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Abstract. Recently, V. Chernousov, S. Gille and A. Merkurjev have
obtained a decomposition of the motive of an isotropic smooth projective
homogeneous variety analogous to the Bruhat decomposition. Using the
method of A. Bialynicki-Birula and a corollary, which is essentially due
to S. del Baño, I generalize this decomposition to the case of a (possibly
anisotropic) smooth projective variety homogeneous under the action of
an isotropic reductive group. This answers a question of N. Karpenko.

1. Introduction

An important difference between the category of motives and the category
of algebraic varieties over a field is the existence of interesting direct sum
decompositions of motives. The simplest of these is the decomposition of
the Chow motive M(Pn) of n-dimensional projective space over a field k:

(1.1) M(Pn) = ⊕n
i=0Z(n).

This is one of the elementary results in Grothendieck’s theory of motives
(which will be recalled in §2).

An example of a less elementary decomposition is the following theorem
due to M. Rost, which is in an important ingredient in his construction of
the “Rost motive” [23, Proposition 2].

Theorem 1.1 (Rost decomposition). Let Q be a smooth, projective, n-
dimensional isotropic quadric over a field k of characteristic not equal to 2.
Then

(1.2) M(Q) = Z ⊕ M(Q′)(1) ⊕ Z(n)

where Q′ is a smooth, projective sub-quadric of codimension 2 in Q.

Since both projective spaces and quadrics are examples of projective
homogeneous varieties, it is natural to look for decompositions generaliz-
ing (1.1) and (1.2) in the motives of such varieties. In the case that G is
a split reductive group (i.e., when the base field k is separably closed), a
decomposition for the motive of G/P was found by B. Köck [19]. In this
case M(G/P ) splits completely as a sum of Tate motives. A more general
decomposition was later found by N. Karpenko [17] in the case of motives
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of flag varieties for classical groups, and recently Köck’s decomposition was
further generalized by V. Chernousov, S. Gille and A. Merkurjev [9, Theo-
rem 7.4] to the case of motives for isotropic projective homogeneous varieties
for adjoint semi-simple groups. Both generalizations explicitly describe the
factors appearing in the decomposition (which are, in general, not Tate mo-
tives) in terms of smaller projective homogeneous spaces. Moreover, Rost’s
theorem appears as a special case of either generalization when the quadric
Q is viewed as a homogeneous space for the group PSO(q) with q a quadratic
form whose corresponding projective quadric is Q.

Theorem 3.5 of this paper applies results of BiaÃlynicki-Birula (as extended
by W. Hesselink) to obtain a decomposition of the motive of any smooth,
projective algebraic variety admitting an action of the multiplicative group.
In the case of motives with rational coefficients (see Remark 2.1 for the
distinction), the theorem is due to del Baño [10]. (I thank B. Köck for
bringing this to my attention.) I include a sketch of the proof (which is
similar to del Baño’s) for completeness and convenience of the reader.

As the class of varieties admitting multiplicative group actions includes
both the homogeneous spaces considered by Karpenko and the isotropic
homogeneous spaces considered by Chernousov, Gille and Merkurjev, we
obtain a generalization of the Chernousov-Gille-Merkurjev decomposition.
In the end, we can give a rather explicit decomposition of the motive M(X)
of a projective homogeneous variety for a reductive group G as a sum of
Tate twisted motives of certain “quasi-homogeneous schemes” Xi for the
anisotropic kernel of G. Theorem 4.5 gives a rough form of this description
which is refined in Theorem 7.4, the final theorem of the paper. In partic-
ular, the fact that the motive of a projective homogeneous variety admits
a decomposition in terms of motives of quasi-homogeneous schemes for the
anisotropic kernel answers the fundamental question posed by Karpenko in
the introduction to [17].

1.1. Notation. All notions of Chow groups are taken from Fulton’s book
on intersection theory [11]. The official reference for reductive groups is
SGA3 [1], but some notation is taken from Springer’s book [25]. The main
difference between these two references that will be important for this paper
is that SGA3 demands that a reductive group is connected and a parabolic
subgroup is smooth, while Springer does not make these assumptions. Since
these are convenient assumptions for us, we will have to agree with SGA3.
In several places, the symbol “k” is used to denote both the base field and
an index. This does not seem to produce any confusion.

1.2. Outline. With one exception, the results in this paper build sequen-
tially from general facts about motivic decompositions to specific informa-
tion about the motivic decomposition of a projective homogeneous space in
terms of double cosets of the Weyl group given in Theorem 7.4. Specifi-
cally, §2 reviews the theory of motives, §3 explains how BiaÃlynicki-Birula’s
theorem yields a motivic decomposition and §4 introduces the concept of
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projective quasi-homogeneous schemes and studies motivic decompositions
of such schemes in the presence of a Gm-action. The last two mathematical
sections, §6 and §7, formulate the general theory in terms of root systems
and reflection groups. The one exceptional section is §5 where I give a proof
of a generalization of Rost’s nilpotence theorem following Chernousov, Gille
and Merkurjev. The results in this section are not needed anywhere else in
the paper.

2. Motives and the category of correspondences

The category of motives can be defined by first defining the category of
correspondences and then applying the functor of idempotent completion. In
fact, the decomposition theorems of this paper such as Theorem 3.5 will hold
before (or after) taking idempotent completion, but, to make the connection
with Chow motives explicit, I will describe both categories.

The category of correspondences is the category Corrk whose objects are
pairs (X, n) with X a smooth projective scheme over the field k and n an
integer. The morphisms are given by

(2.1) HomCorrk
((X, n), (Y, m)) = ⊕Adi+n−mXi × Y

where X =
∐

Xi with Xi connected, di = dim Xi and Ak denotes the k-th
Chow groups graded by dimension.

For a smooth, projective, variety X, M(X) denotes the object (X, 0).
When M = (X, n) is an object, M(k) denotes the Tate twisted object
(X, n + k). Let Z denote the object (Spec k, 0). The “twists” Z(k) of
Z are called Tate objects. Clearly, HomCorrk

(Z(k), M(X)) = AkX and
HomCorrk

(M(X), Z(k)) = Ad−kX for X irreducible of dimension d.
The objects of the category Chowk of Chow motives over k are triples

(X, n, p) with p ∈ End(X, n) a morphism such that p2 = p. The morphisms
in Chowk are given by

HomChowk
((X, n, p), (Y, m, q)) = qHomCorrk

((X, n), (Y, m))p.

