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Abstract

Let D be a finite dimensional F -central division algebra. A criterion

is given for D to be a supersoluble (nilpotent) crossed product division

algebra in terms of subgroups of the multiplicative group D
∗ of D.

More precisely, it is shown that D is supersoluble (nilpotent) crossed

product if and only if D
∗ contains an irreducible abelian-by-supersoluble

(nilpotent) subgroup.

1 Introduction

Let D be a division algebra with center F and degree n, (i.e. dimF D = n2).

The algebra D is called crossed product if it contains a maximal subfield K

such that K/F is Galois. D is said to be supersoluble crossed product if

Gal(K/F ) is supersoluble. We also recall that a subgroup G of D∗ is irreducible

if F [G] = D. When n = p, a prime, it is shown in [1] that D is cyclic if and only
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if D∗ contains a nonabelian soluble subgroup. Here we generalize this result to

a division algebra of arbitrary degree n. To be more precise, it is proved that D

is supersoluble crossed product if and only if D∗ contains an irreducible abelian-

by-supersoluble subgroup. We then present a criterion for D to be nilpotent

(abelian or cyclic) crossed product. In fact, it is shown that a noncommutative

finite dimensional F -central division algebra D is nilpotent (abelian or cyclic)

crossed product if and only if there exist an irreducible subgroup G of D∗

and an abelian normal subgroup A of G such that G/A is nilpotent (abelian

or cyclic). We recall that soluble subgroups of the multiplicative group of a

division ring were first studied by Suprunenko in [4].

2 Notations and conventions

Let D be a division ring with center F and G be a subgroup of D∗. We denote

by F [G] the F -linear hull of G, i.e., the F -algebra generated by elements of

G over F . We shall say that G is irreducible if D = F [G]. For any group G

we denote its center by Z(G). Given a subgroup H of G, NG(H) means the

normalizer of H in G, and 〈H,K〉 the group generated by H and K, where K is

a subgroup of G. We shall say that H is abelian-by-finite (supersoluble) if there

is an abelian normal subgroup K of H such that H/K is finite (supersoluble).

Let S be a subset of D, then the centralizer of S in D is denoted by CD(S).

For notations and results, used in the text, on central simple algebras see [3].

3 Supersoluble Crossed product Division Al-

gebras

This section deals with a few results on division algebras whose multiplicative

groups contain certain subgroups. Using these results we eventually prove our

main theorem which asserts that a division algebra D is supersoluble crossed

product if and only if D∗ contains an irreducible abelian-by-supersoluble sub-
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group. Further criteria are also given for when a division algebra is nilpotent

(abelian or cyclic) crossed product. To be more precise, it is shown that a

noncommutative finite dimensional F -central division algebra D is nilpotent

( abelian or cyclic) crossed product if and only if there exist an irreducible

subgroup G of D∗ and an abelian normal subgroup A of G such that G/A is

nilpotent (abelian or cyclic). we begin our study with the following:

Lemma 3.1. Let D be a finite dimensional F -central division algebra. If D

is crossed product, then D∗ contains an irreducible abelian-by-finite subgroup.

Proof. Let K be a maximal subfield of D such that K/F is Galois.

By Skolem-Noether Theorem, for any σ ∈ Gal(K/F ) there exists an ele-

ment x ∈ N = ND∗(K∗) such that σ(k) = xkx−1, for all k ∈ K. Hence

ND∗(K∗)/CD∗(K∗) ≃ Gal(K/F ). Since K is a maximal subfield of D, we have

CD∗(K∗) = K∗. Therefore, ND∗(K∗) is an abelian-by-finite subgroup of D∗.

To complete the proof of the lemma, it is enough to show that N is irreducible,

i.e., F [N ] = D. Put D1 = F [N ]. We have CD(D1) ⊆ CD(K) = K, and hence

CD(D1) is an intermediate field of the Galois extension K/F . By the fact that

every element of Gal(K/F ) is the restriction of an inner automorphism of N

we conclude that CD(D1) ⊆ Fix(Gal(K/F )). Therefore CD(D1) = F . Now,

by Centralizer Theorem, we obtain D = CD(F ) = CD(CD(D1)) = D1, which

completes the proof. ¤

Lemma 3.2. Let D be a finite dimensional F -central division algebra.

Suppose that K is a subfield of D containing F . If G is an irreducible subgroup

of D∗ such that K∗ ⊳ G, then K/F is Galois and G/CG(K∗) ≃ Gal(K/F ).

Proof. Consider the homomorphism σ : G −→ Gal(K/F ) given by

σ(x) = fx, where fx(k) = xkx−1, for any k ∈ K. It is clear that ker σ =

CG(K). Now, we claim that Fix(imσ) = F . Choose an element a ∈ Fix(imσ).

