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Abstract

Let D be an F -central division algebra of degree pr, p a prime. A set of

criteria is given for D to be a crossed product in terms of irreducible soluble

or abelian-by-finite subgroups of the multiplicative group D∗ of D. Using the

Amitsur’s classification of finite subgroups of D∗ and the Tits Alternative, it

is shown that D is a crossed product if and only if D∗ contains an irreducible

soluble subgroup. Further criteria are also presented in terms of irreducible

abelian-by-finite subgroups and irreducible subgroups satisfying a group iden-

tity. Using the above results, it is shown that if D∗ contains an irreducible

finite subgroup, then D is a crossed product.

1 Introduction

Let D be an F -central division algebra of degree n. The algebra D is called a crossed

product if it contains a maximal subfield K such that K/F is Galois. We shall say

that D is a nilpotent crossed product if Gal(K/F ) is nilpotent. A subgroup G of D∗
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is said to be irreducible if F [G] = D. When n = p, a prime, it is shown in [6] that D

is cyclic if and only if D∗ contains a nonabelian soluble subgroup. A criterion is also

given in [3] for D to be a supersoluble (nilpotent) crossed product division algebra

in terms of subgroups D∗. More precisely, it is shown that D is a supersoluble

(nilpotent) crossed product if and only if D∗ contains an abelian-by-supersoluble

(abelian-by-nilpotent) irreducible subgroup. The aim of this paper is to generalize

some of these results to a division algebra of a prime power degree pr. In fact,

we present a set of criteria for D to be a crossed product in terms of irreducible

soluble or abelian-by-finite subgroups of D∗. To be more precise, it is shown that

D is a nilpotent crossed product if and only if D∗ contains an irreducible soluble

subgroup. In addition, it is shown that, except for the case CharF = 0, p = 2

and r > 1, D is a crossed product if and only if either of the following conditions

holds: (i) D∗ contains an irreducible abelian-by-finite subgroup, or (ii) D∗ contains

an irreducible subgroup satisfying a group identity. Furthermore, it is proved that

these conclusions also hold for the above excluded case provided that D∗ contains no

finite subgroup isomorphic to SL2(Z5). Finally, given a non-commutative F -central

division algebra D of index pr, p a prime, using the above mentioned results, it

is shown that if D∗ contains an irreducible finite subgroup G, then D is a crossed

product. We note that soluble subgroups of the multiplicative group of a division

ring were first studied by Suprunenko in [10].

2 Notations and conventions

We now recall some notations and conventions that are used throughout. Let D

be an F -central division algebra and G be a subgroup of D∗. The F -linear hull of

G, i.e., the F -algebra generated by elements of G over F , is denoted by F [G]. G

is called irreducible if D = F [G]. For any group G we denote its center by Z(G).

Given a subgroup H of G, NG(H) means the normalizer of H in G, and 〈H,K〉 the

group generated by H and K, where K is a subgroup of G. We shall say that H is

abelian-by-finite if there is an abelian normal subgroup K of H such that H/K is

finite. Let S be a subset of D, then the centralizer of S in D is denoted by CD(S).

For notations and results, used in the text, on central simple algebras see [7].
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3 Irreducible soluble subgroups

Let D be an F -central division algebra of degree pr, p a prime. This section inves-

tigates the structure of D under the condition that D∗ has an irreducible soluble

subgroup. To be more precise, it is shown that D is a crossed product if and only if

D∗ contains an irreducible soluble subgroup. We begin our study with the following:

Lemma 1. Let D be a finite dimensional F -central division algebra. If D is a

soluble crossed product, then D∗ contains an irreducible soluble subgroup.

Proof. Let K be a maximal subfield of D such that K/F is soluble Galois.

By Skolem-Noether Theorem, for any σ ∈ Gal(K/F ) there exists an element x ∈

N = ND∗(K∗) such that σ(k) = xkx−1, for all k ∈ K. Hence ND∗(K∗)/CD∗(K∗) ≃

Gal(K/F ). Since K is a maximal subfield of D, we have CD∗(K∗) = K∗. There-

fore, ND∗(K∗) is a soluble subgroup of D∗. To complete the proof of the lemma,

it is enough to show that N is irreducible, i.e., F [N ] = D. Put D1 = F [N ]. We

have CD(D1) ⊆ CD(K) = K, and hence CD(D1) is an intermediate field of the

Galois extension K/F . By the fact that every element of Gal(K/F ) is the restric-

tion of an inner automorphism of N we conclude that CD(D1) ⊆ Fix(Gal(K/F )).

Therefore CD(D1) = F . Now, by Centralizer Theorem, we obtain D = CD(F ) =

CD(CD(D1)) = D1, which completes the proof. ¤

The following lemma is used in many proofs below, its idea is due to Suprunenko

[10].