The category Chowk is idempotent complete in the sense that every idem-
potent morphism has both a kernel and a cokernel. Clearly, there is a fully,
faithful embedding Corrk ↪→ Chowk given by (X, n) Ã (X, n, id). More-
over, this embedding is universal for functors from Corrk with idempotent
complete targets.

Both categories admit a tensor structure defined (on Chowk) by

(X, n, p) ⊗ (Y, m, q) = (X × Y, n + m, p × q).

The category Chowk also admits direct sums defined as follows. Let rk

denote the idempotent on M(Pk) such that Z(k) = (Pk, 0, rk). Explicitly, it
is given by the cycle [pt×Pk] where pt denotes an arbitrary degree 1 closed
point in Pk. Then, for two motives (X, n, p) and (Y, m, q) with n ≤ m,

(X, n, p) ⊕ (Y, m, q) = (X
∐

(Y × Pm−n), n, p + (q × rm−n)).
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The direct sum is the coproduct in the category of motives. In the cate-
gory of correspondences, coproducts do not always exist. For example, it is
not hard to see that the object Z

∐
Z(2) does not exist in the category of

correspondences over C. However, when coproducts do exist in Corrk, they
coincide with those in the category of Chow motives.

Remark 2.1. The categories of motives occurring in this paper (and in
those papers of Rost, Karpenko, and Chernousov-Gille-Merkurjev) have in-
tegral coefficients. If we were to tensor the morphism sets with Q, replac-
ing HomCorrk

(M(X), M(Y )) with HomCorrk
(M(X), M(Y )) ⊗ Q, we would

obtain a category Corrk ⊗Q which is closer to the categories of motives
Grothendieck originally considered [16, 21]. However, we would also loose
information. For example, using the fact that any quadric is totally isotropic
over a finite separable extension, it is easy to see that every quadric decom-
poses as a direct sum of the Tate objects Q(i) = Z(i) ⊗ Q in Corrk ⊗Q.
On the other hand, Springer’s theorem on quadrics isotropic over an odd
degree extension [20, Theorem 2.3 p. 198] implies that the integral motive
M(Q) ∈ Corrk of a smooth quadric contains a factor of Z(0) if an only if
Q(k) 6= ∅.

3. Motivic decomposition

The most general theorem in this paper on motivic decompositions is
essentially a corollary of two results which I will now recall after giving one
definition. As mentioned in the introduction, a version of the theorem (3.5)
can also be found in Theorem 2.4 of S. del Baño’s paper, [10].

Definition 3.1. A flat morphism φ : X → Z is called an affine fibration
(resp. an affine quasi-fibration) of relative dimension d if, for every point
z ∈ Z, there is a Zariski open neighborhood U ⊂ Z such that XU

∼= Z ×Ad

with φ : XU → Z isomorphic to the projection on the first factor (resp. the
fiber Xz of φ is isomorphic to Ad

k(z)).

Clearly an affine fibration is an affine quasi-fibration. It is a well-known
consequence of the homotopy invariance of Chow groups that an affine quasi-
fibration between smooth varieties of relative dimension d induces an iso-
morphism φ∗ : AiZ → Ai+dX.

Theorem 3.2 (Karpenko). Let X be a smooth, projective variety over a
field k with a filtration

X = Xn ⊃ Xn−1 ⊃ · · · ⊃ X0 ⊃ X−1 = ∅

where the Xi are closed subvarieties. Assume that, for each integer i ∈
[0, n], there is a smooth projective variety Zi and an affine fibration φi :
Xi − Xi−1 → Zi of relative dimension ai. Then, in the category of corre-
spondences, M(X) =

∐n
i=0 M(Zi)(ai).

The theorem was stated by Karpenko [17] for the special case that the
maps φi : Xi − Xi−1 → Zi are vector bundle morphisms. However, in [9,
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Theorem 7.1], Chernousov, Gille and Merkurjev noticed that Karpenko’s
proof actually applies to any affine quasi-fibration. (Del Baño gives a slightly
different proof of the result in the proof of his Theorem 2.4).

The second result is the method of BiaÃlynicki-Birula which gives a natural
situation where Karpenko’s theorem applies.

Theorem 3.3 (BiaÃlynicki-Birula, Hesselink, Iversen). Let X be a smooth,
projective variety over a field k equipped with an action of the multiplicative
group Gm. Then

(1) The fixed point locus XGm is a smooth, closed subscheme of X.
(2) There is a numbering XGm =

∐n
i=1 Zi of the connected components

of the fixed point locus, a filtration

X = Xn ⊃ Xn−1 ⊃ · · · ⊃ X0 ⊃ X−1 = ∅

and affine fibrations φi : Xi − Xi−1 → Zi.
(3) The relative dimension ai of the affine fibration φi is the dimension

of the positive eigenspace of the action of Gm on the tangent space
of X at an arbitrary point z ∈ Zi. The dimension of Zi is the
dimension of TXGm

z .

As the theorem stated is the product of several results of different authors,
I will give a short history of the result (in lieu of a proof).

Iversen [15] showed that XGm is smooth. BiaÃlynicki-Birula [2] showed,
under the assumption that k is algebraically closed, that X is a union of
locally closed subschemes X+

i with affine fibrations φi : X+
i → Zi where

the Zi are the connected components of XGm . In fact, this was shown with
the assumption that X is projective replaced with the assumption that X
is complete. Shortly thereafter, BiaÃlynicki-Birula showed that, when X is
projective, there is a filtration of X and an ordering of the connected compo-
nents as in the theorem such that X+

i = Xi−Xi−1 [3]. Thus, in the case that
k is algebraically closed, the theorem as stated was proved by BiaÃlynicki-
Birula and Iversen. Note that the existence of a filtration is deduced by
embedding X equivariantly in a projective space with a diagonalized Gm-
action. It is then easy to construct a filtration on the projective space and
see that that it restricts to one on X. (However, for X smooth and com-
plete but not projective, there are examples where no filtration satisfying
X+