For any x ∈ G we have fx(a) = a, and hence xa = ax. This shows that

a ∈ CK(G) = F since G is irreducible. So Fix(Gal(K/F )) ⊆ Fix(imσ) = F ,

which implies that K/F is a Galois extension and σ is surjective. Therefore

we have G/CG(K) ≃ Gal(K/F ) and K/F is a Galois extension. ¤
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Lemma 3.3. Let D be a finite dimensional F -central division algebra and

let G be an irreducible subgroup of D∗. If K is a subfield of D containing F

such that [G : CG(K∗)] = [K : F ], then CD(K) = F [CG(K∗)].

Proof. Put D1 = CD(K) and D2 = F [CG(K∗)]. It is clear that D2 ⊆ D1.

By Centralizer Theorem, we have D⊗F K ≃ Mt(F )⊗F CD(K), where t = [K :

F ]. Therefore, by comparing dimensions of both sides of the last relation, we

obtain [D1 : F ][K : F ] = [D : F ] = [D : D1][D1 : F ]. Hence [D : D1] = [K : F ].

On the other hand any element of D can be written in the form
∑s

i=1
figi,

where gi ∈ G and fi ∈ F , for any 1 ≤ i ≤ s. Now, let ℓ = [G : CG(K∗)] and

G =
⋃ℓ

i=1
CG(K∗)xi. Therefore, every element of D can be written in the form

∑ℓ

i=1
aixi, where ai ∈ D2, for any 1 ≤ i ≤ ℓ. So [D : D2] ≤ ℓ and we obtain

[D : D1] ≤ [D : D2] ≤ [G : CG(K∗)] = [K : F ] = [D : D1], and so D1 = D2, as

desired. ¤

The following theorem provides us a criterion for an F -central division

algebra to be supersoluble crossed product:

Theorem 3.4. Let D be a noncommutative finite dimensional F -central

division algebra. Then D is supersoluble crossed product if and only if there

exist an irreducible subgroup G of D∗ and an abelian normal subgroup A of G

such that G/A is supersoluble.

Proof. The ”only if” part is clear from the proof of Lemma 3.1. Sup-

pose that G is an irreducible subgroup of D∗ and A is an abelian normal

subgroup of G such that G/A is supersoluble. Take A maximal. Therefore,

we have a maximal abelian normal subgroup A of G such that G/A is su-

persoluble. Set G1 = K∗G, where K = F (A). One may easily show that

G1 is irreducible and K∗ is a maximal normal abelian subgroup of G1 such

that G1/K
∗ is supersoluble. By Lemma 3.2, we conclude that K/F is Ga-

lois and G1/CG1
(K∗) ≃ Gal(K/F ). Therefore, K/F is supersoluble Galois.

To complete the proof, it is enough to show that K is a maximal subfield of

D. We know that G1/K
∗ is supersoluble, and hence there exists a normal

series 〈e〉 = Nt ⊆ . . . N1 ⊆ N0 = G1/K
∗ such that Ni/Ni+1 is cyclic. Set
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N = CG(K∗)/K∗. It is clearly seen that N is a normal subgroup of G1/K
∗.

We observe that there exists a minimal natural number s such that N ∩Ns is

nontrivial and so N ∩ Ns+1 = 〈e〉. Therefore, we conclude that N ∩ Ns is a

cyclic normal subgroup of G1/K
∗. Thus, there exists x ∈ CG1

(K∗)\K∗ such

that 〈K∗, x〉/K∗ is a normal subgroup of G1/K
∗, and hence 〈K∗, x〉 6= K∗ is an

abelian normal subgroup of G1. This contradicts the maximality of K∗ in G1.

Therefore, CG1
(K∗) = K∗ and the claim is established. Now, by Lemma 3.3,

we obtain F [CG1
(K∗)] = CD(K), and hence CD(K) = K. Thus, K is a

maximal subfield of D and the proof is complete. ¤

The following theorem provides us a criterion for an F -central division

algebra to be nilpotent crossed product:

Theorem 3.5. Let D be a noncommutative finite dimensional F -central

division algebra. Then D is nilpotent crossed product if and only if there exist

an irreducible subgroup G of D∗ and an abelian normal subgroup A of G such

that G/A is nilpotent.

