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ABSTRACT. For a central simple algebra with an orthogonal involu-
tion (A, o) over a field k of characteristic different from 2, we relate the
multipliers of similitudes of (A, o) with the Clifford algebra C'(A4, o).
We also give a complete description of the group of multipliers of simil-
itudes when deg A < 6 or when the virtual cohomological dimension
of k is at most 2.
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INTRODUCTION

A. Weil has shown in [22] how to obtain all the simple linear algebraic groups
of adjoint type D,, over an arbitrary field k of characteristic different from 2:
every such group is the connected component of the identity in the group
of automorphisms of a pair (A,0) where A is a central simple k-algebra of
degree 2n and o0: A — A is an involution of orthogonal type, i.e., a map which
over a splitting field of A is the adjoint involution of a symmetric bilinear form.
(See [7] for background material on involutions on central simple algebras and
classical groups.) Every automorphism of (A, o) is inner, and induced by an
element g € A* which satisfies o(g)g € k*. The group of similitudes of (A, o)
is defined by that condition,

GO(A,0) ={gc A" |a(g)g € k*}.
The map which carries g € GO(A4, o) to o(g)g € k* is a homomorphism
w: GO(A,0) — K~
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called the multiplier map. Taking the reduced norm of each side of the equation
o(g9)g = u(g), we obtain

Nrda(g)* = u(g)™",
hence Nrd4(g) = £u(g)™. The similitude g is called proper if Nrd 4(g) = u(g9)",
and improper if Nrda(g) = —pu(g)™. The proper similitudes form a subgroup
GO4(A4,0) C GO(A4,0). (As an algebraic group, GO (A, o) is the connected
component of the identity in GO(4,0).)
Our purpose in this work is to study the multipliers of similitudes of a cen-
tral simple k-algebra with orthogonal involution (A, ). We denote by G(A, o)
(resp. G+ (A, 0), resp. G_(A, o)) the group of multipliers of similitudes of (4, o)
(resp. the group of multipliers of proper similitudes, resp. the coset of multi-
pliers of improper similitudes),

G(A,0) ={ulg) [ g € GO(4,0)},

Gy(A o) ={ug) | g € GOL(A,0)},
G_(A,0) ={ug) | g € GO(A,0) \ GO+ (A,0)}.

When A is split (A = Endy, V for some k-vector space V'), hyperplane reflections
are improper similitudes with multiplier 1, hence

G(A,0) =G (A,0)=G_(4,0).

When A is not split however, we may have G(A,0) # G4 (4, 0).

Multipliers of similitudes were investigated in relation with the discriminant
disco by Merkurjev—Tignol [14]. Our goal is to obtain similar results relating
multipliers of similitudes to the next invariant of o, which is the Clifford algebra
C(A, o) (see [7, §8]). As an application, we obtain a complete description of
G(A, o) when deg A < 6 or when the virtual cohomological dimension of k is
at most 2.

To give a more precise description of our results, we introduce some more
notation. Throughout the paper, k& denotes a field of characteristic different
from 2. For any integers n, d > 1, let ua» be the group of 2”-th roots of unity in

a separable closure of k and let H%(k, ,u;z)n(d_l)) be the d-th cohomology group

of the absolute Galois group with coefficients in ugi(d’” (=Z/2"Z ifd=1).
Denote simply
. d-1
H% = lim H(k, u3*™Y),

so H'k and H?k may be identified with the 2-primary part of the character
group of the absolute Galois group and with the 2-primary part of the Brauer
group of k, respectively,

H'k = Xy(k),  H?k = Bry(k).

In particular, the isomorphism k* /k*2 ~ H(k,Z/2Z) derived from the Kum-
mer sequence (see for instance [7, (30.1)]) yields a canonical embedding

EX kX% — H'k. (1)
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The Brauer class (or the corresponding element in H2k) of a central simple
k-algebra E of 2-primary exponent is denoted by [E].

If K/k is a finite separable field extension, we denote by Ny : HK — H%
the norm (or corestriction) map. We extend the notation above to the case
where K ~ k x k by letting H%(k x k) = H% x H% and

Nxiyi(€1,62) = &+ & for (&1,&) € HY(k x k).

Our results use the product
kX x HY% — HM ford=1or 2

induced as follows by the cup-product: for € k* and & € H%, choose
n such that £ € Hd(k,ugfd_l)) and consider the cohomology class (z), €
H'(k, pign) corresponding to the 2"-th power class of 2 under the isomorphism
H'(E, pgn) = k* /E*2" induced by the Kummer sequence; let then

z-&=(x), UE e HH (b, uSh) c H k.

In particular, if d = 1 and & is the square class of y € k* under the embed-
ding (1), then z - £ is the Brauer class of the quaternion algebra (z,y).
Throughout the paper, we denote by A a central simple k-algebra of even
degree 2n, and by o an orthogonal involution of A. Recall from [7, (7.2)] that
disco € k*/k*? C H'k is the square class of (—1)" Nrda(a) where a € A*
is an arbitrary skew-symmetric element. Let Z be the center of the Clifford
algebra C'(A,0); thus, Z is a quadratic étale k-algebra, Z = k[Vdisc o], see
[7, (8.10)]. The following relation between similitudes and the discriminant is
proved in [14, Theorem A] (see also [7, (13.38)]):

THEOREM 1. Let (A, o) be a central simple k-algebra with orthogonal involution
of even degree. For A € G(A, o),

)\-disca:{o Z:f/\EG+(A’U)’
[A] if\eG_(4,0).