i = Xi − Xi−1 exists [8, Example 2, p. 30].)
BiaÃlynicki-Birula’s proofs make use of the assumption that k is alge-

braically closed. Hesselink removed this restriction and was able to show
that X is a union of locally closed X+

i for X a smooth, proper scheme over
an arbitrary base [13] provided that there is a covering of X by Gm-stable
Zariski open affine subsets. To construct a filtration in the case X is pro-
jective, it then suffices to find a Gm-equivariant embedding of X into a
projective space with a diagonal action of Gm or, equivalently, a very ample
Gm-linearized line bundle over X. The fact that such bundles exist can be
found in Mumford’s GIT [22]. Since a diagonal action of Gm on Pr preserves

http://134.76.163.65/servlet/digbib?template=view.html&id=167779&startpage=235&endpage=242&image-path=http://134.76.176.141/cgi-bin/letgifsfly.cgi&image-subpath=/4257&image-subpath=4257&pagenumber=235&imageset-id=4257
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the coordinate hyperplanes (and thus their complements), any X embedded
by a Gm-linearized very ample line bundle automatically has a covering by
Gm-invariant open affines. Thus Hesselink’s hypotheses are verified for X
smooth and projective.

The BiaÃlynicki-Birula decomposition is explicit in the sense that the
locally closed subscheme X+

i is the set of all points x ∈ X such that
limt→0 tx ∈ Zi where (t, x) 7→ tx is the Gm action. Moreover, the map
φi : X+

i → Zi is then given by x 7→ limt→0 tx.

Remark 3.4. Since X separated, limt→0 tx has at most one meaning, since
X is proper it has exactly one.

Theorem 3.5. Let X be a smooth, projective scheme over a field k equipped
with an action of the multiplicative group Gm. Then, in the category Corrk,

(3.1) M(X) =
∐

M(Zi)(ai)

where the Zi are the connected components of XGm and the ai are determined
as in Theorem 3.3 (3).

Proof. This is a corollary of the two previous theorems. ¤

We will refer to the decomposition of (3.1) as the motivic BiaÃlynicki-
Birula decomposition. The rest of this paper will focus on the application
of the theorem to the special case where X is a projective homogeneous
variety. Before proceeding to the general theory, I use the theorem directly
to derive Rost’s decomposition theorem.

Example 3.6. Let q : V → k be a non-degenerate quadratic form of di-
mension n + 2 over a field k with char k 6= 2, and let Q be the associated
n-dimensional smooth projective quadric. Suppose that q is isotropic, that
is, there exists a nonzero vector v ∈ V such that q(v) = 0. Then there is a
subspace W ⊂ V and two linearly independent vectors v1 and v2 such that
V = kv1 ⊕ kv2 ⊕ W and

q(xv1 + yv2 + w) = xy + q′(w)

for a non-degenerate quadratic form q′ on W . (This is an easy exercise which
can also be found in almost any book on quadratic forms over a field, e.g.,
[18, Proposition 3.7.1].) In this case, the multiplicative group Gm acts on Q
by

[xv1 + yv2 + w] 7→ [txv1 + t−1yv2 + w].

Assume that dim Q 6= 2. The fixed point set QGm then has three compo-
nents: the points [v1] and [v2] and the quadric Q′ = {[w] ∈ P(W ) | q′(w) = 0}
which we denote by Z1, Z2 and Z3 respectively. Let Ti denote the tangent
space at an (arbitrary) point of Zi. The action of Gm on T1 has only nega-
tive weights. Therefore, in the decomposition of Theorem 3.5, a1 = 0. The
weights of T2 are all positive, therefore, a2 = n. Finally, T3 has weights −1
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and 1 each occurring once and 0 occurring n − 2 times. Therefore a3 = 1.
Thus we have

(3.2) M(Q) = Z
∐

Z(n)
∐

M(Q′)(1).

It is easy to see that the above decomposition also holds when dimQ = 2,
however there is a possibility that the quadric Q′ can split as a disjoint union
of 2 copies of Spec k.

4. Projective homogeneous schemes

Let G denote a reductive group over a field k in the terminology of SGA3.
That is, G is smooth and connected with trivial unipotent radical. Recall
that a parabolic subgroup of G is a subgroup P such that G/P is projective
and P is smooth over k. Let G−Schk denote the category of G-schemes over
k. The objects of this category are schemes X over k equipped with a G-
action G×X → X. The morphisms are the G-equivariant scheme-theoretic
morphisms. Base change induces an obvious functor G−Schk ÃG−SchL for
L an extension of k.

Let k denote an algebraic closure of k. A G-scheme X is a projective
homogeneous variety for G if Xk is isomorphic as a Gk-scheme to Gk/P
for P ⊂ Gk a parabolic subgroup. It is well-known that such a projective
homogeneous variety is projective over k. We will call a G-scheme X a
projective quasi-homogeneous scheme if X is smooth and projective over k
and the morphism ψ = (a,pr2) : G × X → X × X given by (g, x) 7→ (gx, x)
is smooth.

Proposition 4.1. Let X be a G-scheme over k. Then the following are
equivalent.

(1) X is a projective quasi-homogeneous G-scheme.
(2) Xk is a disjoint union of projective homogeneous varieties.
(3) X is smooth, projective, and, for every geometric point x ∈ Xk, the

orbit map mx : Gk → Xk (given by g 7→ gx) induces a surjection
dmx : L(G) → TXx.

Proof. Since all of the properties listed are invariant under base change of
k, we can assume that k is algebraically closed.

(1) ⇒ (2): A scheme is projective quasi-homogeneous if and only if all of
its connected components are projective quasi-homogeneous. (This is easy.)
Therefore we can assume that X is connected. Since G × X → X × X is
smooth, all orbits are open. Thus, since X is smooth and connected (hence
irreducible), all orbits must intersect. It follows that there is only one orbit,
namely, X itself. Thus X = G/P for some subgroup P . The smoothness of
ψ then implies that P is smooth.

