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Abstract. In the mid-1960s Borevič and Faddeev initiated the
study of the Galois module structure of groups of pth-power classes
of cyclic extensions K/F of pth-power degree. They determined
the structure of these modules in the case when F is a local field.
In this paper we determine these Galois modules for all base fields
F .
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Introduction and Main Theorems

In 1947 Šafarevič initiated the study of Galois groups of maximal
p-extensions of fields with the case of local fields [Ša47], and this study
has grown into what is both an elegant theory as well as an efficient tool
in the arithmetic of fields. From the very beginning it became clear that
the groups of pth-power classes of the various field extensions of a base
field encode basic information about the structure of the Galois groups
of maximal p-extensions. (See [Ko02, Se02].) Such groups of pth-power
classes arise naturally in studies in arithmetic algebraic geometry, as
for example in studies of elliptic curves.

In 1960 Faddeev began to study the Galois module structure of pth-
power classes of cyclic p-extensions, again in the case of local fields, and
during the mid-1960s he and Borevič established the structure of these
Galois modules using basic arithmetic invariants attached to Galois
extensions. (See [Fa60, Bo65].) In 2003 two of the authors ascertained
the Galois module structure of pth-power classes in the case of cyclic
extensions of degree p over all base fields F containing a primitive pth
root of unity [MS03]. Very recently, this work paved the way for the
determination of the entire Galois cohomology as a Galois module in
the case of a cyclic extension of degree p of a base field containing a
primitive pth root of unity, using Voevodsky’s recent work on Galois
cohomology ([LMS]; see [Vo03, Vo]).

In this paper we extend the results obtained in [MS03] in two di-
rections. First, our results hold for cyclic extensions of any pth-power
degree, rather than just p, and, furthermore, we no longer require that
the base field contain a primitive pth root of unity. Thus our results
provide a complete determination of pth-power classes as Galois mod-
ules for all cyclic extensions of pth-power degree.

We expect that, just as the results and techniques in [MS03] helped to
determine the entire Milnor K-theory modulo p as a Galois module in
the case of cyclic extensions of degree p, so will the results and methods
developed in this paper lead to the determination of the entire Milnor
K-theory modulo p as a Galois module in the case of cyclic extensions
of pth-power degree. In fact, precisely such a generalization has already
taken place in the case of characteristic p [BLMS].

Similarly, in the same way as the results and techniques developed
in [MS03] led in [MS] to the solution of Galois embedding problems
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and the discovery of a new automatic realization of Galois groups, it is
clear that the results in this paper will also have such Galois-theoretic
applications. In a subsequent paper [MSSa] we will consider some of
these applications.

Our basic approach to the problem is induction, and some of the
results in [MS03] handle the base case. In the end, however, neither the
results nor the techniques employed are straightforward generalizations
of the work in [MS03]. First, the possible generalization of the innocent
summand of dimension 1 or 2 considered in [MS03] turned out to be
rather subtle to handle. These new summands of dimension pi + 1 for
some i ∈ N are very interesting invariants of cyclic extensions of pth-
power degree. Another substantial challenge was to generate enough
norms, and the resolution involves several thorny induction arguments.
Finally, the case p = 2 presented a new problem for quartic extensions,
and this problem is taken care of as a separate base induction case.

Fundamentally, the classification of pth-power classes as Galois mod-
ules depends upon arithmetic invariants, all of which originate from the
images of the norms of the intermediate fields of K/F . The classifica-
tion, in short, has the flavor of local class field theory, and although
the arguments underlying the classification are not straightforward, the
final results, just as in local class field theory, have a rather simple and
elegant form, which we now describe.

Let p be a prime number, n ≥ 1 an integer, F an arbitrary field,
and K a Galois extension of F with group G = 〈σ〉 cyclic of order
pn. Let F× denote the multiplicative group of nonzero elements of F .
Let J = J(K) = K×/K×p be the Fp[G]-module of pth-power classes,
denoted by [γ] for γ ∈ K×. Similarly, let J(F ) = F×/F×p be the Fp-
module of pth-power classes of F×, denoted by [f ]F for f ∈ F×. Let
NK/F : K → F be the norm map, and write N : K×/K×p → F×/F×p

for the map induced by NK/F . Also by abuse of notation we use the
same symbol N to denote the endomorphism N : K×/K×p → K×/K×p

induced by N : K×/K×p → F×/F×p defined above, followed by the
map induced by the inclusion map ǫ = ǫK : F× → K×.

Further let Ki, i = 0, . . . , n, be the intermediate field of K/F such
that [Ki : F ] = pi. Denote by Hi the Galois group Gal(K/Ki) ⊂ G.
Let [K×

i ] denote the submodule of J which is the image of the map
induced by the inclusion map K×

i → K× :
[

K×
i

]

= K×
i K×p/K×p.

