The normalization constant of a certain invariant measure on $G L_{n}\left(D_{\mathbf{A}}\right)$

Yoshihide Nakamura and Takao Watanabe *

June 16, 2004

Abstract

The ratio of the Tamagawa measure and a certain invariant measure on the group $G L_{n}\left(D_{\mathbf{A}}\right)$ is computed, where $D_{\mathbf{A}}$ is the adèle of a division algebra D over a global field. An explicit formula of the ratio is described in terms of the special values of the zeta function of D. This formula yields (i) an explicit lower bound of the Hermite-Rankin constant $\gamma_{n, m}(D)$ of D and (ii) an explicit asymptotic behavior of the distribution of rational points on Brauer-Severi variety.

Introduction

Let G be a connected reductive algebraic group defined over a global field k and $G(\mathbf{A})$ the adèle group of G. Since $G(\mathbf{A})$ is a locally compact unimodular group, it has a non-trivial invariant measure. The invariant measure $\omega_{\mathbf{A}}^{G}$ on $G(\mathbf{A})$ induced from the invariant gauge form ω^{G} on G defined over k is called the Tamagawa measure, which is a canonical invariant measure on $G(\mathbf{A})$ in a sense. There is another useful invariant measure on $G(\mathbf{A})$ defined as follows: We fix a parabolic subgroup R of G defined over k and a maximal compact subgroup K of $G(\mathbf{A})$ which possesses an Iwasawa decomposition $G(\mathbf{A})=R(\mathbf{A}) K$. Let $\omega_{\mathbf{A}}^{R}$ denote the Tamagawa measure of $R(\mathbf{A})$ and ω_{K} the invariant measure on K normalized so that $\omega_{K}(K)=1$. Then the product $\omega_{\mathbf{A}}^{R} \cdot \omega_{K}$ defines an invariant measure, say $\omega_{(G(\mathbf{A}), R(\mathbf{A})) \text {, }}$ on $G(\mathbf{A})$. Since an invariant measure is unique up to constant, there is the positive constant $C_{G, R, K}$ such that $\omega_{\mathbf{A}}^{G}=C_{G, R, K} \cdot \omega_{(G(\mathbf{A}), R(\mathbf{A}))}$. We call $C_{G, R, K}$ the normalization constant of $\omega_{(G(\mathbf{A}), R(\mathbf{A}))}$.
In general, the constant $C_{G, R, K}$ has a description by an Euler product such as

$$
C_{G, R, K}=\prod_{v} \epsilon_{v} J_{v},
$$

where v runs over all places of k and ϵ_{v} are elementary constants determined by G and R. Every J_{v} is an integral of the form

$$
J_{v}=\int_{U_{R}^{-}\left(k_{v}\right)} \eta_{v}\left(u_{v}\right) d \omega_{v}^{U_{R}^{-}}\left(u_{v}\right),
$$

[^0]where U_{R}^{-}denotes the unipotent radical of the opposite k-parabolic subgroup of R and η_{v} the function on $G\left(k_{v}\right)$ induced by the modular character of $R\left(k_{v}\right)$. In $\S 2.1$, we will show this formula in detail. In principle, the constant $C_{G, R, K}$ can be explicitly computed by using this formula and the reduction of J_{v} to the cases of semisimple rank one groups due to Gindikin-Karpelevič formula (see $\S 2.2$ and $\S 2.3$). Indeed, an explicit formula of $C_{G, R, K}$ is known in the case where G is a k-quasisplit group ([L]), an orthogonal group ([Ik]) and a unitary group ([Ic]). However, except for the case that G is a k-quasisplit group, its actual computation is not easy.

In this paper, we give an explicit formula of $C_{G, R, K}$ in the case that G is an inner k-from of general linear groups, i.e., G is the algebraic group determined by $G(k)=M_{n}(D)^{\times}=$ $G L_{n}(D)$, where D is a division k-algebra. We fix a minimal k-parabolic subgroup P of G and a certain maximal compact subgroup K of $G(\mathbf{A})$ such that $G(\mathbf{A})=P(\mathbf{A}) K$. Since $C_{G, R, K}=C_{G, P, K} / C_{M_{R}, M_{R} \cap P, M_{R}(\mathbf{A}) \cap K}$ holds for any standard k-parabolic subgroup R of G with a Levi subgroup M_{R}, it is sufficient to compute $C_{G, P, K}$. Then the integral J_{v} occurring in the Euler product of $C_{G, P, K}$ is decomposed into a product of integrals over a division k_{v}-algebra $D(v)$ which is equivalent to $D \otimes_{k} k_{v}$ in the Brauer group of k_{v}. By computing the integrals over $D(v)$, we obtain the value of J_{v}, and as a consequence, the explicit formula of $C_{G, P, K}$ is described in terms of special values of the zeta function $Z_{D}(s)$ of D (see $\S 3.6$).
Our motivation of computing $C_{G, R, K}$ is the following. In [Wa], the second author introduced the fundamental Hermite constant $\gamma(G, Q ; k)$ of the pair of a connected reductive k-group G and a maximal k-parabolic subgroup Q of G. Then the constant $C_{G, Q, K}$ appeared in the Minkowski-Hlawka type lower bound of $\gamma(G, Q ; k)$. Thus an explicit formula of $C_{G, R, K}$ yields an explicit lower bound of $\gamma(G, Q, k)$. In the case of $G(k)=G L_{n}(D)$, we will take up this application in $\S 4.2$. Moreover, we will apply the formula of $C_{G, R, K}$ to give an explicit asymptotic behavior of the distribution of rational points on Brauer-Severi variety in $\S 4.3$.

Notations

Let k be a global field, i.e., an algebraic number field of finite degree over \mathbf{Q} or an algebraic function field of one variable over a finite field. In the latter case, we identify the constant field of k with the finite field \mathbf{F}_{q} with q elements. Let \mathfrak{V} be the set of all places of k. We write $\mathfrak{V}_{\infty}, \mathfrak{V}_{\mathbf{R}}, \mathfrak{V}_{\mathbf{C}}$ and \mathfrak{V}_{f} for the sets of all infinite places, all real places, all imaginary places and all finite places of k, respectively. For $v \in \mathfrak{V}, k_{v}$ denotes the completion of k at v. If $v \in \mathfrak{V}_{f}, \mathfrak{o}_{v}$ denotes the maximal compact subring of k_{v} and q_{v} the cardinality of the residual field of k_{v}. We fix, once and for all, a Haar measure μ_{v} on k_{v} normalized so that $\mu_{v}\left(\mathfrak{o}_{v}\right)=1$ if $v \in \mathfrak{V}_{f}, \mu_{v}([0,1])=1$ if $v \in \mathfrak{V}_{\mathbf{R}}$ and $\mu_{v}\left(\left\{a \in k_{v}: a \bar{a} \leq 1\right\}\right)=2 \pi$ if $v \in \mathfrak{V}_{\mathbf{C}}$. Then the absolute value $|\cdot|_{v}$ on k_{v} is defined as $|a|_{v}=\mu_{v}(a C) / \mu_{v}(C)$, where C is an arbitrary compact subset of k_{v} with nonzero measure. Let \mathbf{A} be the adèle ring of k, $|\cdot|_{\mathbf{A}}=\prod_{v \in \mathfrak{T}}|\cdot|_{v}$ the idele norm on the idele group \mathbf{A}^{\times}and $\mu_{\mathbf{A}}=\prod_{v \in \mathfrak{T}} \mu_{v}$ an invariant measure on \mathbf{A}. The measure $\mu_{\mathbf{A}}$ is characterized by

$$
\mu_{\mathbf{A}}(\mathbf{A} / k)= \begin{cases}\left|D_{k}\right|^{1 / 2} & \text { (if } \left.k \text { is an algebraic number field of discriminant } D_{k}\right) . \\ q^{g(k)-1} & \text { (if } k \text { is a function field of genus } g(k)) .\end{cases}
$$

The zeta function $\zeta_{k}(s)$ of k is defined to be

$$
\zeta_{k}(s)=\prod_{v \in \mathfrak{V}_{f}}\left(1-q_{v}^{-s}\right)^{-1}
$$

The residue of $\zeta_{k}(s)$ at $s=1$ is denoted by ρ_{k}.
Let k_{1} be an arbitrary field. If \mathfrak{A}_{1} is a central simple k_{1}-algebra, then $\mathrm{Nr}_{\mathfrak{A}_{1} / k_{1}}$ and $\tau_{\mathfrak{A}_{1} / k_{1}}$ stand for the reduced norm and the reduced trace of \mathfrak{A}_{1}, respectively. The unit group of \mathfrak{A}_{1} is denoted by $\mathfrak{A}_{1}^{\times}$.

1 Normalization constant of an invariant measure

1.1 Tamagawa measure

Let G be a connected affine algebraic group defined over k. For any k-algebra $A, G(A)$ stands for the set of A-rational points of G. Let $\mathbf{X}^{*}(G)$ and $\mathbf{X}_{k}^{*}(G)$ be the free \mathbf{Z}-modules consisting of all rational characters and all k-rational characters of G, respectively. The absolute Galois group $\operatorname{Gal}(\bar{k} / k)$ acts on $\mathbf{X}^{*}(G)$. The representation of $\operatorname{Gal}(\bar{k} / k)$ in the space $\mathbf{X}^{*}(G) \otimes_{\mathbf{z}} \mathbf{Q}$ is denoted by σ_{G} and the corresponding Artin L-function is denoted by $L\left(s, \sigma_{G}\right)=\prod_{v \in \mathfrak{V}_{f}} L_{v}\left(s, \sigma_{G}\right)$. We set $\sigma_{k}(G)=\lim _{s \rightarrow 1}(s-1)^{n} L\left(s, \sigma_{G}\right)$, where $n=$ $\operatorname{rank} \mathbf{X}_{k}^{*}(G)$. Let ω^{G} be a nonzero right invariant gauge form on G defined over k. From ω^{G} and the fixed Haar measure μ_{v} on k_{v}, one can construct a right invariant Haar measure ω_{v}^{G} on $G\left(k_{v}\right)$. Then, the Tamagawa measure on $G(\mathbf{A})$ is well defined by

$$
\omega_{\mathbf{A}}^{G}=\mu_{\mathbf{A}}(\mathbf{A} / k)^{-\operatorname{dim} G} \omega_{\infty}^{G} \omega_{f}^{G}
$$

where

$$
\omega_{\infty}^{G}=\prod_{v \in \mathfrak{V}_{\infty}} \omega_{v}^{G} \text { and } \omega_{f}^{G}=\sigma_{k}(G)^{-1} \prod_{v \in \mathfrak{V}_{f}} L_{v}\left(1, \sigma_{G}\right) \omega_{v}^{G}
$$

For each $g \in G(\mathbf{A})$, we define the homomorphism $\vartheta_{G}(g): \mathbf{X}_{k}^{*}(G) \longrightarrow \mathbf{R}_{+}$by $\vartheta_{G}(g)(\chi)=$ $|\chi(g)|_{\mathbf{A}}$ for $\chi \in \mathbf{X}_{k}^{*}(G)$. Then ϑ_{G} is a homomorphism from $G(\mathbf{A})$ into $\operatorname{Hom}_{\mathbf{Z}}\left(\mathbf{X}_{k}^{*}(G), \mathbf{R}_{+}\right)$. We write $G(\mathbf{A})^{1}$ for the kernel of ϑ_{G}. The Tamagawa measure $\omega_{G(\mathbf{A})^{1}}$ on $G(\mathbf{A})^{1}$ is defined as follows:

