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Abstract

The ratio of the Tamagawa measure and a certain invariant measure on the group
GL, (D) is computed, where Dy is the adele of a division algebra D over a global
field. An explicit formula of the ratio is described in terms of the special values
of the zeta function of D. This formula yields (i) an explicit lower bound of the
Hermite-Rankin constant v, ., (D) of D and (ii) an explicit asymptotic behavior of
the distribution of rational points on Brauer—Severi variety.

Introduction

Let G be a connected reductive algebraic group defined over a global field k and G(A) the
adele group of G. Since G(A) is a locally compact unimodular group, it has a non-trivial
invariant measure. The invariant measure w§ on G(A) induced from the invariant gauge
form w® on G defined over k is called the Tamagawa measure, which is a canonical invariant
measure on G(A) in a sense. There is another useful invariant measure on G(A) defined
as follows: We fix a parabolic subgroup R of G defined over k and a maximal compact
subgroup K of G(A) which possesses an Iwasawa decomposition G(A) = R(A)K. Let w¥
denote the Tamagawa measure of R(A) and wk the invariant measure on K normalized so
that wx (K) = 1. Then the product wﬁ ‘wi defines an invariant measure, say w(g(a),R(A))s
on G(A). Since an invariant measure is unique up to constant, there is the positive
constant Cg g i such that wg = Cg,R K " WG(A),RA))- We call Cg g i the normalization
constant of W(G(A),R(A))-

In general, the constant Cg g i has a description by an Euler product such as

CG,R,K = H vy ,

v

where v runs over all places of k and ¢, are elementary constants determined by G and R.
Every J, is an integral of the form

J, = / o) Ao (1)
Ur, (k)
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where U, denotes the unipotent radical of the opposite k-parabolic subgroup of R and 7,
the function on G(k,) induced by the modular character of R(k,). In §2.1, we will show
this formula in detail. In principle, the constant Cq g i can be explicitly computed by
using this formula and the reduction of J, to the cases of semisimple rank one groups due
to Gindikin-Karpelevi¢ formula (see §2.2 and §2.3). Indeed, an explicit formula of Cq r k
is known in the case where G is a k-quasisplit group ([L]), an orthogonal group ([Ik]) and
a unitary group ([Ic]). However, except for the case that G is a k-quasisplit group, its
actual computation is not easy.

In this paper, we give an explicit formula of Cg g i in the case that G is an inner k-from
of general linear groups, i.e., G is the algebraic group determined by G(k) = M, (D)* =
GL, (D), where D is a division k-algebra. We fix a minimal k-parabolic subgroup P of G
and a certain maximal compact subgroup K of G(A) such that G(A) = P(A)K. Since
Ca.rk = Cc.PK/ChryManpP,Mp(A)nK holds for any standard k-parabolic subgroup R of
G with a Levi subgroup Mpg, it is sufficient to compute Cg p . Then the integral J,
occurring in the Euler product of Cg p i is decomposed into a product of integrals over
a division k,-algebra D(v) which is equivalent to D ®j k, in the Brauer group of k,. By
computing the integrals over D(v), we obtain the value of J,, and as a consequence, the
explicit formula of Cg p i is described in terms of special values of the zeta function Zp(s)
of D (see §3.6).

Our motivation of computing Cg g k is the following. In [Wal, the second author intro-
duced the fundamental Hermite constant v(G, Q; k) of the pair of a connected reductive
k-group G and a maximal k-parabolic subgroup @) of G. Then the constant Cq g x ap-
peared in the Minkowski-Hlawka type lower bound of v(G, @; k). Thus an explicit formula
of Cg R,k yields an explicit lower bound of v(G, @, k). In the case of G(k) = GL, (D), we
will take up this application in §4.2. Moreover, we will apply the formula of Cg g x to
give an explicit asymptotic behavior of the distribution of rational points on Brauer—Severi
variety in §4.3.

Notations

Let k be a global field, i.e., an algebraic number field of finite degree over Q or an algebraic
function field of one variable over a finite field. In the latter case, we identify the constant
field of k with the finite field F, with ¢ elements. Let U be the set of all places of k. We
write Yoo, VR, V¢ and YV for the sets of all infinite places, all real places, all imaginary
places and all finite places of k, respectively. For v € U, k, denotes the completion of k
at v. If v € Yy, 0, denotes the maximal compact subring of k, and ¢, the cardinality of
the residual field of k,. We fix, once and for all, a Haar measure p, on k, normalized so
that ju,(0,) = 1if v € By, py([0,1]) = 1 if v € Yr and py({a € ky : aa < 1}) = 27 if
v € Y. Then the absolute value |- |, on k, is defined as |al, = py(aC)/py(C), where C
is an arbitrary compact subset of k, with nonzero measure. Let A be the adele ring of k,
|- |a = I[l,cq| - [v the idele norm on the idele group A* and pa = [],cq; 4o an invariant
measure on A. The measure i is characterized by

|Dy|'/?  (if k is an algebraic number field of discriminant Dy,).
na(A/k) = g(k)=1 (i 1. s ;
q (if k is a function field of genus g(k)).



The zeta function (;(s) of k is defined to be

Gls)= T 1)

maf

The residue of ((s) at s = 1 is denoted by p.
Let k1 be an arbitrary field. If 21, is a central simple k;-algebra, then Nry(, /r, and 7y, /5,

stand for the reduced norm and the reduced trace of 2y, respectively. The unit group of
2 is denoted by 2.

