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Abstract. Given an arbitrary n, we consider anisotropic quadratic forms of dimension
n over all fields of characteristic 6= 2 and prove that the height of an n-dimensional
excellent form (depending on n only) is the (precise) lower bound of the heights of all
forms of dimension n.
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1. Introduction

Excellent quadratic forms and their fundamental properties have been discovered by
Knebusch [9] in 1977. They do occur over arbitrary fields. The simplest examples are sums
of squares, which are always excellent. This shows that, over suitable fields, anisotropic
excellent forms do occur in any dimension.

The definition of excellent forms is closely related to Pfister forms [10]. A quadratic
form φ is a Pfister neighbor [9], if it is isomorphic to a subform of a quadratic form π such
that π is similar to a Pfister form and dimφ > (dim π)/2. In this case, the form π and the
orthogonal complement of φ inside π are uniquely determined (up to an isomorphism) by
φ. A quadratic form is called excellent, if its dimension is ≤ 1 or if it is a Pfister neighbor
with an excellent complement.

If a quadratic form φ over a field F is anisotropic and dimφ ≥ 2, its first higher Witt
index is the Witt index of the form φF (φ) = φ⊗F F (φ), where F (φ) denotes the function
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field of the quadric defined by φ. The anisotropic kernel (φF (φ))an is the first higher
anisotropic kernel of φ (see [10] for the definitions of the usual Witt index and of the
usual anisotropic kernel of a quadratic form). Repeating this construction gives, for each
φ, a sequence of field extensions of F which is called the (generic) splitting tower of φ. It
is generic in the sense that, for each extension L of F , a specialization from one of the
layers K of the splitting tower of φ to L can be defined such that the indices of φK and
φL are the same.

The length of the splitting tower of φ is called the height h(φ), and the respective
anisotropic kernels of φ over the field extensions of its splitting tower are its higher
anisotropic kernels.

These notions were introduced and extensively studied as well by Knebusch in [8], [9].
It turned out that, for anisotropic excellent forms φ of given dimension, the dimensions of
the higher kernels are completely independent of the underlying excellent form and even
of the ground field F . Knebusch also gave another characterization of excellent forms in
[9]: A quadratic form is excellent if and only if all of its higher anisotropic kernels are
already defined over F itself. (It should be mentioned here that Knebusch worked over
fields of characteristic 6= 2, but recent research by Hoffmann and Laghribi [1] showed that
the same phenomena do occur in characteristic 2.)

In [2], the notion of the splitting pattern of a quadratic form φ was defined as the
sequence of all possible indices of φ over some field extension. From the description above
it is clear that all these indices do occur already over the field extensions of the splitting
tower of φ. In the present note we define the splitting pattern of φ as the set of the
dimensions of its higher anisotropic kernels, or, equivalently, as the set of the integers
dim(φE)an, where E runs over all field extension of F .

Every nonnegative integer n is uniquely representable as an alternating sum of 2-powers:

n = 2p0 − 2p1 + 2p2 − · · ·+ (−1)r−12pr−1 + (−1)r2pr (∗)
with integers p0, p1, . . . , pr satisfying p0 > p1 > · · · > pr−1 > pr + 1 > 0. For an excellent
form, it was shown in [2] that its splitting pattern can be determined from (∗) in an
easy way (see [2] for details). In particular, the height h(φ) of an anisotropic excellent
quadratic form φ of dimension n is given by h(φ) = r if n is even and h(φ) = r− 1 if n is
odd.

Properties of anisotropic excellent quadratic forms suggest that the excellent forms
should be a kind of “object of lowest complexity” among anisotropic forms of a given
dimension. In some sense they can be considered as generalizations of Pfister forms to
arbitrary dimensions. (Some aspects of their splitting behavior are described in [2, cor.
2.14], which seem to support the conjecture that anisotropic excellent forms provide ex-
amples of quadratic forms of minimal canonical dimension in the sense of [6], for quadratic
forms of given dimension. An object of “highest complexity” for forms of given dimension
clearly is the “generic quadratic form” of that dimension, whose height and canonical
dimension are maximal for that dimension.) Hence the authors of [2] conjectured that,
for example, the height of an anisotropic excellent form should be the minimal possible
height for anisotropic forms of given dimension.

However, a proof of that conjecture so far could not be given with “classical” methods
of the theory of quadratic forms. But it was observed by the first and third authors that
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the results in [4] (see Theorem 1.2 here) could be used to give a simple proof for forms
of odd dimension, and, with a slight modification, for all forms of height ≤ 4. In order
to give a general proof, the methods of [4] had to be refined, which was done by the
second named author in [5], and, in addition, by proving the content of section 3. These
ingredients allowed him to assemble a general proof. The combined methods yielded the
proof given in this note.