For d = 2 (resp. 3), let (H?k)/A be the factor group of H%k by the subgroup
{0,[4]} (resp. by the subgroup k* - [A]). Theorem 1 thus shows that for A €
G(4,0)

A-disco =0 in (H?k)/A.

Our main results are Theorems 2, 3, 4, and 5 below.

THEOREM 2. Suppose A is split by Z. There exists an element (o) € H?k
such that y(o)z = [C(A,0)] in H2Z. For A € G(A,0),

A-y(o) =0 in (H3k)/A.
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Remark 1. In the conditions of the theorem, the element (o) € H?k is not
uniquely determined if Z % k x k. Nevertheless, if A - disco = 0 in (H%k)/A,
then X - (o) € (H®k)/A is uniquely determined. Indeed, if v, v/ € H?k are
such that vz = 7%, then there exists v € k* such that v = v +wu-disco, hence

Ay =X v+ A u-disco.
The last term vanishes in (H3k)/A since X - disco = 0 in (H?k)/A.

The proof of Theorem 2 is given in Section 1. It shows that in the split case,
where A = Endy V' and o is adjoint to some quadratic form ¢ on V', we may
take for y(o) the Brauer class of the full Clifford algebra C(V, q). Note that the
statement of Theorem 2 does not discriminate between multipliers of proper
and improper similitudes, but Theorem 1 may be used to distinguish between
them. Slight variations of the arguments in the proof of Theorem 2 also yield
the following result on multipliers of proper similitudes:

THEOREM 3. Suppose the Schur index of A is at most 4. If A\ € G4 (A, o), then
there exists z € Z* such that X = Nz, (2) and

Nzi(z-[C(A,0)]) =0 in (Hk)/A.

The proof is given in Section 1. Note however that the theorem holds without
the hypothesis that ind A < 4, as follows from Corollaries 1.20 and 1.21 in [12].
Using the Rost invariant of Spin groups, these corollaries actually yield an
explicit element z as in Theorem 3 from any proper similitude with multiplier

A

Remark 2. The element Ny (z - [C(A,0)]) € (Hk)/A depends only on
Nz/k(z) and not on the specific choice of z € Z. Indeed, if 2z, 2’ € Z* are
such that Nz (2) = Nz/(2'), then Hilbert’s Theorem 90 yields an element
u € Z* such that, denoting by ¢ the nontrivial automorphism of Z/k,

2 = zu(u) "t
hence
Nz (2" [C(A,0)]) =
Nz (z ‘ [C’(A,o)]) + Nz (U [C(A,o)]) - NZ/k(L(U) : [C(A7J)])-

Since Nz, 0t = Ny, and since the properties of the Clifford algebra (see [7,
(9.12)]) yield
[C(A,0)] = [C(A,0)] = [A]z,

it follows that
Nzi(u-[C(A,0)]) = Ngsi(u(u) - [C(A,0)]) = Nzsi(u-[Alz).

By the projection formula, the right side is equal to Nz (u) - [A]. The claim
follows.
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Remark 3. Theorems 2 and 3 coincide when they both apply, i.e., if A is split
by Z (hence ind A = 1 or 2), and A € G (A,0). Indeed, if A = Nz/,(2) and
v(0)z = [C(A,0)] then the projection formula yields

Nzi(z - [C(A,0)]) = X-7(0).

Remarkably, the conditions in Theorems 1 and 2 turn out to be sufficient for
A to be the multiplier of a similitude when deg A < 6 or when the virtual
cohomological 2-dimension?® of k is at most 2.

THEOREM 4. Suppose n < 3, i.e., deg A < 6.
o If A is not split by Z , then every similitude is proper,
G(A,0) =G4(A,0), G_(A,o0)=02.
Moreover, for A € k*, we have A € G(A,0) if and only if there exists
z € Z* such that X = Nz,(2) and
Nzi(z-[C(A,0)]) =0 in (Hk)/A.
o If A is split by Z, let v(o) € H?k be as in Theorem 2. For \ € kX, we
have A € G(A, o) if and only if
A -disco = 0 in (H?k)/A and X-v(o) =0 in (H3k)/A.

The proof is given in Section 2.
Note that if deg A = 2, then A is necessarily split by Z and we may choose
v(o) = 0, hence Theorem 4 simplifies to
A€ G(A,0) ifand only if X-disco =0 in (H?k)/A,
a statement which is easily proved directly. (See [14, p. 15] or [7, (12.25)].)

If deg A = 4, multipliers of similitudes can also be described up to squares as
reduced norms from a central simple algebra E of degree 4 such that [E] = v(0)
if A is split by Z (see Corollary 4.5) or as norms of reduced norms of C(A, o)
if A is not split by Z (see Corollary 2.1).

For the next statement, recall that the virtual cohomological 2-dimension of
k (denoted vcds k) is the cohomological 2-dimension of k(v/—1). If v is an
ordering of k, we let k, be a real closure of k for v and denote simply by
(A, 0), the algebra with involution (4 ® ky, o ® Idy, ).