(2) ⇒ (3): Here we can assume X = G/P with P parabolic. The claim
then follows from the assumption that P is smooth.
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(3)⇒ (1): From (3), it follows that ψ : G×X → X×X induces surjections
on the tangent spaces. The claim then follows from [12, p. 270, Proposition
10.4 (iii)]. ¤

Remark 4.2. The motivation for considering projective quasi-homogeneous
schemes in addition to projective homogeneous varieties is already appar-
ent in the Rost decomposition of quadrics. Let q be an n-dimensional
non-degenerate quadratic form, let Q be the associated n − 2 dimensional
smooth projective quadric and let PSO(q) denote the special orthogonal
group. Then Q is a projective homogeneous space for PSO(q) if and only if
dimQ > 0. When dimQ = 0, Q can either be irreducible or a disjoint union
of two copies of Spec k. In either case, it is not a projective homogeneous
variety for PSO(q). However, regardless of the dimension, Q is projective
quasi-homogeneous for PSO(q).

Now let X denote a projective quasi-homogeneous scheme for G, and let

Gm

λ
∼
→ L ⊂ G denote the inclusion of a k-split torus in G. (The group

G is called isotropic if such a split torus exists.) In this case, L acts on
X and Theorem 3.5 applies to give a decomposition of M(X). The main
result of this section is that, in fact, the summands appearing are themselves
projective quasi-homogeneous schemes for the centralizer H = Z(λ) of L in
G. A more detailed description will be obtained in §6 and §7.

Theorem 4.3. (1) H is connected, reductive and defined over k.
(2) H acts on the fixed point set Xλ.
(3) The action map ψH : H × Xλ → Xλ × Xλ is smooth. Thus Xλ is

projective quasi-homogeneous.

Proof. (1) The fact that H is connected is [Springer, 13.4.2 (i)]. The fact
that it is reductive is [Springer, 7.6.4 (i)]. It is defined over k by [Springer,
13.3.1 (ii)].

(2) To see that H acts on Xλ, let T be a scheme over k and consider
T -valued points x ∈ Xλ(T ), h ∈ H(T ) and t ∈ L(T ). Then thx = htx = hx,
thus, hx is in Xλ(T ).

(3) Since the smoothness of ψH is invariant under field extension of k,
we may assume that k = k. Pick a closed point z ∈ Z. The orbit map
l : G → X given by g 7→ gz, induces a surjection dl : L(G) → TXz

because, by assumption, X is a projective quasi-homogeneous scheme for
G. The multiplicative group Gm acts on G via conjugation by λ, i.e., g 7→
λ(t)gλ(t−1). The group Gm also acts on X via right multiplication, i.e.,
x 7→ λ(t)x. Since z is a fixed point of λ, the orbit map l is equivariant for
the Gm-actions. Moreover, we obtain a Gm-action on TXz compatible with
the Ad-action of Gm on L(G).

Now L(G) ∼= L(G)+ ⊕L(H) where L(G)+ consists of the non-zero weight
space of L(G) and L(H) is the Lie algebra of H. Analogously, TXz

∼=
TXz+ ⊕ TXλ

z where TXz+ is the non-zero weight space of TXz. Since dl
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respects the weight decomposition, dl(L(H)) = TXλ. Thus Proposition 4.1
(3) is satisfied. ¤

Corollary 4.4. Let X be a projective quasi-homogeneous scheme for an
isotropic reductive group G, and let λ : Gm → G be the embedding of a split
torus. Then, in the motivic BiaÃlynicki-Birula decomposition

M(X) =
∐

M(Zi)(ai)

of Theorem 3.5, the Zi are all projective quasi-homogeneous schemes for the
centralizer H of λ.

Proof. The corollary holds because the Zi appearing in Theorem 3.5 are
components of Xλ. ¤

4.1. Adjoint groups. For a reductive group G, let QHG denote the full
subcategory of G−Schk consisting of projective quasi-homogeneous schemes.
If ZG is the center of G, then Gad = G/ZG is the adjoint group of G, an
adjoint semi-simple group [1, Proposition 22.4.3.5]. The restriction functor
Gad−Schk Ã G−Schk induces an equivalence of categories QHGad

Ã QHG.
This is because ZG is smooth and acts trivially on all quasi-homogeneous
schemes over G.

4.2. Anisotropic Kernels. [26] Let S denote a maximal k-split torus of
G, and let Z(S) denote its centralizer. The derived subgroup DZ(S) is the
semi-simple anisotropic kernel. Since Z(S) is reductive, there is an almost
direct product decomposition Z(S) = DZ(S) · Z where Z is the center
of Z(S)[5, Proposition 2.2]. It follows that the adjoint group of Z(S) is
isomorphic to the adjoint group of the semi-simple anisotropic kernel. Thus
the categories QHZ(S), QHDZ(S) and QHZ(S)ad are all equivalent via the
restriction of group functors. (Moreover, the objects are identical.)

Applying Corollary 4.4 inductively, we obtain an answer to a question of
N. Karpenko [17].

Theorem 4.5. Let X be a projective quasi-homogeneous scheme for a re-
ductive group G. Then

(4.1) M(X) =
∐

M(Yi)(ai)

where the Yi are irreducible projective quasi-homogeneous schemes for the
anisotropic kernel of G (resp. for Z(S), for Z(S)ad).

Remark 4.6. A projective homogeneous variety X is said to be isotropic if
X = G/P for a parabolic subgroup P defined over k. Otherwise it is said
to be anisotropic. X is anisotropic if and only if X(k) is empty. If X is an
isotropic projective homogeneous space for a reductive group G, then there
exists at least one k-split torus L in G. (See [25] or [1].) In other words, if
X is isotropic then G is as well. It follows that the schemes Yi appearing in
(4.1) are all either anisotropic or isomorphic to Spec k.
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Exercise 4.7. It is interesting to see an example of Corollary 4.4 at work
on an anisotropic projective homogeneous variety for an isotropic reductive
group. One such is given by the variety X of two dimensional isotropic
subspaces for the quadratic form q = x2

1 + · · · + x2
2n + yz over the reals

with n ≥ 2. Using the methods of Example 3.6, the decomposition can
be computed explicitly in terms of smaller quadrics and varieties of two
dimensional isotropic subspaces. In Example 7.6, we will return to this
matter, computing the decomposition using the Lie theory of PSO(q).

5. The nilpotence theorem of Chernousov, Gille and

Merkurjev

As a corollary of the results of the previous section, we obtain the following
theorem of Chernousov, Gille and Merkurjev [9, Theorem 8.2].