1 Normalization constant of an invariant measure
1.1 Tamagawa measure

Let G be a connected affine algebraic group defined over k. For any k-algebra A, G(A)
stands for the set of A-rational points of G. Let X*(G) and X, (G) be the free Z-modules
consisting of all rational characters and all k-rational characters of G, respectively. The
absolute Galois group Gal(k/k) acts on X*(G). The representation of Gal(k/k) in the
space X*(G) ®z Q is denoted by og and the corresponding Artin L-function is denoted
by L(s,0q) = HUE%}C L,(s,0q). We set o1(G) = limg_1(s — 1)"L(s,0G), where n =
rank X7 (G). Let wY be a nonzero right invariant gauge form on G defined over k. From
w% and the fixed Haar measure Wy on k,, one can construct a right invariant Haar measure
w& on G(k,). Then, the Tamagawa measure on G(A) is well defined by

Wf = pa(A/R) IO,

where
WoGo = H wUG and w? =0, (G) 7! H Lv(l,UG)wf-
vEVoo veYy

For each g € G(A), we define the homomorphism 9¢(g) : X (G) — R4 by 9g(9)(x) =
Ix(9)|a for x € X;(G). Then ¥¢ is a homomorphism from G(A) into Homgz (X} (G),R4).
We write G(A)! for the kernel of ¥g. The Tamagawa measure we A)l on G(A)! is defined
as follows:

e The case of ch(k) = 0. If a Z-basis x1,- - - , xn of X}(G) is fixed, then Homz (X} (G), Ry)
is identified with (R4 )™ and 9 gives rise to an isomorphism from G(A)*\G(A) onto
(R4)™. Put the Lebesgue measure dt on R and the invariant measure dt/t on R.
Then wg(ay is the measure on G(A)! such that the quotient measure wa( A)l\wg
is the pullback of the measure [[i, dt;/t; on (R4)" by ¥g. The measure we(ay is
independent of the choice of the Z-basis x1, - , Xn-

e The case of ch(k) > 0. The value group of the idele norm |- |4 is the cyclic group ¢%
generated by g. Thus the image Imdg of ¥ is contained in Homgz (X} (G),¢%)
and G(A)! is an open normal subgroup of G(A). Since the index of Imdg in
Homgz (X} (G), ¢%) is finite ([O, I, Proposition 5.6]),

0ty = (log )X [Homz (X{(G). %) : Img]

is well defined. The measure wg(a) is defined to be the restriction of the measure
(d)~tw§ to G(A)L.



In both cases, we put the counting measure wg ) on G(k). The volume of G(k)\G(A)!

with respect to the measure w(;(k)\wg( Ay is called the Tamagawa number of G and denoted
by 7(G).

1.2 Another Haar measure on G(A) and its normalization constant

In the following, let G be a connected reductive group defined over k. We fix a maximal
k-split torus S in G and a minimal k-parabolic subgroup P of G which contains S. The
centralizer of S in G gives a Levi subgroup Mp of P. Thus P has a Levi decomposition:
P = MpUp, where Up denotes the unipotent radical of P. Let R be a k-parabolic
subgroup of G such that P C R. Such R is called a standard k-parabolic subgroup. There
exists a unique Levi subgroup Mp of R such that Mp C Mp. The unipotent radical
of R is denoted by Ugr. We fix a maximal compact subgroup K of G(A) satisfying the
following property; For every standard k-parabolic subgroup R of G, K N Mr(A) is a
maximal compact subgroup of Mpr(A), and furthermore Mpr(A) possesses an Iwasawa
decomposition (Mr(A)NUp(A))Mp(A)(K N Mg(A)).

If a standard k-parabolic subgroup R of G is given, then one can define another Haar
measure wW(g(a),r(A)) of G(A) as follows. Let wf\fR and wXR be the Tamagawa measures
of Mp(A) and Ug(A), respectively. The modular character 6 of R(A) is a function on
MRpr(A) which satisfies the integration formula

/ fmum™1)dw§7 (u) = dp(m)~" / £ (w)dwi (u).
Ur(A) Ur(A)
Let wgk be the Haar measure on K normalized so that the total volume equals one. Then

the mapping

fr f (umh)dg(m) ™" dwy® (u)dwy ™ (m)dwic(h),  (f € Co(G(A)))
Ur(A)XMgr(A)xK

defines an invariant measure on G(A) and is denoted by w(g(a),r(A))-

Since a non-trivial invariant measure on G(A) is unique up to constant, there exists a
positive constant Cg g i such that

W& = Cork “W(G(A),R(A)) -

We call Cg g i the normalization constant of w(g(a) r(a))- For simplicity, we often write
Ca,r for Cg g k. It is easy to show the following compatibility of three constants Cg g Kk,

Ca,px and Cyry vipnP,Me(A)NK:

Ca,pK

Cao,rK = .
’ CMp, MNP, Mg (A)NK

2 A formula of C¢ r
2.1 An expression of Cg r by a product of integrals

Let G, R and K be the same as in §1.2. We consider the right G-homogeneous space
Xr = Ugr\G. Since Ug is a split unipotent subgroup, one has Xr(A) = Ur(A)\G(A).