Lemma 2. Let D be a finite dimensional F -central division algebra. Suppose that

G is a subgroup of D∗ such that F ∗ ⊆ Z(G). If K = Z(G) ∪ {0} is a subfield of

D and G/K∗ is abelian, then we have [K[G] : K] = |G/K∗| and hence G/K∗ is a

finite group.

Proof. Let g1, . . . , gt be a set of linearly independent elements of G over K.

It is clearly seen that g1K
∗, . . . , gtK

∗ are distinct elements of G/K∗. On the other

hand, if g1K
∗, . . . , gtK

∗ are distinct elements of G/K∗, we shall show that g1, . . . , gt
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are linearly independent over K. To see this, since G/K∗ is abelian, for every g ∈ G

we have ggig
−1 = kigi with 1 ≤ i ≤ t, where ki ∈ K∗. We claim that for each pair

i 6= j we can find an element g in G such that ki 6= kj. For suppose that for each

g in G we have ggig
−1g−1

i = ki = ggjg
−1g−1

j = kj. Therefore, we conclude that

[g, g−1
j gi] = 1, and hence g−1

j gi ∈ K∗. This contradicts the choice of g′

is, and so the

claim is established. Now, suppose that g1, . . . , gt are linearly dependent over K and

consider a relation

λ1g1 + . . . + λtgt = 0. (∗)

Of all relations of the form (∗), there must be at least one for which the number

of nonzero terms is least. Let (∗) be such a relation. Now, we may assume that

λ1 6= 0, λ2 6= 0 and choose g in G such that k1 = gg1g
−1g−1

1 6= gg2g
−1g−1

2 = k2. From

the relation (∗) we obtain

k1(λ1g1 + . . . + λtgt) − g(λ1g1 + . . . + λtgt)g
−1 = λ1k1g1 + . . . λtk1gt − (λ1k1g1 +

. . . λtktgt) = λ2(k1 − k2)g2 + . . . + λt(k1 − kt)gt = 0.

Now, the last equation contradicts the choice of the relation (∗). Therefore, g1, . . . , gt

are a linearly independent subset of G over K, and this completes the proof.

To prove our next lemma, we shall need the following results from [3].

Lemma A. Let D be a finite dimensional F -central division algebra. Suppose

that K is a subfield of D containing F . If G is an irreducible subgroup of D∗ such

that K∗ ⊳ G, then K/F is Galois and G/CG(K∗) ≃ Gal(K/F ).

Lemma B. Let D be a finite dimensional F -central division algebra and let G

be an irreducible subgroup of D∗. If K is a subfield of D containing F such that

[G : CG(K∗)] = [K : F ], then CD(K) = F [CG(K∗)].

Theorem C. Let D be a noncommutative finite dimensional F -central division

algebra. Then D is a nilpotent crossed product if and only if there exist an irreducible

subgroup G of D∗ and an abelian normal subgroup A of G such that G/A is nilpotent.

Lemma 3. Let D be a finite dimensional F -central division algebra of index n. As-

sume that D∗ contains an irreducible soluble subgroup. Then we have the following:

(i) there is an irreducible soluble subgroup G and a maximal abelian normal subgroup
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K∗ of G such that K = K∗∪{0} is a subfield of D and G/K∗ is finite. Furthermore,

setting H := CG(K∗), then the derived group H ′ of H is also finite.

(ii) Assume the notation of (i). If H ′ is abelian and n = qr, q a prime, then G/K∗

is a q-group.

(iii) Keep the notation of (i). If H ′ is nonabelian and n = qr, q a prime, then H t−2

is a q-group, where H i denotes the i-th term of the derived series of H.

(iv) If D is a non-crossed product with index i(D) = 2r, then D∗ contains the finite

quaternion subgroup Q8, or SL2(Z3), or the binary octahedral group of order 48.

Proof. (i) Let G0 be an irreducible soluble subgroup of D∗. By Lemma 3 of

[5], we know that G0 is abelian-by-finite, i.e., there is an abelian normal subgroup

A in G0 of finite index. Take A maximal in G0, and set K = F (A). One may easily

show that G0 ⊆ ND∗(A) and that K∗G0 is an irreducible soluble subgroup of D∗.

Set G = K∗G. Then, it is easily seen that K∗ is maximal abelian normal in G and

G/K∗ is a finite group. Furthermore, we know that H/Z(H) is finite and hence, by

Theorem 15.1.13 of [8], the derived group H ′ is a finite group.

(ii) Because H ′ ⊆ CG(K∗), K∗H ′ is an abelian normal subgroup of G. Hence, by

maximality of K∗, we have H ′ ⊆ K∗ = Z(H). Therefore, H/K∗ is abelian. Now, by

Lemma 2, we conclude that [K[H] : K] = |H/K∗|. Since [D : F ] = q2r and F ∗ ⊆ K∗

we conclude that [K[H] : K] divides q2r, i.e., there exists a natural number s such

that |H/K∗| = [K[H] : K] = qs. Now, by Lemma A, we have G/H ≃ Gal(K/F )

and K/F is a Galois extension. Since i(D) = qr there exists a natural number t

such that |Gal(K/F )| = [K : F ] = qt. Thus, |G/H| = qt and hence |G/K∗| = qs+t,

i.e., G/K∗ is a q-group.

