0 such that [A]
is represented by a product of m quaternion algebras over F .

The invariant λ2(F ) is defined by

λ2(F ) := sup {ℓ(A) | [A] ∈ Br2(F )}

and called the 2-symbol length of F . This invariant takes its values in the
set N ∪ {0,∞}. Note that λ2(F ) is zero if and only if every F -quaternion
algebra is split, if and only if I2F = 0. Further λ2(F ) ≤ 1 is equivalent to
the condition that the classes in Br(F ) which are represented by quaternion
algebras form a subgroup of Br(F ). Fields with this property have been
studied in [4]. For definition and study of the p-symbol length λp(F ) for any
prime p we refer the reader to [8] and to [3]. Further information on λ2(F )
can be found in [16].

Suppose that the field F is nonreal. B. Kahn showed in [8] that ImF
vanishes for m ≥ 2λ2(F ) + 3, and also for m = 2λ2(F ) + 2 if −1 ∈ F×2

.
So, if InF 6= 0 then λ2(F ) ≥

[

n−1
2

]

. This applies in particular if F ∈ S(n).
It is an open problem whether λ2(F ) = n−1

2
− 1 is possible when InF 6= 0.

However, examples where λ2(F ) =
[

n
2

]

and InF 6= 0 are easy to obtain for
any n ≥ 1; one may actually find such F ∈ S(n).

7.1 Example. Let n ≥ 1. As already mentioned in (3.1), the field F :=
C((X1)) . . . ((Xn)) has a supreme n-fold Pfister form. In particular, InF is
nontrivial while In+1F = 0 (3.5, b). On the other hand, it is known that
λ2(F ) =

[

n
2

]

(cf. [8] or [3]).

If F ∈ S(1), then obviously λ2(F ) = 0, and it is also clear that for
F ∈ S(2) one has λ2(F ) = 1. Now we give for F ∈ S(n), n ≥ 3, an upper
bound on λ2(F ) and show then that it is best possible.

7.2 Theorem. Let n ≥ 3. If F ∈ S(n), then λ2(F ) ≤ 2n−2 − 1.

Proof. Let A be a central simple F -algebra of exponent at most 2. It follows
from Merkurjev’s theorem [13] that A is Brauer equivalent to the Clifford
algebra C(ϕ) of some anisotropic form ϕ ∈ I2F . Now, C(ϕ) is known to be

a product of dim(ϕ)
2

quaternion algebras where at least one of them is split.

Therefore we have ℓ(A) ≤ dim(ϕ)
2

− 1.
Suppose now that F has a supreme n-fold Pfister form π. We decompose

π into ϕ ⊥ ψ for a quadratic form ψ over F (3.2). Since π ∈ I3F , the form ψ
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lies in I2F and its Clifford algebra C(ψ) is Brauer equivalent to C(ϕ), hence

also to A. By the same argument as above we obtain ℓ(A) ≤ dim(ψ)
2

− 1. But
since dim(ϕ)+dim(ψ) = 2n, we have either dim(ϕ) ≤ 2n−1 or dim(ψ) < 2n−1,
hence in any case ℓ(A) ≤ 2n−2 − 1.

7.3 Corollary. If F ∈ S(3), then λ2(F ) = 1.

Proof. If F ∈ S(3), then λ2(F ) ≤ 1 by (7.2) and λ2(F ) 6= 0.

7.4 Corollary. Let n ≥ 0 and let π be an anisotropic n-fold Pfister form
over F . There exists a field extension K/F such that πK is supreme and
λ2(K) = 2n−2 − 1.

Proof. Since we can replace F by a suitable purely transcendental extension
of F if necessary, we may assume that there exists a central division algebra
D over F which is a tensor product of 2n−2 − 1 quaternion algebras. Now,
using (6.2) we choose an extension K/F such that πK is supreme over K and
DK is still a division algebra. Then DK cannot be Brauer equivalent to a
product of less than 2n−2−1 quaternion algebras over K, so ℓ(DK) = 2n−2−1.
This shows that λ2(K) ≥ 2n−2 − 1 and the last theorem gives the opposite
inequality.

8 The level form as supreme form

We now apply the results of the previous sections to the particular Pfister
form 2n × 〈1〉 and study in particular the case where this form is supreme.

If we know that F has a supreme n-fold Pfister form then we can read
from the level s(F ) whether the supreme form is equal to 2n × 〈1〉.