- The case of $\operatorname{ch}(k)=0$. If a \mathbf{Z}-basis $\chi_{1}, \cdots, \chi_{n}$ of $\mathbf{X}_{k}^{*}(G)$ is fixed, then $\operatorname{Hom}_{\mathbf{Z}}\left(\mathbf{X}_{k}^{*}(G), \mathbf{R}_{+}\right)$ is identified with $\left(\mathbf{R}_{+}\right)^{n}$ and ϑ_{G} gives rise to an isomorphism from $G(\mathbf{A})^{1} \backslash G(\mathbf{A})$ onto $\left(\mathbf{R}_{+}\right)^{n}$. Put the Lebesgue measure $d t$ on \mathbf{R} and the invariant measure $d t / t$ on \mathbf{R}_{+}. Then $\omega_{G(\mathbf{A})^{1}}$ is the measure on $G(\mathbf{A})^{1}$ such that the quotient measure $\omega_{G(\mathbf{A})^{1}} \backslash \omega_{\mathbf{A}}^{G}$ is the pullback of the measure $\prod_{i=1}^{n} d t_{i} / t_{i}$ on $\left(\mathbf{R}_{+}\right)^{n}$ by ϑ_{G}. The measure $\omega_{G(\mathbf{A})^{1}}$ is independent of the choice of the \mathbf{Z}-basis $\chi_{1}, \cdots, \chi_{n}$.
- The case of $\operatorname{ch}(k)>0$. The value group of the idele norm $|\cdot|_{\mathbf{A}}$ is the cyclic group $q^{\mathbf{Z}}$ generated by q. Thus the image $\operatorname{Im} \vartheta_{G}$ of ϑ_{G} is contained in $\operatorname{Hom}_{\mathbf{Z}}\left(\mathbf{X}_{k}^{*}(G), q^{\mathbf{Z}}\right)$ and $G(\mathbf{A})^{1}$ is an open normal subgroup of $G(\mathbf{A})$. Since the index of $\operatorname{Im} \vartheta_{G}$ in $\operatorname{Hom}_{\mathbf{Z}}\left(\mathbf{X}_{k}^{*}(G), q^{\mathbf{Z}}\right)$ is finite $([\mathrm{O}$, I, Proposition 5.6]),

$$
d_{G}^{*}=(\log q)^{\mathrm{rank} \mathbf{X}_{k}^{*}(G)}\left[\operatorname{Hom} \mathbf{Z}\left(\mathbf{X}_{k}^{*}(G), q^{\mathbf{Z}}\right): \operatorname{Im} \vartheta_{G}\right]
$$

is well defined. The measure $\omega_{G(\mathbf{A})^{1}}$ is defined to be the restriction of the measure $\left(d_{G}^{*}\right)^{-1} \omega_{\mathbf{A}}^{G}$ to $G(\mathbf{A})^{1}$.

In both cases, we put the counting measure $\omega_{G(k)}$ on $G(k)$. The volume of $G(k) \backslash G(\mathbf{A})^{1}$ with respect to the measure $\omega_{G(k)} \backslash \omega_{G(\mathbf{A})^{1}}$ is called the Tamagawa number of G and denoted by $\tau(G)$.

1.2 Another Haar measure on $G(\mathbf{A})$ and its normalization constant

In the following, let G be a connected reductive group defined over k. We fix a maximal k-split torus S in G and a minimal k-parabolic subgroup P of G which contains S. The centralizer of S in G gives a Levi subgroup M_{P} of P. Thus P has a Levi decomposition: $P=M_{P} U_{P}$, where U_{P} denotes the unipotent radical of P. Let R be a k-parabolic subgroup of G such that $P \subset R$. Such R is called a standard k-parabolic subgroup. There exists a unique Levi subgroup M_{R} of R such that $M_{P} \subset M_{R}$. The unipotent radical of R is denoted by U_{R}. We fix a maximal compact subgroup K of $G(\mathbf{A})$ satisfying the following property; For every standard k-parabolic subgroup R of $G, K \cap M_{R}(\mathbf{A})$ is a maximal compact subgroup of $M_{R}(\mathbf{A})$, and furthermore $M_{R}(\mathbf{A})$ possesses an Iwasawa decomposition $\left(M_{R}(\mathbf{A}) \cap U_{P}(\mathbf{A})\right) M_{P}(\mathbf{A})\left(K \cap M_{R}(\mathbf{A})\right)$.

If a standard k-parabolic subgroup R of G is given, then one can define another Haar measure $\omega_{(G(\mathbf{A}), R(\mathbf{A}))}$ of $G(\mathbf{A})$ as follows. Let $\omega_{\mathbf{A}}^{M_{R}}$ and $\omega_{\mathbf{A}}^{U_{R}}$ be the Tamagawa measures of $M_{R}(\mathbf{A})$ and $U_{R}(\mathbf{A})$, respectively. The modular character δ_{R}^{-1} of $R(\mathbf{A})$ is a function on $M_{R}(\mathbf{A})$ which satisfies the integration formula

$$
\int_{U_{R}(\mathbf{A})} f\left(m u m^{-1}\right) d \omega_{\mathbf{A}}^{U_{R}}(u)=\delta_{R}(m)^{-1} \int_{U_{R}(\mathbf{A})} f(u) d \omega_{\mathbf{A}}^{U_{R}}(u)
$$

Let ω_{K} be the Haar measure on K normalized so that the total volume equals one. Then the mapping

$$
f \mapsto \int_{U_{R}(\mathbf{A}) \times M_{R}(\mathbf{A}) \times K} f(u m h) \delta_{R}(m)^{-1} d \omega_{\mathbf{A}}^{U_{R}}(u) d \omega_{\mathbf{A}}^{M_{R}}(m) d \omega_{K}(h), \quad\left(f \in C_{0}(G(\mathbf{A}))\right)
$$

defines an invariant measure on $G(\mathbf{A})$ and is denoted by $\omega_{(G(\mathbf{A}), R(\mathbf{A}))}$.
Since a non-trivial invariant measure on $G(\mathbf{A})$ is unique up to constant, there exists a positive constant $C_{G, R, K}$ such that

$$
\omega_{\mathbf{A}}^{G}=C_{G, R, K} \cdot \omega_{(G(\mathbf{A}), R(\mathbf{A}))}
$$

We call $C_{G, R, K}$ the normalization constant of $\omega_{(G(\mathbf{A}), R(\mathbf{A}))}$. For simplicity, we often write $C_{G, R}$ for $C_{G, R, K}$. It is easy to show the following compatibility of three constants $C_{G, R, K}$, $C_{G, P, K}$ and $C_{M_{R}, M_{R} \cap P, M_{R}(\mathbf{A}) \cap K}$:

$$
C_{G, R, K}=\frac{C_{G, P, K}}{C_{M_{R}, M_{R} \cap P, M_{R}(\mathbf{A}) \cap K}} .
$$

2 A formula of $C_{G, R}$

2.1 An expression of $C_{G, R}$ by a product of integrals

Let G, R and K be the same as in $\S 1.2$. We consider the right G-homogeneous space $\mathfrak{X}_{R}=U_{R} \backslash G$. Since U_{R} is a split unipotent subgroup, one has $\mathfrak{X}_{R}(\mathbf{A})=U_{R}(\mathbf{A}) \backslash G(\mathbf{A})$.

Since both U_{R} and G are unimodular, $\omega^{U_{R}} \backslash \omega^{G}$ gives a unique (up to constant) G-invariant gauge form on \mathfrak{X}_{R} defined over k. The $G(\mathbf{A})$-invariant measure on $\mathfrak{X}_{R}(\mathbf{A})$ defined from $\omega^{U_{R}} \backslash \omega^{G}$ is equal to

$$
\begin{equation*}
\omega_{\mathbf{A}}^{U_{R}} \backslash \omega_{\mathbf{A}}^{G}=C_{G, R} \delta_{R}^{-1} \omega_{\mathbf{A}}^{M_{R}} \omega_{K} . \tag{1}
\end{equation*}
$$

We take the opposite parabolic subgroup R^{-}of R. We denote by U_{R}^{-}the unipotent radical of R^{-}, i.e., $U_{R}^{-}=U_{R^{-}}$. Then one has the Levi decomposition $R^{-}=U_{R}^{-} M_{R}$ and $R \cap R^{-}=M_{R}$. By [B-T, Proposition 4.10 d)], the product morphism $U_{R} \times R^{-} \longrightarrow G$ is injective and gives an isomorphism of variety from $U_{R} \times R^{-}$onto a Zariski open set in G. Thus R^{-}is regarded as a Zariski open subset of \mathfrak{X}_{R}. Since $\left.\left(\omega^{U_{R}} \backslash \omega^{G}\right)\right|_{R^{-}}$yields a right invariant gauge form on R^{-}defined over k, there exists a constant $\lambda \in k^{\times}$such that

$$
\begin{equation*}
\left.\left(\omega^{U_{R}} \backslash \omega^{G}\right)\right|_{R^{-}}=\lambda \omega^{U_{R}^{-}} \omega^{M_{R}} . \tag{2}
\end{equation*}
$$

For each $v \in \mathfrak{V}$, define the function $\eta_{v}: G\left(k_{v}\right) \longrightarrow \mathbf{R}_{+}$by $\eta_{v}(u m h)=\delta_{R}(m)$ for $u \in$ $U_{R}\left(k_{v}\right), m \in M_{R}\left(k_{v}\right)$ and $h \in K_{v}$. We take a right K-invariant $\Phi \in C_{0}\left(\mathfrak{X}_{R}(\mathbf{A})\right)$ of the form $\Phi=\prod_{v \in \mathfrak{V}} \Phi_{v}, \Phi_{v} \in C_{0}\left(\mathfrak{X}_{R}\left(k_{v}\right)\right)$. On the one hand, by (1), we have

$$
\begin{align*}
\int_{\mathfrak{X}_{R}(\mathbf{A})} \Phi(x) d\left(\omega_{\mathbf{A}}^{U_{R}} \backslash \omega_{\mathbf{A}}^{G}\right)(x) & =C_{G, R} \int_{M_{R}(\mathbf{A}) \times K} \Phi(m h) \delta_{R}(m)^{-1} d \omega_{\mathbf{A}}^{M_{R}}(m) d \omega_{K}(h) \\
& =C_{G, R} \int_{M_{R}(\mathbf{A})} \Phi(m) \delta_{R}(m)^{-1} d \omega_{\mathbf{A}}^{M_{R}}(m) . \tag{3}
\end{align*}
$$

On the other hand, by (2),

$$
\begin{aligned}
& \int_{\mathfrak{X}_{R}(\mathbf{A})} \Phi(x) d\left(\omega_{\mathbf{A}}^{U_{R}} \backslash \omega_{\mathbf{A}}^{G}\right)(x) \\
&= \frac{\mu_{\mathbf{A}}(\mathbf{A} / k)^{\operatorname{dim} U_{R}-\operatorname{dim} G}}{\sigma_{k}(G)} \prod_{v \in \mathfrak{P}_{\infty}} \int_{\mathfrak{X}_{R}\left(k_{v}\right)} \Phi_{v}\left(x_{v}\right) d\left(\omega_{v}^{U_{R}} \backslash \omega_{v}^{G}\right)\left(x_{v}\right) \\
& \quad \times \prod_{v \in \mathfrak{V}_{f}} L_{v}\left(1, \sigma_{G}\right) \int_{\mathfrak{X}_{R}\left(k_{v}\right)} \Phi_{v}\left(x_{v}\right) d\left(\omega_{v}^{U_{R}} \backslash \omega_{v}^{G}\right)(x) \\
&= \frac{\mu_{\mathbf{A}}(\mathbf{A} / k)^{\operatorname{dim} U_{R}-\operatorname{dim} G}}{\sigma_{k}(G)} \prod_{v \in \mathfrak{V}_{\infty}} \int_{M_{R}\left(k_{v}\right) \times U_{R}^{-}\left(k_{v}\right)} \Phi_{v}\left(m_{v} u_{v}\right) \delta_{R}\left(m_{v}\right)^{-1}|\lambda| v d \omega_{v}^{M_{R}}\left(m_{v}\right) d \omega_{v}^{U_{R}^{-}}\left(u_{v}\right) \\
&= \quad \begin{array}{l}
\prod_{v \in \mathfrak{V}_{f}} L_{v}\left(1, \sigma_{G}\right) \\
\quad
\end{array} \quad \int_{M_{R}\left(k_{v}\right) \times U_{R}^{-}\left(k_{v}\right)} \Phi_{v}\left(m_{v} u_{v}\right) \delta_{R}\left(m_{v}\right)^{-1}|\lambda|_{v} d \omega_{v}^{M_{R}}\left(m_{v}\right) d \omega_{v}^{U_{R}^{-}}\left(u_{v}\right) . \\
& \quad \times \prod_{v \in \mathfrak{V}_{f}} L_{v}\left(1, \sigma_{G}\right) \int_{v \in \mathfrak{P}_{\infty}}^{\operatorname{dim} U_{R}-\operatorname{dim} G} \int_{M_{R}\left(k_{v}\right) \times U_{R}^{-}\left(k_{v}\right)} \Phi_{v}\left(m_{v} u_{v}\right) \delta_{R}\left(m_{v}\right)^{-1} d \omega_{v}^{M_{R}}\left(m_{v}\right) d \omega_{v}^{U_{R}^{-}}\left(u_{v}\right)
\end{aligned}
$$