(iii) Suppose that H ′ is nonabelian. Then, the soluble length of H is t = l(H) ≥

3. Now, consider the derived chain 〈e〉 = H t ⊂ H t−1 ⊂ . . . ⊂ H ′ ⊂ H. It is clear

that H t−1 is abelian and H t−2 is a nonabelian subgroup of H ′. Now, we know that

H t−1 ⊳ G and H t−1 ⊂ CG(K∗). Thus, H t−1K∗ is an abelian normal subgroup of G.

Hence, by maximality of K∗, we conclude that H t−1 ⊆ K∗. Therefore, H t−2K∗/K∗

is an abelian subgroup of G/K∗. Set N = H t−2K∗. We note that N is normal in G,

and hence Z(N) is an abelian normal subgroup of G containing K∗. By maximality

of K∗, we have Z(N) = K∗. Now, N is a subgroup of D∗ such that N/K∗ is abelian

and Z(N) = K∗. By Lemma 2, we obtain [K[N ] : K] = |N/K∗|. By our assumption,
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we know that [K[N ] : K] divides q2r. Therefore, N/K∗ ≃ H t−2/K∗ ∩ H t−2 is a q-

group. Now, by Lemma B, we have F [H] = K[H] = CD(K). Put D1 = CD(K).

We know that Z(D1) = K. We now claim that H t−2 is a q-group. To see this, let

x ∈ H t−2. Then, there exists a natural number s such that xqs

∈ K∗∩H t−2. On the

other hand, xqs

∈ H ′ ⊂ D′

1, and hence RND1/K(xqs

) = 1. Since xqs

∈ K∗ = Z(D1)
∗

we obtain RND1/K(xqs

) = (xqs

)i(D1) = xqs+u

, where i(D1) = qu. Therefore, xqs+u

= 1

and so H t−2 is a finite q-group.

(iv) Let G be the irreducible soluble subgroup obtained by (i) and keep the

notations of the above cases. If H ′ is abelian, then by the case (ii), G/K∗ is a 2-

group and hence nilpotent and so G is an irreducible abelian-by-nilpotent subgroup

of D∗. Now, by Theorem C, we conclude that D is a nilpotent crossed product,

which contradicts our assumption that D is a non-crossed product. Therefore, H ′

is nonabelian. By (iii) we conclude that H t−2 is a finite 2-group. Now, by a result

of [9, p.45], we conclude that H t−2 is cyclic or a (generalized) quaternion group.

Since H t−2 is nonabelian we conclude that H t−2 is a (generalized) quaternion group.

We recall that the (generalized) quaternion group of order 2u, u ≥ 3, is defined with

the presentation Q2u = 〈 x, y | x2u−2

= y2, y4 = 1, yxy−1 = x−1〉. It is clear that

〈x〉 ⊳ Q2u and Q
(2)
2u = 〈x2〉. Thus, 〈x2〉 is a characteristic subgroup of H t−2 and

hence 〈x2〉 is an abelian normal subgroup of G. We note that 〈x2〉 ⊂ CG(K∗) and

so K∗〈x2〉 is an abelian normal subgroup of G. Therefore, by maximality of K∗, we

have 〈x2〉 ⊂ K∗. Thus, x2 ∈ Z(Q2u), and hence x−2 = yx2y−1 = x2. Therefore,

x4 = 1. On the other hand, we have x2u−1

= 1, and so u = 3, i.e., H t−2 ≃ Q8.

Now, assume that N is a maximal normal 2-subgroup of H ′. For every g ∈ G, set

N1 = gNg−1. N1 is a normal 2-subgroup of H ′. Hence NN1 is a normal 2-subgroup

of H ′. By maximality of N , we obtain N1 ⊆ N and so we have N ⊳ G. We note

that H ′ is finite and hence N is a finite 2-group. Thus, as in the case of H t−2

above, we conclude that N ≃ Q8. Therefore, by a result of [9, p.54], we have either

H ′ ≃ Q8 × M , where M is a group of odd order, or H ′ ≃ SL2(Z3) × M , where M

is a group of order m coprime to 6, or H ′ is isomorphic to the binary octahedral

group. In the first case, M is a characteristic subgroup of H ′. Therefore, M is a

normal subgroup of G. Let l be the soluble length of M . We know that M l−1 is a

nontrivial abelian normal subgroup of G. Thus, M l−1 ⊆ K∗, and hence for every

x ∈ M l−1 we have x2α

= RNCD(K)/K(x) = 1, which contradicts the fact that M is
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of odd order. Therefore, M is trivial and so H ′ ≃ Q8. One may easily show that

other cases are also true by similar arguments and this proves the case (iv).

