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R-equivalence

k a field, X a smooth projective variety
over k

Two points A and B in X(k) (the set of
k-rational points) are called R-linked if there
exists a k-morphism f : P1

k → X such that A
and B both belong to f(P1(k)).

R-equivalence is the equivalence relation
spanned by this relation.
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Chow group

k a field, X a smooth projective variety
over k

The group Z0(X) of zero-cycles on X is
the free abelian group on the closed points
M ∈ X (a point is closed if and only its residue
field k(M) is a finite extension of k.)

The Chow group CH0(X) of zero-cycles
modulo rational equivalence is the quotient of
the group Z0(X) by the subgroup spanned by
elements of the type p∗(divC(f)), where C/k
is an irreducible, normal, projective curve over
k, p : C → X is a k-morphism, and f is a
rational function on C.

If X/k is proper, then there is a degree
map CH0(X)→ Z, whose kernel is the reduced
Chow group A0(X).
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What is the structure of the Chow
group CH0(X) over a local field ?

Let k be a p-adic field, and X/k a smooth,
projective, absolutely irreducible variety.

Guess : the group A0(X) admits a fil-
tration whose successive quotients are a finite
group, a group isomorphic to a finite sum of
copies of Zp and a divisible (possibly uniquely
divisible) group.

Related questions :

For n > 0, is the group nA0(X) finite?

Is the whole torsion subgroup of A0(X)
finite?

For n > 0, is A0(X)/n finite?
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Definition (Kollár, Miyaoka, Mori, 1992)

A smooth, projective, integral variety
over a field k of characteristic zero is called
rationally connected if over a big enough alge-
braically closed field Ω containing k, there is
only one R-equivalence class on the set XΩ(Ω).

Examples :
smooth compactifications of connected

linear algebraic groups
geometrically unirational varieties
Fano varieties (this is a theorem due to

Campana 1992 and to KMM 1992)

A rationally connected surface is just a
(geometrically) rational surface.

5



     

Assume now that X is a rationally con-
nected variety over the p-adic field k.

Theorem (Kollár 1999). The set X(k)/R
is finite.

Theorem (Kollár/Szabó 2003) If X has
good, rationally connected reduction over F,
then

(i) A0(X) = 0.
(ii) If the residue field F is not too small,

X(k)/R consists of one class.

The proof of both theorems uses defor-
mation theory (techniques of Kollár, Miyaoka,
Mori).
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Two questions

X a rationally connected variety over the
p-adic field k

Is the group A0(X) finite ?
Known if X is a surface (via algebraic

K-theory).

In the bad reduction case, how can one
detect nontrivial elements in X(k)/R and in
A0(X) ?
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Surfaces
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Theorem. Let X/k be a smooth, pro-
jective geom. irreducible surface over a p-adic
field k, with residue class field F.

(i) For all n > 0, the group nA0(X) is
finite.

(ii) For each prime l, the group A0(X){l}
is of cofinite type.

(iii) For n integer prime to p, the quotient
A0(X)/n is finite.

(iv) Suppose that X/k has good reduction
Y/F. Then for any l prime, l 6= p, the reduc-
tion map induces a surjection

A0(X){l} → A0(Y ){l}.

(CT/Sansuc/Soulé 1983, Saito-Sujatha 1993)
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Some tools :

Bloch-Ogus theory 1974

Bloch’s method (1974) for the study of
torsion of codimension 2 Chow groups

the Merkur’ev/Suslin theorem (1982)

finiteness theorems for étale cohomology

hyperplane sections
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Theorem. Let X/k be a smooth, projec-
tive, geometrically connected surface over a
p-adic field k. Assume H2(X,OX) = 0.

Then :
(i) The group A0(X)tors is finite.
(ii) Under Bloch’s conjecture for X over

an algebraic closure of k, the group A0(X) is
an extension of a finite abelian group by a fi-
nite sum of copies of Zp.

(iii) Under the same assumption on X,
the quotient A0(X)/l is finite for any prime l
and zero for almost all l.

(CT/Raskind 1991, Salberger 1993)
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Some tools :

Bloch’s Galois cohomological method for
computing

Ker[CH2(X)→ CH2(X)]

Hilbert’s theorem 90 for K2

hyperplane sections

class field theory for curves over a local
field (Bloch, Saito)

Suslin’s results on torsion in K2

Roitman’s theorem

12



     

The good reduction case

Let O be the ring of integers of the p-adic
field k. Let X/O be a smooth, projective rela-
tive surface with absolutely irreducible fibres.
Let X/k the generic fibre and Y/F the special
fibre.

There is an exact (localization) sequence

H1(X,K2)→ Pic(Y )→

→ CH2(X )→ CH2(X)→ 0.
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Let us introduce hypothesis (H) :

(H) The cokernel of H1(X,K2)→ Pic(Y )
is a torsion group.