We shall write P (n) for the set {p0, p1, . . . , pr} occurring in (∗) (note that pr coincides
with the 2-adic order v2(n) of n). Let us point out that, for n = 0, our representation is
the empty sum, so that P (0) = ∅.

The height h(n) of the integer n is the number of positive elements in P (n) (so, h(n) is
the number |P (n)| of all elements in the set P (n) for even n, while h(n) = |P (n)| − 1 for
odd n).

Let us state our Main Theorem:

Theorem 1.1. For any anisotropic quadratic form φ over a field of characteristic 6= 2,
one has

h(φ) ≥ h(dimφ) .

For even dimφ, Theorem 1.1 is proved in section 4; for odd dimφ, see Corollary 2.4.

Sometimes, instead of the splitting pattern {dim(φE)an} of φ, it is more convenient to
consider the set {i(φE)} (with E running over all field extensions of F ), where i(φE) is
the Witt index of φE. The elements of this set are called the absolute higher Witt indices
of φ (the notion of the higher Witt indices has been introduced in [2]). Putting them in
ascending order we assign to them the numbers j0 = i(φ) < j1 < · · · < jh = [(dimφ)/2]
and refer to ji = ji(φ) as the i-th (absolute) Witt index of φ.

Sometimes it is more convenient to consider the relative higher Witt indices defined for
i ∈ [1, h] as ii(φ) = ji(φ)− ji−1(φ) (for convenience, we also set i0(φ) = j0(φ); this is the
usual Witt index i(φ)).

Illustration: Let φ be an anisotropic excellent form of dimension n = 42. Then
h(φ) = h(n) = 5 and the splitting pattern of φ is given by the set {dim(φE)an} =
{42, 22, 10, 6, 2, 0}. Accordingly the set {j(φE)} of absolute Witt indices is given by
{0, 10, 16, 18, 20, 21}, and the sequence of relative Witt indices is given by 10, 6, 2, 2, 1.

The splitting pattern {n0 > n1 > · · · > nh} of φ is reconstructed from the relative
higher Witt indices and the parity of dim φ by the formulae ni−1 = ni + 2ii (i ∈ [1, h]),
taking into account that nh is 0 or 1 depending on the parity of dimφ (note that all ni
have the same parity as dimφ). Vice versa, ii = (ni−1 − ni)/2 for i ∈ [1, h].

The determination of possible values of splitting patterns is one of the main problems
in the modern theory of quadratic forms. It is known that the splitting pattern of any
quadratic form satisfies the following restriction:

Theorem 1.2 ([4]). For any integer i ∈ [1, h], there exists some m such that 2m < ni−1,
ii ∈ [1, 2m], and ii ≡ ni−1 (mod 2m).

Remark 1.3. There is the following interpretation of Theorem 1.2 in terms of the dyadic
expansion of ni−1: for an odd ni−1, the integer ii is a proper binary suffix of ni−1; for an
even ni−1, the integer ii is a proper binary suffix or a proper 2-power divisor of ni−1.
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Remark 1.4 ([8]). It is useful to keep in mind that if {n0 > n1 > · · · > nh} with
h ≥ 1 is the splitting pattern of an anisotropic quadratic form φ over a field F , then
{n1 > n2 > · · · > nh} (and, consequently, also {ni > ni+1 > · · · > nh} for any i ≤ h) is
also the splitting pattern of some quadratic form, namely, of the quadratic form (φF (φ))an.
In particular, it suffices to announce Theorem 1.2 for i = 1 only.

It turns out (see Corollary 2.4), that Theorem 1.1 in odd dimensions is an easy con-
sequence of Theorem 1.2. In even dimensions the situation is more complicated. So,
before beginning with the proof of Theorem 1.1 in even dimension, we establish one more
property of splitting patterns (see section 3).
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visiting the University of Western Ontario in London, Canada. He is extremely grateful to
the University and personally to Ján Mináč and his wife Leslie for the support, hospitality,
and excellent working conditions. The authors would like to acknowledge also valuable
suggestions by S. Gorenflo, W. Jarnicki, and A. Laghribi.