since $|\lambda|_{\mathbf{A}}=1$. We decompose $u_{v} \in U_{R}^{-}\left(k_{v}\right)$ into $u_{v}^{\prime} m_{v}^{\prime} h_{v}^{\prime}, u_{v}^{\prime} \in U_{R}\left(k_{v}\right), m_{v}^{\prime} \in M_{R}\left(k_{v}\right)$ and
$h_{v}^{\prime} \in K_{v}$. Then one has

$$
\begin{aligned}
& \int_{M_{R}\left(k_{v}\right) \times U_{R}^{-}\left(k_{v}\right)} \Phi_{v}\left(m_{v} u_{v}\right) \delta_{R}\left(m_{v}\right)^{-1} d \omega_{v}^{M_{R}}\left(m_{v}\right) d \omega_{v}^{U_{R}^{-}}\left(u_{v}\right) \\
& =\int_{M_{R}\left(k_{v}\right) \times U_{R}^{-}\left(k_{v}\right)} \Phi_{v}\left(\left(m_{v} u_{v}^{\prime} m_{v}^{-1}\right)\left(m_{v} m_{v}^{\prime}\right) h_{v}^{\prime}\right) \delta_{R}\left(m_{v}\right)^{-1} d \omega_{v}^{M_{R}}\left(m_{v}\right) d \omega_{v}^{U_{R}^{-}}\left(u_{v}\right) \\
& =\int_{M_{R}\left(k_{v}\right) \times U_{R}^{-}\left(k_{v}\right)} \Phi_{v}\left(m_{v} m_{v}^{\prime}\right) \delta_{R}\left(m_{v}\right)^{-1} d \omega_{v}^{M_{R}}\left(m_{v}\right) d \omega_{v}^{U_{R}^{-}}\left(u_{v}\right) \\
& =\int_{M_{R}\left(k_{v}\right) \times U_{R}^{-}\left(k_{v}\right)} \Phi_{v}\left(m_{v}\right) \delta_{R}\left(m_{v}\left(m_{v}^{\prime}\right)^{-1}\right)^{-1} d \omega_{v}^{M_{R}}\left(m_{v}\right) d \omega_{v}^{U_{R}^{-}}\left(u_{v}\right) \\
& =\left(\int_{M_{R}\left(k_{v}\right)} \Phi_{v}\left(m_{v}\right) \delta_{R}\left(m_{v}\right)^{-1} d \omega_{v}^{M_{R}}\left(m_{v}\right)\right)\left(\int_{U_{R}^{-}\left(k_{v}\right)} \eta_{v}\left(u_{v}\right) d \omega_{v}^{U_{R}^{-}}\left(u_{v}\right)\right) .
\end{aligned}
$$

By the definition of Tamagawa measures,

$$
\begin{aligned}
& \int_{M_{R}(\mathbf{A})} \Phi(m) \delta_{R}(m)^{-1} d \omega_{\mathbf{A}}^{M_{R}}(m)= \frac{\mu_{\mathbf{A}}(\mathbf{A} / k)^{-\operatorname{dim} M_{R}}}{\sigma_{k}\left(M_{R}\right)} \prod_{v \in \mathfrak{N}_{\infty}} \\
& \int_{M_{R}\left(k_{v}\right)} \Phi_{v}\left(m_{v}\right) \delta_{R}\left(m_{v}\right)^{-1} d \omega_{v}^{M_{R}}\left(m_{v}\right) \\
& \times \prod_{v \in \mathfrak{V}_{f}} L_{v}\left(1, \sigma_{M_{R}}\right) \int_{M_{R}\left(k_{v}\right)} \Phi_{v}\left(m_{v}\right) \delta_{R}\left(m_{v}\right)^{-1} d \omega_{v}^{M_{R}}\left(m_{v}\right) .
\end{aligned}
$$

Therefore,

$$
\begin{gather*}
\int_{\mathfrak{X}_{R}(\mathbf{A})} \Phi(x) d\left(\omega_{\mathbf{A}}^{U_{R}} \backslash \omega_{\mathbf{A}}^{G}\right)(x)=\frac{\mu_{\mathbf{A}}(\mathbf{A} / k)^{\operatorname{dim} R-\operatorname{dim} G_{\sigma}\left(M_{R}\right)}}{\sigma_{k}(G)} \int_{M_{R}(\mathbf{A})} \Phi(m) \delta_{R}(m)^{-1} d \omega_{\mathbf{A}}^{M_{R}}(m) \\
\times \prod_{v \in \mathfrak{N}_{\infty}} J_{v} \prod_{v \in \mathfrak{V}_{f}} \frac{L_{v}\left(1, \sigma_{G}\right)}{L_{v}\left(1, \sigma_{M_{R}}\right)} J_{v} \tag{4}
\end{gather*}
$$

where

$$
J_{v}=\int_{U_{R}^{-}\left(k_{v}\right)} \eta_{v}\left(u_{v}\right) d \omega_{v}^{U_{R}^{-}}\left(u_{v}\right) .
$$

From (3), (4) and $\operatorname{dim} R-\operatorname{dim} G=-\operatorname{dim} U_{R}$, we obtain the following.

Theorem 1 Notations being as above, we have

$$
C_{G, R}=\frac{\mu_{\mathbf{A}}(\mathbf{A} / k)^{-\operatorname{dim} U_{R}} \sigma_{k}\left(M_{R}\right)}{\sigma_{k}(G)} \prod_{v \in \mathfrak{N}_{\infty}} J_{v} \prod_{v \in \mathfrak{V}_{f}} \frac{L_{v}\left(1, \sigma_{G}\right)}{L_{v}\left(1, \sigma_{M_{R}}\right)} J_{v} .
$$

2.2 Reduction of J_{v} to the case of minimal k_{v}-parabolic subgroups

We explain how to compute the local integral J_{v}. Let $P^{(v)}$ be a minimal parabolic subgroup of G defined over k_{v} such that $P^{(v)}\left(k_{v}\right) \subset R\left(k_{v}\right)$. Then $P^{(v)}$ has a Levi subgroup $M^{(v)}$ such that $M^{(v)}\left(k_{v}\right) \subset M_{R}\left(k_{v}\right)$. Let $U^{(v)}$ be the unipotent radical of $P^{(v)}$ and $U^{(v)-}$ be the unipotent radical of the opposite parabolic subgroup of $P^{(v)}$. We set $P_{M_{R}}^{(v)}=$ $P^{(v)} \cap M_{R}, U_{M_{R}}^{(v)}=U^{(v)} \cap M_{R}$ and $U_{M_{R}}^{(v)-}=U^{(v)-} \cap M_{R}$. Then $P_{M_{R}}^{(v)}$ is a minimal parabolic
subgroup of M_{R} defined over k_{v} with the unipotent radical $U_{M_{R}}^{(v)}$ and a Levi subgroup $M^{(v)}$. The unipotent group $U_{R}\left(k_{v}\right)$ is a normal subgroup of $U^{(v)}\left(k_{v}\right)$, and $U^{(v)}\left(k_{v}\right)$ has a semidirect product decomposition $U_{R}\left(k_{v}\right) U_{M_{R}}^{(v)}\left(k_{v}\right)$. Let $\delta_{P(v)}^{-1}: M^{(v)}\left(k_{v}\right) \longrightarrow \mathbf{R}_{+}$and $\delta_{P_{M_{R}}^{(v)}}^{-1}: M^{(v)}\left(k_{v}\right) \longrightarrow \mathbf{R}_{+}$be the modular characters of $P^{(v)}\left(k_{v}\right)$ and $P_{M_{R}}^{(v)}\left(k_{v}\right)$, respectively. One has a relation

$$
\begin{equation*}
\left.\delta_{R}^{-1}\right|_{M^{(v)}\left(k_{v}\right)}=\delta_{P^{(v)}}^{-1} \cdot \delta_{P_{M_{R}}^{(v)}} . \tag{5}
\end{equation*}
$$

Define the function $\eta_{P(v)}^{G}: G\left(k_{v}\right) \longrightarrow \mathbf{R}_{+}$by $\eta_{P^{(v)}}^{G}(u m h)=\delta_{P^{(v)}}(m)$ for $u \in U^{(v)}\left(k_{v}\right)$, $m \in M^{(v)}\left(k_{v}\right)$ and $h \in K_{v}$. In a similar fashion, the function $\eta_{P_{M_{R}}^{(v)}}^{M_{R}}: M_{R}\left(k_{v}\right) \longrightarrow \mathbf{R}_{+}$is defined by $\eta_{P_{M_{R}}^{(v)}}^{M_{R}}(u m h)=\delta_{P_{M_{R}}^{(v)}}(m)$ for $u \in U_{M_{R}}^{(v)}\left(k_{v}\right), m \in M^{(v)}\left(k_{v}\right)$ and $h \in K_{v} \cap M_{R}\left(k_{v}\right)$. We set

$$
J_{v}^{G}=\int_{U^{(v)-\left(k_{v}\right)}} \eta_{P^{(v)}}^{G}(u) d \omega_{U^{(v)-\left(k_{v}\right)}}(u), \quad J_{v}^{M_{R}}=\int_{U_{M_{R}}^{(v)-\left(k_{v}\right)}} \eta_{P_{M_{R}}^{(v)}}^{M_{R}}(u) d \omega_{U_{M_{R}}^{(v)-\left(k_{v}\right)}}(u)
$$

Here, we fix invariant measures $\omega_{U^{(v)-\left(k_{v}\right)}}$ on $U^{(v)-}\left(k_{v}\right)$ and $\omega_{U_{M_{R}}^{(v)-}\left(k_{v}\right)}$ on $U_{M_{R}}^{(v)-}\left(k_{v}\right)$ such that

$$
\omega_{U^{(v)-\left(k_{v}\right)}}=\omega_{v}^{U_{R}^{-}} \cdot \omega_{U_{M_{R}}^{(v)-\left(k_{v}\right)}} .
$$

Let us compute J_{v}^{G} following the decomposition $U^{(v)-}=U_{R}^{-}\left(k_{v}\right) U_{M_{R}}^{(v)-}\left(k_{v}\right)$:
$J_{v}^{G}=\int_{U^{(v)-\left(k_{v}\right)}} \eta_{P^{(v)}}^{G}(u) d \omega_{U(v)-\left(k_{v}\right)}(u)=\int_{U_{M_{R}}^{(v)-\left(k_{v}\right)}} d \omega_{U_{M_{R}}^{(v)-\left(k_{v}\right)}}\left(u_{2}\right) \int_{U_{R}^{-}\left(k_{v}\right)} \eta_{P^{(v)}}^{G}\left(u_{1} u_{2}\right) d \omega_{v}^{U_{R}^{-}}\left(u_{1}\right)$.
Let $u_{i}=\alpha_{i} \beta_{i} \gamma_{i}, \alpha_{i} \in U^{(v)}\left(k_{v}\right), \beta_{i} \in M^{(v)}\left(k_{v}\right)$ and $\gamma_{i} \in K_{v}$ for $i=1,2$. Since

$$
\eta_{P^{(v)}}^{G}\left(u_{1} u_{2}\right)=\eta_{P^{(v)}}^{G}\left(\alpha_{2} \beta_{2}\left(\alpha_{2} \beta_{2}\right)^{-1} u_{1}\left(\alpha_{2} \beta_{2}\right)\right)=\delta_{P^{(v)}}\left(\beta_{2}\right) \eta_{P^{(v)}}^{G}\left(\left(\alpha_{2} \beta_{2}\right)^{-1} u_{1}\left(\alpha_{2} \beta_{2}\right)\right),
$$

one has

$$
\begin{aligned}
J_{v}^{G} & =\int_{U_{M_{R}}^{(v)-}\left(k_{v}\right)} d \omega_{U_{M_{R}}^{(v)-}\left(k_{v}\right)}\left(u_{2}\right) \int_{U_{R}^{-}\left(k_{v}\right)} \delta_{P^{(v)}}\left(\beta_{2}\right) \delta_{R^{-}}\left(\beta_{2}\right) \eta_{P^{(v)}}^{G}\left(u_{1}\right) d \omega_{v}^{U_{R}^{-}}\left(u_{1}\right) \\
& =\int_{U_{M_{R}}^{(v)-}\left(k_{v}\right)} \delta_{P^{(v)}}\left(\beta_{2}\right) \delta_{R^{-}}\left(\beta_{2}\right) d \omega_{U_{M_{R}}^{(v)-}\left(k_{v}\right)}\left(u_{2}\right) \int_{U_{R}^{-}\left(k_{v}\right)} \delta_{P^{(v)}}\left(\beta_{1}\right) d \omega_{v}^{U_{R}^{-}}\left(u_{1}\right) .
\end{aligned}
$$