We are now prepared to prove the following.

Theorem 1. Let D be an F -central division algebra of index qr, q a prime. If D∗

contains an irreducible soluble subgroup, then D is a crossed product.

Proof. We may consider the following two cases:

Case 1. CharF = p > 0. By Lemma 3, we know that there is an irreducible

soluble subgroup G and abelian normal subgroup K∗ of G such that K = K∗ ∪ {0}

is a subfield of D and G/K∗ as well as H ′ is finite, where H = CG(K∗). Since

CharF = p > 0, by a result of [4, p.215], we conclude that H ′ is cyclic. Now, by

Lemma 3, G/K∗ is a q-group and hence it is nilpotent. Thus, G is an irreducible

abelian-by-nilpotent subgroup of D∗. Now, by Theorem C, we conclude that D is a

nilpotent crossed product, which completes the proof of this case.

Case 2. CharF = 0. We keep to the notations of the case 1. If H ′ is abelian, then

as in the above case we obtain the result. So, we may assume that H ′ is nonabelian.

By Lemma 3, we know that H t−2 is a finite q-group. If q is odd, then, by a result

of [9, p.45], we conclude that H t−2 is cyclic, which contradicts the fact that H t−2 is

nonabelian. So, we may assume that q = 2. We now proceed by induction on r. If

r = 1, then it is clear that D is cyclic. Assume that the result holds for all n < r.

Now, by a result of [9, p.45] again, we conclude that H t−2 is cyclic or a (generalized)

quaternion. Since H t−2 is nonabelian we conclude that H t−2 is a (generalized)

quaternion. As in the proof of Lemma 3, one may easily show that H t−2 ≃ Q8.

Therefore, H t−2 is normal in G. Set D1 = F [H t−2]. It is clear that i(D1) = 2 and

Z(D1) = F and D1 is a crossed product. Now, by the Double Centralizer Theorem,

we have D ≃ D1 ⊗F CD(D1). Since G normalizes D1 we see that for any g ∈ G we

may define a natural homomorphism fg : D1 → D1, given by the rule fg(x) = gxg−1

for any x ∈ D1. Hence, by Skolem-Noether Theorem there is an element ag ∈ D∗

1

such that fg = fag
. If u, v ∈ D1 satisfy fu = fv, then for any x ∈ D1 we have

uxu−1 = vxv−1. Therefore, u−1v ∈ Z(D1) = F , which shows that u, v are equal

modulo F ∗, i.e., F ∗u = F ∗v. Now, for any x ∈ D1 we have gxg−1 = agxa−1
g ,
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and hence bg := a−1
g g ∈ CD(D1). The fact that bg commutes with ag implies that

ag, g, and bg pairwise commute. Set A = ∪g∈GF ∗ag and B = ∪g∈GF ∗bg. We claim

that A,B are groups. To see this, it is enough to show that for any g, h ∈ G

we have F ∗ag−1 = F ∗a−1
g , F ∗ahag = F ∗ahg, F

∗bg−1 = F ∗b−1
g , F ∗bhbg = F ∗bhg. For

any x ∈ D1, fa
g−1

(x) = fg−1(x) = g−1xg = (agbg)
−1x(agbg) = a−1

g xag = fa−1
g

(x).

Therefore, F ∗ag−1 = F ∗a−1
g . Also, we have fahg

(x) = fhg(x). Hence fahg
(x) =

hgxg−1h−1 = hagxa−1
g h−1 = ahagxa−1

g a−1
h = (ahag)x(ahag)

−1 = fahag
(x). Therefore,

F ∗ahag = F ∗ahg which shows that A is a group. Next, considering the fact that

ag ∈ D1 and bh ∈ CD(D1) we obtain bhbg = bha
−1
g g = a−1

g bhg = a−1
g a−1

h hg =

(ahag)
−1hg. Thus, since A is a group we conclude that F ∗bhbg = F ∗(ahag)

−1hg =

F ∗a−1
hg hg = F ∗bhg, F

∗b−1
g = F ∗agg

−1 = F ∗a−1
g−1g

−1 = F ∗bg−1 . Therefore, B is also a

group. We claim that B is soluble that is normalized by G. To see this, consider the

epimorphism θ : G → B/F ∗ given by θ(g) = F ∗bg for all g ∈ G. Hence B/F ∗ as a

homomorphic image of a soluble group is soluble, and so is B. Set D2 = CD(D1). If

we show that D2 = F [B], then by induction D2 is a crossed product. To prove this,

put D3 = F [B]. Now, for all g ∈ G we have g = agbg = (ag ⊗ 1)(1 ⊗ bg) = ag ⊗ bg.

Therefore, we conclude that G ⊂ D1⊗D3 and hence F [G] = D = D1⊗D3 = D1⊗D2.

Finally, one may easily see that [D3 : F ] = [D2 : F ], and so D3 ⊆ D2, i.e., D3 = D2

and so the result follows.