2. Relations between heights

In this section, the set {n0 > n1 > · · · > nh} is the splitting pattern of some anisotropic
quadratic form φ. The main lemma, due to the third author, is:

Lemma 2.1. For an arbitrary integer i ∈ [1, h], the difference d(i) = h(ni−1)− h(ni) is
as follows:

(I) If the dimension of φ is odd, then |d(i)| = 1.
(II) If the dimension of φ is even, then |d(i)| ≤ 2 and

(+2) if d(i) = 2, then P (ni) ⊂ P (ni−1) and v2(ni) ≥ v2(ni−1) + 2;
(+1) if d(i) = 1, then the difference P (ni) \ P (ni−1) is either empty or consists of

one element p, in which case both integers p− 1 and p+ 1 are in P (ni−1);
(0) if d(i) = 0, then the difference P (ni) \ P (ni−1) consists of one element p and

either p− 1 or p+ 1 is in P (ni−1);
(-1) if d(i) = −1, then the difference P (ni)\P (ni−1) consists either of two elements

p−1 and p+1 for some p ∈ P (ni−1), or the difference consists of one element;
(-2) if d(i) = −2, then the difference P (ni)\P (ni−1) consists of two elements (that

is, P (ni) ⊃ P (ni−1)); moreover, one of these two elements is equal to p + 1
for some p ∈ P (ni−1).

Proof. We write p0, p1, . . . , pr for the elements of P (ni−1) in descending order. We have
ni = ni−1 − 2ii. On the other hand, by Theorem 1.2, there exists a nonnegative integer
m such that 2m < ni−1, ii ≡ ni−1 (mod 2m), and 1 ≤ ii ≤ 2m. The condition 2m < ni−1

means that m < p0. Let us take the element ps with maximal even s such that m < ps.
If m = ps − 1, then ii = 2ps−1 − 2ps+1 + 2ps+2 − . . . and, therefore,

ni = 2p0 − 2p1 + · · · − 2ps−1 + 2ps+1 − 2ps+2 + · · ·+ (−1)r−12pr .

If s = r and pr−1 +1 = pr−2, we get that P (ni) is P (ni−1) without pr and pr−2. Otherwise,
P (ni) is P (ni−1) without ps.

Below in this proof, we are assuming that m < ps − 1.
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If s = r (and m < pr − 1), then ii = 2m and ni = ni−1 − 2m+1. In the case when
m = pr − 2 we get that P (ni) is P (ni−1) with pr transformed to pr − 1. In the case when
m < pr − 2 we get that P (ni) is P (ni−1) with m + 1 added.

Below in this proof, we are assuming that s < r.
If ps − 1 > m > ps+1, then ii = 2m − 2ps+1 + 2ps+2 − . . . and, therefore,

ni = 2p0 − 2p1 + · · · − 2ps−1 + 2ps − 2m+1 + 2ps+1 − 2ps+2 + · · ·+ (−1)r+12pr .

This is the right representation of ni (and, therefore, P (ni) is P (ni−1) with m+ 1 added).
It remains to consider the case with m ≤ ps+1 (while s < r). For this case, let us first

assume that s = r − 1. Then ii = 2m and ni = ni−1 − 2m+1. If m < pr − 2, then P (ni) is
P (ni−1) with pr+1 and m+1 added. If m = pr−2, then P (ni) is P (ni−1) with pr removed
and pr + 1 and pr − 1 added. In the case with m = pr − 1, one has: if pr−1 > pr + 2,
then P (ni) is P (ni−1) with pr removed and pr + 1 added; if pr−1 = pr + 2, then P (ni) is
P (ni−1) with pr and pr−1 removed while pr + 1 added. Finally, in the case with m = pr,
we have: if pr−1 = pr + 2, then P (ni) is P (ni−1) without pr−1, otherwise P (ni) is P (ni−1)
with pr + 2 added.

We finish the proof considering the case with m ≤ ps+1 and s < r − 1. We have:
ii = 2ps+2 − 2ps+3 + · · ·+ (−1)r2pr and

ni = 2p0 − 2p1 + · · · + 2ps − 2ps+1+1 + 2ps+1 − 2ps+2 + · · · + (−1)r+12pr .

So, if ps > ps+1 +1, then P (ni) is P (ni−1) with ps+1 +1 added; otherwise P (ni) is P (ni−1)
with ps removed. ¤
Corollary 2.2. For odd-dimensional φ, and for any i ∈ [1, h], one has

h(ni−1)− h(ni) ≤ 1 .

¤
Remark 2.3. In fact, for odd-dimensional φ, we have h(ni) = h(ni−1)± 1, which is true
as well for an even-dimensional φ, if ii is a proper binary suffix (and not a proper 2-power
divisor) of ni−1 (see Remark 1.3), but we will not use this fact explicitly during our proof.

Corollary 2.4. For the height h(φ) of an arbitrary anisotropic quadratic form φ of odd
dimension n, one has h(φ) ≥ h(n) (that is, Theorem 1.1 holds in odd dimension).