THEOREM 5. Suppose veda k < 2, and A is split by Z. For A € k*, we have
A€ G(A, o) if and only if

A >0 at every ordering v of k such that (A, o), is not hyperbolic,
A-disco =0 in (H*k)/A  and  X-~(0) =0 in (H?k)/A.

The proof is given in Section 3.

3The authors are grateful to Parimala for her suggestion to investigate the case of low
cohomological dimension.
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1 PROOFS OF THEOREMS 2 AND 3

Theorems 2 and 3 are proved by reduction to the split case, which we consider
first. We thus assume A = Endy V for some k-vector space V' of dimension 2n,
and o is adjoint to a quadratic form ¢ on V. Then disco = disc ¢ and C(A4, o)
is the even Clifford algebra C(A, o) = Cy(V, q). We denote by C(V, q) the full
Clifford algebra of g, which is a central simple k-algebra, and by Ik the m-th
power of the fundamental ideal Ik of the Witt ring Wk.

LEMMA 1.1. For A € k*, the following conditions are equivalent:
(a) \-discq =0 in H*k and \-[C(V,q)] = 0 in H3k;
(b) (\)-q = qmod I*k.
Proof. For ay, ..., a., € k%, let
{ar, .. yam) = {1, —a1) @ - @ (1, —aym).

Let es: I’k — H?k be the Witt invariant and es: I3k — H3k be the Arason
invariant. By a theorem of Merkurjev [9] (resp. of Merkurjev—Suslin [13] and
Rost [17]), we have ker ea = I*k and ker e3 = I*k. Therefore, the lemma follows
if we prove

A-discg =0 ifand only if (\)-q¢€ Ik, (2)
and that, assuming that condition holds,
es((A) -a) = A-[C(V,q)]. (3)
Let § € k* be such that discq = (§); € H'(k,Z/2Z) C H'k. Then
q = {(6) mod I*k, (4)
hence
e2((A) - @) = e2((A, 0))) = A - discq,
proving (2). Now, assuming X - disc ¢ = 0, we have ((A,d)) = 0 in Wk, hence
(A -a=(A) - (g L (o))
By (4), we have ¢ L ((§)) € I?k, hence
es((A) - @) = A-ea(q L (6))). (5)
The computation of Witt invariants in [8, Chapter 5] yields
e2(q L (6)) = [C(V,q)] + (—1) - discq. (6)

Since \ - disc ¢ = 0 by hypothesis, (3) follows from (5) and (6). O
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Proof of Theorem 2. If A is split, then using the same notation as in Lemma 1.1
we may take y(o) = [C(V, q)], and Theorem 2 readily follows from Lemma 1.1.
For the rest of the proof, we may thus assume A is not split, hence disco # 0
since Z is assumed to split A. Let G = {Id, ¢} be the Galois group of Z/k. The
properties of the Clifford algebra (see for instance [7, (9.12)]) yield

[C(A,0)] = 1[C(A, 0)] = [A]z = 0.

Therefore, [C(A, 0)] lies in the subgroup (Br Z)¢ of Br Z fixed under the action
of G. The “Teichmiiller cocycle” theory [6] (or the spectral sequence of group
extensions, see [19, Remarque, p. 126]) yields an exact sequence

Brk — (Br2)® — H3(G,Z%).

Since G is cyclic, H}(G,Z*) = H'Y(G,Z*). By Hilbert’s Theorem 90,
HY(G,Z*) = 1, hence (BrZ)¢ is the image of the scalar extension map
Brk — Br Z, and there exists (o) € Brk such that v(o)z = [C(A,0)]. Then,
by [7, (9.12)],

0 if n is odd,

[A] if n is even,

2y(0) = Nz (IC(4,0)]) = { (7)

hence 4(c) = 0. Therefore, (o) € Bra(k) = Hk.

Note that ind A = 2, since A is split by the quadratic extension Z/k, hence A
is Brauer-equivalent to a quaternion algebra @). Let X be the conic associated
with @; the function field k(X) splits A. Since Theorem 2 holds in the split
case, we have

A-v(o) € ker(H*k — H?k(X)).

By a theorem of (Arason—) Peyre [16, Proposition 4.4], the kernel on the right
side is the subgroup k* - [A] C H3k, hence

A-v(0) =0 in (Hk)/A.
]

Proof of Theorem 8. Suppose first A is split, and use the same notation as in
Lemma 1.1. If A € G(A, o), then ()\) - ¢ ~ ¢ and Lemma 1.1 yields

A-discg=0in H*k and  \-[C(V,q)] =0 in H?k.
The first equation implies that A = N/, (2) for some z € Z*. Since
[C(A,0)] = [Co(V,q)] = [C(V,q)]z,
the projection formula yields

Nzsi(z-[C(A,0)]) = Ngji(2) - [C(V,q)] = X - [C(V,¢)] = 0,
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proving the theorem if A is split.

If A is not split, we extend scalars to the function field k(X) of the Severi-
Brauer variety of A. For A € G4 (A4,0), there still exists z € Z* such that
A= Nz (z), by Theorem 1. Since Theorem 3 holds in the split case, we have

Nzi(z - [C(A,0)]) € ker(H*k — Hk(X)),
and Peyre’s theorem concludes the proof. (Note that applying Peyre’s theorem
requires the hypothesis that ind A < 4.) O

2 ALGEBRAS OF LOW DEGREE

We prove Theorem 4 by considering separately the cases ind A =1, 2, and 4.