By $\delta_{R^{-}}\left(\beta_{2}\right)=\delta_{R}\left(\beta_{2}\right)^{-1}, \delta_{R}\left(\beta_{1}\right)=\delta_{P^{(v)}}\left(\beta_{1}\right)$ and (5), we obtain

$$
\begin{aligned}
J_{v}^{G} & =\int_{U_{M_{R}}^{(v)-\left(k_{v}\right)}} \delta_{P_{M_{R}}^{(v)}}\left(\beta_{2}\right) d \omega_{U_{M_{R}}^{(v)-}\left(k_{v}\right)}\left(u_{2}\right) \cdot \int_{U_{R}^{-}\left(k_{v}\right)} \delta_{R}\left(\beta_{1}\right) d \omega_{v}^{U_{R}^{-}}\left(u_{1}\right) \\
& =J_{v}^{M_{R}} \cdot J_{v} .
\end{aligned}
$$

Therefore, one has

$$
\begin{equation*}
J_{v}=\frac{J_{v}^{G}}{J_{v}^{M_{R}}} . \tag{6}
\end{equation*}
$$

2.4 Gindikin-Karpelevič formula of J_{v}^{G}

We set

$$
J_{v}^{G}(s)=\int_{U^{(v)-\left(k_{v}\right)}} \eta_{P^{(v)}}^{G}(u)^{s+1 / 2} d \omega_{U^{(v)-\left(k_{v}\right)}}(u)
$$

where s is a complex number with $\Re(s)>0$. We recall the Gindikin-Karpelevič formula of $J_{v}^{G}(s)$ (cf. [K, Chap.VII, $\S 5$, Corollary 7.5]). Let $S^{(v)}$ be a maximal k_{v}-split torus of $M^{(v)}$, $\Sigma_{v}(G)$ the relative root system of G with respect to $S^{(v)}$ and $\Sigma_{v}^{+}(G)$ the set of positive roots of $\Sigma_{v}(G)$ corresponding to the minimal k_{v}-parabolic subgroup $P^{(v)}$. We set

$$
\mathfrak{a}_{v}=X_{k_{v}}^{*}\left(S^{(v)} / Z_{G}^{(v)}\right) \otimes_{\mathbf{Z}} \mathbf{R}
$$

where $Z_{G}^{(v)}$ denotes the maximal central k_{v}-split torus of G. Note that the real vector space \mathfrak{a}_{v} is identified with $X_{k_{v}}^{*}\left(M^{(v)} / Z_{G}^{(v)}\right) \otimes_{\mathbf{Z}} \mathbf{R}$ since $M^{(v)} / S^{(v)}$ is anisotropic over k_{v}. The set of simple roots of $\Sigma_{v}^{+}(G)$ gives a basis of \mathfrak{a}_{v}, and hence $\Sigma_{v}(G)$ is regarded as a subset of \mathfrak{a}_{v}. Thus, for each $\beta \in \Sigma_{v}(G)$, the function $\xi_{\beta}^{G}: G(\mathbf{A}) \longrightarrow \mathbf{R}_{+}$is well defined by $\xi_{\beta}^{G}(u m h)=|\beta(m)|_{v}$ for $u \in U^{(v)}\left(k_{v}\right), m \in M^{(v)}\left(k_{v}\right)$ and $h \in K_{v}$. We fix an admissible inner product (\cdot, \cdot) on \mathfrak{a}_{v} and define the coroot β^{\vee} of $\beta \in \Sigma_{v}(G)$ by

$$
\beta^{\vee}=\frac{2}{(\beta, \beta)} \beta
$$

For $\beta \in \Sigma_{v}^{+}(G)$, the connected component $(\operatorname{Ker} \beta)^{0}$ of the kernel of β is a subtorus of $S^{(v)}$. We denote by $G_{(\beta)}$ the centralizer of $(\operatorname{Ker} \beta)^{0}$ in G. Then $G_{(\beta)}$ is a reductive k_{v}-subgroup of G with semisimple k_{v}-rank one. We set $P_{(\beta)}=G_{(\beta)} \cap P^{(v)}, M_{(\beta)}=G_{(\beta)} \cap M^{(v)}$, $U_{(\beta)}=G_{(\beta)} \cap U^{(v)}, U_{(\beta)}^{-}=G_{(\beta)} \cap U^{(v)-}$ and $K_{(\beta)}=G_{(\beta)}\left(k_{v}\right) \cap K_{v}$. We assume that $G_{(\beta)}\left(k_{v}\right)=P_{(\beta)}\left(k_{v}\right) K_{(\beta)}$ holds for all $\beta \in \Sigma_{v}^{+}(G)$. Then we define the function η_{β} : $G_{(\beta)}\left(k_{v}\right) \longrightarrow \mathbf{R}_{+}$by $\eta_{\beta}(u m h)=\delta_{P_{(\beta)}}(m)$ for $u \in U_{(\beta)}\left(k_{v}\right), m \in M_{(\beta)}\left(k_{v}\right)$ and $h \in K_{(\beta)}$, where $\delta_{P_{(\beta)}}^{-1}: M_{(\beta)}\left(k_{v}\right) \longrightarrow \mathbf{R}_{+}$denote the modular character of $P_{(\beta)}\left(k_{v}\right)$. Moreover, we write ρ_{v}^{G} for the half-sum of positive roots and $\xi_{\rho_{v}^{G}}: G(\mathbf{A}) \longrightarrow \mathbf{R}_{+}$for the function corresponding to ρ_{v}^{G}, i.e.,

$$
\rho_{v}^{G}=\frac{1}{2} \sum_{\beta \in \Sigma_{v}^{+}}\left(\operatorname{dim} U_{(\beta)}\right) \beta, \quad \xi_{\rho_{v}^{G}}=\prod_{\beta \in \Sigma_{v}^{+}}\left(\xi_{\beta}^{G}\right)^{\operatorname{dim} U_{(\beta)} / 2} .
$$

There is a relation $\xi_{\rho_{v}^{G}}^{2}=\eta_{P(v)}^{G}$. With these notations, the Gindikin-Karpelevič formula of $J_{v}^{G}(s)$ is stated as follows:

$$
\begin{equation*}
J_{v}^{G}(s)=\prod_{\substack{\beta \in \Sigma_{v}^{+}(G) \\ \beta / 2 \notin \Sigma_{v}^{+}(G)}} \int_{U_{(\beta)}^{-}\left(k_{v}\right)} \xi_{\beta}^{G}(u)^{\left(\rho_{v}^{G}, \beta^{\vee}\right) s} \eta_{\beta}(u)^{1 / 2} d \omega_{U_{(\beta)}^{-}\left(k_{v}\right)}(u) . \tag{7}
\end{equation*}
$$

Here, we fix a family of invariant measures $\omega_{U_{(\beta)}^{-}\left(k_{v}\right)}, \beta \in \Sigma_{v}^{+}(G)$ such that

$$
\omega_{U^{(v)-\left(k_{v}\right)}}=\prod_{\substack{\beta \in \Sigma_{\Sigma^{+}}^{+} \\ \beta / 2 \notin \Sigma_{v}^{+}}} \omega_{U_{(\beta)}^{-}\left(k_{v}\right)}
$$

holds. In principle, $C_{G, R}$ can be computed by Theorem 1 and formulas (6), (7).

3 An explicit formula of $C_{G, P}$ in the case of $G(k)=G L_{n}(D)$

3.1 Central simple algebras

Let D be a central division k-algebra of degree d^{2}. Let $D_{v}=D \otimes_{k} k_{v}$ for $v \in \mathfrak{V}$ and $D_{\mathbf{A}}=D \otimes_{k} \mathbf{A}$. Since D_{v} is a central simple k_{v}-algebra, it is isomorphic with an algebra $M_{d / d_{v}}(D(v))$, where $D(v)$ is a division k_{v}-algebra of degree d_{v}^{2}. The set \mathfrak{V} is divided into two subsets $\mathfrak{V}_{1}=\left\{v \in \mathfrak{V}: d_{v}=1\right\}$ and $\mathfrak{V}_{2}=\left\{v \in \mathfrak{V}: d_{v}>1\right\}$. We write $\mathfrak{V}_{\mathbf{R}, 1}, \mathfrak{V}_{\mathbf{R}, 2}$, $\mathfrak{V}_{f, 1}$ and $\mathfrak{V}_{f, 2}$ for $\mathfrak{V}_{\mathbf{R}} \cap \mathfrak{V}_{1}, \mathfrak{V}_{\mathbf{R}} \cap \mathfrak{V}_{2}, \mathfrak{V}_{f} \cap \mathfrak{V}_{1}$ and $\mathfrak{V}_{f} \cap \mathfrak{V}_{2}$, respectively. We fix a maximal order \mathfrak{O}_{D} of D. For $v \in \mathfrak{V}_{f}$, the completion of \mathfrak{O}_{D} in D_{v} is denoted by $\mathfrak{O}_{D_{v}}$, which is a maximal order of D_{v}. Since any maximal order of D_{v} is conjugate to $\mathfrak{D}_{D_{v}}$, there is an isomorphism from D_{v} onto $M_{d / d_{v}}(D(v))$ such that the image of $\mathfrak{O}_{D_{v}}$ equals $M_{d / d_{v}}\left(\mathfrak{V}_{D(v)}\right)$, where $\mathfrak{V}_{D(v)}$ denotes a unique maximal order of $D(v)$.

For every $v \in \mathfrak{V}_{f}$, we denote by \mathfrak{d}_{v} the different of $\mathfrak{O}_{D_{v}} / \mathfrak{o}_{v}$, i.e.,

$$
\mathfrak{d}_{v}^{-1}=\left\{a \in D_{v}: \tau_{D_{v} / k_{v}}\left(a \mathfrak{V}_{D_{v}}\right) \subset \mathfrak{o}_{v}\right\} .
$$

Then the different $\mathfrak{D}_{\mathfrak{O}_{D}}$ of \mathfrak{O}_{D} is given by $\prod_{v \in \mathfrak{V}_{f}} \mathfrak{d}_{v}$. The absolute norm $N \mathfrak{d}_{D / k}$ of $\mathfrak{D}_{\mathfrak{O}_{D}}$ is defined to be

$$
\mathrm{Na}_{D / k}=\prod_{v \in \mathfrak{V}_{f}}\left|\mathfrak{O}_{D_{v}} / \mathfrak{d}_{v}\right|
$$

which is independent of the choice of the maximal order \mathfrak{O}_{D} (cf. [R, Theorems (25.3) and (25.7)])

Now we consider the central simple k-algebra $\mathfrak{A}=M_{n}(D)$ and its maximal order $\mathfrak{O}_{\mathfrak{A}}=$ $M_{n}\left(\mathfrak{O}_{D}\right)$. We identify $\mathfrak{A}_{v}=\mathfrak{A} \otimes_{k} k_{v}$ with $M_{n}\left(D_{v}\right)$ for $v \in \mathfrak{V}$ and $\mathfrak{A}_{\mathbf{A}}=\mathfrak{A} \otimes_{k} \mathbf{A}$ with $M_{n}\left(D_{\mathbf{A}}\right)$. For $v \in \mathfrak{V}_{f}$, set $\mathfrak{V}_{\mathfrak{A}_{v}}=M_{n}\left(\mathfrak{D}_{D_{v}}\right)$, which is a maximal order of \mathfrak{A}_{v}. Hereafter, G denotes an affine algebraic k-group defined by $G(k)=\mathfrak{A}^{\times}=G L_{n}(D)$. The adèle group $G(\mathbf{A})$ of G is the unit group of $\mathfrak{A}_{\mathbf{A}}$. If $v \in \mathfrak{V}_{\infty}$, we define an involution $a \mapsto a^{*}$ of \mathfrak{A}_{v} as follows. We fix an algebra isomorphism $\mathfrak{A}_{v} \cong M_{n d / d_{v}}(D(v))$. Then, for $a=\left(a_{i j}\right) \in \mathfrak{A}_{v}$ $\left(a_{i j} \in D(v)\right)$, the involution a^{*} is defined to be $a^{*}=\left(\bar{a}_{i j}\right)^{t}$, where the superscript t means the transpose of a matrix and $a_{i j} \mapsto \bar{a}_{i j}$ denotes the canonical involution of the division algebra $D(v)$, i.e., it is the identity map, the complex conjugate or the quaternion conjugate according as $v \in \mathfrak{V}_{\mathbf{R}, 1}, v \in \mathfrak{V}_{\mathbf{C}}$ or $v \in \mathfrak{V}_{\mathbf{R}, 2}$. By using this involution, we define the subgroup K_{v} of $G\left(k_{v}\right)=\mathfrak{A}_{v}^{\times}$by $K_{v}=\left\{a \in \mathfrak{A}_{v}^{\times}: a^{-1}=a^{*}\right\}$. If $v \in \mathfrak{V}_{f}$, set $K_{v}=\mathfrak{D}_{\mathfrak{A}_{v}}^{\times}$. Then $K=\prod_{v \in \mathfrak{P}} K_{v}$ gives a maximal compact subgroup of $G(\mathbf{A})$. Let P be the minimal k-parabolic subgroup of G which consists of upper triangular matrices in G. We will compute the constant $C_{G, P}=C_{G, P, K}$.