Similarly, for other G-submodules A ⊂ K×, such as A = NKi/F (K×
i ),

let [A] = AK×/K×p.
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Theorem 1. Suppose that either

• ξp 6∈ F , or
• p = 2, n = 1, and −1 6∈ NK/F (K×).

Then the Fp[G]-module J decomposes as

J = Yn ⊕ Yn−1 ⊕ · · · ⊕ Y0,

where Yi is a direct sum of cyclic Fp[G]-modules of dimension pi and

[K×
i ] = JHi , 0 ≤ i ≤ n.

It is easy to show that this decomposition of J is unique. (In fact
this also follows from a well-known result of Azumaya. See [AnFu73,
page 144].) In the following corollary we determine the sizes of the
modules Yi in terms of norms. Observe that direct sums of cyclic
Fp[G]-modules of dimension pi are free Fp[G/Hi]-modules. Let

ei = dimFp

([

NKi/F

(

K×
i

)]

/
[

NKi+1/F

(

K×
i+1

)])

, 0 ≤ i < n,

and let en = dimFp
[NK/F (K×)].

Corollary 1. For each 0 ≤ i ≤ n,

[NKi/F (K×
i )] = (Yi + Yi+1 + · · · + Yn)G,

and

rankFp[G/Hi] Yi = ei.

For K/F not satisfying the conditions of the theorem above, we
adopt the conventions K×

−∞ = {1} and p−∞ = 0 and make the following
definition.

Definition (Exceptional Element). Suppose that ξp ∈ F and, if p = 2,
that either n > 1 or −1 ∈ NK/F (K×). We set

i(K/F ) := min{ i ∈ {−∞, 0, 1, . . . , n} | ∃δ ∈ K× such that

[NK/F (δ)]F 6= [1]F and

[δ]τ−1 ∈ [K×
i ] ∀τ ∈ Gal(K/F )}.

We say that δ ∈ K× is an exceptional element of K/F if [NK/F (δ)]F 6=
[1]F and [δ]τ−1 ∈ [K×

i(K/F )] for all τ ∈ Gal(K/F ). Elements of K× that

are not exceptional are said to be unexceptional. For simplicity, we
often write m instead of i(K/F ).
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Observe that [δ](τ−1) ∈ [K×
i ] for all τ ∈ G if and only if [δ](σ−1) ∈

[K×
i ] for a fixed generator σ ∈ G. In what follows we will use this

formulation for our given generator σ.

Note that if δ is an exceptional element then m = i(K/F ) = −∞ if
and only if [δ]σ = [δ] and [NK/F (δ)]F 6= [1]F .

Because the exceptionality of an element γ ∈ K× is independent of
the particular representative γ of [γ], we define [γ] to be exceptional if γ
is exceptional. It is also useful to observe that if an Fp[G]-generator [γ]
of a module Mγ ⊂ J is exceptional, then so is any other Fp[G]-generator
[ω] of Mγ . Indeed, using additive notation for J for the moment, any
such generator [ω] has the form

[ω] = c0[γ]+c1(σ−1)[γ]+c2(σ−1)2[γ]+ . . . , c0, c1, · · · ∈ Fp, c0 6= 0.

Then [NK/F (ω)]F = [NK/F (γ)]c0F 6= [1] and [ω]σ−1 ∈ [K×
m].

In Proposition 2 we show that exceptional elements always exist for
K/F satisfying the hypothesis in the Definition above, and in Propo-
sition 7 we show that, in fact, m ≤ n − 1. Finally, note that since
NK/F (K×

n−1) ⊂ F×p, each exceptional element δ ∈ K×
n \ K×

n−1.

Moreover, for these K/F , we have Kummer theory, because ξp ∈ F .
Hence K1 = F ( p

√
a) for some a ∈ F . In section 4 we prove some

more specific results about exceptional elements in terms of a: excep-
tional elements satisfy [NK/F (δ)]F = [a]sF for s 6≡ 0 mod p and that
for all K/F as above, an exceptional element δ ∈ K× exists satisfying
[NK/F (δ)]F = [a]F .

Theorem 2. Suppose that ξp ∈ F and, if p = 2, that either n > 1 or
−1 ∈ NK/F (K×).

Let δ ∈ K× be any exceptional element of K/F . Then the Fp[G]-
module J decomposes as

J = X ⊕ Y, Y = Yn ⊕ Yn−1 ⊕ · · · ⊕ Y0,

where

(1) X is the cyclic Fp[G]-module generated by [δ], with dimension
pm + 1;

(2) Yi is a direct sum of cyclic Fp[G]-modules of dimension pi; and
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(3) for i ∈ {0, . . . , n},

[K×
i ] =

{

X(σ−1) ⊕ Y Hi , m ≤ i;

X(σ−1)(σpi
−1)pm−i

−1 ⊕ Y Hi , i < m.