8.1 Proposition (Hoffmann). Let F ∈ S(n) with n ≥ 1. Then s(F ) ≤
2n and the following are equivalent:

(i) s(F ) = 2n,

(ii) the supreme form of F is 2n × 〈1〉,

(iii) every nonzero element of F is a sum of s(F ) squares in F .

Proof. Note that the level form of F is anisotropic and has dimension s(F )
and that u(F ) = 2n (3.5, a). Therefore s(F ) ≤ 2n.

(i ⇒ iii) As u(F ) = 2n the form 2n × 〈1〉 is universal over F , i.e. every
element of F× is a sum of 2n squares in F .

(iii ⇒ ii) The supreme form of F has dimension 2n and by (3.3) it is
the unique universal anisotropic form over F . Condition (iii) means that
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the level form of F is universal, and it is anisotropic by definition. Therefore
(iii) implies (ii).

(ii ⇒ i) This is obvious.

We say that the field F is level-s supreme if the form s × 〈1〉 is supreme
over F . Then s = s(F ), in particular s is a power of 2.

Let a ∈ F . We write ℓF (a) for the least positive integer l such that a is a
sum of l nonzero squares over F , provided such an integer exists; otherwise,
if a is not a sum of nonzero squares in F , we set ℓF (a) := ∞. In particular,
for any field F one has ℓF (−1) = s(F ) and ℓF (0) = s(F ) + 1. Further, for
any a ∈ F , the inequality ℓF (a) + ℓF (−a) ≥ s(F ) + 1 holds.

8.2 Proposition. Suppose that F is level-s supreme. Then for every a ∈ F×

one has ℓF (a) + ℓF (−a) = s + 1.

Proof. Let m := ℓF (a) − 1. The form m × 〈1〉 ⊥ 〈−a〉 over F is anisotropic
and therefore a subform of the supreme form s×〈1〉. Witt cancellation shows
that −a is represented by (s−m) × 〈1〉, thus ℓF (−a) ≤ s − m. This yields
ℓF (a) + ℓF (−a) ≤ s + 1, and the converse inequality holds in general.

8.3 Question. Is there a field F which is not level-4 supreme and such that
ℓF (a) + ℓF (−a) = 5 holds for all a ∈ F×?

For any m ≥ 1, we denote by DF (m) the set of nonzero elements of F
which can be written as a sum of m squares. This is actually an abbreviation
for DF (ϕ) where ϕ is the form m× 〈1〉. If m is a power of 2 then m× 〈1〉 is
a Pfister form and as a consequence DF (m) is a subgroup of F×.

8.4 Corollary. If F is level-2n supreme, then

F× = DF (2n−1) ∪ −DF (2n−1).

Proof. For any a ∈ F×, we have ℓF (a)+ℓF (−a) = 2n+1 by (8.2), thus either
ℓF (a) ≤ 2n−1 or ℓF (−a) ≤ 2n−1.

If the field F is level-2n supreme, then it is 2-maximal with respect to
2n × 〈1〉 by (4.3). To see this one could also apply (8.2) to verify condition
(iii) in the next proposition.

8.5 Proposition. Suppose that the field F is nonreal. The following are
equivalent:

(i) F is 2-maximal with respect to the form 2n × 〈1〉,
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(ii) s(F )= 2n and s(K)< 2n for every quadratic extension K/F ,

(iii) DF (2n−1) = F× \ −F×2
.

Furthermore, if these conditions are satisfied, then every nonzero element of
F is a sum of 2n squares.

Proof. Note first that any of the conditions implies the anisotropy of 2n×〈1〉
over F . Since this is a Pfister form with pure subform (2n−1)×〈1〉, we obtain
the equivalence of (i) and (iii) from (4.4). Further, the equivalence of (i) and
(ii) follows from (4.2). Finally, (ii) and (iii) together yield DF (2n) = F×,
which means that every nonzero element of F is a sum of 2n squares in F .

For n = 2 the last result was obtained by Mináč and Smith [15, Theo-
rem 4.5]. It seems to be known in general, as well as part (a) of the next
proposition. Indeed, combining both statements we retrieve the construction
of a field of level and Pythagoras number both equal to 2n which is outlined
in the proof of [18, Proposition 7.1.5.(b)].

8.6 Proposition. Suppose that s(F ) ≥ 2n.

(a) If F is nonreal, then there exists a 2-extension K/F such that K has
level 2n and is 2-maximal with respect to the level form 2n × 〈1〉.