3.2 Self-dual measures

It is convenient to use a self-dual measure on $D_{\mathbf{A}}$ in order to compute $C_{G, P}$. We recall its construction. We fix a non-trivial character $\psi: \mathbf{A} / k \longrightarrow \mathbf{C}^{1}$ as follows. If $\operatorname{ch}(k)>0$, we arbitrarily choose a non-trivial ψ. If $\operatorname{ch}(k)=0$, we define the character ψ_{0} on the adèle group $\mathbf{A}_{\mathbf{Q}}$ of \mathbf{Q} by

$$
\psi_{0}(x)=e^{-2 \pi \sqrt{-1} x_{\infty}} \prod_{p: \text { prime }} e^{2 \pi \sqrt{-1}\left(x_{p} \bmod \mathbf{Z}_{p}\right)}
$$

for $x=\left(x_{\infty}, x_{2}, x_{3}, \cdots\right) \in \mathbf{A}_{\mathbf{Q}}$, and then set $\psi=\psi_{0} \circ \operatorname{Tr}_{k / \mathbf{Q}}$. For every $v \in \mathfrak{V}, \psi$ induces a character $\psi_{v}: k_{v} \longrightarrow \mathbf{C}^{1}$. Let \mathfrak{C} be an arbitrary central simple k-algebra and $\mathfrak{C}_{v}=\mathfrak{C} \otimes_{k} k_{v}$
for $v \in \mathfrak{V}$ and $\mathfrak{C}_{\mathbf{A}}=\mathfrak{C} \otimes_{k} \mathbf{A}$. An invariant measure $\nu_{\mathfrak{C}_{v}}$ on the locally compact additive group \mathfrak{C}_{v} is called the self-dual measure with respect to ψ_{v} if

$$
\Phi(x)=\int_{\mathfrak{C}_{v}}\left\{\int_{\mathfrak{C}_{v}} \Phi(z) \psi_{v}\left(\tau_{\mathfrak{C}_{v} / k_{v}}(y z)\right) d \nu_{\mathfrak{C}_{v}}(z)\right\} \psi_{v}\left(-\tau_{\mathfrak{C}_{v} / k_{v}}(x y)\right) d \nu_{\mathfrak{C}_{v}}(y)
$$

holds for any Schwartz-Bruhat function Φ on \mathfrak{C}_{v}. The product measure $\nu_{\mathfrak{C}_{\mathrm{A}}}=\prod_{v \in \mathfrak{V}^{\prime}} \nu_{\mathfrak{C}_{v}}$ on $\mathfrak{C}_{\mathbf{A}}$ satisfies

$$
\Phi(x)=\int_{\mathfrak{C}_{\mathbf{A}}}\left\{\int_{\mathfrak{C}_{\mathbf{A}}} \Phi(z) \psi_{v}\left(\tau_{\mathfrak{C} / k}(y z)\right) d \nu_{\mathfrak{C}_{\mathbf{A}}}(z)\right\} \psi_{v}\left(-\tau_{\mathfrak{C} / k}(x y)\right) d \nu_{\mathfrak{C}_{\mathbf{A}}}(y)
$$

for any Schwartz-Bruhat function Φ on $\mathfrak{C}_{\mathbf{A}}$. The invariant measure $\nu_{\mathfrak{C}_{\mathbf{A}}}$ is called the self-dual measure of $\mathfrak{C}_{\mathbf{A}}$ with respect to ψ.

For $v \in \mathfrak{V}$, let $\nu_{D(v)}$ be the self-dual measure on $D(v)$ with respect to ψ_{v}. It is known by [T, Propositions 5, 6, 7 and 8] that the product measure $\nu_{D(v)}^{d^{2} / d_{v}^{2}}$ coincides with the self-dual measure on $M_{d / d_{v}}(D(v))$ with respect to ψ_{v}. Hence one can identify $\nu_{D_{v}}$ with $\nu_{D(v)}^{d^{2} / d_{v}^{2}}$. Note that this identification is independent of the choice of the algebra isomorphism $D_{v} \cong M_{d / d_{v}}(D(v))$ because of Skolem-Noether theorem. Therefore, we have

$$
\nu_{D_{\mathbf{A}}}=\prod_{v \in \mathfrak{V}} \nu_{D_{v}}=\prod_{v \in \mathfrak{V}} \nu_{D(v)}^{d^{2} / d_{v}^{2}} .
$$

As was shown in the proof of $\left[\mathrm{T}\right.$, Theorem 2], $\nu_{D_{\mathbf{A}}}$ is the Tamagawa measure of $D_{\mathbf{A}}$, namely $\nu_{D_{\mathbf{A}}}\left(D_{\mathbf{A}} / D\right)=1$.
We define another invariant measure $\mu_{D_{\mathbf{A}}}$ on $D_{\mathbf{A}}$. If $v \in \mathfrak{V}_{1}$, i.e., $D(v)=k_{v}$, then we put $\mu_{D(v)}=\mu_{v}$, where μ_{v} is the measure on k_{v} introduced in Notations. For $v \in \mathfrak{V}_{2}$, $\mu_{D(v)}$ is defined to be the invariant measure on $D(v)$ normalized so that $\mu_{D(v)}\left(\mathfrak{D}_{D(v)}\right)=1$ if $v \in \mathfrak{V}_{f, 2}$ and $\mu_{D(v)}\left(\left\{x \in D(v): \operatorname{Nr}_{D(v) / k_{v}}(x) \leq 1\right\}\right)=4 \pi^{2}$ if $v \in \mathfrak{V}_{\mathbf{R}, 2}$. For every $v \in \mathfrak{V}$, we set $\mu_{D_{v}}=\mu_{D(v)}^{d^{2} / d_{v}^{2}}$, which gives an invariant measure on $D_{v} \cong M_{d / d_{v}}(D(v))$. By Skolem-Noether Theorem, $\mu_{D_{v}}$ is independent of the choice of the algebra isomorphism $D_{v} \cong M_{d / d_{v}}(D(v))$. In particular, one has $\mu_{D_{v}}\left(\mathfrak{D}_{D_{v}}\right)=1$ for $v \in \mathfrak{V}_{f}$. The product measure $\mu_{D_{\mathrm{A}}}=\prod_{v \in \mathfrak{V}} \mu_{D_{v}}$ is an invariant measure on $D_{\mathbf{A}}$. For every $v \in \mathfrak{V}$, there is the positive constant κ_{v} such that $\mu_{D(v)}=\kappa_{v} \nu_{D(v)}$. One has $\mu_{D_{v}}=\kappa_{v}^{d^{2} / d_{v}^{2}} \nu_{D_{v}}$.

Lemma $1 \mu_{D_{\mathbf{A}}}\left(D_{\mathbf{A}} / D\right)=\prod_{v \in \mathfrak{V}} \kappa_{v}^{d^{2} / d_{v}^{2}}=\mu_{\mathbf{A}}(\mathbf{A} / k)^{d^{2}} N \mathfrak{d}_{D / k}^{1 / 2}$.
Proof. We define the Schwartz-Bruhat function $\Phi_{\mathbf{A}}=\prod_{v \in \mathfrak{N}} \Phi_{v}$ on $D_{\mathbf{A}}$ as follows: If $v \in \mathfrak{V}_{f}$, let Φ_{v} be the characteristic function of $\mathfrak{O}_{D_{v}}$. If $v \in \mathfrak{V}_{\infty}$, we set $\Phi_{v}(x)=$ $e^{-\left[k_{v}: \mathbf{R}\right] d_{v} \pi \operatorname{Tr}\left(x^{*} x\right)}$, where $\operatorname{Tr}\left(x^{*} x\right)$ denotes the trace of the Hermitian matrix $x^{*} x$. One hand, we have

$$
\int_{D_{\mathbf{A}}} \Phi_{\mathbf{A}}(x) d \mu_{D_{\mathbf{A}}}(x)=1 .
$$

On the other hand, by [T, §II, Propositions 1 and 2],

$$
\int_{D_{\mathbf{A}}} \Phi_{\mathbf{A}}(x) d \nu_{D_{\mathbf{A}}}(x)=\mu_{\mathbf{A}}(\mathbf{A} / k)^{-d^{2}} \mathrm{No}_{D / k}^{-1 / 2}
$$

which proves the lemma.

3.3 A formula of $C_{G, P}$

Let M_{P} be the Levi subgroup of P consisting of diagonal matrices in G and S be the maximal k-split torus of M_{P}, i.e.,

$$
\begin{aligned}
M_{P}(k) & =\left\{\operatorname{diag}\left(a_{1}, \cdots, a_{n}\right)=\left(\begin{array}{ccc}
a_{1} & & 0 \\
& \ddots & \\
0 & & a_{n}
\end{array}\right): a_{1}, \cdots, a_{n} \in D^{\times}\right\} \\
S(k) & =\left\{\operatorname{diag}\left(a_{1}, \cdots, a_{n}\right): a_{1}, \cdots, a_{n} \in k^{\times}\right\} .
\end{aligned}
$$

Let $\Sigma(G)$ be the relative root system of G with respect to S and $\Sigma^{+}(G)$ be the set of positive roots of $\Sigma(G)$ corresponding to P. For each $\alpha \in \Sigma(G), U_{\alpha}$ denotes the root subgroup of G. We fix an isomorphism $U_{\alpha}(k) \cong D$ and define the invariant measures $\nu_{U_{\alpha}\left(k_{v}\right)}$ on $U_{\alpha}\left(k_{v}\right)$ for $v \in \mathfrak{V}$ and $\nu_{U_{\alpha}(\mathbf{A})}$ on $U_{\alpha}(\mathbf{A})$ as

$$
\nu_{U_{\alpha}\left(k_{v}\right)}=\nu_{D_{v}}, \quad \nu_{U_{\alpha}(\mathbf{A})}=\prod_{v \in \mathfrak{V}} \nu_{U_{\alpha}\left(k_{v}\right)}=\nu_{D_{\mathbf{A}}} .
$$

We set

$$
\nu_{U_{P}^{-}\left(k_{v}\right)}=\prod_{\alpha \in \Sigma^{+}(G)} \nu_{U_{-\alpha}\left(k_{v}\right)}, \quad \nu_{U_{P}^{-}(\mathbf{A})}=\prod_{\alpha \in \Sigma^{+}(G)} \nu_{U_{-\alpha}(\mathbf{A})}=\prod_{v \in \mathfrak{V}} \nu_{U_{P}^{-}\left(k_{v}\right)} .
$$

Since $\nu_{D_{\mathbf{A}}}$ is the Tamagawa measure on $D_{\mathbf{A}}, \nu_{U_{P}^{-}(\mathbf{A})}$ coincides with the Tamagawa measure on the unipotent group $U_{P}^{-}(\mathbf{A})$, i.e., $\omega_{\mathbf{A}}^{U_{P}^{-}}=\nu_{U_{P}^{-}(\mathbf{A})}$.