(Here X(σ−1) and X(σ−1)(σ−1)pm−i
−1

denote images of X under the

action of (σ − 1) and (σ − 1)(σpi − 1)pm−i−1 respectively.)

As before, let

ei = dimFp

([

NKi/F

(

K×
i

)]

/
[

NKi+1/F

(

K×
i+1

)])

, 0 ≤ i < n,

and let en = dimFp
[NK/F (K×)].

Corollary 2. For each m < i ≤ n,

[NKi/F (K×
i )] = (Yi + Yi+1 + · · · + Yn)G,

and, if m ≥ 0, for each 0 ≤ i ≤ m,

[NKi/F (K×
i )] = (X + Yi + Yi+1 + · · · + Yn)G.

For i 6= m,

rankFp[G/Hi] Yi = ei,

while if m ≥ 0,

1 + rankFp[G/Hm] Ym = em.

Finally, we present several interesting conditions equivalent to m =
i(K/F ) being a particular element of the subset of field indices E =
{−∞, 0, . . . , n−1}. To express these conditions, we define −∞∔1 = 0
and, for e ∈ E with e ≥ 0, we define e ∔ 1 = e + 1. We also set
NKn−1/F (K×

−∞) to be {1}.

Theorem 3. Suppose that ξp ∈ F and, if p > 2, that either n > 1 or
−1 ∈ NK/F (K×).

Then

i(K/F ) = min
{

s | ξp ∈ NK/F (K×)NKn−1/F (K×
s )

}

= min
{

s | ξp ∈ NK/Ks∔1
(K×)

}

= min
{

s | ∃[δ] ∈ JHs∔1 , [NK/Ks∔1
δ]Ks∔1

6= [1]Ks∔1

}

.
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One can also connect these equalities with the existence of solutions
of particular Galois embedding problems. This connection will be pur-
sued in a forthcoming paper. (See [MSSa].) X summands also lead
naturally to the investigation of some cyclotomic cyclic algebras over
F which, in turn, allow us to construct fields with prescribed X sum-
mands. This topic will also be pursued in a subsequent paper. (See
[MSSb].)

The proofs of Theorems 1 and 2 are inductive, resting on the base
case n = 1 for Theorem 1 and two base cases n = 1 and p = 2, n = 2
for Theorem 2. In these base cases as well as the inductive proof, we
employ lemmas which establish the structure of the fixed submodule
JG of J—in particular, whether this fixed submodule is no more than
the image of the pth-power classes of the base field F—and specify
which of these elements are norms.

In fact, these lemmas reflect what has emerged, both in this work as
well as in the work on determining the entire Milnor K-theory modulo
p as a Galois module (see [BLMS] and [LMS]), as two essential foun-
dational ingredients in the proof. The first is Hilbert’s Theorem 90,
which in our situation may be viewed as a principle saying that we have
enough norms. Indeed, Hilbert 90 tells us that the kernel of the norm
map is as small as possible. In order to use Hilbert 90 effectively, we
need again and again the technical refinements of this principle telling
us that certain elements in a group of pth-power classes are norms. In
this work these refinements, for example, begin with Lemmas 10, 11,
and 12 (identifying some fixed elements as norms), and are completed
in the full proofs of Theorems 1 and 2.

The second essential ingredient is control of the image of pth-power
classes of the base field in the group of pth-power classes of our field
extension, which in this work is obtained from Lemma 6 (the Exact
Sequence Lemma) and its technical relative Lemma 5 (the Fixed Sub-
module Lemma). In this paper, both of these principles are elementary,
but they are more sophisticated in the higher Milnor K-theory case.
It is remarkable that one requires only repetitions of these two prin-
ciples in order to determine fully the Galois module structure of the
modules in question. Drawing out the structure from only these two
first principles, however, does not come without cost, and a number of
technical observations turn out to be necessary for us to fit the puzzle
pieces together.
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When ξp ∈ F , we need additional information to determine when an
element [γ] ∈ JHi lies in [K×

i ] or is instead an exceptional element. We
begin by standardizing choices of the ai in the presentations of subfields
Ki+1 = Ki(

√
ai) in section 1.2. Then, in section 1.4, we collect several

results used in identifying elements of [K×
i ]. These are the Submodule-

Subfield Lemma (7) for free components, the Norm Lemma (8) for
comparisons among norms from K to various Ki (in order to determine
when an exceptional element for K/F is an exceptional element for
K/Ki), and the Proper Subfield Lemma (9) for elements that generate
sufficiently small cyclic submodules.

In section 1.1, we present lemmas which we use to manipulate Fp[G]-
representations formally: the Inclusion Lemma (1), the Exclusion Lem-
ma (2), and the Free Complement Lemma (3).