Since both Ug and G are unimodular, wY#\w® gives a unique (up to constant) G-invariant
gauge form on Xp defined over k. The G(A)-invariant measure on Xz(A) defined from
wUr\wY is equal to

wXR\wﬁ = C’G7R<5}_%1w%RwK. (1)

We take the opposite parabolic subgroup R~ of R. We denote by Uy the unipotent
radical of R™, i.e., Up = Up-. Then one has the Levi decomposition R~ = Uy Mg and
RN R~ = Mpg. By [B-T, Proposition 4.10 d)], the product morphism Ur x R~ — G is
injective and gives an isomorphism of variety from Ur x R~ onto a Zariski open set in G.
Thus R~ is regarded as a Zariski open subset of Xg. Since (wYB\w®)|z- yields a right
invariant gauge form on R~ defined over k, there exists a constant A\ € k* such that

(WYR\WE) | g- = AwVrRWME (2)
For each v € U, define the function 7, : G(k,) — Ry by n,(umh) = dgr(m) for u €

Ugr(ky),m € Mgr(k,) and h € K,. We take a right K-invariant ® € Cy(Xr(A)) of the
form ® =[], cq; o, v € Co(XR(ky)). On the one hand, by (1), we have

/ d(x)d(WiH\w§)(z) = Cor / O (mh)dg(m) " dw)y ™ (m)dwr (h)
Xr(A) Mp(A)xK
_ Cen / B(m)dr(m) "~ duwl® (m). (3)
Mpg(A)
On the other hand, by (2),

/ B () d(w{\wG) ()
Xr(A)

MA(A/k)dim Ur—dim G

1 [, ®aedned)e)

Uk(G) VEY oo
< Lto) [ uw)delmwd) @)
veVy X (ko)
A dimUgr—dim G -
pa(A/k) / By (Mt )0 R (M) " N dwMR (my ) dwy ® ()
or(Q) e, I MR (k) XU (ky)
<[ Lo | @ (1) 01~ A e ) dol ().
vew, Mg (ko) xUg (ko)
dimUgp—dim G _
pa(A/k) / By (M) ()~ o™ () A (1)
or(G) ve J Ma (k) xU (kv)

<1 Ltoo) [ B, () (m,) o (m, ) dut ()
ve, Mg (ko) xUg (ko)

since |A\|a = 1. We decompose u, € U (ky) into u,m, ., u, € Ur(ky), m; € Mg(k,) and

vt



h!, € K,. Then one has

/ By (matte) ()~ dewM (my )dw"® (u,)
Mp (ko) xUp (ko)

O, ((moytymy, ) (moml )W) S g (my) ~ dw R (my)dwy ® (u,)
r(kv) XU (kv)

I
_ /M By (mymly) 5 (my) " dwdt (my)dwy ™ (uy)

R (ko) xUg (kv)

- / B, (1) 0 (m (1))~ o (1 o ()
Mg(

= (/ @U(mv)éR(mv)_ldwyR(my)> (/ ny(uv)dwgg (uv)> .
Mg (k) Ug (kv)

By the definition of Tamagawa measures,

pa(A/K)~m M

/ ®(m)dg(m)~Ldw) " (m) / O, (my)SR(my) ™ dw)'" (m,)
Mr(A) Mp(ky)

Uk(MR) VEYo
< T Lo(t,00) / By (110) 0 (1)~ MR ().
ve%f Mg (ko)

Therefore,

dimR—dimGO.
[ swieinegie = LAY (M) / & (m)5r(m) " d " (m)
Xr(A) o,(G) Mp(A)

<TI0 TT e, @)

1 o
v€EVoo  vEYs MR

where -
Jy = / nv(uv)dng (uy) .
Ug (kv)

From (3), (4) and dim R — dim G = — dim Ug, we obtain the following.

Theorem 1 Notations being as above, we have

pa(A/k)~dmUrq, (Mpg) Ly(1,06)
Crp =
G.R H H L 1 OMp)

g
k(G) vEDos  vED, M

2.2 Reduction of J, to the case of minimal £, -parabolic subgroups

We explain how to compute the local integral J,,. Let P® be a minimal parabolic subgroup
of G defined over k, such that P(")(k,) C R(k,). Then P(™) has a Levi subgroup M)
such that M) (k,) ¢ Mg(k,). Let U™ be the unipotent radical of P and U®)~

be the unipotent radical of the opposite parabolic subgroup of P(®*). We set Pﬁ; =
PW Mg, Uy) = U® N Mg and Uy = U®~ N Mg. Then Py;) is a minimal parabolic



subgroup of Mp defined over k, with the unipotent radical U ](\7[1)2

M®). The unipotent group Ug(k,) is a normal subgroup of U™ (k,), and U®)(k,) has

a semidirect product decomposition U R(kv)Uﬂl){(k:v). Let 5;(1v) . M®(k,) — R, and

5;(11;) : M@ (k,) — R, be the modular characters of P(*)(k,) and P]&};(kv), respectively.
Mp

One has a relation

and a Levi subgroup

—1

_ 51 .
Or M(v)(kv)_(sp(v) 5P§2’;' (5)

Define the function ng(v) : G(ky) — R4 by 771?@) (umh) = Spe (m) for u € UW(k,),
m € M®(k,) and h € K,. In a similar fashion, the function nﬁﬁ) : Mp(ky) — R4 is

Mp

defined by n (umh) =8, (m) for u € U7 (ko), m € M@ (k,) and h € K, N Mg(ky).