Let D be an F -central division algebra of degree pr, p a prime. Using the above

result one may conclude that if D∗ contains an irreducible finite subgroup G, then

D is a crossed product. To see this, by a result of [9, p.51, Thm 2.1.11], we know

that either G is soluble or G ≃ SL2(Z5). If the first case happens, then the result

follows from Theorem 1. If the second case occurs, then as in the course of the proof

of Theorem 2.1.11 of [9, p.51], we have [Q(G) : Q] ≤ 8. Since Q ⊆ F we clearly

have [F [G] : F ] ≤ 8 and hence [D : F ] = 4 because G is irreducible. Therefore,

D is cyclic and so the result also follows for this case. Later on we shall present a

different proof of this fact which may be of some interest. Now, combining Lemma 1

and Theorem 1, we are able to obtain one of our main results in the following form.

Corollary 1. Let D be an F -central division algebra of index pr, p a prime. Then,

D is a crossed product if and only if D∗ contains an irreducible soluble subgroup.
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4 Irreducible abelian-by-finite subgroups

This section turns to the case where the multiplicative group D∗ contains an irre-

ducible abelian-by-finite subgroup. Let D be an F -central division algebra of index

pr, p a prime. It is proved that except when CharF = 0 and p = 2, r > 1, D is a

crossed product if and only if D∗ contains an irreducible abelian-by-finite subgroup.

Furthermore, the conclusion also holds for the excluded case provided that D∗ con-

tains no finite subgroup isomorphic to SL2(Z5). Using the above result, and the

Tits Alternative which asserts that a finitely generated linear group either contains

a non-cyclic free subgroup or it is soluble-by-finite [11], we are able to show that D

is a crossed product if and only if D∗ contains an irreducible subgroup satisfying a

group identity. Furthermore, the conclusion also holds for the above excluded case

provided that D∗ contains no finite subgroup isomorphic SL2(Z5). To prove our

results, we shall need the following lemma.

Lemma 4. Given a field F of characteristic zero, let D be an F -central division

algebra of index 2r, r > 1. Assume that D∗ contains an irreducible abelian-by-finite

subgroup. If D is a non-crossed product, then D∗ contains a copy of the finite group

SL2(Z5).

Proof. Suppose that G is an irreducible abelian-by-finite subgroup of D∗ and A

is a maximal abelian normal subgroup of G such that G/A is finite. Set K = F (A).

It is clear that G ⊆ ND
∗(K∗), and hence G1 = GK∗ is an irreducible subgroup of D∗

so that G1/K
∗ is finite. One may easily show that K∗ is a maximal abelian normal

subgroup of G1. Put H = CG1
(K∗). By maximality of K∗, we have Z(H) = K∗.

Now, we know that H/Z(H) is finite, and so by Theorem of [8, p.443, Thm. 15.1.13],

the derived group H ′ is a finite group. We claim that H ′ is nonabelian. For if H ′

is abelian, then H is soluble. Now, by Lemma A, we have G1/H ≃ Gal(K/F ) and

K/F is a Galois extension. Thus, G1/H is a 2-group and hence G1 is soluble. We

note that G1 is an irreducible soluble subgroup of D∗. By Theorem 1, we conclude

that D is a crossed product which is a contradiction. Thus, H ′ is nonabelian as

claimed. Therefore, by a result of [9, p.51], this implies that either H ′ is a soluble

group or H ′ ≃ SL2(Z5). If the first case occurs, then H is soluble and hence as above
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G is soluble. Therefore, by Theorem 1, we conclude that D is a crossed product

which is a contradiction. So, we have H ′ ≃ SL2(Z5), and the result follows.

Theorem 2. Let D be an F -central division algebra of index qr, q a prime. If D∗

contains an irreducible abelian-by-finite subgroup, then, except for the case CharF =

0 and q = 2, r > 1, D is a crossed product. Furthermore, the conclusion also holds

for the above excluded case provided that D∗ contains no finite subgroup isomorphic

to SL2(Z5).

Proof. We consider the following three cases:

Case 1. CharF = p > 0. Suppose that G is an irreducible abelian-by-finite subgroup

of D∗ and A is a maximal abelian normal subgroup of G such that G/A is finite. Set

K = F (A). It is clear that G ⊆ ND
∗(K∗), and hence G1 = GK∗ is an irreducible

subgroup of D∗ so that G1/K
∗ is finite. One may easily show that K∗ is a maximal

abelian normal subgroup of G1. Put H = CG1
(K∗). By maximality of K∗, we have

Z(H) = K∗. Now, we know that H/Z(H) is finite, and so by Theorem of [8, p.443],

the derived group H ′ is a finite group. Thus, by a result of [4, 4, Cor. 13.3], we

conclude that H ′ is cyclic. Therefore, H is a soluble group. Now, by Lemma A, we

have G1/H ≃ Gal(K/F ) and K/F is a Galois extension. Thus, G1/H is q-group

and hence G1 is soluble. We note that G1 is an irreducible soluble subgroup of D∗.