2.1 CASE 1: A 1S SPLIT

Let A =FEnd; V, dimV <6, and let o be adjoint to a quadratic form ¢ on V.
Since C(4,0) = Cy(V, q), we may choose (o) = [C(V, ¢)]. The equations

A-disco =0in (H?k)/A  and  \-v(0) =0in (Hk)/A
are then equivalent to
A-discg=0in H*k  and  X-[C(V,q)] =0 in H?E,

hence, by Lemma 1.1, to () - ¢ € I*k. Since dimq = 6, the Arason—Pfister
Hauptsatz [8, Chapter 10, Theorem 3.1] shows that this relation holds if and
only if (A\)-¢=0,1ie., A€ G(V,q) = G(4,0), and the proof is complete.

2.2 CASE 2: indA =2

Let @ be a quaternion (division) algebra Brauer-equivalent to A. We repre-
sent A as A = Endg U for some 3-dimensional (right) Q-vector space. The
involution o is then adjoint to a skew-hermitian form h on U (with respect to
the conjugation involution on @), which defines an element in the Witt group
W=HQ). Let X be the conic associated with Q. The function field k(X) splits
@, hence Morita-equivalence yields an isomorphism

W HQ® k(X)) ~ Wk(X).

Moreover, Dejaiffe [4] and Parimala—Sridharan—Suresh [15] have shown that
the scalar extension map

WHQ) — WH(Q® k(X)) ~ Wk(X) (8)

is injective. Let (V,q) be a quadratic space over k(X) representing the image
of (U, h) under (8). We may assume dimV = deg A < 6 and o is adjoint to ¢
after scalar extension to k(X). An element A € k* lies in G(V,¢q) if and only
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if (A))-q = 0; by the injectivity of (8), this condition is also equivalent to

f
(A) -h=01in W=1(Q), i.e., to X € G(A, o). Therefore,
G(V,q) Nk = G(A,0). (9)

Suppose first A is not split by Z. Theorem 1 then shows that every similitude
of (A,0) is proper, and it only remains to show that if A = N/, (z) for some
z € Z* such that

Nzi(z-[C(A,0)]) =0 in (H’k)/A,

then X € G(A, o). Extending scalars to k(X), we derive from the last equation
by the projection formula

Nzxy k) (2) - [C(V,9)] =0 in Hk(X).
Therefore, by Lemma 1.1, (\) - ¢ = ¢ mod I*k(X), i.e.,
(M) - g € T'k(X).

Since dimq < 6, the Arason—Pfister Hauptsatz implies ((A)) - ¢ = 0, hence
A € G(V,q) and therefore A € G(A, o) by (9). Theorem 4 is thus proved when
ind A =2 and A is not split by Z.

Suppose next A is split by Z. In view of Theorems 1 and 2, it suffices to show
that if A € k* satisfies

A-disco =0in (H?k)/A  and  X-v(0) =0 in (H3k)/A,
then A € G(A4, o). Again, extending scalars to k(X), the conditions become

A-discqg = 0 in H*k(X) and A-[C(V,q)] =0 in H*k(X).

By Lemma 1.1, these equations imply ((\)) - ¢ € I*k(X), hence () - q¢ = 0
by the Arason—Pfister Hauptsatz since dim ¢ < 6. It follows that A € G(V,q),
hence A € G(A,0) by (9).

2.3 CASE 3: indA =14

Since deg A < 6, this case arises only if deg A = 4, i.e., A is a division algebra.
This division algebra cannot be split by the quadratic k-algebra Z, hence all the
similitudes are proper, by Theorem 1. Theorem 3 shows that if A € G(A,0),
then there exists z € Z* such that A = N/,(2) and Nz, (z . [C(A,U)]) =0
in (H3k)/A, and it only remains to prove the converse.

Let z € Z* be such that Ny (2 - [C(A,0)]) = u - [A] for some u € k*. Since
by [7, (9.12)], Nz/k([C(A, 0)}) = [4], it follows that

Nz (u'z-[C(A,0)]) =0 in H’k. (10)
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Since deg A = 4, the Clifford algebra C(A, o) is a quaternion algebra over Z.
Let

C(A,U) = (21722)2.
Suppose first disco # 0, i.e., Z is a field. Let s: Z — k be a k-linear map
such that s(1) = 0, and let s,.: WZ — Wk be the corresponding (Scharlau)
transfer map. By [2, Satz 3.3, Satz 4.18], Equation (10) yields

sy ((u'z,21,22) € I'k.

However, the form s, ((u™'z,21,22))) is isotropic since (u™'z,z1,22)) repre-
sents 1 and s(1) = 0. Moreover, its dimension is 2%, hence the Arason—Pfister
Hauptsatz implies

si((u™'z,21,22) =0 in Wk.

It follows that
se((u™'2) - (21, 22))) = 5. ({21, 22))),

hence the form on the left side is isotropic. Therefore, the form (u=12)-{(z1, 22))

represents an element v € k*. Then v~ 1u~1z is represented by (21, z2)), which

is the reduced norm form of C(A, o), hence z € k* Nrd(C(A,0)*), and
Nz/i(2) € k2N (Nrd(C(A, 0)7)).