Mp
We set

JE = G o (W) dwp ) — : JMR—/ MR (1) dw, ) .
o=/ oy M g = [ g 0)

S ()

Py

Here, we fix invariant measures wy; (- (g, on U )= (k,) and w on U ](\f[;_(ky) such

that

sy (ko)

_ . Ur
PO (k) T 0T C 0 (k) -

Let us compute J following the decomposition U®)~ = Ug (ky) ](\3)7(1%):

Iy = / N5 (W dwy - g, (1) = / dw, () uz)/ 0 (wruz)dwy ™ (uy)
U™ (ky) P v~ () () U (k) Ug (’“”)( Ur (kv) P )

Let u; = «;0;7i, o € U(U)(kv),ﬁi € M(U)(kv) and v; € K, for i = 1,2. Since

N3 (uiuz) = 0%, (a2B2(02B82) " ur(a282)) = pw (B2)n5w) ((0282) ~ ui(azf)),

one has

U
gy = / . dwU<v>(k)(U2)/ 8 pe) (B2)8 - (B2) 1 (w1 )dwy ™ (ur)
U};; (kyv) Mp Y Ur (kv)

Up, (ky)

-
= ~ Opw) (B2)0R- (B2)dwy, -, (u2) Spw) (Br)dwy ™ (ur) .
U(U) (k) UMR (ko)
My (Fo :

By g (32) = 6r(B2) 1, 0r(B1) = dpw) (B1) and (5), we obtain

Jf:/
Ui

. Ur
O ) [ () ()

)—
R

= JMr.g,.
Therefore, one has
_ I
Jv PR (6)

v



2.4 Gindikin-Karpelevié formula of J&

We set
Iy (s) = /Um—(k )ngm (w)* M2 dwyo - ) (W),

where s is a complex number with $(s) > 0. We recall the Gindikin—Karpelevi¢ formula of
JS(s) (cf. [K, Chap.VII, §5, Corollary 7.5]). Let S(*) be a maximal k,-split torus of M),
¥,(G) the relative root system of G with respect to S*) and X} (G) the set of positive
roots of 3, (G) corresponding to the minimal k,-parabolic subgroup P We set

a, = X7 (S /2) @z R,

where Zg) ) denotes the maximal central ky-split torus of (G. Note that the real vector

space a, is identified with X} (M (v) /Zg )) ®z R since M) /S is anisotropic over k.
The set of simple roots of ¥ (G) gives a basis of a,, and hence ¥, (G) is regarded as a
subset of a,. Thus, for each 5 € ¥,(G), the function fg : G(A) — Ry is well defined
by &5 (umh) = |3(m)|, for u € UM (k,), m € M®)(k,) and h € K,. We fix an admissible
inner product (-,-) on a, and define the coroot 3V of 8 € ¥,(G) by

2
VvV
="

For 3 € ¥} (G), the connected component (Ker/3)? of the kernel of 3 is a subtorus of S(*),
We denote by G g) the centralizer of (Ker$)? in G. Then G () is a reductive k,-subgroup

of G' with semisimple k,-rank one. We set Pz = G N p), Mg = G N M®),
Up) = G N U, Ug = G N U®~ and Ky = Ggy(ky) N K,. We assume that
Gp)(ky) = Py(ky)K(gy holds for all § € XF(G). Then we define the function ng :
Gp)(ky) — Ry by ng(umh) = dp, (m) for u € Ugg)(ky), m € Mg (ky) and h € Kg),
where 5;&3) : Mg)y(ky) — Ry denote the modular character of Pg)(ky). Moreover, we
write p& for the half-sum of positive roots and §po + G(A) — Ry for the function
corresponding to p<, i.e.,

1

=5 D ([dimUg)s,  go= ] €F)me2.
pesy pesy

There is a relation §§G = ng(v). With these notations, the Gindikin—Karpelevi¢ formula of
JG (s) is stated as follows:

G 3V s
HOESE | @) Py
pesi@ Yot
B/2 ¢ 5E (@)

(kv)(u) : (7)

Here, we fix a family of invariant measures wU(—)(k X B € IF(G) such that
B v

wpor-@y = 11 YU ) (ko)
Bexy
B/2 &%

holds. In principle, Cg r can be computed by Theorem 1 and formulas (6), (7).



3 An explicit formula of Cg p in the case of G(k) = GL,(D)

3.1 Central simple algebras

Let D be a central division k-algebra of degree d?>. Let D, = D ®y, k, for v € U and
DA = D ®; A. Since D, is a central simple k,-algebra, it is isomorphic with an algebra
Mgyq4,(D(v)), where D(v) is a division k,-algebra of degree d2. The set 9 is divided into
two subsets U1 = {v € U : d, = 1} and Vo = {v € V : d, > 1}. We write VR, 1, Vr 2,
Ur1 and Uy o for Yr NV, BrNVs, B NYy and VNV, respectively. We fix a maximal
order Op of D. For v € Uy, the completion of Op in D, is denoted by Op,, which is
a maximal order of D,. Since any maximal order of D, is conjugate to Op,, there is an
isomorphism from D, onto M4, (D(v)) such that the image of Op, equals M4, (O p(v))s
where Op,) denotes a unique maximal order of D(v).
For every v € Uy, we denote by 0, the different of Op, /0., i.e.,

w,'={aeD,: Dy ke (@O D,) C 0y}

Then the different 9o, of Op is given by Hvemf 0,. The absolute norm Nop /, of 0o, is
defined to be

Nopkx = H 19D, /0],
Uemf

which is independent of the choice of the maximal order Op (cf. [R, Theorems (25.3) and
(25.7)])