We begin the proof by proving the base cases for an induction in
section 2. Our inductive strategy is first to show that J contains a suf-
ficiently large direct sum of Fp[G]-submodules of pth-power dimensions.
We do so in section 3 in Proposition 6, the result of which is already
enough to prove Theorem 1. When ξp ∈ F and, if p = 2, n > 1, we
also need to establish the dimension of the X component and connect
notions of exceptional elements for subextensions K/Ki. We do so in
section 4. In section 5, we prove an analogue of Proposition 6 which
establishes Theorem 2 without the independence of X and Y , and then
we prove Theorem 2 fully. Finally, in section 7, we prove Theorem 3.

For the reader’s convenience, we have made our paper self-contained;
in particular, it is independent from [MS03].

1. Notation and Lemmas

1.1. Fp[G]-modules.

Let G be a cyclic group of order pn with generator σ. For an Fp[G]-
module U , let UG denote the submodule of U fixed by G, and for an
arbitrary element u ∈ U , let l(u) denote the dimension of the Fp[G]-
submodule of U generated by u. Denote by N the operator (σ−1)pn−1

acting on U . For an Fp[G]-module V and an element γ ∈ V , let 〈γ〉
denote the Fp-subspace of V spanned by γ, and let Mγ denote the
cyclic Fp[G]-module generated by γ. If [γ] is an element of K×/K×p

represented by γ ∈ K×, we write Mγ instead of M[γ].
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We will usually use additive notation for general Fp[G]-modules,
switching to multiplicative notation when considering the specific mod-
ule J = K×/K×p. However, occasionally even in this case we employ
additive notation, in particular writing {0} to denote {[1]}.
Lemma 1 (Inclusion Lemma). Let U and V be Fp[G]-modules con-
tained in an Fp[G]-module W . Suppose that (U + V )G ⊂ U and for
each w ∈ (U + V ) \ (U + V )G there exists u ∈ U such that

(σ − 1)l(w)−1(w) = N(u).

Then V ⊂ U .

Proof. Let {Ti}s
i=1 be the socle series of U + V : T1 = (U + V )G and

Ti+1/Ti = ((U + V )/Ti)
G, and let s be the least natural number such

that Ts = U + V . Observe that since (σ − 1)pn

= 0, we have s ≤ pn.
We prove the lemma by induction on the socle series.

By hypothesis, T1 ⊂ U . Assume now that Ti ⊂ U for some i < s.
Then for each w ∈ Ti+1 \Ti we have l(w) = i+1 and (σ−1)l(w)−1(w) =
N(u) = (σ − 1)pn−1(u) for some u ∈ U . Therefore

(σ − 1)l(w)−1
(

w − (σ − 1)pn−l(w)(u)
)

= 0.

Therefore w− (σ− 1)pn−l(w)(u) ∈ Ti ⊂ U . Hence w ∈ U and Ti+1 ⊂ U .
Therefore U + V = U and V ⊂ U as required. ¤

Lemma 2 (Exclusion Lemma). Let U and V be Fp[G]-modules con-
tained in an Fp[G]-module W . Suppose that UG ∩ V G = {0}. Then
U + V = U ⊕ V .

Proof. Let Z = U ∩ V and suppose that y ∈ Z \ {0}. Let

z = (σ − 1)l(y)−1(y) 6= 0.

Then z ∈ UG ∩ V G, a contradiction. Hence U ∩ V = {0} and U + V =
U ⊕ V . ¤

The following lemma follows from the fact that each free Fp[G]-
module is injective. (See [Ca96, Theorem 11.2].) We shall, however,
provide a direct proof.

Lemma 3 (Free Complement Lemma). Let V ⊂ U be free Fp[G]-

modules. Then there exists a free Fp[G]-submodule Ṽ of U such that

V ⊕ Ṽ = U .
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Proof. Let Z be a complement of V G in UG as Fp-vector spaces, and
let Z be an Fp-base of Z. For each z ∈ Z, there exists u(z) such
that z = N(u(z)). Let M(z) be the Fp[G]-submodule of U generated
by u(z). Then M(z) is a free Fp[G]-submodule. Moreover, its fixed
submodule M(z)G is the Fp-vector subspace generated by z.

We claim that the M(z), z ∈ Z, are independent. First we show
by induction on the number of modules that a finite set of mod-
ules M(z) is independent. The base case is trivial. Now let W =
M(z) ∩ ∑

z′ 6=z M(z′). Now by the inductive assumption on indepen-

dence, (
∑

z′ 6=z M(z′))G =
∑

z′ 6=z M(z′)G, and for each z, M(z)G = 〈z〉.
Since the z form an Fp-base for Z, we obtain WG = {0}. The Exclusion
Lemma (2) then gives that M(z)+

∑

z′ 6=z M(z′) = M(z)⊕∑

z′ 6=z M(z′).