By Theorem 1, we conclude that D is a crossed product, which completes the proof

of this case.

Case 2. CharF = 0. If q = 2 and r = 1, then it is clear that D is cyclic. So,

we may assume that q is odd. Keeping to the notations of the above case, we

know that H/Z(H) is finite as well as the derived group H ′. Therefore, by a result

of [9, p.51], we know that either H ′ is a soluble group or H ′ ≃ SL2(Z5). In the

first case H is soluble and as in the above case we have that G1 is also a soluble

subgroup of D∗. Thus, by Theorem 1, we conclude that D is a crossed product.

We claim that the second case leads to a contradiction. So, we may assume that

H ′ ≃ SL2(Z5). In the course of the proof of Theorem 2.1.11 of [9, p.51], that the only

finite insoluble subgroup of a division ring is SL2(Z5) we obtain [Q(H ′) : Q] ≤ 8.

Since Q ⊆ K we conclude that [K[H ′] : K] ≤ 8. On the other hand, we have

K ⊆ Z(K[H ′]). Set D1 = K[H ′]. Now, we know that D1 is a division algebra
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with [D1 : Z(D1)] ≤ 8. Therefore, [D1 : Z(D1)] = 4 and hence 2 divides qr, which

contradicts our assumption that q is odd.

Case 3. Assume that CharF = 0, p = 2, and r > 1. If D is not a crossed product,

then, by Lemma 4, we conclude that D∗ contains a copy of the finite group SL2(Z5),

which is a contradiction. This completes the proof of the theorem.

Combining Lemma 1 and Theorem 2, we obtain the following.

Corollary 2. Let D be an F -central division algebra of index pr, p a prime. Then,

except when CharF = 0 and p = 2, r > 1, D is a crossed product if and only if

D∗ contains an irreducible abelian-by-finite subgroup. Furthermore, the conclusion

also holds for the above excluded case provided that D∗ contains no finite subgroup

isomorphic to SL2(Z5).

Using the above result, and the Tits Alternative which asserts that a finitely

generated linear group either contains a non-cyclic free subgroup or it is soluble-by-

finite [11], we are able to prove the following criterion.

Corollary 3. Let D be an F -central division algebra of index pr, p a prime. Then,

except when CharF = 0 and p = 2, r > 1, D is a crossed product if and only if

D∗ contains an irreducible subgroup satisfying a group identity. Furthermore, the

conclusion also holds for the above excluded case provided that D∗ contains no finite

subgroup isomorphic to SL2(Z5).

Proof. The “only if “ part is clear by Lemma 1. Assume that G is an irreducible

subgroup of D∗ satisfying a group identity. Since [D : F ] < ∞ we may view G as

a linear group. Let G1 be a subgroup of G generated by the elements of a basis

of D over F . Thus, by Tits Alternative, we know that G1 is soluble-by-finite, i.e.,

there is a soluble normal subgroup N of G1 such that G1/N is finite. Now, by

Lemma 3 of [5], N is abelian-by-finite. Thus, G1 is abelian-by-finite. Therefore, by

Theorem 2, D is crossed product.

Now, one may apply the above results to prove the following criterion for D to

be cyclic. This is one of the main results of [2].
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Corollary 4. Let D be an F -central division algebra of prime degree p. Then D is

cyclic if and only if D∗ contains a nonabelian subgroup satisfying a group identity.

Proof. The “only if“ part is clear by Lemma 1. If p = 2, then D is cyclic. Let

p be an odd prime. Now, by Corollary 3, one can easily show that D is cyclic. ¤

Let D be an F -central division algebra of finite index i(D) = n and G be an

irreducible subgroup of D∗. Assume that A is a maximal abelian normal subgroup

of G. We conclude this section with some remarks concerning the relation between

the cardinal of G/A and the dimension of D/F .

Remark 1. Let D be a finite dimensional F -central division algebra. If G is

an irreducible subgroup of D∗ with maximal abelian normal subgroup A such that

G/A is nilpotent, then |G/A| = i(D). To see this, set G1 = K∗G, where K = F [A].

It is easily seen that G1 is irreducible with maximal abelian normal subgroup K∗

such that G1/K
∗ ≃ G/A and so G1/K

∗ is nilpotent. As in the proof of Theorem

3.4 of [3], one may easily check that K/F is Galois and K is a maximal subfield

of D. Therefore, we have CG1
(K∗) = K∗. Now, by Lemma B, we have G1/K

∗ ≃

Gal(K/F ), i.e., |G1/K
∗| = |G/A| = [K : F ] = i(D).

Remark 2. Let D be an F -central division algebra of index pr, p a prime.