By [7, (15.11)], the group on the right is G+(A,0). We have thus proved
Nz/i(2) € G(A,0), and the proof is complete when Z is a field.

Suppose finally disco = 0, i.e., Z ~ k x k. Then C(A,0) ~ C’ x C" for some
quaternion k-algebras C" = (24, 24)x and C” = (2}, 24)x, and [7, (15.13)] shows

G(A,0) = Nrd(C'*)Nrd(C"™).
We also have z = (2/,2") for some 2/, 2/ € k>, and (10) becomes
u Y [C)+u - [C7) =0 in H3k.

It follows that

(™2’ 21, 20)) = (w72, 21, 25).

By [2, Lemma 1.7], there exists v € k> such that

(u™2' 21, 20)) = (0,21, 20) = (v, 21, 29)) = (w12, 2, 25),

hence v=tu~12" € Nrd(C’) and v=*u~12"” € Nrd(C"). Therefore,
Ny(z) = 22" € Nrd(C"™) Nrd(C"™),

and the proof of Theorem 4 is complete.
To finish this section, we compare the descriptions of G4 (A, o) for deg A =4
or 6 in [7] with those which follow from Theorem 4 (and Remark 3).
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COROLLARY 2.1. Suppose deg A = 4. If disco # 0, then
G+(A,0) = kXN, (Nrd(C(A4,0)))
={Nzi(2) | Nzsi(z - [C(A,0)]) = 0 in (Hk)/A}.

If disco =0, then C(A,0) ~ C' x C" for some quaternion k-algebras C', C",
and

G4 (A, o) = Nrd(C") Nrd(C"™)
= {22 [C)+2"-[C") =0 in (H3k)/A}.

Proof. See [7, (15.11)] for the case disco # 0 and [7, (15.13)] for the case
disco = 0. O

COROLLARY 2.2. Suppose deg A = 6. If disco # 0, let v be the nontrivial
automorphism of the field extension Z/k and let o be the canonical (unitary)
involution of C(A, o). Let also

GU(C(A,0),0) ={g9€ C(A,0) | a(g)g € k*}.
Then
G+(A7 U) =

{Nz/k(2) | z0(2)"" = (alg)g)"?Nrd(g) for some g € GU(C(4,0),2)}
={Nz(2) | Nzsi(z- [C(A,0)]) =0 in (H?k)/A}.

If disco = 0, then C(A,0) ~ C x C°P for some central simple k-algebra C of
degree 4, and

Gy(A, o) =k**Nrd(C*)
={zckX|2z-[C]=0in (H3k)/A}.

Proof. See [7, (15.31)] for the case disco # 0 and [7, (15.34)] for the case
disco = 0. In the latter case, Theorem 3 shows that G4 (A, o) consists of
products 2’2" where 2/, 2" € k™ are such that

2 [C]+ 2" [C°] =0 in (Hk)/A.
However, [C°P] = —[C], and 2[C] = [A4] by [7, (9.15)], hence
2O+ 2" [CP] = 22" -[C] in (H%k)/A.
Note that the equation
E2Nrd(C*) ={z € k* | z-[C] =0in (H3k)/A}

can also be proved directly by a theorem of Merkurjev [11, Proposition 1.15].
O
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3 FIELDS OF LOW VIRTUAL COHOMOLOGICAL DIMENSION

Our goal in this section is to prove Theorem 5. Together with Theorem 2, the
following lemma completes the proof of the “only if” part:

LEMMA 3.1. If A € G(A,0), then A > 0 at every ordering v such that (A, o),
is not hyperbolic.

Proof. If (A, o), is not hyperbolic, then A, is split, by [18, Chapter 10, The-
orem 3.7]. We may thus represent A, = Endy, V for some k,-vector space V,
and o ® Idy, is adjoint to a non-hyperbolic quadratic form ¢. If A € G(4, o),
then A € G(V, q), hence

(A a=q

Comparing the signatures of each side, we obtain A > 0. O
For the “if” part, we use the following lemma:

LEMMA 3.2. Let F' be an arbitrary field of characteristic different from 2. If
vedg F' < 3, then the torsion part of the 4-th power of IF' is trivial,

I'F =0.

Proof. Our proof uses the existence of the cohomological invariants e,,: I"F —
H"(F, pa), and the fact that kere,, = I"T1F, proved for fields of virtual coho-
mological 2-dimension at most 3 by Arason-Elman—Jacob [3].

Suppose first —1 ¢ F*2. From vedy F' < 3, it follows that H™(F(y/—1), u2) = 0
for n > 4, hence the Arason exact sequence

n N n —1)1V n n
HY(F(V=1), p12) 25 B (F, ) 2% HY(F, o) — B (F(V=T), )

(see [2, Corollar 4.6] or [7, (30.12)]) shows that the cup-product with (—1); is
an isomorphism H"(F,ug) ~ H"TY(F, ug) for n > 4. If ¢ € I}F, there is an
integer ¢ such that 2q = 0, hence the 4-th invariant e4(q) € H*(F, us) satisfies

(=1)1U---U(=1)1 Ues(q) =0 in H(F, py).