For $v \in \mathfrak{V}$, we define the local integral I_{v} by

$$
I_{v}=\int_{U_{P}^{-}\left(k_{v}\right)} \eta_{v}\left(u_{v}\right) d \nu_{U_{\bar{P}}^{-}\left(k_{v}\right)}\left(u_{v}\right),
$$

where the function $\eta_{v}: G\left(k_{v}\right) \longrightarrow \mathbf{R}_{+}$is defined by

$$
\eta_{v}\left(u \cdot \operatorname{diag}\left(a_{1}, \cdots, a_{n}\right) \cdot h\right)=\prod_{i=1}^{n}\left|\operatorname{Nr}_{D_{v} / k_{v}}\left(a_{i}\right)\right|_{v}^{d(n-2 i+1)}
$$

for $u \in U_{P}\left(k_{v}\right), a_{1}, \cdots, a_{n} \in D_{v}^{\times}$and $h \in K_{v}$. Since

$$
\frac{\sigma_{k}\left(M_{P}\right)}{\sigma_{k}(G)}=\rho_{k}^{n-1}, \quad \frac{L_{v}\left(1, \sigma_{G}\right)}{L_{v}\left(1, \sigma_{M_{P}}\right)}=\left(1-q_{v}^{-1}\right)^{n-1}
$$

and

$$
\omega_{\mathbf{A}}^{U_{P}^{-}}=\mu_{\mathbf{A}}(\mathbf{A} / k)^{-\operatorname{dim} U_{P}} \prod_{v \in \mathfrak{V}} \omega_{v}^{U_{P}^{-}}=\prod_{v \in \mathfrak{V}} \nu_{U_{P}^{-}\left(k_{v}\right)},
$$

Theorem 1 leads us to

$$
\begin{equation*}
C_{G, P}=\rho_{k}^{n-1} \prod_{v \in \mathfrak{N}_{\infty}} I_{v} \prod_{v \in \mathfrak{V}_{f}}\left(1-q_{v}^{-1}\right)^{n-1} I_{v} . \tag{8}
\end{equation*}
$$

3.4 Reduction of I_{v} to the case of $G L_{2}(D(v))$

We fix a place $v \in \mathfrak{V}$. Let $S^{(v)}$ be the maximal k_{v}-split torus in M_{P} and $P^{(v)}$ be a minimal k_{v}-parabolic subgroup of G such that $S^{(v)} \subset P^{(v)} \subset P$. The unipotent radical of $P^{(v)}$ is denoted by $U^{(v)}$. The centralizer $M^{(v)}$ of $S^{(v)}$ in G is a Levi subgroup of $P^{(v)}$. As in $\S 2.3$, we set $P_{M_{P}}^{(v)}=P^{(v)} \cap M_{P}, U_{M_{P}}^{(v)}=U^{(v)} \cap M_{P}$ and $U_{M_{P}}^{(v)-}=U^{(v)-} \cap M_{P}$. Let $\Sigma_{v}(G)$ be the relative root system of G with respect to $S^{(v)}$ and $\Sigma_{v}^{+}(G)$ be the set of positive roots of $\Sigma_{v}(G)$ corresponding to $P^{(v)}$. For every $\beta \in \Sigma_{v}(G), U_{(\beta)}$ stands for the root subgroup of G. We fix an isomorphism $U_{(\beta)}\left(k_{v}\right) \cong D(v)$ and define the invariant measures $\nu_{U_{(\beta)}\left(k_{v}\right)}$ on $U_{(\beta)}\left(k_{v}\right), \nu_{U^{(v)-}\left(k_{v}\right)}$ on $U^{(v)-}\left(k_{v}\right)$ and $\nu_{U_{M_{P}}^{(v)-}\left(k_{v}\right)}$ on $U_{M_{P}}^{(v)-}\left(k_{v}\right)$ as

$$
\nu_{U_{(\beta)}\left(k_{v}\right)}=\nu_{D(v)}, \quad \nu_{U^{(v)-\left(k_{v}\right)}}=\prod_{\beta \in \Sigma_{v}^{+}(G)} \nu_{U_{(-\beta)}\left(k_{v}\right)}, \quad \nu_{U_{M_{P}}^{(v)-}\left(k_{v}\right)}=\prod_{\substack{\left.\beta \in \Sigma_{v}^{+}(G) \\ \beta\right|_{S}=0}} \nu_{U_{(-\beta)}\left(k_{v}\right)}
$$

For a k-root $\alpha \in \Sigma(G)$, one has

$$
U_{\alpha}\left(k_{v}\right)=\prod_{\substack{\left.\beta \in \Sigma_{v}(G) \\ \beta\right|_{S}=\alpha}} U_{(\beta)}\left(k_{v}\right)
$$

From $\nu_{D_{v}}=\nu_{D(v)}^{d^{2} / d_{v}^{2}}$, it follows

$$
\nu_{U_{\alpha}\left(k_{v}\right)}=\prod_{\substack{\left.\beta \in \Sigma_{v}(G) \\ \beta\right|_{S}=\alpha}} \nu_{U_{(\beta)}\left(k_{v}\right)}
$$

This implies the relation $\nu_{U^{(v)-}\left(k_{v}\right)}=\nu_{U_{P}^{-}\left(k_{v}\right)} \cdot \nu_{U_{M_{P}}^{(v)-}\left(k_{v}\right)}$. Therefore, if we set

$$
\begin{aligned}
I_{v}^{G}(s) & =\int_{U^{(v)-\left(k_{v}\right)}} \eta_{P^{(v)}}^{G}(u)^{s+1 / 2} d \nu_{U^{(v)-\left(k_{v}\right)}}(u), \\
I_{v}^{M_{P}}(s) & =\int_{U_{M_{P}}^{(v)-}\left(k_{v}\right)} \eta_{P_{M_{P}}^{(v)}}^{M_{P}}(u)^{s+1 / 2} d \nu_{U_{M_{P}}^{(v)-}\left(k_{v}\right)}(u)
\end{aligned}
$$

for $\Re(s)>0$ with the notations in $\S 2.3$, then $I_{v} \cdot I_{v}^{M_{P}}(1 / 2)=I_{v}^{G}(1 / 2)$ holds similarly as (6).

Let $K_{v}^{G L_{2}}$ be a maximal compact subgroup of $G L_{2}(D(v))$ defined by the same way as K_{v}. We define the function $\eta_{v}^{G L_{2}}: G L_{2}(D(v)) \longrightarrow \mathbf{R}_{+}$as follows:

$$
\eta_{v}^{G L_{2}}\left(\left(\begin{array}{cc}
1 & b \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
a_{1} & 0 \\
0 & a_{2}
\end{array}\right) h\right)=\left|\operatorname{Nr}_{D(v) / k_{v}}\left(a_{1}\right)\right|_{v}^{d_{v}}\left|\operatorname{Nr}_{D(v) / k_{v}}\left(a_{2}\right)\right|_{v}^{-d_{v}}
$$

for $b \in D(v), a_{1}, a_{2} \in D(v)^{\times}$and $h \in K_{v}^{G L_{2}}$. We set

$$
I_{v}^{G L_{2}}(s)=\int_{D(v)} \eta_{v}^{G L_{2}}\left(\left(\begin{array}{cc}
1 & 0 \\
b & 0
\end{array}\right)\right)^{s+1 / 2} d \nu_{D(v)}(b)
$$

for $\Re(s)>0$. Then, by the Gindikin-Karpelevič formula,

$$
\begin{aligned}
I_{v}^{G}(s) & =\prod_{\beta \in \Sigma_{v}^{+}(G)} \int_{U_{(-\beta)}\left(k_{v}\right)} \xi_{\beta}^{G}(u)^{\left(\rho_{v}^{G}, \beta^{\vee}\right) s} \eta_{\beta}(u)^{1 / 2} d \nu_{U_{(-\beta)}\left(k_{v}\right)}(u) \\
& =\prod_{\beta \in \Sigma_{v}^{+}(G)} I_{v}^{G L_{2}}\left(\left(\rho_{v}^{G}, \beta^{\vee}\right) s / d_{v}^{2}\right) \\
& =\prod_{1 \leq i<j \leq n d / d_{v}} I_{v}^{G L_{2}}((j-i) s)
\end{aligned}
$$

and, in a similar fashion,

$$
I_{v}^{M_{P}}(s)=\left(\prod_{1 \leq i<j \leq d / d_{v}} I_{v}^{G L_{2}}((j-i) s)\right)^{n}
$$

Therefore,

$$
\begin{equation*}
I_{v}=\left(\prod_{1 \leq i<j \leq d / d_{v}} I_{v}^{G L_{2}}((j-i) / 2)\right)^{-n} \prod_{1 \leq i<j \leq n d / d_{v}} I_{v}^{G L_{2}}((j-i) / 2) \tag{9}
\end{equation*}
$$

3.5 Computations of $I_{v}^{G L_{2}}(s)$

An Iwasawa decomposition of the unipotent matrix $\left(\begin{array}{cc}1 & 0 \\ x & 1\end{array}\right) \in G L_{2}(D(v))$ is given as follows:

- If $v \in \mathfrak{V}_{f}$,

$$
\left(\begin{array}{ll}
1 & 0 \\
x & 1
\end{array}\right)= \begin{cases}\left(\begin{array}{ll}
1 & 0 \\
x & 1
\end{array}\right) \\
\left(\begin{array}{ll}
1 & x^{-1} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
x^{-1} & 0 \\
0 & x
\end{array}\right)\left(\begin{array}{ll}
0 & -1 \\
1 & x^{-1}
\end{array}\right) & \left(x \notin \mathfrak{O}_{D(v)}\right)\end{cases}
$$

- If $v \in \mathfrak{V}_{\mathbf{R}, 1}$,

$$
\left(\begin{array}{ll}
1 & 0 \\
x & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & \frac{x}{1+x^{2}} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{\sqrt{1+x^{2}}} & 0 \\
0 & \sqrt{1+x^{2}}
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{\sqrt{1+x^{2}}} & -\frac{x}{\sqrt{1+x^{2}}} \\
\frac{x}{\sqrt{1+x^{2}}} & \frac{1}{\sqrt{1+x^{2}}}
\end{array}\right)
$$

- If $v \in \mathfrak{V}_{\mathbf{C}}$,

$$
\left(\begin{array}{ll}
1 & 0 \\
x & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & \frac{\bar{x}}{1+|x|_{v}} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{\sqrt{1+|x|_{v}}} & 0 \\
0 & \sqrt{1+|x|_{v}}
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{\sqrt{1+|x|_{v}}} & -\frac{\bar{x}}{\sqrt{1+|x|_{v}}} \\
\frac{x}{\sqrt{1+|x|_{v}}} & \frac{1}{\sqrt{1+|x|_{v}}}
\end{array}\right)
$$

- If $v \in \mathfrak{V}_{\mathbf{R}, 2}$,

$$
\left(\begin{array}{ll}
1 & 0 \\
x & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & \frac{\bar{x}}{1+|x|^{2}} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{\sqrt{1+|x|^{2}}} & 0 \\
0 & \sqrt{1+|x|^{2}}
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{\sqrt{1+|x|^{2}}} & -\frac{\bar{x}}{\sqrt{1+|x|^{2}}} \\
\frac{x}{\sqrt{1+|x|^{2}}} & \frac{1}{\sqrt{1+|x|^{2}}}
\end{array}\right)
$$

where $|x|=\operatorname{Nr}_{D(v) / k_{v}}(x)^{1 / 2}$ for $x \in D(v)$.