The case of an infinite sum follows from the same argument, since
the fact that m ∈ M(z)G ∩

∑

z′ 6=z M(z′)G forces m to be a finite sum

of elements m(z′). Hence the M(z), z ∈ Z, are independent.

Set Ṽ := ⊕z∈ZM(z). Then Ṽ is a free Fp[G]-submodule of U and

Ṽ G = Z. By the Exclusion Lemma (2), we have that V + Ṽ = V ⊕ Ṽ
and (V ⊕ Ṽ )G = V G ⊕ Ṽ G = UG.

Now let u ∈ U be arbitrary and let M be the cyclic Fp[G]-submodule

of U generated by u. Then (M + V + Ṽ )G ⊂ UG ⊂ V + Ṽ . Moreover,
for any m ∈ (M + V + Ṽ ) \ (M + V + Ṽ )G,

(σ − 1)l(m)−1(m) ∈ (M + V + Ṽ )G ⊂ UG = (V + Ṽ )G = N(V + Ṽ )

by the freeness of V and Ṽ . By the Inclusion Lemma (1), then, M ⊂
V + Ṽ . Hence U = V ⊕ Ṽ . ¤

Remark. At several points later, we use the same argument as that
contained in the proof above to show that a possibly infinite set of
modules is independent, and we use the Exclusion Lemma (2) as an
abbreviation for this argument.

1.2. Kummer Subfields of K/F and Exceptional Elements.

Suppose that ξp ∈ F . In this case we have Kummer theory and may
organize presentations of the extensions Ki+1/Ki as follows.

Proposition 1 (Subfield Generators). We may choose ai ∈ K×
i , 0 ≤

i < n such that



GALOIS MODULE STRUCTURE OF pTH-POWER CLASSES 11

• Ki+1 = Ki( p
√

ai) and
• NKi/Kj

ai = aj for all 0 ≤ j < i < n.

In what follows we will assume that the choices of ai have been made
according to Proposition 1, and we set a = a0.

We prove this result by means of the following

Lemma 4. Suppose that ξp ∈ K and let L′/K be a cyclic extension of
degree p2 with L/K the intermediate extension of degree p. Then, for

every b ∈ L with L′ = L( p
√

b), we have L = K( p
√

NL/K(b)).

Proof. Let σ be a generator of Gal(L′/K). For each i ∈ {1, 2, . . . , p−1},
we have

(

p
√

b
)σi

=
p
√

bσi

for a suitable choice of a pth root of bσi

. Hence
(

p
√

b
)1+σ+···+σp−1

=
p
√

b1+σ+···+σp−1 = p

√

NL/K(b) ∈ L′

for a suitable choice of a pth root of NL/K(b).

Observe that since ξp ∈ K the equality
(

p
√

b
)(1+σ+···+σp−1)(σ−1)

=
p
√

b
σp−1

= p

√

NL/K(b)
σ−1

is independent of the choice of pth roots. Moreover, since L′ = L( p
√

b)

and σp generates Gal(L′/L), we see that p
√

b
σp−1 6= 1. Hence we con-

clude that L = K( p
√

NL/K(b)). ¤

Proof of Proposition 1. By Kummer theory, there exists an−1 ∈ K×
n−1

such that Kn = Kn−1( p
√

an−1). Then inductively define

an−i = NKn−i+1/Kn−i
(an−i+1)

for i ∈ {2, . . . , n}. Applying the lemma to extensions Kn−i+2/Kn−i, we
have the results. ¤

Our definition of exceptional elements makes use of a subset of the
set {δ ∈ K× | [NK/F (δ)]F 6= [1]F}. In general, however, this latter
set may be empty. Consider, for example, the extension C/R, for
which NC/R(C×) ⊂ R

×2. The next proposition shows that under the
conditions we require in the definition of exceptional elements, this set
is never empty and therefore exceptional elements exist.
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Proposition 2. Let ξp ∈ F and, if p = 2, that n > 1 or −1 ∈
NK/F (K×). Then an exceptional element δ exists.

Proof. Consider δ = p
√

an−1. If p > 2 then NK/Kn−1(δ) = an−1 and
hence NK/F (δ) = a0 = a. Now if p = 2 then NK/Kn−1(δ) = −an−1

and for n > 1 we similarly have NK/F (δ) = a0 = a. If p = 2 and
n = 1, then −a = NK/F (

√
a) and hence −1 ∈ NK/F (K×) if and only

if a ∈ NK/F (K×). Consequently, under our hypothesis, exceptional
elements always exist. ¤

1.3. The Fixed Submodule JG of J.

Recall that we write [F×] for F×K×p/K×p ⊂ J .

The following lemmas generalize [MS03, Lemma 2 and Remark 2]:

Lemma 5 (Fixed Submodule Lemma).

(1) If ξp 6∈ NK/F (K×),

JG = [F×].