Now we consider the central simple k-algebra 2 = M,, (D) and its maximal order Dy =
M, (Op). We identify 2, = A Q@ k, with M, (D,) for v € L and Ax = A ®; A with
M, (Da). For v € Uy, set Oy, = M,(Op,), which is a maximal order of 2,. Hereafter,
G denotes an affine algebraic k-group defined by G(k) = A* = GL, (D). The adele group
G(A) of G is the unit group of Ax. If v € Y, we define an involution a — a* of 2, as
follows. We fix an algebra isomorphism 2, = M,,4/4,(D(v)). Then, for a = (a;;) € A,
(aij € D(v)), the involution a* is defined to be a* = (a@;;)!, where the superscript ¢
means the transpose of a matrix and a;; — @;; denotes the canonical involution of the
division algebra D(v), i.e., it is the identity map, the complex conjugate or the quaternion
conjugate according as v € Ur,1, v € V¢ or v € VRro. By using this involution, we
define the subgroup K, of G(k,) = X by K, = {a € A¥ : a™! = a*}. If v € Yy, set
K, = Og . Then K = [],cq Ky gives a maximal compact subgroup of G(A). Let P be
the minimal k-parabolic subgroup of G which consists of upper triangular matrices in G.
We will compute the constant Cg p = Cq p k-

3.2 Self-dual measures

It is convenient to use a self-dual measure on Dp in order to compute Cg p. We recall its
construction. We fix a non-trivial character ¢ : A/k — C! as follows. If ch(k) > 0, we
arbitrarily choose a non-trivial ¢. If ch(k) = 0, we define the character ¢y on the adele

group Aq of Q by
1/]0(‘%') — 67271’\/7_19600 H e?ﬂ\/jl(lp mod Zj)
p:prime

for x = (Too, 72,73, -+ ) € AqQ, and then set 1) = 990 Try,q. For every v € U, ¢ induces a
character ¥, : k, — C!. Let ¢ be an arbitrary central simple k-algebra and €, = €®y, k,



for v € U and €54 = € ®; A. An invariant measure vg, on the locally compact additive
group €, is called the self-dual measure with respect to 1, if

o) = [ { || #tren, (1)) dve, (2) | (e, i ) v, (1)

holds for any Schwartz-Bruhat function ® on €,. The product measure vg, =[], cq Ve,
on & satisfies

o) = [ {/ ) D) el () b~ reu(en) v (1)

for any Schwartz-Bruhat function ® on €. The invariant measure v¢, is called the
self-dual measure of €5 with respect to 1.

For v € 9, let vp(,) be the self-dual measure on D(v) with respect to 1. It is known

by [T, Propositions 5, 6, 7 and 8] that the product measure V%Z({J C;’Q’

self-dual measure on M4 (D(v)) with respect to 1,. Hence one can identify vp, with

2 /2
% é C)l”. Note that this identification is independent of the choice of the algebra isomorphism

Dy, = Mg/q,(D(v)) because of Skolem—Noether theorem. Therefore, we have

VDa = H Vp, = H y;l;(i;;% .

veY vey

coincides with the

14

As was shown in the proof of [T, Theorem 2], vp, is the Tamagawa measure of Da,
namely vp, (Da/D) = 1.

We define another invariant measure up, on Da. If v € Uy, i.e., D(v) = k,, then we
put pp) = Hy, where p, is the measure on k, introduced in Notations. For v € U,
Kp(v) is defined to be the invariant measure on D(v) normalized so that pp) (O pe)) = 1
if v € YUyo and ppe)({r € D(v) : Nrpeym,(z) < 1}) = 4% if v € Yro. For every

v €Y, we set up, = ,ucg(/v L?, which gives an invariant measure on D, = My,4, (D(v)). By
Skolem-Noether Theorem, pp, is independent of the choice of the algebra isomorphism
D, = Mgy/q,(D(v)). In particular, one has up,(Op,) = 1 for v € Uy. The product
measure (p, = |[,cqiD, is an invariant measure on Da. For every v € U, there is the
?/d

positive constant x, such that up(,) = kuVp). One has up, = Ky D, -

2 2
Lemma 1 up,(Da/D) = Hvem“g [ = “A(A/k)d2NalD//2k'

Proof. We define the Schwartz-Bruhat function ®p = [[,cq; ®» on Dp as follows: If
v € Yy, let @, be the characteristic function of Op,. If v € Vo, we set ®,(x) =
e~ lkoiRIdumTr(2"2) - \where Tr(z*z) denotes the trace of the Hermitian matrix z*z. One
hand, we have

/ Qa(z)dpp, (x) =1
Da

On the other hand, by [T, §II, Propositions 1 and 2],
| eathivn, () = nala/m) “Nolf?.
Da

which proves the lemma.
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3.3 A formula of Cg p

Let Mp be the Levi subgroup of P consisting of diagonal matrices in G and S be the
maximal k-split torus of Mp, i.e.,

Mp(k) = diag(ay, -+ ,an) = Dai, - ,a, € D*
0 an

S(k) = A{diag(ai, - ,an) : a1, -+ ,a, € K™}

Let X(G) be the relative root system of G with respect to S and X7 (G) be the set of
positive roots of X(G) corresponding to P. For each a € 3(G), U, denotes the root
subgroup of G. We fix an isomorphism U,(k) = D and define the invariant measures
VUa(ky) O Ua(ky) for v € U and vy, (o) on Un(A) as

VUa(kv) = VDU’ VUO/(A-) = H VUa(kv) = VDA’
veY

We set

YUus (ko) = H VU_a(ko)> Yupa) = H VU_a(A) = H VUgs (k)
€T (G) €S+ (G) vey

Since vp, is the Tamagawa measure on Dy, vy;- (A) coincides with the Tamagawa measure
P

on the unipotent group Uy (A), i.e., wKP =Yy (A
For v € ¥, we define the local integral I,, by

b= /Uuw) o (W) g, (1)