(b) There exists a field extension K/F such that K is level-2n supreme and
λ2(K) = 2n−2 − 1.

Proof. Part (a) follows from (4.1) and part (b) from (7.4), each time applied
to the Pfister form 2n × 〈1〉.

8.7 Question. Given n ≥ 4, does there exist a field F which is level-2n

supreme and such that λ2(F ) < 2n−2 − 1 ?

The following result was announced by the author in [1, Section 3].

8.8 Corollary. If s(F ) = 2n then |DF (2n)/DF (2n−1)| ≥ 2 and this estimate
is best possible for any n ≥ 1.

Proof. If s(F ) = 2n then −1 represents a nontrivial class in the quotient
DF (2n)/DF (2n−1), so the estimate is clear. On the other hand, if F is level-2n

supreme then we conclude from (8.4) that |DF (2n)/DF (2n−1)| = 2. There-
fore, for any n ≥ 1 the estimate is optimal, since level-2n supreme fields do
exist by (8.6, b).
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By (8.4), if F is a level-2n supreme, then DF (2n−1) is of index 2 in F×.
Under the weaker condition that F have level 2n and be 2-maximal with
respect to the level form, the quotient F×/DF (2n−1) does not even need to
be finite.

8.9 Example. Let F be a field with s(F ) ≥ 2n, where n ≥ 2, such that
F×/DF (2n−1) is infinite (e.g. a real field with infinitely many orderings). Let
P denote the set of anisotropic n-fold Pfister forms of the shape 2n−1×〈〈−a〉〉
for a ∈ F×\DF (2n−1). By (6.3), there exists a field extension K/F such πK is
anisotropic for any π ∈ P , In+1K vanishes and K is 2-maximal with respect
to every anisotropic n-fold Pfister form. In particular, K is nonreal and
2-maximal with respect to 2n × 〈1〉. As a consequence, we obtain s(K) = 2n

and K× = DK(2n). Further, since 2n−1 × 〈〈−a〉〉 stays anisotropic over K
for any a ∈ F× \ DF (2n−1), we have F× ∩ DK(2n−1) = DF (2n−1). Hence
F×/DF (2n−1) injects into DK(2n)/DK(2n−1), which therefore is infinite.

We have seen that the property for F to be level-2n supreme has many
consequences. However, it does not determine the Witt ring of F when n ≥ 2.
In fact, the square class number of a level-4 supreme field can be finite or
infinite, as the following shows.

8.10 Example. Let K be an extension of odd degree 2m + 1 of the field of
dyadic numbers Q2. Then |K×/K×2| = 22m+3 [12, Ch. VI, Corollary 2.23].
Then K is a local field and, by Springer’s Theorem, 〈〈1, 1〉〉 is anisotropic
over K. By (5.8) we conclude that K is a supreme level-4 field.

Let further L denote the direct limit of the finite odd degree extensions
of Q2. One easily sees from the previous that L is a supreme level-4 field and
that L×/L×2

is infinite.
In particular L is 2-maximal with respect to its supreme form 〈〈1, 1〉〉. If

now M is any field containing L such that M×/M×2
is finite, then L is not

quadratically closed in M , so 〈〈1, 1〉〉 must be isotropic over M , i.e. s(M) ≤ 2.

We recall that it is still an open question whether there exists a field
K such that 4 < s(K) < ∞ and such that K×/K×2

is finite (cf. [1]). A
natural approach to search for such a field K might be to start with a field
F with s(F ) ≥ 8 and to try to construct K as an extension of F . However,
the last example showes that a field F may have no extension K/F such
that K×/K×2

is finite and s(K) = s(F ). In the author’s interpretation,
the mentioned approach is therefore unlikely to help solving the problem.
It might be interesting, however, to search sufficient conditions on F for
it to have no extension K/F such that K×/K×2

is finite and such that
4 < s(K) < ∞ (or even 2 < s(K) < ∞).
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[6] Fröhlich, A. Quadratic forms “à la” local theory. Proc. Cambridge
Philos. Soc., 63:579–586, 1967.

[7] Hoffmann, D. W. Isotropy of quadratic forms over the function field of
a quadric. Math. Z., 220(3):461–476, 1995.

[8] Kahn, B. Comparison of some field invariants. J. Algebra, 232(2):485–
492, 2000.
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