(2) If ξp ∈ NK/F (K×),

JG = 〈[δ]〉 ⊕ [F×],

where δ ∈ K× with δσ−1 = λp, NK/F (λ) is a primitive pth root of
unity, and [NK/F (δ)]F = [a]F . In particular, δ is an exceptional
element of K/F .

Proof. Suppose that θ ∈ K× such that [θ] ∈ JG. Then θσ−1 = λp for
some λ ∈ K×, and hence NK/F (λ)p = 1. Therefore NK/F (λ) is a pth
root of unity.

Now consider the first case, ξp 6∈ NK/F (K×). Then NK/F (λ) = 1,
because otherwise ξp would be the norm of a suitable power of λ. From
Hilbert 90 we see that θσ−1 = (kp)σ−1 for some k ∈ K×. We conclude
that θ/kp ∈ F× and hence [θ] = [f ] for some f ∈ F×. Therefore if
ξp 6∈ NK/F (K×) then JG = [F×] as required.

Now assume that ξp ∈ NK/F (K×). Then ξp = NK/F (λ) for some
λ ∈ K× and by Hilbert 90 there exists an element δ ∈ K× such that
δσ−1 = λp. Then the Fp[G]-submodule of J generated by [δ] and ǫ(F×)
is isomorphic to [F×] ⊕ 〈[δ]〉.
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By [Al35, Theorem 3], K( p
√

δ) is a cyclic extension of F of degree
pn+1. Then repeated application of Lemma 4 gives that

Kn−i = Kn−i−1

(

p

√

NKn/Kn−i−1
(δ)

)

for i ∈ {0, 1, . . . , n − 1}. Hence K1 = F ( p
√

NK/F (δ)). By Kummer
theory, 〈[NK/F (δ)]F 〉 = 〈[a]F 〉 as subgroups of F×/F×p. By replacing
δ with another power if necessary, then, [NK/F (δ)]F = [a]F and δσ−1 =
λp, where NK/F (λ) is a primitive pth root of unity. We have that

[δ](σ−1) = [1] and so by definition δ is exceptional for K/F .

Now for each [θ] ∈ JG, θσ−1 = νp with NK/F (ν) = NK/F (λ)c for some
c ∈ Z. Then we have (θδ−c)σ−1 = νpλ−pc. Because N(νλ−c) = 1, from
Hilbert 90 we see that there exists ω ∈ K× such that ωσ−1 = νλ−c.
Hence (θδ−c)σ−1 = (ωp)σ−1 and we see that [θ] ∈ [F×] + [δ]c. Hence
JG ∼= [F×] ⊕ 〈[δ]〉, as required. ¤

Lemma 6 (Exact Sequence Lemma). There is an exact sequence

1 → A → F×/F×p ǫ−→ JG N−→ A

where A = (F× ∩ K×p)/F×p, ǫ is the natural homomorphism induced
by the inclusion F× → K×, and N is the homomorphism induced by
the norm map NK/F : K× → F×.

• If ξp 6∈ F , then A = 1.
• If ξp ∈ F , A = 〈[a]〉, in which case the map N is surjective if

and only if ξp ∈ NK/F (K×).

Proof. If ξp ∈ F , then Kummer theory implies that the first occurrence
of A in the exact sequence above is equal to A = 〈[a]F 〉. Otherwise,
suppose that ξp /∈ F . If char(F ) = p then no primitive pth root of unity
lies in the algebraic closure of F , whence ξp /∈ K. If char(F ) 6= p, then
since 2 ≤ [F (ξp) : F ] ≤ p − 1 and [K : F ] = pn, we similarly obtain
ξp /∈ K. In any case, then, ξp /∈ K. Assume that kp = f ∈ F×. Then
(kp)σ−1 = (kσ−1)p = 1, whence kσ−1 is a pth root of unity, which must
be 1. Hence kσ−1 = 1, and we deduce k ∈ F and f ∈ F×p. Therefore
A = 1.

The Fixed Submodule Lemma (5) then gives exactness at JG and
that N is surjective if and only if either ξp 6∈ F or ξp ∈ NK/F (K×).
Exactness at F×/F×p follows from Kummer theory. ¤
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1.4. Fp[G]-Submodules of J.

Lemma 7 (Submodule-Subfield Lemma). Let U be a free Fp[G]-sub-
module of J and i ∈ {0, 1, . . . , n}. Then

UHi = U (σ−1)pn
−pi

= U ∩ [NKn/Ki
K×

n ] = U ∩ [K×
i ].

Proof. Suppose [u] ∈ UHi . Then [u](σ
pi
−1) = [u](σ−1)pi

= [1], so l(u) ≤
pi. Since U is free, [u] = [ũ](σ−1)pn

−l(u)
for some [ũ] ∈ U . In particular,

[u] = ([ũ](σ−1)pi
−l(u)

)(σ−1)pn
−pi

.