14

Since (—1);U is an isomorphism, it follows that es(q) = 0, hence ¢ € I} F.
Repeating the argument with es, e, ..., we obtain ¢ € (), I"F', hence ¢ = 0
by the Arason—Pfister Hauptsatz [8, p. 290].

If —1 € F*2, then the hypothesis implies that H"(F, us) = 0 for n > 4, hence
for ¢ € I*F we get successively e4(q) = 0, e5(q) = 0, etc., and we conclude as
before. O

Proof of Theorem 5. As observed above, the “only if” part follows from Theo-
rem 2 and Lemma 3.1. The proof of the “if” part uses the same arguments as
the proof of Theorem 2 in the case where ind A = 2.
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We first consider the split case. If A = Endy V' and o is adjoint to a quadratic
form ¢ on V, then we may choose v(o) = C(V, q), and the conditions

A-disco =0in (H?k)/A  and  X-v(0) =0in (Hk)/A

imply, by Lemma 1.1, that {\)) - ¢ € I*k. Moreover, for every ordering v on k,
the signature sgn, ({(\)) - ¢) vanishes, since A > 0 at every v such that sgn,(q) #
0. Therefore, by Pfister’s local-global principle [8, Chapter 8, Theorem 4.1],
{A\) - ¢ is torsion. Since the hypothesis on k implies, by Lemma 3.2, that
Itk = 0, we have ((\) - ¢ = 0, hence A\ € G(V,q) = G(A,o). Note that
Lemma 3.2 yields Ifk; = 0 under the weaker hypothesis veds k < 3. Therefore,
the split case of Theorem 5 holds when veds k£ < 3.

Now, suppose A is not split. Since A is split by Z, it is Brauer-equivalent to a
quaternion algebra Q). Let k(X)) be the function field of the conic X associated
with @. This field splits A, hence there is a quadratic space (V,q) over k(X)
such that A ® k(X) may be identified with Endy(x)V and o ® Idy(x) with the
adjoint involution with respect to ¢. As in Section 2 (see Equation (9)), we
have

G(V,q) Nk* = G(A, 0).

Therefore, it suffices to show that the conditions on A imply A € G(V, q).

If v is an ordering of k such that (A, o), is hyperbolic, then ¢, is hyperbolic
for any ordering w of k(X) extending v, since hyperbolic involutions remain
hyperbolic over scalar extensions. Therefore, A > 0 at every ordering w of k(X)
such that q,, is not hyperbolic. Moreover, the conditions

A-disco =0in (H?k)/A  and  X-v(0) =0in (Hk)/A
imply
A-discg=0in H?*k(X) and  \-[C(V,q)] =0 in H*k(X).
Since X is a conic, Proposition 11, p. 93 of [20] implies
veda k(X)) =1+ veda kb < 3.

As Theorem 5 holds in the split case over fields of virtual cohomological 2-
dimension at most 3, it follows that A € G(V, ¢q). O

Remark. The same arguments show that if vedo k¥ < 2 and ind A = 2, then
G 1 (A, 0) consists of the elements N/ (z) where z € Z* is such that

Nzi(z-[C(A,0)]) =0 in (H’k)/A.

4 EXAMPLES

In this section, we give an explicit description of the element v(c) of Theorem 2
in some special cases. Throughout this section, we assume the algebra A is not
split, and is split by Z (hence Z is a field and disco # 0). Our first result is
easy:
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ProrosiTiON 4.1. If A is split by Z and o becomes hyperbolic after scalar
extension to Z, then we may choose (o) = 0.

Proof. Let ¢ be the nontrivial automorphism of Z/k. Since Z is the center of
C(A, o),
C(A,0)®, Z ~C(A,0) x *C(A,0). (11)

On the other hand, C(A,0) ®; Z ~ C(A®k Z,0 ® Idz), and since o becomes
hyperbolic over Z, one of the components of C'(A®y Z,0 ®1dyz) is split, by [7,
(8.31)]. Therefore,

[C(A,0)] =[C(A,0)] =0 in BrZ.
|

COROLLARY 4.2. In the conditions of Proposition 4.1, if deg A < 6 orveda k <
2, then

Gy(A,0)={\€k* |\ -disco =0 in H?k}
and
G_(A,0) ={\€ k™ | \-disco = [A] in H?k}.

Proof. This readily follows from Proposition 4.1 and Theorem 2 or 5. O

To give further examples where (o) can be computed, we fix a particular
representation of A as follows. Since A is assumed to be split by Z, it is
Brauer-equivalent to a quaternion k-algebra ) containing Z. We choose a
quaternion basis 1, 4, 7, ij of @ such that Z = k(7). Let A = Endg U for some
right Q-vector space U, and let o be the adjoint involution of a skew-hermitian
form h on U with respect to the conjugation involution on @. For z, y € U,
we decompose

h(z,y) = f(z,y) +jg(x,y)  with f(z,y), g(z,y) € Z.

It is easily verified that f (resp. g) is a skew-hermitian (resp. symmetric bilinear)
form on U viewed as a Z-vector space. (See [18, Chapter 10, Lemma 3.1].) We
have

A®kZ: (EndQU) R 4 = Endz U.