Since Pic(Y ) is finitely generated, the hy-
pothesis amounts to finiteness of this cokernel.

For all we know, this hypothesis could
always be satisfied. It has to do with the
search for so-called indecomposable elements
in K1(X). Here are cases where the hypothe-
sis is known to hold.

1) H2(Y,OY ) = 0 (CT/Raskind 1991)

2) X is the product of two elliptic curves
with good reduction (Spieß 1999)

3) Some products of two modular curves
and related surfaces (Mildenhall, Saito,
Langer, Raskind, Otsubo)
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Theorem. Let O be the ring of integers
of the p-adic field k. Let X/O be a smooth,
projective relative surface with absolutely irre-
ducible fibres. Let X/k the generic fibre and
Y/F the special fibre. Assume (H).

Then :
(i) The prime-to-p part of A0(X)tors is

finite.
(ii) For l prime, l 6= p, the specialization

map induces an isomorphism of finite groups
A0(X){l} ' A0(Y ){l}.

(iii) the quotient A0(X)/l is finite for any
prime l 6= p and zero for almost all l.

(iv) A0(X) is the direct sum of a finite
group of order prime to p and a group uniquely
divisible by each l prime to p.

(Raskind 1989, CT/Raskind 1991,
Spieß 1999)
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Some tools : Bloch’s method for comput-
ing torsion codimension 2 cycles, applied to
the integral model X and compared with the
same method for Y . Proper base change in
étale cohomology.
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Detecting cycles : Pairing with the
Brauer group

For X a smooth variety over a field k,
the Brauer group Br(X) = H2

ét(X,Gm) is a
torsion group.

There are natural pairings

X(k)×Br(X)→ Br(k)

and
Z0(X)×Br(X)→ Br(k).

For X/k projective, these pairings induce
pairings

X(k)/R×Br(X)→ Br(k)

CH0(X)×Br(X)→ Br(k)

A0(X)×Br(X)/Br(k)→ Br(k).

For k p-adic, Br(k) = Q/Z.
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Theorem. Let X/k be a smooth, projec-
tive, geometrically connected surface over a
p-adic field k. Assume H2(X,OX) = 0.

(i) If the Albanese variety of X has good
reduction, the pairing

A0(X)tors ×Br(X)→ Q/Z

is nondegenerate on the LHS.
(ii) If moreover the geometric Chow group

is representable (Bloch’s conjecture) then the
pairing

A0(X)×Br(X)→ Q/Z

is nondegenerate on the LHS.

(Shuji Saito 1992)
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The good reduction assumption for the
Albanese variety cannot be ignored, as shown
by an example of Parimala and Suresh 1995
(conic bundle over a curve with bad reduc-
tion).

However in the semistable reduction case,
extensions of the above the above theorem are
known (K. Sato 1998 ; K. Sato/ S. Saito 2004)
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Let X/O be a smooth, projective relative
surface with absolutely irreducible fibres. Let
X/k be the generic fibre and Y/F the special
fibre.

Theorem. Assume (H).

(i) The left kernel of the pairing

A0(X)×Br(X)→ Q/Z

consists of elements n-divisible for any integer
n prime to p.

(ii) The pairing

A0(X)tors(prime− to− p)×Br(X)→ Q/Z

is nondegenerate on the LHS.

(Raskind 1989, CT/Raskind 1991, Spieß
1999)
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Let us come back to the (possibly) bad
reduction case. Let X/O be a regular, proper
flat scheme, with smooth geometrically con-
nected generic fibre X/k. The pairing

A0(X)×Br(X)→ Q/Z

is trivial on the subgroup Br(X ) + Br(k) of
the group Br(X). Let Fl denote the l-primary
part of the quotient Br(X)/(Br(X ) +Br(k)).

Theorem (CT/Saito 1996). For l prime,
l 6= p, the group Fl is finite and the induced
pairing

A0(X)× Fl → Q/Z

is nondegenerate on the RHS.

Hence for each such l we have a surjec-
tive map A0(X) → Hom(Fl,Q/Z). This im-
plies (reduction to case of curves) that the map
A0(X){l} → Hom(Fl,Q/Z) is surjective .

p-part (K. Sato/ S. Saito 2004)
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Higher dimensional varieties
Examples

Quadric fibrations over a curve

Intersections of two quadrics

Cubic hypersurfaces

Linear algebraic groups
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Quadric fibrations over a curve

(Bloch 1981, CT/Sansuc 1981, Salberger
1988, Gros 1987, CT/Skorobogatov 1993,
Parimala/Suresh 1995 and 1988)

Let k be a field and f : X → C a domi-
nant k-morphism of smooth, projective, geom.
connected k-varieties, C a curve, and assume
that the generic fibre of p is a geometrically ir-
reducible quadric of dimension d over the field
k(C). Let

CH0(X/C) = Ker[f∗ : CH0(X)→ CH0(C)].