Hence UHi ⊂ U (σ−1)pn
−pi

. Now suppose [u] = [ũ](σ−1)pn
−pi

. Then since

[ũ](σ−1)pn
−pi

= [NKn/Ki
(ũ)],

U (σ−1)pn
−pi

⊂ U ∩ [NKn/Ki
K×

n ] ⊂ U ∩ [K×
i ].

Finally suppose that [u] ∈ U ∩ [K×
i ]. Then [u] ∈ UHi and we see

that all of our inclusions above are actually equalities. ¤

Remark. If U is a free Fp[G]-module, then U is also a free Fp[Hi]-
module. But then H2(Hi, U) = {0}. Hence UHi = Ni(U) := the image

of the norm operator Ni. Thus UHi = U (σ−1)pn
−pi

as required.

Just as with F = K0, denote elements of the Fp[G/Hi]-module
J(Ki) = K×

i /K×p
i by [γ]Ki

, γ ∈ K×
i .

Lemma 8 (Norm Lemma). For all elements [γ] ∈ J with l(γ) < pn,
[NK/F (γ)]F ∈ 〈[a]F 〉.

Now suppose additionally that l(γ) ≤ pn − pi for some 0 ≤ i < n.
Then [NK/Ki

(γ)]Ki
∈ 〈[ai]Ki

〉, and [NK/F (γ)]F = [a]sF if and only if
[NK/Ki

(γ)]Ki
= [ai]

s
Ki

.

Proof. For the first statement, observe that (1 + σ + · · · + σpn−1) ≡
(σ − 1)pn−1 on J , and hence [NK/F (γ)] = [γ](σ−1)pn

−1
. Since l(γ) < pn,

[NK/F (γ)] = [1]. Therefore NK/F (γ) ∈ F× ∩ K×p, which by Kummer

theory is the union ∪p−1
j=0a

jF×p. We obtain [NK/F (γ)]F ∈ 〈[a]F 〉.

For the second statement, observe first that if [γ] = [1] then the
lemma is trivial. Otherwise, consider J as an Fp[Hi]-module and let

τ = σpi

. The Fp[Hi]-module generated by [γ] has dimension equal to
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t, where [γ](τ−1)t

= [1] and [γ](τ−1)t−1 6= [1]. Since τ − 1 ≡ (σ − 1)pi

on J , this condition is equivalent to (t − 1)pi < l(γ) ≤ tpi. Since
l(γ) ≤ (pn−i − 1)pi, the dimension t is strictly less than pn−i. Hence

(τ − 1)pn−i−1 annihilates the cyclic Fp[Hi]-module generated by γ, and
so its length, as an Fp[Hi]-module, is less than pn−i.

Applying the first statement in the case of the cyclic extension K/Ki,
we have [NK/Ki

(γ)]Ki
∈ 〈[ai]Ki

〉. Now because NKi/F (ai) = a and

[NK/F (γ)]F = NKi/F ([NK/Ki
(γ)]Ki

),

we have [NK/Ki
(γ)]Ki

= [ai]
s
Ki

if and only if [NK/F (γ)]F = [a]sF . ¤

Remark. Occasionally, we will cite the Norm Lemma (8) as an abbre-
viation of the simple argument, at the end of the lemma’s proof, which
shows that

[NK/F (γ)]F = [a]sF if and only if [NK/Ki
(γ)]Ki

= [ai]
s
Ki

.

Lemma 9 (Proper Subfield Lemma). Let [z] ∈ JHi, i < n. Then
[z] ∈ [K×

i ] if and only if [NK/F (z)]F = [1]F .

Proof. If [z] ∈ JHi , then [z](σ
pi
−1) = [1]. Since (σpi − 1) ≡ (σ − 1)pi

on
J , l(z) ≤ pi.

Consider J as an Fp[Hi]-module. Then from the Fixed Submodule
Lemma (5) applied to the field extension K/Ki, we see that

[z] ∈ [K×
i ] or [z] ∈ 〈[δ]〉 ⊕ [K×

i ]

according to whether

ξp /∈ NK/Ki
(K×) or ξp ∈ NK/Ki

(K×).

(Here δ ∈ K× with δσ−1 = λp, NK/Ki
(λ) is a primitive pth root of

unity, and [NK/Ki
(δ)]Ki

= [ai]Ki
.)

Therefore if [z] /∈ [K×
i ] then [NK/Ki

(z)]Ki
= [ai]

c
Ki

for c 6≡ 0 mod p,
and by the Norm Lemma (8), [NK/F (z)]F = [a]cF , which contradicts our
hypothesis. Hence if [z] ∈ JHi and [NK/F (z)]F = [1]F , then [z] ∈ [K×

i ].