Theorem 5.1. Let X be a projective homogeneous variety for a reductive
group G over a field k. Then the kernel of the map

End(M(X)) → End(M(X ⊗ k))

consists of nilpotent endomorphisms.

The proof follows that of [9]. I include it here for the convenience of the
reader and to make the point that the theorem can be obtained without the
full description of the motivic decomposition obtained in [9, Theorem 7.4].

For a field extension L/k, let nL denote the number of terms appearing
in the decomposition

(5.1) M(XL) =

nL∐

i=1

M(Zi)(ai)

of (4.1) for the projective homogeneous GL-variety XL. (Here the Zi will de-
pend on L.) Clearly, M ⊃ L ⇒ nM ≥ nL, and the maximal number of terms
in the coproduct occurs precisely when each Zi is Spec L. In particular, this
happens when L = Spec ksep.

Claim 5.2. Set N(d, n) = (d + 1)n−n with n = nksep . Then, for any mor-

phism f ∈ End(M(X)) with f ⊗ k = 0, fN(d,nk) = 0.

Evidently the claim implies the theorem.
Now in the case that the maximal number of terms appears in the de-

composition (i.e., nk = n), the claim is trivial because each of the objects
appearing is Tate. In fact, the only morphism in End(M(X)) which vanishes
in End(M(X) ⊗ k) is the 0 morphism. Thus the claim is valid for nk = n.

Now reason by descending induction on n = nk. (Properly speaking, we
reason by ascending induction on n−nk starting with the case n−nk = 0.)
Let f ∈ End(M(X)) be an endomorphism in the kernel of the map to
End(M(X ⊗ k)) and pick a point z in one of the anisotropic components Zi

appearing in (5.1). (If all components are isotropic, n is maximal and the
claim is already proved.) Set L = k(z). Over L, Zi is isotropic. Therefore
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the number ni = nL of terms appearing in the motivic decomposition of

XL is greater than n. Thus the claim holds for XL and f
N(d,ni)
L = 0. Since

N(d, ni) ≤ N(d, n + 1), it follows that fN
L = 0 where N = N(d, n + 1).

I now use [7, Theorem 3.1 and Remark 3.2] in the form in which it was
used by Gille, Chernousov and Merkurjev [9, Proposition 8.1].

Lemma 5.3. Let X be a smooth, projective variety over a field k and Z
an r-dimensional scheme of finite type over k. Let f ∈ End(M(X)) be
an endomorphism such that, for every point z ∈ Z, the morphism fz∗ :
A∗(X⊗k(z)) → A∗(X⊗k(z)) vanishes. Then f r+1

∗
: A∗(X×Z) → A∗(X×Z)

vanishes.

From the lemma and the fact that dimZi ≤ d, it follows that the compo-
sition

(5.2) M(Zi)(ai)
ji→ M(X)

f (d+1)N(d,n+1)

→ M(X)

vanishes where the first arrow, ji, is the canonical one coming from the
coproduct decomposition. Thus, for each anisotropic Zi in the coproduct,
f (d+1)N ◦ ji = 0. On the other hand, if Zi = Spec k, then it is easy to see
that the composition in (5.2) vanishes even with f (d+1)N(d,n+1) replaced by
f .

Since N(d, n + 1) = (d + 1)n−nk−1, the claim is proved.

Remark 5.4. Clearly the exponent (d + 1)n−nk is not optimal.

6. The Weyl group and its double cosets

In this section and the next, I give an explicit description of the com-
ponents Zi appearing in the motivic decomposition (3.1) of a projective
homogeneous variety X for an isotropic reductive group G. Roughly speak-
ing, the geometric components are in one-to-one correspondence with certain
double cosets of the Weyl group. The algebraic components correspond to
equivalences classes of these double cosets under the so-called “*-action” of
the absolute Galois group of the base field k (6.1).

While the language of schemes was used in the previous sections, in this
section I abuse notation slightly (e.g. in the proof of lemma 6.2) and con-
fuse points with k-valued points. This facilitates comparison with the refer-
ence [25] which is written in the language of varieties.

For T ⊂ G a maximal (but not necessarily split) torus defined over k,
set W = W (G, T ), the corresponding Weyl group. For a subtorus C ⊂
T , let WC = W (ZG(C), T ) where ZG(C) denotes the centralizer of C. It
is a subgroup of W . Likewise, for a character φ : Gm → T , let Wφ =
W (ZG(φ), T ), also a subgroup of W .

Now, in the situation of the §4, G has a cocharacter λ : Gm

∼=
→ L ⊂ G.

We can assume that L ⊂ S ⊂ T with S a maximal k-split torus and T
a maximal torus with T defined over k [25, Theorem 13.3.6 and Remark
13.3.7].
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If X is isotropic, there is a parabolic subgroup P such that X = G/P .
Since G is reductive, we may assume that P = P (µ) for a cocharacter
µ : Gm → S. (Roughly, P (µ) is defined as the set of g ∈ G such that
limt→∞ µ(t)gµ(t)−1 exits. See [25, §13.4.1].) Set

(6.1) X = Wλ\W/Wµ.

Theorem 6.1. If k is separably closed, the connected components Zi ap-
pearing in the motivic BiaÃlynicki-Birula decomposition of X are in one-one
correspondence with the elements of X .

To begin the proof of the theorem, first note that, since k is separably
closed, X is isotropic and X = G/P with P = P (µ) as above. It follows
that the maximal torus T acts on G/P with fixed points corresponding to
cosets in

(6.2) Y = W/Wµ.

To see this, suppose that y ∈ G(k) is such that the coset yP is fixed by
T . Then y−1Ty is a maximal torus contained in P . On the other hand,
since P = P (µ) with µ : Gm → S ⊂ T , T is also contained in P . Since all
maximal tori are conjugate within P [1, Corollary 5.7, p. 496], there is a
p ∈ P (k) such that

(6.3) p−1Tp = y−1Ty.

Thus yp−1 is in the normalizer NG(T ) of T and, thus, represents an element
w ∈ W = W (G, T ). If p′ is another element of P satisfying (6.3), then p′p−1

normalizes T . This implies that p′p−1 ∈ ZG(µ) by the following.