P

where the function 7, : G(k,) — R4 is defined by

nv(u : dia’g(a17 U 7an) : h) = H ’Nan/kv (ai)|g(n_2i+1)
=1

for u € Up(ky), a1, ,a, € D) and h € K,. Since
or(Mp) n—1 Ly(1,0¢) —1\n—1
R\ P) 7 TG (1— g
or(Q) Pi L,(1,00m,) ( %)
and

Uy —di Uy
wAP :NA(A/k) dimUp vaP = H VU;(kv)’
veEY veEY

Theorem 1 leads us to

Cop=py " I &[] -H)" 'L 8)

VEYoo Uemf

11



3.4 Reduction of I, to the case of GLy(D(v))

We fix a place v € U. Let S() be the maximal k,-split torus in Mp and P(*) be a minimal
k,-parabolic subgroup of G such that S) ¢ P(*) ¢ P. The unipotent radical of P() is
denoted by U™, The centralizer M®) of S in G is a Levi subgroup of P(*). As in §2.3,
we set Pyj) = P() 0 Mp, UY;) = U® N Mp and Uy~ = U™~ 0 Mp. Let £,(G) be the
relative root system of G with respect to S(*) and ¥} (G) be the set of positive roots of
¥, (@) corresponding to P(*). For every 3 € ¥,(G), U stands for the root subgroup of
G. We fix an isomorphism U(g) (k) = D(v) and define the invariant measures vy, (x,) on

Up)(kv), vyw)-(k,) o0 U®~(k,) and v on UJ(\:;]);(k?v) as

U (ko)
YU (ko) = VD(v)s Yo~ (ky) = H YU (ko) YU (k) T H YU (ko) -
pext(G) BeEXT (G)

Bls=0
For a k-root o € X(G), one has

Ua(kv) = H U(,B)(kv) .

BEXL(G)
Bls=a

2 /42
From vp, = 1/%(2 ?“, it follows

Vo (ko) = H YU (ko) -
BEXL(G)
Bls=a

This implies the relation VU= (k) = VU5 (ky) . Therefore, if we set

U )
156) = [ @ (),
U= (ky)

R = [ s 0 Ry

Mp (kv) “Mp Mpi(
for R(s) > 0 with the notations in §2.3, then I, - IM?(1/2) = I$(1/2) holds similarly as
(6)-

Let K&'2 be a maximal compact subgroup of GLa(D(v)) defined by the same way as
K,. We define the function nG*2 : GLy(D(v)) — R, as follows:

GL 1 b a; O d, a
Mo 2(( 0 1 0 ao h :’NrD(U)/kv(al)’v ‘NrD(v)/kv(G/Q)‘U

for b € D(v), a1,as € D(v)* and h € K&*2. We set

10 s+1/2
19520) = [t (( )) ) ()
D(w) b 0 )

12



for ®(s) > 0. Then, by the Gindikin—Karpelevi¢ formula,

G Vv s
ifis) = ]I &5 (w0 Song(w) Py, ) (1)
sesi(c)” Vo k)

= H ISR (05, BY)s/d2)
BeXE(G)

= II 15=G -0,

1<i<j<nd/dy

and, in a similar fashion,

e = I IT%(G-1)s)

1<i<j<d/d,
Therefore,

—-n

L= I I5=G-9/2 IT = G-9/2). 9)

1<i<j<d/d, 1<i<j<nd/dy

3.5 Computations of I&72(s)

1
An Iwasawa decomposition of the unipotent matrix < - (1] ) € GL2(D(v)) is given as

follows:
o If v €Yy,
<1 o) <:1c (1)) (2 € Dp())-
z 1 <(1) m11><x01 2><(1) x_}l) ¢ Do)
o IfveVr,

10 (1 &
z 1) 0 1

o If v € Yg,

_ 1 1 _ T
( 10 ) _ ( L I > < S, ) Vi Vi,
v 1 0 1 \/1+\m|v \/1+\x|u

o If v € Ur o,

- 1 1 _ z
( 10 > _ ( L s Ik ) ( St 0 ) VIR /1P
X 9
z 1 0 1 0 V1+|z|? Vit 1+

where || = Nrp(y) /i, (z)'/? for = € D(v).
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Lemma 2

( 1 qv—2dvs dy
T
I'(s
1/2
I§%2(s) = ! x NEESY IR
/s (veDc)
w2 o
( s(4s+1) (v € Tr.2)-

Proof. Let v € Uy and 7p(,) be a prime element of D(v). Since KyVpy) = Kp(v), ONe
has

Mﬁ%g_1+2/

J q—2dus

_ —dy v

= 1+(1—gq, )1_q*2dv5
1— q72dvs dy

= 1 _ q—2dUS

Ifve Q]RQ,

kG0 (5) = /D T i @)

) 2 w/2 /2
= 4/ (1+ r2)_45_2r3dr/ do cos @d(p/ (cos1p)2dap
0 0 —7/2 —7/2
 s(4s+1)

The other cases are also easy.

3.6 An explicit formula of Cg p

To describe I,,, we define functions Fi(s), Fa(s), F3(s) in s € C as
Fi(s) =n?I(s/2),  Fy(s)=(2n)°[(s),  Fs(s) = (2m)>"°T(s).