Assume that G is an irreducible subgroup of D∗ with maximal abelian subgroup

A such that G/A is finite. Then, except when CharF = 0 and p = 2, r > 1, we

have |G/A| = i(D). Furthermore, the conclusion also holds for the excluded case

provided that D∗ contains no finite subgroup isomorphic to SL2(Z5). To prove this,

we may use Theorem 1, Theorem 2, and the Remark 1 to obtain the result.

5 Irreducible finite subgroups

Let D be an F -central division algebra of degree pr, p a prime. This section studies

the structure of D under the condition that D∗ has an irreducible finite subgroup.

Using Amitsur’s classification of finite multiplicative subgroups of a division ring,

it is proved that if D∗ contains an irreducible finite subgroup, then D is a crossed

product.
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Theorem 3. Let D be an F -central division algebra of index qr, q a prime. If D∗

contains an irreducible finite subgroup G, then D is a crossed product.

Proof. We first observe that CharF = 0. Since otherwise G is cyclic and since

G is irreducible we obtain D = F which is a contradiction. If q is odd, then the result

follows from Corollary 3. So we may assume that q = 2. By a result of [9, p.51], we

know that either G is soluble or G ≃ SL2(Z5). If the second case occurs, then as in

the course of the proof of Theorem 2.1.11 of [9, p.51], that the only finite insoluble

subgroup of a division ring is SL2(Z5), we may obtain [Q(G) : Q] ≤ 8. Since Q ⊆ F

we clearly have [F [G] : F ] ≤ 8 and hence [D : F ] = 4 because G is irreducible.

Therefore, D is cyclic and so the result follows for this case. It remains to consider

the case where G is soluble and q = 2. By Lemma 3 of [5], we know that G is abelian-

by-finite, i.e., there is an abelian normal subgroup A in G of finite index. Take A

maximal in G, and set K = F (A). One may easily show that G ⊆ ND∗(A) and that

G1 = K∗G is an irreducible soluble subgroup of D∗ with maximal abelian normal

subgroup K∗. Set H = CG(A), H1 = CG1
(K∗). It is clearly seen that H1 = HK∗.

Since elements of K∗ and H pairwise commute we conclude that H ′

1 = H ′. Now,

by Lemma B, K/F is Galois with G1/H1
∼= Gal(K/F ). Therefore, G1/H1 is a

2-group and hence it is nilpotent. Now, one may easily show that G ∩ H1 = H and

G1 = GK∗ = GH1. Thus, we have G1/H1
∼= G/H and hence G/H is a 2-group. If

H ′

1 is abelian, then as in the proof of Lemma 3, one may easily show that H1/K
∗

is a 2-group. Now, since A = H ∩ K∗ and H1 = HK∗ we conclude that H/A is a

2-group. This means that G/A is also a 2-group and hence G is abelian-by-nilpotent.

Therefore, by Theorem C, we conclude that D is crossed product. Thus, we may

assume that H ′

1 = H ′ is nonabelian. Let l(H) = t be the derived length of H. As in

the proof of Lemma 3, one may easily show that H t−2 is a nonabelian 2-group and

it is isomorphic to the quaternion group Q8. This means that H contains a normal

subgroup isomorphic to Q8. Now, assume that T = O2(H) is a maximal normal

2-subgroup of H. As in Lemma 3, it is easily seen that O2(H) ≃ Q8. Now, by a

result of [9, p.54], we have either H ≃ Q8 ×M , where M is a group of odd order, or

H ≃ SL2(Z3)×M , where M is a group of order m coprime to 6, or H is isomorphic

to the binary octahedral group. We deal with these cases separately as follows:
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Case 1. H ≃ Q8 × M , where M is a group of odd order. We claim that M

is normal in G. Since H is normal in G for each g ∈ G and m ∈ M we have

gmg−1 = (q,m1) ∈ H. Comparing the orders of both sides of the last relation,

one may easily conclude that q = 1 and so the claim is established. Now, we show

that M is abelian. Otherwise, M ′ is nontrivial. If l is the soluble length of M ,

then l ≥ 2. Thus, M l−1 ⊆ M ′ is a nontrivial abelian subgroup. This implies that

AM l−1 is an abelian normal subgroup of G and hence by the choice of A we obtain

M l−1 ⊆ A. By Lemma B, we know that F [H1] = CD(K). Since M ⊆ H ⊆ H1

we obtain M ′ ⊆ CD(K)′. Take an element x ∈ M l−1 ⊆ A ⊆ K∗. We have

1 = RNCD(K)/K(x) = x2s

, where i(CD(K)) = 2s. This shows that the order of x is

a power of 2 which contradicts the fact that M has odd order. Hence M ′ must be

trivial and so M is abelian. It is clear that H/M ≃ Q8 and G1/H1 ≃ G/H is a

2-group. Since M is normal in G we conclude that G/M is also a 2-group. This says

that G is abelian-by-nilpotent and hence, by Theorem C, D is a crossed product.