Lemma 2

$$
I_{v}^{G L_{2}}(s)=\kappa_{v}^{-1} \times \begin{cases}\frac{1-q_{v}^{-2 d_{v} s-d_{v}}}{1-q_{v}^{-2 d_{v} s}} & \left(v \in \mathfrak{V}_{f}\right) \\ \pi^{1 / 2} \frac{\Gamma(s)}{\Gamma(s+1 / 2)} & \left(v \in \mathfrak{V}_{\mathbf{R}, 1}\right) \\ \pi / s & \left(v \in \mathfrak{V}_{\mathbf{C}}\right) \\ \frac{\pi^{2}}{s(4 s+1)} & \left(v \in \mathfrak{V}_{\mathbf{R}, 2}\right)\end{cases}
$$

Proof. Let $v \in \mathfrak{V}_{f}$ and $\pi_{D(v)}$ be a prime element of $D(v)$. Since $\kappa_{v} \nu_{D(v)}=\mu_{D(v)}$, one has

$$
\begin{aligned}
\kappa_{v} I_{v}^{G L_{2}}(s) & =1+\sum_{t=1}^{\infty} \int_{\pi_{D(v)}^{-t} \mathfrak{D}_{D(v)}^{\times}}\left|N_{D(v) / k_{v}}(x)\right|_{v}^{-2 d_{v} s-d_{v}} d \mu_{D(v)}(x) \\
& =1+\sum_{t=1}^{\infty} q_{v}^{-(2 s+1) t d_{v}} \int_{\pi_{D(v)}^{-t} \mathfrak{D}_{D(v)}^{\times}} d \mu_{D(v)}(x) \\
& =1+\sum_{t=1}^{\infty} q_{v}^{-2 t d_{v} s}\left(1-q_{v}^{-d_{v}}\right) \\
& =1+\left(1-q_{v}^{-d_{v}}\right) \frac{q_{v}^{-2 d_{v} s}}{1-q_{v}^{-2 d_{v} s}} \\
& =\frac{1-q_{v}^{-2 d_{v} s-d_{v}}}{1-q_{v}^{-2 d_{v} s}} .
\end{aligned}
$$

If $v \in \mathfrak{V}_{\mathbf{R}, 2}$,

$$
\begin{aligned}
\kappa_{v} I_{v}^{G L_{2}}(s) & =\int_{D(v)}\left(1+|x|^{2}\right)^{-4 s-2} d \mu_{D(v)}(x) \\
& =4 \int_{0}^{\infty}\left(1+r^{2}\right)^{-4 s-2} r^{3} d r \int_{0}^{2 \pi} d \theta \int_{-\pi / 2}^{\pi / 2} \cos \varphi d \varphi \int_{-\pi / 2}^{\pi / 2}(\cos \psi)^{2} d \psi \\
& =\frac{\pi^{2}}{s(4 s+1)}
\end{aligned}
$$

The other cases are also easy.

3.6 An explicit formula of $C_{G, P}$

To describe I_{v}, we define functions $F_{1}(s), F_{2}(s), F_{3}(s)$ in $s \in \mathbf{C}$ as

$$
F_{1}(s)=\pi^{-s / 2} \Gamma(s / 2), \quad F_{2}(s)=(2 \pi)^{1-s} \Gamma(s), \quad F_{3}(s)=(2 \pi)^{2-s} \Gamma(s)
$$

By the formula (9) and Lemma 2, we have the following conclusion.

Lemma 3 Notations being as above, we have

It is convenient to introduce a zeta function of D in order to formulate an explicit formula of $C_{G, P}$. We first define the constant C_{D} as follows:

- If $\operatorname{ch}(k)=0$,

$$
\begin{aligned}
C_{D}= & \rho_{k} \mu_{D_{\mathbf{A}}}\left(D_{\mathbf{A}} / D\right) \prod_{2 \leq i \leq d} \zeta_{k}(i) F_{1}(i)^{r_{1}+r_{3}} F_{2}(i)^{r_{2}} \\
& \times \prod_{v \in \mathfrak{V}_{f, 2}}\left(\prod_{\substack{1 \leq i \leq d-1 \\
i \neq 0\left(d_{v}\right)}} 1-q_{v}^{-i}\right) \cdot \prod_{\substack{1 \leq i \leq d-1 \\
i \neq 0}} i^{r_{3}}
\end{aligned}
$$

where r_{1}, r_{2} and r_{3} denote the cardinality of $\mathfrak{V}_{\mathbf{R}, 1}, \mathfrak{V}_{\mathbf{C}}$ and $\mathfrak{V}_{\mathbf{R}, 2}$, respectively.

- If $\operatorname{ch}(k)>0$,

$$
C_{D}=(\log q) \rho_{k} \mu_{D_{\mathbf{A}}}\left(D_{\mathbf{A}} / D\right) \prod_{2 \leq i \leq d} \zeta_{k}(i) \cdot \prod_{\substack{v \in \mathfrak{V}_{f, 2}\\}} \prod_{\substack{1 \leq i \leq d-1 \\ i \neq 0\left(d_{v}\right)}}\left(1-q_{v}^{-i}\right)
$$

Then the zeta function of D is defined by

$$
\begin{aligned}
Z_{D}(s)= & C_{D}^{-1} \prod_{0 \leq i \leq d-1} \zeta_{k}(s-i) F_{1}(s-i)^{r_{1}+r_{3}} F_{2}(s-i)^{r_{2}} \\
& \times \prod_{v \in \mathfrak{V}_{f, 2}}\left(\prod_{\substack{1 \leq i \leq d-1 \\
i \neq 0 \\
\left(d_{v}\right)}}\left(1-q_{v}^{-(s-i)}\right)\right) \cdot \prod_{\substack{1 \leq i \leq d-1 \\
i \neq 0 \\
0}}(s-i)^{r_{3}}
\end{aligned}
$$

By [T, Propositions 7 and 8$], Z_{D}(s)$ has a simple pole at $s=d$ with the residue

$$
\rho_{D}= \begin{cases}\mu_{D_{\mathbf{A}}}\left(D_{\mathbf{A}} / D\right)^{-1} & (\operatorname{ch}(k)=0) \\ (\log q)^{-1} \mu_{D_{\mathbf{A}}}\left(D_{\mathbf{A}} / D\right)^{-1} & (\operatorname{ch}(k)>0)\end{cases}
$$

By the formula (8) and Lemmas 1 and 3, the constant $C_{G, P}$ is expressed in terms of $Z_{D}(s)$.
Theorem 2 If $G(k)=G L_{n}(D)$ and P a minimal k-parabolic subgroup of G, then

$$
C_{G, P}=\mu_{D_{\mathbf{A}}}\left(D_{\mathbf{A}} / D\right)^{-n(n-1) / 2} \rho_{D}^{n-1} \prod_{2 \leq i \leq n} Z_{D}(i d)^{-1}
$$

We take positive integers n_{1}, \cdots, n_{t} such that $n=n_{1}+\cdots+n_{t}$. For such n_{1}, \cdots, n_{t}, $R_{\left(n_{1}, \cdots, n_{t}\right)}$ denotes the standard k-parabolic subgroup of G whose Levi subgroup $M_{R_{\left(n_{1}, \cdots, n_{t}\right)}}(k)$ is isomorphic with $G L_{n_{1}}(D) \times \cdots \times G L_{n_{t}}(D)$.

Corollary 1 Let $R=R_{\left(n_{1}, \cdots, n_{t}\right)}$ be a standard k-parabolic subgroup of G. Then we have

$$
C_{G, R}=\mu_{D_{\mathbf{A}}}\left(D_{\mathbf{A}} / D\right)^{-\frac{1}{2}\left(n^{2}-\sum_{1 \leq j \leq t} n_{j}^{2}\right)} \rho_{D}^{t-1} \frac{\prod_{1 \leq j \leq t} \prod_{2 \leq i \leq n_{j}} Z_{D}(i d)}{\prod_{2 \leq i \leq n} Z_{D}(i d)} .
$$

This is a consequence of Theorem 2 and the relation $C_{G, R}=C_{G, P} / C_{M_{R}, M_{R} \cap P}$.

4 Applications

4.1 Fundamental Hermite constants of $G L_{n}(D)$

We use the same notations as in $\S 3$. For $1 \leq m \leq n-1, Q_{m}$ denotes the standard maximal k-parabolic subgroup $R_{(m, n-m)}$ of G. We recall the fundamental Hermite constants $\gamma\left(G, Q_{m}, k\right)$ introduced in [Wa].

In the following, we fix m and write Q for Q_{m}. The Levi subgroup M_{Q} is given by

$$
M_{Q}(k)=\left\{\operatorname{diag}(a, b)=\left(\begin{array}{cc}
a & 0 \\
0 & b
\end{array}\right): a \in G L_{m}(D), \quad b \in G L_{n-m}(D)\right\} .
$$

Denote by Z_{G} and Z_{Q} the central maximal k-split tori of G and M_{Q}, respectively, i.e.,

$$
Z_{G}(k)=\left\{\lambda I_{n}: \lambda \in k^{\times}\right\} \quad \text { and } \quad Z_{Q}(k)=\left\{\operatorname{diag}\left(\lambda I_{m}, \mu I_{n-m}\right): \lambda, \mu \in k^{\times}\right\} .
$$

We define the k-rational characters $\alpha_{Q} \in \mathbf{X}_{k}^{*}\left(Z_{Q}\right)$ and $\widehat{\alpha}_{Q} \in \mathbf{X}_{k}^{*}\left(M_{Q}\right)$ as follows:

$$
\alpha_{Q}\left(\operatorname{diag}\left(\lambda I_{m}, \mu I_{n-m}\right)\right)=\lambda \mu^{-1}
$$

for $\operatorname{diag}\left(\lambda I_{m}, \mu I_{n-m}\right) \in Z_{Q}(k)$ and

$$
\widehat{\alpha}_{Q}(\operatorname{diag}(a, b))=\operatorname{Nr}_{M_{m}(D) / k}(a)^{(n-m) / \operatorname{gcd}(m, n-m)} \operatorname{Nr}_{M_{n-m}(D) / k}(b)^{-m / \operatorname{gcd}(m, n-m)}
$$

for $\operatorname{diag}(a, b) \in M_{Q}(k)$. Then α_{Q} (resp. $\left.\widehat{\alpha}_{Q}\right)$ is trivial on Z_{G} and forms a \mathbf{Z}-basis of the module $\mathbf{X}_{k}^{*}\left(Z_{G} \backslash Z_{Q}\right)\left(\right.$ resp. $\mathbf{X}_{k}^{*}\left(Z_{G} \backslash M_{Q}\right)$).

Define the unimodular subgroups $G(\mathbf{A})^{1}, M_{Q}(\mathbf{A})^{1}$ and $Q(\mathbf{A})^{1}$ as follows:

$$
\begin{aligned}
G(\mathbf{A})^{1} & =\left\{g \in G(\mathbf{A}):\left|\mathrm{Nr}_{M_{n}(D) / k}(g)\right|_{\mathbf{A}}=1\right\} \\
M_{Q}(\mathbf{A})^{1} & =\left\{\operatorname{diag}(a, b) \in M_{Q}(\mathbf{A}):\left|\operatorname{Nr}_{M_{m}(D) / k}(a)\right|_{\mathbf{A}}=\left|\operatorname{Nr}_{M_{n-m}(D) / k}(b)\right|_{\mathbf{A}}=1\right\} \\
Q(\mathbf{A})^{1} & =U_{Q}(\mathbf{A}) M_{Q}(\mathbf{A})^{1}
\end{aligned}
$$

The height function $H_{Q}: G(\mathbf{A}) \longrightarrow \mathbf{R}_{+}$is well defined by

$$
H_{Q}(u \cdot \operatorname{diag}(a, b) \cdot h)=\left|\widehat{\alpha}_{Q}(\operatorname{diag}(a, b))\right|_{\mathbf{A}}^{-1}
$$

for $u \in U_{Q}(\mathbf{A}), \operatorname{diag}(a, b) \in M_{Q}(\mathbf{A})$ and $h \in K$, and this is left $Z_{G}(\mathbf{A}) Q(\mathbf{A})^{1}$ and right K invariant. We set $X_{Q}=Q(k) \backslash G(k)$ and $Y_{Q}=Q(\mathbf{A})^{1} \backslash G(\mathbf{A})^{1}$. Then X_{Q} is a subset of Y_{Q} and the natural map $Y_{Q} \longrightarrow\left(Z_{G}(\mathbf{A}) Q(\mathbf{A})^{1}\right) \backslash G(\mathbf{A})$ is injective. Thus H_{Q} is restricted to Y_{Q}. Then the Hermite constants $\gamma(G, Q, k)$ and $\widetilde{\gamma}(G, Q, k)$ are defined to be

$$
\gamma(G, Q, k)=\max _{g \in G(\mathbf{A})^{1}} \min _{x \in X_{Q}} H_{Q}(x g)
$$

We write $\gamma_{n, m}(D)$ for $\gamma\left(G, Q_{m}, k\right)$, and especially $\gamma_{n}(D)$ for $\gamma\left(G, Q_{1}, k\right)$ since it is an analogue of Hermite-Rankin's constant.