Proof. We have: h(nh) = 0 (simply because nh = 1) and (by Corollary 2.2) h(ni−1) −
h(ni) ≤ 1 for every i ∈ [1, h]. Therefore, h(n0) ≤ h. Since φ is assumed to be anisotropic,
n = n0, and we are done. ¤

3. One more property of splitting patterns

In this section, {n0 > n1 > · · · > nh} with h ≥ 1 is the splitting pattern of an
anisotropic quadratic form φ of even dimension n = n0. We write X for the projective
quadric given by φ (see [5] for the definition of the reduced modulo 2 Chow group C̄h of
a variety and for the terminology concerning algebraic cycles on X 2 = X ×X).

Proposition 3.1 ([5, th. 3.3 and th. 5.1]). Let α ∈ C̄h(X2) be the minimal cycle con-
taining h0 × l0. Assume that α also contains hq × lq for some integer q ∈ [1, [n/2])
and take the minimal q with this property. Let i ∈ [1, h) be the maximal integer such
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that ji ≤ q (then in fact q = ji by [5, prop. 3.1]). Then v2(ii+1) ≥ v2(i1). Moreover, if
v2(i2 + · · · + ii) ≥ v2(i1) + 2 (in particular, if i = 1, in which case the sum i2 + · · · + ii
is understood to be 0, while by definition v2(0) = ∞), then v2(ii+1) ≤ v2(i1) + 1 so that
v2(ii+1) is equal to v2(i1) or v2(i1) + 1 in this case.

A situation in which the condition on α in Proposition 3.1 is always satisfied, is described
in:

Theorem 3.2 ([3], for a more elementary proof see [7]). If n1 + i1 (= n0 − i1) is not a
2 power, then the minimal cycle on X2 containing h0 × l0 also contains hq × lq for some
q ∈ [1, [n/2]).

The main result of the current section, which is the basement of the proof of Theorem
1.1 for even dimension, is:

Theorem 3.3. Assume that v2(ni) ≥ v2(ni−1) + 2 for some i ∈ [1, h). Then the open
interval (i, h), contains an integer i′ ∈ (i, h) such that |v2(ni′)− v2(ni−1)| ≤ 1.

Proof. It suffices to consider the case of i = 1 (see Remark 1.4). Note that h ≥ 2
(otherwise [1, h) = ∅). We set p = v2(n0). By assumption, we have v2(n1) ≥ p + 2.
Therefore v2(i1) = p− 1. Clearly, i1 + n1 is not a power of 2; therefore, by Theorem 3.2,
the minimal cycle on X2 containing h0×l0 also contains hq×lq for some q ∈ [1, [n/2]). Let
j be the maximal integer satisfying jj ≤ q. We are going to show that v2(nj) or v2(nj+1)
is in [p− 1, p+ 1] for this j. Then we can take i′ = j in the first case and i′ = j+ 1 in the
second case. Note that i′ 6= 1, h (because of v2(n1) ≥ p + 2, while v2(nh) = ∞; we recall
that dimφ is even in this section).

By the first part of Proposition 3.1, v2(ij+1) ≥ p − 1. Consequently, by Theorem 1.2,
v2(nj) ≥ p−1 as well. Since n1 = 2(i2+· · ·+ij)+nj, it follows that v2(i2+· · ·+ij)+1 ≥ p−1.
If v2(i2 + · · ·+ ij) < p+ 1, then v2(nj) = v2(i2 + · · ·+ ij) + 1 ∈ [p−1, p+ 1]. So, it remains
to consider the case when v2(i2 + · · ·+ ij) ≥ p+ 1, where we may apply the second part of
Proposition 3.1 as well, stating that v2(ij+1) ∈ {p− 1, p}. Since now v2(nj) ≥ p+ 2 while
nj = 2ij+1 + nj+1, it follows that v2(nj+1) = v2(ij+1) + 1 ∈ {p, p+ 1}. ¤
Corollary 3.4. Under the condition of Theorem 3.3, we set p = v2(ni−1) (note that
p ∈ P (ni−1), while minP (ni) ≥ p + 2). Then there exists i′ ∈ (i, h) such that the set
P (ni′) contains an element p′ with |p′ − p| ≤ 1.

Proof. Take i′ as in Theorem 3.3 and set p′ = v2(ni′). ¤

4. Proof of the Main Theorem

Proof of Theorem 1.1. We only need to prove Theorem 1.1 for even-dimensional forms
(see Corollary 2.4). So, let {n0 > n1 > · · · > nh} with h ≥ 1 be the splitting pattern of
an anisotropic quadratic form φ of even dimension n = n0.