Case 2. H ≃ SL2(Z3)×M . Since the order of M is prime to 6 and |SL2(Z3)| =

24, as in the case 1, we conclude that M is an abelian normal subgroup of G. Now,

M as an abelian normal subgroup of D∗ is cyclic. Set M =< m > such that for

each natural number s with (s, 6) = 1 we have ms = 1. Since SL2(Z3) ⊆ G we have

2||G| and hence there exists g ∈ G such that g2 = 1, i.e., −1 ∈ G.

If m ∈ F ∗, then m ∈ Z(G). Therefore, 1,m, · · · ,ms−1,−1,−m, · · · ,−ms−1 are

distinct elements of Z(G) for if mi = −mj with 0 ≤ i, j ≤ s − 1, then raising

to the power of s we obtain 1 = −1 which is a contradiction to the fact that

CharF = 0. Thus, |Z(G)| > 2s. Now, G as an irreducible subgroup of D∗ contains

a basis g1, g2, · · · , gt with t = 22r. Since g1, g2, · · · , gt are linearly independent over

F we conclude that g1Z(G), g2Z(G), · · · , gtZ(G) are distinct elements of G/Z(G)

and hence |G/Z(G)| ≥ t. Therefore, we have |G| ≥ 22r × 2s. On the other hand,

we have |M | = s and so |H| = 23 × 3 × s and also G/H ≃ Gal(K/F ), where K/F

is Galois. If [K : F ] = 2r, then K is a maximal subfield of D and hence D is

crossed product. So, we may assume that [K : F ] ≤ 2r−1. In this case we obtain

|G| ≤ 23 × 3 × s × 2r−1. Therefore, 22r+1 × s ≤ 2r+2 × 3 × s which implies that

2r−1 ≤ 3, i.e., r = 1 or r = 2. If r = 1, then it is clear that D is cyclic. If r = 2,

then, by a result of [7, p. 183], D is a crossed product.
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If m /∈ F ∗, then MA is an abelian normal subgroup of G. By maximality of A,

we conclude that M ⊆ A ⊆ K∗. Since m is not in F we obtain |Gal(K/F )| = 2u

with u ≥ 1. Since Z(H) is an abelian normal subgroup of G, by maximality of A

, we have Z(H) = A. Therefore, A =< −1 > ×M and hence |A| = 2s. Since

Q8 is normal in G let O2(G) = Q2l . It is clearly seen that (Q2l)2 =< x2 >, where

Q2l =< x, y|x2l−1

= y4 = 1, yxy−1 = x−1 >. Now, one may easily show that

N =< x2 > is normal in G. Since the orders of M and N are coprime we have

M ∩ N = 1. Therefore, each element of M commutes with each element of N , i.e.,

MN is abelian. Since −1 ∈ N we obtain A ⊆ MN . But this contradicts the choice

of A unless < x2 >=< −1 >, i.e., x4 = 1 and l = 3. Thus, O2(G) = Q8. Now, by a

result of [9, p.54] again we have three subcases to consider as follows:

Subcase 1. G ≃ Q8 × M1, where the order of M1 is odd. If |M1| = 2n + 1,

then |G| = 23 × (2n + 1). Now, we have |H| = 23 × 3 × s, where s is odd, and

|G/H| = |Gal(K/F )| = 2u with K 6= F . Therefore, (2n + 1) = 3s× 2u which is not

possible.

Subcase 2. G ≃ SL2(Z3) × M1, where the order of M1 is prime to 6. Since the

order of M1 is odd, as in the Subcase 1, we obtain a contradiction.

Subcase 3. G is isomorphic to the binary octahedral group of 48 elements. Then,

|G| = 24 × 3. Since −1 ∈ Z(G) we obtain |Z(G)| ≥ 2. As before, because G is

irreducible we have |G/Z(G)| ≥ 22r. Therefore, 22r+1 ≤ 24 × 3. This means that

either r = 1 or r = 2, and as above we conclude that D is a crossed product.

Case 3. H is isomorphic to the binary octahedral group of 48 elements. Then,

|H| = 24 × 3. As in the Subcase 3, we conclude that |G| ≥ 22r+1. In addition, as

in the previous cases, we have |G/H| < 2r−1, and hence |G| ≤ 2r−1 × 24 × 3, i.e.,

22r+1 ≤ 2r+3 × 3. This implies that either r = 1 or r = 2 or r = 3. For the cases

r = 1 or r = 2, as before, we conclude that D is crossed product. Assume that

r = 3. If D is not a crossed product, then, by Lemma 3, D∗ contains a copy of Q8.

It is clear that [F [Q8] : F ] = 4. Set B = F [Q8]. Then, by Centralizer Theorem, we

have D ≃ B ⊗ CD(B). Since i(CD(B)) = 4, by a result of [7, p. 183], CD(B) is

a crossed product. Therefore, D which is a tensor product of crossed products is a

crossed product division algebra. This completes the proof of the theorem.
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