4.2 An explicit lower bound of $\gamma_{n, m}(D)$

Since $Q=Q_{m}$ is maximal, there is a positive constant \widehat{e}_{Q} such that $\delta_{Q}(g)=\left|\widehat{\alpha}_{Q}(g)\right|_{A}^{\widehat{e}_{Q}}$ holds for all $g \in M_{Q}(\mathbf{A})$. It was proved in [Wa] that

$$
\begin{equation*}
\left(\frac{D_{G, Q} \cdot E_{Q}}{C_{G, Q}} \cdot \frac{\tau(G)}{\tau(Q)}\right)^{1 / \widehat{e_{Q}}} \leq \gamma(G, Q, k) \tag{10}
\end{equation*}
$$

where $D_{G, Q}$ and E_{Q} are given as follows with the notations in §1.1:

$$
\begin{aligned}
D_{G, Q} & = \begin{cases}{\left[\mathbf{X}_{k}^{*}\left(Z_{G}\right): \mathbf{X}_{k}^{*}(G)\right] /\left[\mathbf{X}_{k}^{*}\left(Z_{Q}\right): \mathbf{X}_{k}^{*}\left(M_{Q}\right)\right]} & (\operatorname{ch}(k)=0), \\
d_{G}^{*} / d_{M_{Q}}^{*} & (\operatorname{ch}(k)>0),\end{cases} \\
E_{Q} & = \begin{cases}\widehat{e}_{Q}\left[\mathbf{X}_{k}^{*}\left(Z_{Q} / Z_{G}\right): \mathbf{X}_{k}^{*}\left(M_{Q} / Z_{G}\right)\right] & (\operatorname{ch}(k)=0) \\
\left(1-q_{0}^{-e_{Q}}\right) & (\operatorname{ch}(k)>0)\end{cases}
\end{aligned}
$$

Here, $q_{0}>1$ stands for the generator of the subgroup $\left|\widehat{\alpha}_{Q}\left(M_{Q}(\mathbf{A}) \cap G(\mathbf{A})^{1}\right)\right|_{\mathbf{A}}$ of the cyclic group $q^{\mathbf{Z}}$. The inequality (10) is strict if $\operatorname{ch}(k)>0$. It is easy to see

$$
\begin{gathered}
{\left[\mathbf{X}_{k}^{*}\left(Z_{G}\right): \mathbf{X}_{k}^{*}(G)\right]=d n, \quad\left[\mathbf{X}_{k}^{*}\left(Z_{Q}\right): \mathbf{X}_{k}^{*}\left(M_{Q}\right)\right]=d^{2} m(n-m),} \\
{\left[\mathbf{X}_{k}^{*}\left(Z_{Q} / Z_{G}\right): \mathbf{X}_{k}^{*}\left(M_{Q} / Z_{G}\right)\right]=d m(n-m) / \operatorname{gcd}(m, n-m), \quad \widehat{e}_{Q}=d \cdot \operatorname{gcd}(m, n-m)} \\
d_{G}^{*}=\log q, \quad d_{M_{Q}}^{*}=(\log q)^{2}, \quad q_{0}=q^{n / \operatorname{gcd}(m, n-m)} .
\end{gathered}
$$

Therefore,

$$
D_{G, Q} \cdot E_{Q}= \begin{cases}d n & (\operatorname{ch}(k)=0) \\ \left(1-q^{-d n}\right) /(\log q) & (\operatorname{ch}(k)>0)\end{cases}
$$

Since $\tau(G)=\tau(Q)=1$ is known, Cororally 1 gives the following.
Theorem 3 If $\operatorname{ch}(k)=0$, then

$$
\left\{d n \cdot \mu_{D_{\mathbf{A}}}\left(D_{\mathbf{A}} / D\right)^{m(n-m)} \cdot \rho_{D}^{-1} \cdot \frac{\prod_{j=n-m+1}^{n} Z_{D}(j d)}{\prod_{j=2}^{m} Z_{D}(j d)}\right\}^{\frac{1}{d \cdot g \operatorname{cd}(m, n-m)}} \leq \gamma_{n, m}(D)
$$

If $\operatorname{ch}(k)>0$, then

$$
\left\{\frac{1-q^{-d n}}{\log q} \cdot \mu_{D_{\mathbf{A}}}\left(D_{\mathbf{A}} / D\right)^{m(n-m)} \cdot \rho_{D}^{-1} \cdot \frac{\prod_{j=n-m+1}^{n} Z_{D}(j d)}{\prod_{j=2}^{m} Z_{D}(j d)}\right\}^{\frac{1}{d \cdot \operatorname{gcd}(m, n-m)}}<\gamma_{n, m}(D)
$$

For example, if D is a quaternion division algebra over \mathbf{Q} and $m=1$, then one has $\rho_{\mathbf{Q}}=1, \mu_{D_{\mathbf{A}}}\left(D_{\mathbf{A}} / D\right)=\mathrm{N} \mathfrak{d}_{D / \mathbf{Q}}^{1 / 2}=\prod_{p \in \mathfrak{F}_{f, 2}} p$ and hence

$$
\left\{\frac{12 n(2 n-1)^{r_{3}}}{\pi^{2 n+1 / 2}} \zeta_{\mathbf{Q}}(2 n) \zeta_{\mathbf{Q}}(2 n-1) \Gamma(n) \Gamma\left(n-\frac{1}{2}\right) \prod_{p \in \mathfrak{V}_{f, 2}} p^{n-1}\left(\frac{1-p^{-(2 n-1)}}{1-p^{-1}}\right)\right\}^{1 / 2} \leq \gamma_{n}(D),
$$

where $r_{3}=1$ or 0 according as D is definite or indefinite. We denote the value of the left-hand side by $[n, D]$. For a square-free integer $N>1$, let D_{N} be a quaternion algebra over \mathbf{Q} such that $\mathrm{No}_{D_{N} / \mathbf{Q}}^{1 / 2}=N$, e.g., $D_{2}=(-1,-1), D_{3}=(-1,-3), D_{5}=(-2,-5)$, $D_{6}=(-1,3), D_{7}=(-1,-7)$ and $D_{10}=(-2,5)$, where (a, b) stands for the quaternion algebra generated by \mathbf{i} and \mathbf{j} with $\mathbf{i}^{2}=a, \mathbf{j}^{2}=b$ and $\mathbf{i j}=-\mathbf{j i}$. The following tables give numerical examples of $\left[n, D_{N}\right]$:

n	$\left[n, D_{2}\right]$	$\left[n, D_{3}\right]$	$\left[n, D_{5}\right]$	$\left[n, D_{7}\right]$
2	1.297258519	1.443456027	1.726586552	1.978704389
3	1.515273677	1.995775367	3.042255888	4.115273864
4	2.530418525	4.040765897	7.938578156	12.70444456
5	5.393737367	10.52001705	26.67683122	50.51365650
6	13.94246428	33.28151972	108.9521040	244.1035544
7	42.33203429	123.7370964	522.9445997	1386.303048
8	147.6045644	528.3922475	2882.945637	9042.800847
9	581.1565361	2547.947350	17947.12248	66607.84112
10	2549.878172	13691.81879	124505.8889	546744.5241

By [C-W], it is known $\gamma_{2}\left(D_{2}\right)=2, \gamma_{2}\left(D_{3}\right)=3$ and $\gamma_{2}\left(D_{5}\right)=5$.

n	$\left[n, D_{6}\right]$	$\left[n, D_{10}\right]$	$\left[n, D_{14}\right]$	$\left[n, D_{15}\right]$
2	1.559110703	1.864926623	2.137245010	2.075098781
3	2.484720294	3.787578034	5.123474644	4.988640043
4	6.085153489	11.95502729	19.13213909	19.09070223
5	19.81735311	50.25316799	95.15640162	98.01444678
6	80.25844451	262.7381944	588.6561594	627.1722287
7	388.2457592	1640.825823	4349.756821	4796.155594
8	2182.851359	11909.79207	37356.88820	42634.46615
9	13982.96635	98492.61985	365539.4219	431818.2696
10	100515.7012	914034.6441	4013813.651	4907997.900

There is no example of the exact value of $\gamma_{n}(D)$ for indefinite quaternion algebras.

4.3 The asymptotic distribution of rational points on Y_{Q}

Let $Q=Q_{m}, X_{Q}=Q(k) \backslash G(k)$ and $Y_{Q}=Q(\mathbf{A})^{1} \backslash G(\mathbf{A})^{1}$ be the same as in $\S 4.1$. The projective variety $Q \backslash G$ is a k-form of Grassmannian and is called the Brauer-Severi variety. The set X_{Q} is considered as the set of k-rational points of $Q \backslash G$. For a positive real number T, let us define the subset B_{T} of Y_{Q} by

$$
B_{T}=\left\{y \in Y_{Q}: H_{Q}(y) \leq T\right\}
$$

For $g \in G(\mathbf{A})^{1}$, the subset $B_{T} g$ is the translation of B_{T} by g. The constant $\gamma_{n, m}(D)$ measures the existence of rational points in $B_{T} g$, i.e., we have $B_{T} g \cap X_{Q} \neq \emptyset$ for every $g \in G(\mathbf{A})^{1}$ if $\gamma_{n, m}(D) \leq T$. In the case that k is an algebraic number field, the cardinality of $B_{T} g \cap X_{Q}$ is increasing to proportion to the volume of B_{T} as $T \rightarrow \infty$. More precisely, it was proved in [Wa2] that

$$
\lim _{T \rightarrow \infty} \sharp\left(B_{T} g \cap X_{Q}\right) \cdot \frac{D_{G, Q} \cdot E_{Q}}{C_{G, Q}} T^{-\widehat{e}_{Q}}=\frac{\tau(Q)}{\tau(G)} .
$$

Therefore, we obtain the following.

Theorem 4 We assume k is an algebraic number field. Then the asymptotic behavior

$$
\sharp\left(B_{T} g \cap X_{Q}\right) \sim \frac{T^{d \cdot g c d}(m, n-m)}{d n\left|D_{k}\right|^{d^{2}(m(n-m)+1) / 2} \mathrm{Nd}_{D / k}^{(m(n-m)+1) / 2}} \frac{\prod_{j=2}^{m} Z_{D}(j d)}{\prod_{j=n-m+1}^{n} Z_{D}(j d)} \quad \text { as } T \rightarrow \infty
$$

holds for all $g \in G(\mathbf{A})^{1}$.

For example, if $k=\mathbf{Q}, m=1$ and $D=D_{N}$ as defined above, then we have

$$
\sharp\left(B_{T} g \cap X_{Q}\right) \sim \frac{T^{2}}{\left[n, D_{N}\right]^{2}} \quad \text { as } T \rightarrow \infty .
$$

References

[B-T] Borel, A and Tits, J., Groupes réductifs, Publ. Math. I.H.E.S. 27 (1965) 55-150.
[C-W] Coulangeon, R. and Watanabe, T., Hermite constant and Voronoï theory over a quaternion skew field, preprint, 2003.
[Ic] Ichino, A., A regularized Siegel-Weil formula for unitary groups, Math. Z. to appear.
[Ik] Ikeda, T., On the residue of the Eisenstein series and the Siegel-Weil formula, Comp. Math. 103 (1996) 183-218.
[K] Knapp, A., Representation Theory of Semisimple Groups, Princeton Univ. Press, Princeton, 1986.
[L] Lai, K. F., Tamagawa numbers of reductive algebraic groups, Comp. Math. 41 (1980) 153-188.
[O] Oesterlé, J., Nombres de Tamagawa et groupes unipotents en caractéristique p, Invent. Math. 78 (1984) 13-88.
[R] Reiner, I., Maximal Orders, Academic Press, London etal., 1975.
[T] Turner, S., Zeta-functions of central simple algebras over global fields, An. Acad. Brasil Ciênc. 48 (1976) 171-186.
[V] Vignéras, M.-F., Arithmétique des algébres de quaternions, Springer-Verlag, Lecture Note in Mathematics 800, Heidelberg, 1980.
[Wa] Watanabe, T., Fundamental Hermite constants of linear algebraic groups, J. Math. Soc. Japan 55 (2003) 1061-1080.
[Wa2] Watanabe, T,. The Hardy-Littlewood property of flag varieties, Nagoya Math. J. 170 (2003) 185-211.
[We] Weil, A., Basic Number Theory, Springer-Verlag, Berlin etal., 1974.

Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043 Japan
nakamura@gaia.math.wani.osaka-u.ac.jp ; watanabe@math.wani.osaka-u.ac.jp

[^0]: *The second author was partly supported by Grant-in-Aid for Scientific Research, Ministry of Education, Culture, Science and Technology, Japan.
 ${ }^{0} 2000$ Mathematics Subject Classification. Primary 11R52; Secondary 11H50