Moreover, for x, y € U and ¢ € Endg U, the equation

h(z,¢(y)) = h(o(e)(2),y)

implies
g(z,0y)) = g(a(e)(x),y),

hence o ®; Idz is adjoint to g.
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ProOPOSITION 4.3. With the notation above,
[C(A,0)] =[C(U,g) in BrZ.
Proof. Since o ® Idyz is the adjoint involution of g,
CA®y Z,0 ®1dz) ~ Cy(U, g). (12)

Now, disco is a square in Z, hence Cy(U, g) decomposes into a direct product

Co(U,g) =~C" xC" (13)
where C’, C” are central simple Z-algebras Brauer-equivalent to C'(U, g). The
proposition follows from (11), (12), and (13). O
To give an explicit description of g, consider an h-orthogonal basis (e, ..., ey,)

of U. In the corresponding diagonalization of h,
ho (U, ... Uy,

each uy € Q is a pure quaternion, since h is skew-hermitian. Let u7 = ay € k*
for =1, ..., n. Then

disco = (=1)" Nrd(uq) ... Nrd(u,) = aq .. . ap,

2

SO We may assume i = aj ...a,. Write

Ug = gl + jug where pp € k and vy € Z. (14)

Each e;Q is a 2-dimensional Z-vector space, and we have a g-orthogonal de-
composition

U=e1Q® - ®e,Q.

If vy = 0, then g(eg,ep) = 0, hence e,Q is hyperbolic. If v, # 0, then (eg, epuy)
is a g-orthogonal basis of e,Q), which yields the following diagonalization of the
restriction of g:

(ve, —apve).
Therefore,
g=g1+ -+ gn (15)
where
0 ifv,=0
" {<w><1, “a) A0 (16)

‘We now consider in more detail the cases n = 2 and n = 3.
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4.1 ALGEBRAS OF DEGREE 4

Suppose deg A = 4, i.e., n = 2, and use the same notation as above. If
v = 0, then squaring each side of (14) yields a; = p?ajaz, hence ay € k*2,
a contradiction since @ is assumed to be a division algebra. The case vy = 0
leads to the same contradiction. Therefore, we necessarily have v; # 0 and
v # 0. By (15) and (16),

g = (v1)(1, —a1) + (v2)(1, —az),
hence by [8, p. 121],
[C(A,0)] = (a1,v1)z + (az,v2)z + (a1,a2) 7
= (a1, —v1v2)z. (17)

Since the division algebra ) contains the pure quaternions wy, us and ¢ with
u% = aq, u% = ay and 2 = ajas, we have a1, as, a1as ¢ kX2 and we may
consider the field extension

L = k(Va1,az).

We identify Z with a subfield of L by choosing in L a square root of ajas, and
denote by p1, p2 the automorphisms of L/k defined by

p1(var) = —/ai, p2(Va1) = V/ai,
p1(Vaz) = V/az, p2(v/az) = —/as.

Thus, Z C L is the subfield of p; o po-invariant elements. Let j2 = b. Then
(14) yields

a1 = piaras + bN g (v1), as = p3aias + bNy . (v2),
hence Nz, (—v1v2) = arazb=2(1 — pfaz)(1 — p3a;) and

—V1V2 —U10U2 a1a2 2 2
= - 1- 1- .
pl(_'Ul'UQ) pg(—’Ulﬂg) b2p1(—1}11}2)2( :U/1a2)( :U’2a1)

Since L = Z(\/a1) = Z(\/as), it follows that 1 — ufas and 1 — p3a; are norms
from L/Z. Therefore, the preceding equation yields
—UV1V2 —UV1V2

= =N / for some ¢ € L*.
p1(—v1v2)  pa(—v1v2) /28

Since Ny (—vivap1(—viv2) ') = 1, we have Ny, (¢) = 1. By Hilbert’s Theo-
rem 90, there exists by € L* such that

p1(b1) =y and bipa(b1) ™t = Lpi(0). (18)
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Set by = —v1v2p01 (E)bl_l. Computation yields
pa(ba) =by  and  pi(ba)by ' = Lps(0). (19)
Define an algebra E over k by
E=L&Lri&®Lro® Lrire
where the multiplication is defined by

rz = p1(x)ry, rox = po(T)ro forx € L,

r? = b, 3 = by, and riry = frory.

Since b1, by and ¢ satisfy (18) and (19), the algebra E is a crossed product, see
[1]. Tt is thus a central simple k-algebra of degree 4.

PROPOSITION 4.4. With the notation above, we may choose v(c) = [E] € Brk.
Proof. The centralizer CgZ of Z in E is L ® Lriry. Computation shows that
(r172)% = —v1vo.

Since conjugation by 7172 maps /a1 € L to its opposite, it follows that

CrZ = (a1, —v1v2) 7.
Since [CgZ] = [FE]z, the proposition follows from (17). O
COROLLARY 4.5. Let

E,=CgZ={x€E*|zz=zx foralzeZ}
and

E_={x e E* |zz=p1(2)x for all z € Z}.
Then
Gi(A,0)=k**Nrdg(Ey) and G_(A,0)=k**Nrdg(E_).

Proof. As observed in the proof of Proposition 4.4, CgZ ~ C(A, o). Since, by
[5, Corollary 5, p. 150],

Nrdg(z) = Nz (Nrdoy 2 ) for x € CpZ,

the description of G4(A,0) above follows from [7, (15.11)] (see also Corol-
lary 2.1).