Lemma 6.2. For G reductive with maximal torus T and µ ∈ X∗(T ), P (µ)∩
NG(T ) ⊂ ZG(µ).

Proof. Take p ∈ P (µ) ∩NG(T ) and set β(t) = pµ(t)p−1. Since p normalizes
T , β ∈ X∗(T ). Set a(t) = µ(t)pµ(t)−1. Since p ∈ P (µ), a := limt→0 a(t)
exists. Therefore

(6.4) lim
t→0

β(t)µ(t)−1 = pa.

In particular, the limit in (6.4) exists. But, since β(t)µ(t)−1 is a cocharacter,
this is only possible if β(t) = λ(t). ¤

It follows, therefore, that y and equation (6.3) determine the class π(y) of
yp−1 in W/Wµ. Moreover, if y′ = yp′ is another element of G representing
the coset yP , then it is easy to check that π(y) = π(y′).

Thus, there is a map π : (G/P )T → Y. It is not hard to see that the map
s̃ : W → (G/P )T given by w 7→ wP induces a map s : Y → (G/P )T inverse
to π. Thus (G/P )T ∼= Y.

Now let yP and y′P be two points in the same component Z of (G/P )λ

which are both fixed by the T action. Without loss of generality, we can
then assume that y and y′ normalize T . By Proposition 4.3, yP = hy′P for
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some h ∈ ZG(λ). It follows then that h also normalizes T and is, thus, in
Wλ. Thus π induces a map

(6.5) q : π0((G/P )λ) → X .

To see that q is an isomorphism, it suffices to check that s : Y → (G/P )T

induces an inverse map r : X → π0((G/P )λ. I leave this verification, which
completes the proof of Theorem 6.1, to the reader.

6.1. The Galois action. Let Γ = Gal(ksep/k) denote the absolute Galois
group. If X = G/P (µ) is an isotropic projective homogeneous variety, then
Γ acts on G(ksep), T (ksep) and W (ksep) stabilizing P = P (µ) and, thus, Wµ.
It follows that Γ acts on the double coset space X . Clearly Γ also acts on
(G/P )λ(ksep), and it is easy to see that the map r : X → π0(X

λ) is an
isomorphism of Γ-sets.

Computing the Galois action on π0(X
λ) can be reduced to the case of

isotropic X using the fact that every reductive k-group has an quasi-split
inner form Ginn [25, Proposition 16.4.9] given by a class σ ∈ H1(Γ, Gad)
where Gad denotes the adjoint group of G. Let p : G → Gad be the canonical
quotient map. It is easy to see that we can arrange that T is stabilized and
λ is fixed by σ. Then, in fact, σ is in the image of the map

H1(Γ, ZGad
(p ◦ λ) ∩ NGad

(p(T ))) → H1(Γ, Gad).

We have an action of Gad on X and, thus, a twist Xσ of X with an action of
λ. Under the twist, the action of the Galois group on Winn = W (Ginn, Tσ)
is given by the ∗-action [26]. Since Ginn is quasi-split, Xσ is isotropic and
thus corresponds to a parabolic P (µ) in Ginn. From the previous section,
we then have

π0(X
λ
σ ) = Wλ\Winn/Wµ.

Proposition 6.3. There is an isomorphism

π0(X
λ) ∼= π0(X

λ
σ ) = Wλ\Winn/Wµ

of étale schemes over Spec k. (In other words, the above sets are isomorphic
as Γ-sets.)

Proof. It is easy to see that π0(X
λ
σ ) viewed as an étale scheme over Spec k

is the twist of π0(X
λ) by σ. Since ZGad

(p ◦ λ) is geometrically connected, it
acts trivially on the geometric points of π0(X

λ). Thus the two schemes are
isomorphic. ¤

7. Explicit Description and Examples

With a little extra work, we can give an explicit description of the twists
and the spaces Zi appearing in Corollary 4.4 and Theorem 4.5 in terms of
the relevant reflection groups, Dynkin diagrams and root systems. This is a
generalization of the description appearing in [9].

From the previous section, we know that the quasi-homogeneous schemes
Zi are in correspondence with the orbits of the ∗-action on the double cosets
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in Wλ\Winn/Wµ. Over ksep, each such Zi decomposes as a disjoint union Zw

over the elements of the ∗-orbit. Our goal is then to describe the Tate twist
associated to Zw and also the projective homogeneous space Zw in terms of
the Dynkin diagram of Z(λ).

In obtaining our description, it will be convenient to consider the case
where G is split first. Therefore, assume G is split with maximal torus T . Let
R denote the set of roots of G. Choose a Borel subgroup B or, equivalently, a
set R+ of positive roots. Then R = R+∪R− with R− the negative roots. Let
Σ denote the corresponding set of simple positive roots. The Weyl group
W = W (G, T ) is then generated by the reflections sα in the hyperplanes
defined by the α ∈ Σ. We let `(w) denote the corresponding length function
on W : `(w) is the length l of a minimal expression w = s1s2 · · · sl of w in
terms of the simple roots.

Now let X be a projective homogeneous variety. We have X = G/P (µ) for
some cocharacter µ : Gm → T which is non-negative on R+. (Any cocharac-
ter can be conjugated to a non-negative one.) Let J = {α ∈ Σ | 〈α, µ〉 = 0}.
Then Wµ is the subgroup of W generated by the sα with α ∈ J . Accord-
ingly, we will also write WJ for this subgroup. Now, if G has a non-central
cocharacter λ : Gm → T , there is one which is non-negative on Σ. Thus,
setting I = {α ∈ Σ | 〈α, λ〉 = 0}, we have Wλ\W/Wµ = WI\W/WJ . Note
that the correspondence X Ã J between isomorphism classes of projective
homogeneous varieties for G and subsets J ⊂ Σ is one-to-one and onto. We
will call X the homogeneous variety associated to J , and we will call J the
set of roots of X.

We now use the result of an exercises in Humphrey’s book on reflection
groups [14, Ex. 1 on p. 20].

Exercise 7.1. Any double coset in WI\W/WJ has a unique element b of
minimal length. The element b satisfies the following equivalent properties:

(1) `(bsα) = `(b) + 1 for α ∈ J and `(sαb) = `(b) + 1 for α ∈ I.
(2) bα > 0 for α ∈ J and b−1α > 0 for α ∈ I.