For C = P1
k, CH0(X/C) = A0(X).
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Theorem. Let k be a p-adic field and let
f : X → C be as above. Then

(i) The group CH0(X/C) is finite.
(ii) For p 6= 2 and d ≥ 3, CH0(X/C) = 0.

Tools :
For d = 1, X is a surface, the result fol-

lows from earlier results.
For d = 2, reduction to d = 1 by replac-

ing C by a double cover (discriminant of a
quadratic form in 4 variables).

For d ≥ 3, reduction to d = 2 (with the
same C).

For p 6= 2, use of the theorem (Parimala
and Suresh 1998) : a quadratic form in m ≥ 11
variables over k(C) has a nontrivial zero.
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Intersections of two quadrics in Pn
k

(Over an algebraic closure, for n ≥ 4, such
a variety is birational to projective space.)

Theorem. Let k be a p-adic field and let
X ⊂ Pn

k be a smooth complete intersection of
2 quadrics, of dimension at least 2. Then

(i) The group A0(X) is finite.
(ii) For p 6= 2 and n ≥ 6, A0(X) = 0.
(iii) For n ≥ 7, A0(X) = 0.

Tools :
previous results on quadric fibrations
results on R-equivalence (next slide)

The group A0(X) may be nonzero for
n = 4. For n = 5, this is an open question
(my guess is that it may be nonzero).
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Theorem. For X ⊂ Pn
k as above and

n ≥ 7, the order of X(k)/R is at most 1.
(CT/Sansuc/Swinnerton-Dyer 1987)

The set X(k)/R may consist of more than
one element for n = 4. For n = 5, 6 this is an
open question (guess : should get examples
with more than one class for n = 5).

26



       

Smooth cubic hypersurfaces in Pn
k

(Over an algebraic closure, for n ≥ 3, such
a variety is unirational.)

Theorem (Madore 2003). Let k be a p-
adic field and X ⊂ Pn

k be a smooth cubic hy-
persurface. For n ≥ 11,

(i) R-equivalence is trivial on X(k) : the
set X(k)/R consists of one element.

(ii) A0(X) = 0.

Tools :
Intersecting with the tangent hyperplane

at a rational point.
Any cubic form in at least 10 variables

over a p-adic field has a nontrivial zero (Dem-
janov, Lewis), and any quadratic form in at
least 5 variables has a zero.
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For n = 3 (case of a surface), there are
examples for which R-equivalence is not trivial
on X(k) and where A0(X) 6= 0. Nontrivial
classes in A0(X) are detected by the pairing
with Br(X).

What happens for 4 ≤ n ≤ 10 ? Here
Br(X) = Br(k) is of no help.

Here is one candidate for nontriviality of
A0(X) for n = 4 (and p 6= 3) :

x3 + y3 + z3 + pu3 + p2v3 = 0.

One would hope that J(Fp)/3 is a quotient of
A0(X), where J is the jacobian of the curve
x3 + y3 + z3 = 0 over Fp.

There are similar candidates for n = 5, 6.
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The idea is to construct a regular proper
model over the ring of integers of k and to
use intersection theory on this model. This
works very well for rational surfaces split over
an unramified extension (Dalawat), it works
also for some others, such as

x3 + y3 + z3 + pt3 = 0

over Qp, p 6= 3. However for rational surfaces,
the Brauer group already detects the whole of
A0(X).

For the time being, the only known exam-
ple of a rationally connected variety X over
a p-adic field with a nontrivial zero-cycle in
A0(X) not detected by the Brauer group is an
example of Parimala and Suresh 1995. Their
X is a quadric bundle of relative dimension 2
over the projective line.
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Linear algebraic groups

Theorem. Let k be a p-adic field, let G be
a connected linear algebraic group over k and
X a smooth k-compactification of G. Then the
prime-to-p part of the torsion group A0(X) is
finite.

(CT 2004)
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Ingredients of the proof
1) The formula G(k)/R = H1(k, S) for G

a semisimple group over a p-adic field. In this
formula, which is functorial in k, S is a flasque
torus over k associated to G. (P. Gille 1997).

2) The vanishing of G(k)/R when S is
split by a cyclic extension (follows from the
above formula and a result of Endo and
Miyata).

3) For L/k finite field extension of local
fields, of degree prime to the degree of the
splitting field of S, the restriction map
G(k)/R → GL(L)/R is a bijection (uses local
duality and formula in 1) above).

4) “ramification eats up ramification”
5) Lemma : Let l 6= p be a prime, let k

be a p-adic field which contains the l-th roots
of 1, let F/k be an extension, and let ln the
highest power of l dividing [F : k]. Then there
exists a subfield E of F such that [E : k] = ln.
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