By the formula (9) and Lemma 2, we have the following conclusion.

14



Lemma 3 Notations being as above, we have

(] =) ™Y I -9 (e
1<i<d d+1<i<nd
1=0 (dv) 1=0 (dv)
o II 7o~ I RGO (v € Vr,1)
I — ﬁ;i zn=1) ) 1<isd d+1<i<nd
I e ] RO (v € Ve)
1<i<d d+1<i<nd
H Fg(i)n_l H Fg(i)_l (ve ng).
1<i<d d+1<i<nd
L =0 (2) i=0 (2)

It is convenient to introduce a zeta function of D in order to formulate an explicit
formula of Cg p. We first define the constant Cp as follows:

o If ch(k) =0,
Cp = penpa(Da/D) [ (i) Fi(i) 72 Fy(i)"
2<i<d
O o o
veDsa |\ 1<i<d-1 1<i<d—1
{20 (dy) #0 (2)

where 71, 2 and r3 denote the cardinality of Ur 1, Vo and VR 2, respectively.
e If ch(k) > 0,
Cp = (log@)prupa(Da/D) T] G- I I O -ah-
2<i<d vEDf 0 1<i<d—1

1#0 (dv)

Then the zeta function of D is defined by

Zp(s) = Cp' ] Gls—0)Fi(s — i) T Fy(s — i)™

0<i<d—1

< 11 IIT a-¢ - [ -=.
vEYs o | 1<i<d—1 1<i<d—1
iZ0 (dv) i#0(2)

By [T, Propositions 7 and 8], Zp(s) has a simple pole at s = d with the residue

_ { upa(Da/D)! (ch(k) = 0)
P (10g9) "o (Da/D)~"  (ch(k) > 0)

By the formula (8) and Lemmas 1 and 3, the constant Cg p is expressed in terms of Zp(s).

Theorem 2 If G(k) = GL,(D) and P a minimal k-parabolic subgroup of G, then

Ca,p = ptpa(Da/D) "= 1/2pn 1 H Zp(id)~L.

2<i<n

15



We take positive integers nq, - ,n; such that n = nj + --- + n;. For such nq,--- ,n,
Ry, ... ny) denotes the standard k-parabolic subgroup of GG whose Levi subgroup M Rip, ..
is isomorphic with GLy,, (D) x -+ x GLyn, (D).

oy (F)

Corollary 1 Let R = Ry, ... n,) be a standard k-parabolic subgroup of G. Then we have

—3(n?- o n2) i H1<j<t [Lo<i<n, Zp(id)
CG.r = 11ps(DA/D) 2 (n Zlfgét”y‘)pt 1222595 sisny -
i b H2§i§n Zp(id)

This is a consequence of Theorem 2 and the relation Cq r = Cq.p/Churg, MpnP-

4 Applications
4.1 Fundamental Hermite constants of GL, (D)

We use the same notations as in §3. For 1 <m <n — 1, @, denotes the standard max-
imal k-parabolic subgroup Ry, ,—) of G. We recall the fundamental Hermite constants
Y(G, @Qm, k) introduced in [Wa).

In the following, we fix m and write @ for @Q,,,. The Levi subgroup Mg is given by

Mo(k) = {diag(a, b) = ( ’ 2 ) .4 € GLn(D), be GLn_m(D)}.

Denote by Zg and Zg the central maximal k-split tori of G and Mg, respectively, i.e.,
Za(k) ={M, : A€ k*} and Zg(k) = {diag(ALn, plpn—m) : A\, p € k™}.
We define the k-rational characters ag € X (Zg) and ag € X;(Mg) as follows:
aq(diag(Mm, puly—m)) = A~
for diag(Alpm, pln—m) € Zg(k) and
agq(diag(a,b)) = Nl"Mm(D)/k(a)(n_m)/ng(m’n_m)NrMn,m(D)/k(b)_m/ng(m’n_m)
for diag(a,b) € Mg(k). Then ag (resp. Qg) is trivial on Zg and forms a Z-basis of the
module X} (Zg\Zg) (resp. X;(Za\Mg)).
Define the unimodular subgroups G(A)!, Mg(A)! and Q(A)! as follows:
G(A)' = {g€G(A) : Nra, (pyn(9)la =1},
Mg(A)' = {diag(a,b) € Mg(A) : |Nrag, (pyx(a)la = [Nrag, . (py/r(b)|a = 1},
QA)! = Ug(A)Mg(A)".
The height function Hg : G(A) — R is well defined by
Ho(u - diag(a, b) - h) = |aq(diag(a, b)) |5
for u € Ug(A), diag(a,b) € Mg(A) and h € K, and this is left Zg(A)Q(A)! and right K
invariant. We set Xg = Q(k)\G(k) and Yy = Q(A)'\G(A)'. Then X is a subset of Yy

and the natural map Yy — (Z¢(A)Q(A))\G(A) is injective. Thus Hg is restricted to
Y. Then the Hermite constants v(G, @, k) and 7(G, @, k) are defined to be

(G, Q. k) = ge%?f)l xrg)l(% Hg(zg).

We write v, m(D) for v(G, @Qm, k), and especially v,(D) for v(G,Q1,k) since it is an
analogue of Hermite-Rankin’s constant.
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4.2 An explicit lower bound of ~,, ,,(D)

Since @ = @y, is maximal, there is a positive constant eg such that dg(g) = |agQ(g)|a
holds for all g € Mg(A). It was proved in [Wa] that

Dgg-Eq 7(G)\Y®
(PRt t)  =een, 1o

where Dg g and Eg are given as follows with the notations in §1.1:

D _ { X5 (Za) : X5(G)] /[ X5 (Zg) : X5 (Mg)] (ch(k) = 0),
GO de/dyy, (ch(k) > 0),
n _ | felXi(Ze/Za) - X[ (Mg/Zg)]  (ch(k) =0).