Moreover, any element w ∈ W may be written as

(7.1) w = abc

with a ∈ WI , c ∈ WJ and `(w) = `(a) + `(b) + `(c).

Solution. The equivalence of the two properties is Lemma 1.6 on p. 12 of [14].
Let b be an element of minimal length in the double coset. Then `(bsα) ≥
`(b) for all α ∈ J , and, since lengths either go up by one or down by one
upon multiplying by a reflection, this implies that `(bsα) = `(b) + 1 for all
α ∈ J . Similarly, `(sαb) = `(b)+1 for α ∈ I. Thus b satisfies both properties
(1) and (2).
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Now suppose w ∈ W . Write w = abc with `(a) and `(c) minimal. We can
write a, b and c out as reduced words in the simple reflections as follows:

a = r1r2 · · · rl,

b = s1s2 · · · sm,

c = t1t2 · · · tn.

Since a ∈ WI (resp. c ∈ WJ) and the length function on W restricts to that
on WI (resp. WJ), we can assume that the r′is are in I and the t′is are in
J . So `(w) ≤ l + m + n and, if `(w) < l + m + n, there must be a pair of
reflections in the word for w that can be deleted [14, Theorem 1.7]. This
pair cannot involve one of the s′is because otherwise b would not be minimal
in the double coset. On the other hand, it cannot simply involve two of the
r′is because then our word for a would not be reduced. Likewise it cannot
simply involve two of the t′is. Finally, the word cannot involve an ri and a
tj because we assumed that `(a) and `(c) were minimal.

Now suppose b′ were another coset representative for WIbWJ of minimal
length. Then b′ = abc for a and c as above. But, since `(b′) = `(a) + `(b) +
`(c), we must have a = c = 1. ¤

Remarks 7.2. (1) In contrast with the single coset case [14, Proposition
10.10], the elements a and c are not unique. This is clear, for example, if
W = Z/2 × Z/2 and WI = WJ is the first factor of Z/2. (2) In the special
case where I = J , this exercise is used in [9] (see Proposition 3.4). (3)
What I have stated as the “exercise” is actually the solution to Humphrey’s
question which is whether or not a minimal element exists. A more complete
version of the exercise is in Bourbaki [6, Exercise 1.3, p. 37].

For a subset K ⊂ Σ, let RK denote the set of roots generated by K. Let
R+

K = RK ∩ R+ (resp. R−

K = RK ∩ R−). We can now give our explicit
decomposition in the split case.

Proposition 7.3. Let G be a split reductive k-group with maximal torus
T and simple roots Σ. Let X = G/P be a projective homogeneous variety
for G with J the corresponding set of simple roots, let λ be a non-central
cocharacter of G which is non-negative on Σ and vanishing precisely on I ⊂
Σ and let E be the set of minimal length coset representatives of WI\W/WJ

with WI and WJ as above. Then, under the BiaÃlynicki-Birula decomposition
for λ,

M(X) =
∐

w∈E

M(Zw)(`(w))

with Zw the orbit of wP under Z(λ). The set I ⊂ Σ is the set of simple
roots of Z(λ). Moreover, the roots of Zw are

Jw = {α ∈ I |w−1α ∈ RJ}.
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Proof. First note that, if w ∈ E and α ∈ I, w−1α ∈ R+. This is condition
(2) of the exercise. Now the twist aw associated to the motive M(Z(λ)wP )
in the motivic decomposition of Corollary 4.4 is the rank of the positive
weight space of λ on T (G/P )wP . This is the same as the rank r of the
positive weight space of Ad(w−1)λ on T (G/P )P . Now T (G/P )P is naturally
identified with L(G)/(kR−

J ⊕ L(T ) + kR+). (Here I write kR for the free
vector space on the set R and view it as a subspace of L(G) in the natural
way.) It follows that r is the number of negative roots α not in R−

J such
that 〈w−1λ, α〉 = 〈λ, wα〉 > 0. Thus

r = #{α ∈ R− − RJ |wα ∈ R+ − RI}

= #(R+ − R+
I ) ∩ w(R− − R−

J )

= #(R+ ∩ wR− − R+ ∩ wR−

J − R+
I ∩ wR−).

Now R+ ∩wR−

J and R+
I ∩wR− are both empty by part (2) of the exercise.

So

r = #(R+ ∩ wR−)

= `(w).

Determining the roots of Zw is now easy. We have

Zw = Z(λ)/(Z(λ) ∩ wPw−1).

Set Pw = Z(λ)∩wPw−1. By definition, Pw is a parabolic subgroup of Z(λ).
Note that Pw is actually a standard parabolic subgroup in that it contains
the Borel subgroup Bλ = B ∩Z(λ) where B is the standard Borel subgroup
such that L(B) = kR+. This follows from the fact that w−1R+

I ⊂ R+. Now,

L(P ) = kR+⊕L(T )⊕kR−

J and L(Z(λ)) = kR+
I ⊕L(T )⊕kR−

I . Thus, using
the exercise, we have

L(Pw) = (kR+
I ⊕ L(T ) ⊕ kR−

I ) ∩ w(kR+ ⊕ L(T ) ⊕ kR−

J )

= kR+
I ⊕ L(T ) ⊕ (kR−

I ∩ wkR−

J )

= kR+
I ⊕ L(T ) ⊕ (kR−

I ∩ wkRJ).

Now it follows that

Jw = {α ∈ I |w−1α ∈ RJ}.

¤

7.1. The Tits Index. To every reductive k-group G, J. Tits has associated
a part-algebraic, part-combinatorial object known as the Tits index of G. It
consists of the Dynkin diagram for G, a graph with vertices Σ corresponding
to the simple roots of a given maximal k-torus, together with a Galois action
on the vertices preserving a set Σ0 of distinguished vertices. The subset Σ0

consists of the simple roots orthogonal to a maximal k-split torus. Thus Σ0 is
the set of roots of the semi-simple anisotropic kernel. The group Gal(ksep/k)
acts on Σ via the ∗-action stabilizing Σ0. When drawing the diagram, the
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Galois orbits of the vertices not in Σ0 are circled and vertices in the same
∗-orbit are supposed to be drawn “close together.”