Let H be the set {1, 2, . . . , h} of h = h(φ) elements. For any i ∈ H, we let d(i) =
h(ni−1) − h(ni). Let C be the subset of H consisting of all i ∈ H such that d(i) = 2
(we recall that d(i) ≤ 2 for any i ∈ H by Lemma 2.1). We prove Theorem 1.1 by
constructing a map f : C → H such that d(j) ≤ 1 − |f−1(j)| for any j ∈ f(C) (in
particular, f(C) ⊂ H \ C). Since the subsets f−1(j) ∪ {j}, where j runs over H \ C, are
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disjoint and cover H, while the average value of d on each such subset is ≤ 1, the average
value of d on H is ≤ 1, and the statement of Theorem 1.1 follows by the same argument
as the proof of the odd-dimensional case (see Corollary 2.4).

To define f , let us consider any i ∈ C. By Lemma 2.1, v2(ni) ≥ v2(ni−1)+2. Therefore,
by Corollary 3.4, there exists i′ ∈ (i, h) such that the set P (ni′) contains an element p′

satisfying |p′ − p| ≤ 1 for p = v2(ni−1). Taking the minimal i′ with this property, we set
f(i) = i′. Also we define g(i) to be the minimal element of P (nf(i)) such that |g(i)−p| ≤ 1.

The map f is constructed. It only remains to check the stated properties of f .
First of all we note that by the very definition of f , for any j ∈ f(C), the difference

of sets P (nj) \ P (nj−1) is nonempty (and so, d(j) 6= 2 by Item II+2 of Lemma 2.1).
Moreover, this difference contains an element p such that {p− 1, p+ 1} 6⊂ P (nj−1) (and
so, d(j) 6= 1 by Item II+1 of Lemma 2.1). Therefore, by Lemma 2.1, d(j) ≤ 0.

Now let j be an element of f(C) with |f−1(j)| ≥ 2. Let i1 < i2 be two different elements
of f−1(j). Note that i1 < i2 < j and |p2 − p1| > 1 (where p1 = v2(ni1−1), p2 = v2(ni2−1))
by definition of f(i1). We are going to show that d(j) ≤ −1. As we already know,
d(j) ≤ 0. If d(j) = 0, then by Item II-0 of Lemma 2.1 the difference P (nj) \ P (nj−1)
consists of one element p′ and either p′ − 1 or p′ + 1 is in P (nj−1). Since the difference
P (nj) \ P (nj−1) consists of one element p′, we have p′ = g(i1) = g(i2), and it follows that
{p1, p2} = {p′ − 1, p′ + 1} (in particular, |p2 − p1| = 2). Consequently, the set P (nj−1)
contains neither p′ − 1 nor p′ + 1, a contradiction.

Now let j be an element of f(C) with |f−1(j)| ≥ 3. Let i1, i2, i3 be three different
elements of f−1(j). The equalities g(i1) = g(i2) = g(i3) do not hold simultaneously
(simply because the three conditions |p2 − p1| = 2, |p3 − p2| = 2, and |p1 − p3| = 2 can
not be satisfied simultaneously). On the other hand, the difference P (nj) \ P (nj−1) can
have at most two elements. Therefore we may assume that g(i1) = g(i2) and that g(i3)
is different from g(i1) = g(i2). We set p′ = g(i1) = g(i2). We are going to show that
d(j) = −2. As we already know, d(j) ≤ −1. If d(j) = −1, then by Item II-1 of Lemma 2.1
the difference P (nj) \ P (nj−1) consists of p̃− 1 and p̃+ 1 for some p̃ ∈ P (nj−1). However
p′ is neither p̃− 1 nor p̃+ 1, a contradiction.

We finish the proof by showing that |f−1(j)| is never ≥ 4. Indeed, if |f−1(j)| ≥ 4, then
the difference P (nj) \ P (nj−1) contains two elements p′ and p′′ such that none of p′ ± 1
and of p′′ ± 1 is in P (nj−1), contradicting Lemma 2.1. ¤

5. Final Example

We close with an illustration: Let φ be an anisotropic quadratic form of dimension n
over a field of characteristic not 2. Above we proved that h(φ) ∈ [h(n), [n/2]]. For n odd
one can be more specific. It is a nice exercise to deduce that h(φ) ≡ h(n) mod 2 for
forms of odd dimension n. So,

h(φ) ∈ {h(n), h(n) + 2, . . . , (n− 1)/2}.

Example: For n = 21 we have h(n) = 4, hence h(φ) ∈ {4, 6, 8, 10} and, in fact, each
of the four values is the height h(φ) of some 21-dimensional anisotropic form φ, cf. [11].
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