¢ (1-4") (ch(k) > 0).

Here, go > 1 stands for the generator of the subgroup |ag(Mg(A)NG(A)!)|a of the cyclic
group ¢%. The inequality (10) is strict if ch(k) > 0. It is easy to see

(Xi(Zo) : Xp(G)] = dn,  [X}(Zq) : Xi(Mg)] = d®m(n — m),
X (Zg/Za) : X3 (Mg /Zg)] = dm(n —m)/ged(m,n —m), eg =d-ged(m,n —m)

d*G = log q, d}‘wQ = (]Og Q)Z, qo = qn/gcd(m,n—m)'

Therefore,
Do - Ep — { dn (ch(k) = 0).
GOTTCT L =g ™)/(ogq)  (ch(k) > 0).

Since 7(G) = 7(Q) = 1 is known, Cororally 1 gives the following.

Theorem 3 If ch(k) =0, then

I S

[Ty s Zolid) | T
dn - Dy /D)ymn=m)  —1 Llj=n—mt e .
{n MDA( A/ ) Pp H?ZZQZD(jd) <Y ( )

If ch(k) > 0, then

1
1 g o s Zold) | T
-+t D Dm(nm) 1 1lj=n-m+ (D).
{ 1qu /’LDA( A/ ) Pp HT:QZD(.]d) < Vn, ( )

For example, if D is a quaternion division algebra over Q and m = 1, then one has
1/2
pq =1, up,(Da/D) = NOD//Q = Hpemmp and hence
( : 1/2
12n(2n —1)™ 1 1 —p@nt
WCQ(%KQ(?” — D)L - 5) IT »! <1_7p_1 < (D),
pEVy 2
where r3 = 1 or 0 according as D is definite or indefinite. We denote the value of the
left-hand side by [n, D]. For a square-free integer N > 1, let Dy be a quaternion algebra
over Q such that Nagi/Q = N, eg., Dy = (=1,-1), Dy = (=1,-3), D5 = (=2, —5),
D¢ = (—1,3), D7 = (—1,-7) and D1y = (—2,5), where (a,b) stands for the quaternion
algebra generated by i and j with i> = a, j> = b and ij = —ji. The following tables give
numerical examples of [n, Dy]:

17



[n, Do

[n, Ds]

[n, Ds]

[n, D]

© 00 O Uk w3

—_
o

1.297258519
1.515273677
2.530418525
5.393737367
13.94246428
42.33203429
147.6045644
581.1565361
2549.878172

1.443456027
1.995775367
4.040765897
10.52001705
33.28151972
123.7370964
528.3922475
2547.947350
13691.81879

1.726586552
3.042255888
7.938578156
26.67683122
108.9521040
522.9445997
2882.945637
17947.12248
124505.8889

1.978704389
4.115273864
12.70444456
50.51365650
244.1035544
1386.303048
9042.800847
66607.84112
546744.5241

By [C-W], it is known y2(D2) = 2, v2(D3) = 3 and 2(D5) = 5.

[n, Dg]

[n, DlO]

[, D14]

[n, D15]

S © 0o Ut w3

1.559110703
2.484720294
6.085153489
19.81735311
80.25844451
388.2457592
2182.851359
13982.96635
100515.7012

1.864926623
3.787578034
11.95502729
50.25316799
262.7381944
1640.825823
11909.79207
98492.61985
914034.6441

2.137245010
5.123474644
19.13213909
95.15640162
588.6561594
4349.756821
37356.88820
365539.4219
4013813.651

2.075098781
4.988640043
19.09070223
98.01444678
627.1722287
4796.155594
42634.46615
431818.2696
4907997.900

There is no example of the exact value of 7, (D) for indefinite quaternion algebras.

4.3 The asymptotic distribution of rational points on Yy

Let Q = Qm, Xg = Q(k)\G(k) and Yy = Q(A)'\G(A)! be the same as in §4.1. The
projective variety Q\G is a k-form of Grassmannian and is called the Brauer—Severi variety.
The set X is considered as the set of k-rational points of Q\G. For a positive real number
T, let us define the subset By of Yg by

Br={y€ Yy : Holy) <T}.

For g € G(A)!, the subset Brg is the translation of Br by g. The constant v, m(D)
measures the existence of rational points in Brg, i.e., we have Brg N Xg # () for every
g € G(A)! if vm(D) < T. In the case that k is an algebraic number field, the cardinality
of Brg N X is increasing to proportion to the volume of By as T' — oo. More precisely,
it was proved in [Wa2] that

Deq-Eq e, _ T(Q)

lim #(Brgn Xg)- .
Jim £(Brg N Xg) Coo @)

\]

Therefore, we obtain the following.

Theorem 4 We assume k is an algebraic number field. Then the asymptotic behavior

[1}22 Zp(jd)
dn| Dy | (m(n=m)+1)/2Np (=2 T,y ZD (i)

d-ged(m,n—m)
as T — oo

t(Brg N Xq) ~
holds for all g € G(A)*.
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For example, if k = Q, m =1 and D = Dy as defined above, then we have

2

T
#(Brgn Xq) ~ [, Da? as T — oo.
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