Now, in this picture, projective homogeneous varieties (i.e., k-defined
conjugacy classes of parabolics) are in one-to-one correspondence with ∗-
invariant subset J of Σ [26, (2.5.4)]. Isotropic projective homogeneous vari-
eties (i.e., conjugacy classes containing a k-defined parabolic) are in one-to-
one correspondence with ∗-invariant subsets J of Σ containing Σ0. Moreover,
it is easy to see that for every ∗-invariant subset I of Σ containing Σ0, there
is a k-defined cocharacter λ of T which vanishes on I but is positive on
Σ − I. In this case, Z(λ) is the Levi component LI of the parabolic sub-
group PI associated to I. (The necessary argument is given in the proof of
[25, Lemma 15.1.2]).

We now have the following result which follows from the previous propo-
sition by standard methods of descent.

Theorem 7.4. Suppose I and J are ∗-invariant subsets of Σ with I ⊃ Σ0.
Let E be the set of minimal length coset representatives for WI\Winn/WJ ,
and let E be the set of orbits of E under the ∗-action. Let X be the projective
homogeneous variety associated to J . We have

M(X) =
∐

w∈E

M(Zw)(`(w))

where Zw is a projective quasi-homogeneous scheme for the reductive group
LI (= Z(λ)). Moreover, the base change of Zw to ksep is a disjoint union

Zw ⊗ ksep =
∐

w∈w

Zw

where Zw is the projective homogeneous variety for LI ⊗ ksep corresponding
to the subset

Jw = {α ∈ I |w−1α ∈ RJ}.

Remark 7.5. If the ∗-orbit w consists of one element w, then Zw is the pro-
jective homogeneous variety corresponding to Jw. In particular, its structure
as a k-variety is determined by the combinatorics. At any rate, since Zw is
a projective quasi-homogeneous variety, it is a subvariety of the variety of
parabolics of the reductive group LI .

Example 7.6. We now return to the example of (4.7). Here we have G =
PSO(q) with q = x2

1 + · · · + x2
2n−2 + yz (with k = R) and X the projective

quasi-homogeneous scheme of two-dimensional subspaces. As long as n ≥ 3,
X is a projective homogeneous variety for G. (When n = 2, X has two
geometric components.)

Now the Dynkin diagram of G (decorated as in the Tits index) is the
following picture.
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α1 α2

• • . . . •
αn−2 •

oooo

•
OOOO

αn−1

αn

The ∗-action exchanges αn−1 with αn and leaves all other roots fixed.
When n ≥ 4, the set J ⊂ Σ corresponding to X is Σ − {α2}. For n = 3,
J = Σ−{α2, α3}. We assume n ≥ 4 at first and sketch the case where n = 3
(where the ∗-action plays a significant role) at the end of this example.

If we set I = Σ0 = Σ − {α1}, then we are in the setting of Theorem 7.4.
Write si = sαi

for the generators of the Weyl group. From the theory of
Coxeter complexes ([14, § 1.15]), we see that WI\W is identified with the
set of vectors of the form ±ei in the real vector space Rn = Re1 + · · ·+ Ren.
The action of W on the right is given by eisj = e(j,j+1)i for 1 ≤ j < n where
(j, j+1) denotes the transposition in the symmetric group exchanging j and
j +1. For j = n, we have eisn = −e(n−1,n)i. Now it is fairly easy to see that
the cosets in WI\W containing elements of E are e1 = WI1, e3 = WIs1s2,
and −e2 = WIs1s2 · · · sn−2sn−1snsn−2 · · · s3s2. It is also easy to see that the
representatives listed are in fact the elements of E. That is,

E = {1, s1s2, s1s2 · · · sn−2sn−1snsn−2 · · · s2}.

Writing w1, w2 and w3 for the elements listed in order, we have

`(w1) = 0, `(w2) = 2, `(w3) = 2n − 3.

Clearly Jw1 = I ∩ J = {α3, . . . , αn}. To compute Jw2 , note that

w−1
2 α2 = s2s1α2

= s2(α1 + α2)

= (α1 + α2) − α2

= α1 ∈ J.

Thus α2 ∈ Jw2 . A similar computation shows that, for i > 2, w−1
2 αi ∈ Jw2

if and only if αi is not connected to α2 in the Dynkin diagram. Thus, for
n ≥ 5, Jw2 = {α2, α4, . . . , αn}. However, for n = 4, Jw2 = {α2}.

Finally, to compute Jw3 , note that w−1
3 αi = αi for 2 < i ≤ n−2, w−1

3 α2 =

α1 + α2, w−1
3 αn−1 = αn and w−1

3 αn = αn−1. It follows that Jw3 = Jw1 =
I − {α2}.

Putting all of this together, we have the decomposition

(7.2) M(X) = M(Q) ⊕ M(Y )(2) ⊕ M(Q)(2n − 3)

where Q is the motive of a quadric of isotropic lines for the quadratic form
q′ = x2

1 + · · · + x2
2n, and Y is isomorphic to the space of isotropic planes for

q′.
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When n = 3, WI\W (viewed in terms of the Coxeter complex) has four
WJ orbits containing the minimal WI -cosets

e1 = WIw1, w1 = 1;

e3 = WIw2, w2 = s1s2;

−e3 = WIw3, w3 = s1s3;

−e2 = WIwr, w4 = s1s2s3.

The elements wi are written in reduced form so we have `(w1) = 1, `(w2) =
`(w3) = 2 and `(w4) = 3. Note that w2 and w3 are conjugate under the
∗-action. Clearly Jw1 = ∅ and some computation shows that Jw4 = ∅ as
well. On the other hand, Jw2 = α2 while Jw3 = α3.

It turns out then that Zw1 = Zw4 = Q and Zw3 = Y with Q and Y as
in 7.2. In other words, we obtain the same decomposition as in the case
n = 4. However, we learn that Y ⊗ C = Zw2

∐
Zw3 with Zw2 = Zw3 = P1.

It is also possible (and perhaps easier) to work out (7.2) directly using
the geometry of the Gm-action on X and the weight decomposition of TX
at the various fixed loci as suggested in Exercise 4.7.
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