To prove kX2 Nrdg(E_) C G_(A, o), it obviously suffices to prove Nrdg(E_) C
G_(A, o). From the definition of E, it follows that 1 € E_. By [10, p. 80],

Nrdg(r)-[E]=0  in H%k. (20)
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Let L1 C L be the subfield fixed under p;. We have Tf = by € Ly, hence
Nrdp(ri) = N, /k(b1).
On the other hand, the centralizer of L; is
CgLy =L® Lry ~ (aya2,b1)1,,
hence
[Np,/i(CeL1)] = (araz, Ny, /k(b1)), = Nrdp(r) - disco in H?k. (21)

Since [CgL1] = [EL,], we have [Ny, ;x(CrL1)] = 2[E]. But 2[E] = 2y(0) = [4]
by (7), hence (21) yields

Nrdg(r) - disco = [A] in H?k. (22)

From (20), (22) and Theorems 1, 2 it follows that Nrdg(r1) € G_(4,0).
Now, suppose € E_. Then riz € E, hence Nrdg(riz) € G4+(4,0) by the
first part of the corollary. Since

Gi(A,0)G_(A,0)=G_(A,0)
it follows that
Nrdg(z) € Nrdg(r1)G+(A,0) = G_(A, 0).

We have thus proved kX2 Nrdg(E_) C G_(A,0).
To prove the reverse inclusion, consider A € G_(A4, o). Since

G- (A7 U)G— (A7 U) = G+ (Aa U)v
we have ANrdg(r1) € G4 (A, ), hence by the first part of the corollary,
ANrdg(r) € k*?Nrdg(E,).

It follows that
A€ B2 Nrdg(r Ey) = k** Nrdg(E_).

4.2 ALGEBRAS OF DEGREE 6

Suppose deg A = 6, i.e., n = 3, and use the same notation as in the beginning
of this section. If o (i.e., h) is isotropic, then h is Witt-equivalent to a rank 1
skew-hermitian form, say (u). Hence i? = disco = u? € k*. Hence we may
assume that h is Witt-equivalent to the rank 1 skew-hermitian form (ui) for
some p € k*. This implies that the form g is hyperbolic and C(U, g) is split.
Hence we may choose (o) = 0. By Theorem 4, we then have A\ € G(4,0) if
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and only if X\.disco = 0 in (H?k)/A. If o becomes isotropic over Z, the form
g is isotropic, hence we may choose a diagonalization of h

h ~ (uy, us, ug)

such that g(us,uz) = 0, i.e., in the notation of (14), ug = usi. Raising each
side to the square, we obtain

2
a3 = [3a1a203,

hence a; = a, mod k*2. It follows that us is conjugate to a scalar multiple of
u1, i.e., there exists x € @™ and 0 € k™ such that

us = Ozugz "t = 9NrdQ(ac)_1xulf.
Since (u1) ~ (zu1Z), we may let v = —0 Nrd(z)~! € kX to obtain
h ~ (uy, —vuy, p3i).

If vy = 0, then g is hyperbolic, hence we may choose v(o) = 0 by Proposi-
tion 4.1. If v1 # 0, then (15) and (16) yield

g9 = (vi)(L, —a1) + (—vv1)(1, —a1) = (v1){(ar,v).

The Clifford algebra of g is the quaternion algebra (ai,v)z, hence we may
choose

(o) = (a1, V).

Suppose finally that ¢ does not become isotropic over Z, hence vy, vg, vz # 0.
Then

g = (u)(1,—a1) + (v2)(1, —a2) + (v3)(1, —as)
and, by Proposition 4.3,
[C(A,0)] = (a1,v1)z + (az,v2)z + (a3, v3) z + (a1,a2) z + (a1,a3) z + (a2, a3) z-
Since Z = k(\/arazasz), the right side simplifies to
[C(A,0)] = (a1,v1v3)z + (az,v2v3) 7z + (a1,a2) 7z + (a1a2,—1) 7. (23)
By [7, (9.16)], Nz C(A, o) is split, hence
(alvNZ/k(Ulv?)))k = (ag,Nz/k(’Ugvg))k in Brk.

By the “common slot lemma” (see for instance [2, Lemma 1.7]), there exists
o € kX such that

(a1, Nzsp(v1v3)), = (o, Ngjp(v1vs)), =
(a, Nz/i(vavs)), = (a2, Nz (v2v3)),.-
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Then

(aay, Nz/p(vivs)), = (aaz, Nz/k(vavs)), = (o, Ngjp(v102)), = 0.
By [21, (2.6)], there exist 81, B2, O3 € k* such that

(Oéal,vlvs)z = (aal,ﬂl)z, (04(12,'02113)2 = (aa2762)Z7

(a,v1v2)z = (v, B3) 2.
Since
(a1,v1v3) 7z + (a2, v2v3) z = (aar, v1v3) z + (az, v2v3) 7 + (o, v102) 7,
it follows from (23) that
[C(A,0)] = (aay, 1)z + (aaz, B2)z + (o, B3) 2z + (a1, a2) z + (a1a2,—1) 2.

We may thus take

v(o) = (a1, B1)k + (az, Bo)r + (o, B1f233)k + (a1, a2)r + (ara2, —1)i
= (a1, —a201)k + (a2, —f2)r + (v, B15203) k-
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