Proof. The ”only if” part is clear from the proof of Lemma 3.1. As in the

proof of Theorem 3.4 D∗ contains an irreducible subgroup G1 and a maximal

normal abelian subgroup K∗ such that G1/K
∗ is nilpotent. By Lemma 3.2, we

conclude that K/F is Galois and G1/CG1
(K∗) ≃ Gal(K/F ). Therefore, K/F

is nilpotent Galois. To complete the proof, it is enough to show that K is a

maximal subfield of D. First, we claim that CG1
(K∗) = K∗. Otherwise, since

it is known that if G is a nilpotent group and 1 6= N ⊳G, then Z(G)
⋂

N 6= 1,

there is an element K∗ 6= xK∗ ∈ CG1
(K∗)/K∗

⋂
Z(G1/K

∗). This implies that

〈K∗, x〉/K∗ is a normal subgroup of G1/K
∗, and hence 〈K∗, x〉 6= K∗ is an

abelian normal subgroup of G1. This contradicts the maximality of K∗ in G1.

Thus, CG1
(K∗) = K∗ and the claim is established. Now, by Lemma 3.3, we

obtain F [CG1
(K∗)] = CD(K), and hence CD(K) = K. Thus, K is a maximal

subfield of D, and the proof is complete. ¤

Corollary 3.6. Let D be a noncommutative finite dimensional division

algebra. If D∗ contains an irreducible locally nilpotent subgroup G, then D is
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nilpotent crossed product.

Proof. To prove the corollary, it is enough to choose a basis for the vector

space D over Z(D) from G, then consider the group generated by this basis

and use Theorem 3.5. ¤

The multiplicative group of the real quaternion division algebra contains

the quaternion group which is an irreducible 2-group. Therefore, by Corollary

3.5, it is nilpotent and even cyclic. The following result says that if the multi-

plicative group of a noncommutative division algebra D contains an irreducible

p-group, then it is nilpotent crossed product with p = 2 and [D : F ] = 2m for

some m ∈ N.

Corollary 3.7. Let D be a noncommutative finite dimensional F -central

division algebra. If D∗ contains an irreducible p-subgroup, then D is nilpotent

crossed product with [D : F ] = 2m, for some m ∈ N.

Proof. Let G be an irreducible p-subgroup of D∗. Since G is locally

nilpotent, by Corollary 3.6, we conclude that D is nilpotent crossed product.

If p is odd, then by a theorem of [3, p. 45], G is abelian which contradicts the

irreduciblity of G . If p = 2, then by the proof of Theorem 3.4, there exists

a maximal subfield K of D such that GK∗/K∗ ≃ Gal(K/F ) and K/F is a

Galois extension. Hence [K : F ] is a power of 2 and the result follows. ¤

The next result gives us a criterion for when an F -central division algebra

is abelian crossed product.

Theorem 3.8. A noncommutative finite dimensional F -central division

algebra D is abelian crossed product if and only if there exist an irreducible

subgroup G of D∗ and an abelian normal subgroup A of G such that G/A is

abelian. Equivalently D∗ contains an irreducible metabelian subgroup.

Proof. The ”only if” part is clear from the proof of Lemma 3.1. Suppose

that G is an irreducible subgroup of D∗ and A is an abelian normal subgroup

of G such that G/A is abelian. Take A maximal and put K = F (A). Consider

the group G1 = K∗G. One can easily show that K∗ is a maximal abelian
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normal subgroup of G1 such that G1/K
∗ is abelian. Therefore, for the derived

subgroup G′
1 of G1 we have G

′

1 ⊆ K∗. We claim that CG1
(K∗) = K∗. On

the contrary, if x ∈ CG1
(K∗)\K∗, then 〈K∗, x〉 is an abelian subgroup of G.

Since G
′

1 ⊆ 〈K∗, x〉 we conclude that 〈K∗, x〉 is also normal in G1. This

contradicts the maximality of K∗ in G1, and hence the claim is established,

i.e., CG1
(K∗) = K∗ . Now, by Lemma 3.2, we conclude that K/F is Galois

and G1/K
∗ ≃ Gal(K/F ) and so K/F is abelian Galois. To complete the

proof, it is enough to show that K is a maximal subfield of D. To see this,

by Lemma 3.3, we have F [CG1
(K∗)] = CD(K) which means that CD(K) = K.

Hence K is a maximal subfield of D and so the proof is complete. ¤

Let D be an F -central division algebra of prime degree. Suppose that D∗

contains an irreducible soluble subgroup. Using the fact that the degree of D

is prime one may easily conclude that D∗ contains an irreducible metabelian

subgroup. Now using Theorem 3.8, we obtain the following corollary, which is

the main result of [1].

Corollary 3.9. Let D be an F -central division algebra of prime degree

p. Then D is cyclic if and only if D∗ contains a nonabelian soluble subgroup.

Finally, we present a criterion for a finite dimensional F -central division

algebra to be cyclic.

Theorem 3.10. A noncommutative finite dimensional F -central division

algebra D is cyclic if and only if there exist an irreducible subgroup G of D∗

and an abelian normal subgroup A of G such that G/A is cyclic.

Proof. The ”only if” part is clear from the proof of Lemma 3.1. So,

assume that G is an irreducible subgroup of D∗ and A is an abelian normal

subgroup of G such that G/A is cyclic. Put K = F (A) and consider the

isomorphism K∗G/K∗ ≃ G/K∗ ∩ G. This implies that K∗G/K∗ is a cyclic

group. Set H = K∗G. Obviously H is an irreducible subgroup of D∗ and

K∗ ⊳ H. Therefore, by Lemma 3.2, we conclude that K/F is Galois and

H/CH(K∗) ≃ Gal(K/F ). Now, since H/K∗ is cyclic and K∗ ⊆ CH(K∗) we

conclude that K/F is cyclic. To complete the proof of the theorem, it is enough

7



to show that K is a maximal subfield of D. We know that CH(K∗)/K∗ is cyclic

and K∗ ⊆ Z(CH(K∗)). Thus, we conclude that CH(K∗)/Z(CH(K∗)) is cyclic,

i.e., CH(K∗) is abelian. Now, by Lemma 3.3, we obtain F [CH(K∗)] = CD(K)

and hence CD(K) is a field. Thus, K is a maximal subfield of D, and the proof

is complete. ¤

The following example shows that working with certain subgroups of D∗

may be sometimes more useful than maximal subfields.

Example 1. Let L/K be a cyclic field extension of degree n, and denote

by σ the generator of Gal(L/K). Let D = L((T, σ)) be the division algebra of

formal Laurent series. Although it is not hard to show that L((T n))/K((T n))

is a cyclic extension and therefore D is a cyclic division algebra, we would like

to show its cyclicity by using our criterion. It is known that Z(D) = K((T n)).

If 1, t, . . . , tn−1 is a basis for the field extension L/K, then {tjT i}0≤i,j<n is a

basis for D over Z(D). Therefore, the group G = 〈tjT i〉0≤i,j<n is an irreducible

subgroup of D∗. On the other hand, one can easily show that L ∩ G ⊳ G and

that G/L ∩ G is a cyclic group. Therefore G is an irreducible subgroup of

D∗ which is abelian-by-cyclic. Thus, by Theorem 3.10, D is a cyclic division

algebra. ¤

The rest of this section is devoted to the observation that one may not be

able in general to replace ”division algebra” by ”central simple algebra” in the

statements of some theorems above. First, we observe the following:

Theorem 3.11. Let D be an F -central crossed product division algebra,

then for any natural number n, GLn(D) contains an irreducible abelian-by-

finite subgroup.

Proof. By Lemma 3.1, D∗ contains an irreducible abelian-by-finite sub-

group G, say. We may view each element of D as a diagonal matrix in

Mn(D). Suppose that M is the group of monomial matrices of GLn(F ) and

E the group of diagonal matrices of GLn(F ). Set H = 〈G,M〉. We claim

that H as a subgroup of GLn(D) is irreducible. One can easily show that

F [M ] = Mn(F ). Combining this equality with the fact that F [G] = D we
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conclude that F [H] = Mn(D). To complete the proof of the claim, it is enough

to show that H is abelian-by-finite. It is easily seen that M/E ≃ Sn. Suppose

that G/A is finite, where A is an abelian normal subgroup of G. Considering

the fact that every element of G commutes with every elements of M we ob-

tain H = GM and that AE is an abelian group. Using these facts, one may

easily show that H/AE as a homomorphic image of G/A × M/E is a finite

group. Therefore H is an irreducible abelian-by-finite subgroup of GLn(D), as

desired. ¤

We close the paper with the following remark which shows that in Theo-

rems 3.8, and 3.10, we can not replace ”division algebra” by ”central simple

algebra”.

Remark. Suppose that D is a crossed product division algebra and n a

natural number. Using the notations of the proof of Theorem 3.10, we have

M/E ≃ Sn. Therefore, M is an abelian-by-finite group. Hence, H is an

irreducible abelian-by-finite subgroup of GLn(D). Thus, if D is an abelian

crossed product (cyclic) division algebra, then GL2(D) contains an irreducible

subgroup which is abelian-by-abelian (abelian-by-cyclic). Furthermore, if F is

a field with more than 2 elements by applying to the group M , the group of

monomial matrices, we may find an irreducible subgroup of GL2(F ) which is

abelian-by-cyclic.

Example 2. We observe that there are some cyclic division algebras D,

e.g., the division algebra of real quaternions H, such that Mn(H) is not crossed

product for any n > 1. In fact it contains no subfield containing R which

is of degree 2n over R. But for each natural number n, GLn(H) contains

an irreducible abelian-by-finite subgroup, and it also contains an irreducible

abelian-by-cyclic subgroup for n = 2 but it is not crossed product. Therefore,

Theorems 3.8 and 3.10 are not valid if one replaces division algebras by central

simple algebras.
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