Conversely, if [z] ∈ [K×
i ] then [z] ∈ JHi and

[NK/F (z)]F = [NKi/F (z)]p
n−i

F = [1]F ,

since n > i. ¤
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1.5. Fixed Submodules of Cyclic Submodules of J.

Lemma 10 (First Fixed Elements are Norms Lemma). Suppose that
p > 2, n = 1, [γ] ∈ J , 2 ≤ l(γ) < p, and that one of the following
holds:

• ξp 6∈ F
• ξp ∈ F and l(γ) ≥ 3
• ξp ∈ F , l(γ) = 2, and γ is unexceptional.

Then there exists [α] ∈ J such that MG
γ = 〈N [α]〉.

Proof. First suppose ξp 6∈ F . We show by induction on i that there

exists an element αi ∈ K× such that 〈[αi]
(σ−1)i−1〉 = MG

γ . Then since

(σ − 1)p−1 ≡ 1 + σ + · · · + σp−1 we may set α := αp and the proof of
the first item will be complete. If i = l(γ) we set ai = γ. Assume now
that l(γ) ≤ i < p and that our statement is true for i.

Set c = NK/F (αi). Since [αi]
(σ−1)p−1

= [c] and i < p, we see that
[c] = [1]. Then c ∈ F×∩K×p, which by the Exact Sequence Lemma (6)
is equal to F×p. Hence c = fp for some f ∈ F×. Then NK/F (αi/f) =
1. By Hilbert 90 there exists an element ω ∈ K× such that ωσ−1 =

αi/f . Then ω(σ−1)2 = α
(σ−1)
i . Since l(αi) ≥ 2 and 〈[αi]

(σ−1)i−1〉 = MG
γ ,

〈[ω](σ−1)i〉 = MG
γ and we may set αi+1 = ω. Our induction is complete.

Now suppose that ξp ∈ F , and assume l(γ) ≥ 3. As before, we
show by induction on i that there exists an element αi ∈ K× such that
〈[αi]

(σ−1)i−1〉 = MG
γ . If i = l(γ) we set αi = γ. Assume now that

l(γ) ≤ i < p and that our statement is true for i.

By the Norm Lemma (8) we have [NK/F (αi)]F ∈ 〈[a]F 〉. Hence c :=
NK/F (αi) = asfp for some f ∈ F× and s ∈ Z. Then NK/F (αi/fδs) = 1,
where δ = p

√
a. By Hilbert 90 there exists an element ω ∈ K× such that

ωσ−1 = αi/fδs. Then ω(σ−1)2 = α
(σ−1)
i /ξs

p. Since i ≥ 3, 〈[ω](σ−1)i〉 =

〈[αi]
(σ−1)i−1〉 = MG

γ and we can set αi+1 := ω.

Assume then that l(γ) = 2 and γ is an unexceptional element of
K/F . By the Norm Lemma (8), [NK/F (γ)]F ∈ 〈[a]F 〉, and as before
c := NK/F (γ) = asfp for some f ∈ F× and s ∈ Z.

Since γ is unexceptional, either s ≡ 0 mod p, in which case c = f p

for some f ∈ F×, or [γ]σ−1 /∈ [K×
m]. In the former case, NK/F (γ/f) = 1.
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By Hilbert 90 there exists an element ω ∈ K× such that ωσ−1 = γ/f

and ω(σ−1)2 = γσ−1. Hence 〈[ω](σ−1)2〉 = MG
γ and we may invoke the

statement for ω since l(ω) = 3.

In the latter case, since NK/F (γσ−1) = 1 and [γ]σ−1 ∈ JG, from
the Exact Sequence Lemma (6) we see that [γ]σ−1 ∈ [F×] = [K×

0 ].
Hence m < 0 so that m = −∞. Thus there exists an element δ ∈ K×

such that [NK/F (δ)]F 6= [1]F and [δ]σ−1 = [1]. Again using the Exact
Sequence Lemma (6) we see that we may assume that [NK/F (δ)]F =
[a]F and [δ]σ−1 = [1].

Now let NK/F (δ) = agp for some g ∈ F× and note NK/F (γgs/fδs) =

1. Then as before we have ωσ−1 = γgs/fδs and [ω](σ−1)2 = [γ](σ−1) 6=
[1]. Hence 〈[ω](σ−1)2〉 = MG

γ and we may invoke the statement for ω
since l(ω) = 3. ¤

Lemma 11 (Fixed Elements of Length 3 Submodules are Norms Lem-
ma). Suppose that p = 2, n = 2, [γ] ∈ J , l(γ) = 3, and [NK/F (γ)]F =
[1]F . Then there exists [α] ∈ J such that MG

γ = 〈N [α]〉.

Proof. Let β = γσ−1. Then l(β) = 2 and, since β is in the image of
σ − 1, we have [NK/F (β)]F = [1]F . Because l(β) = 2 and NK/K1 is
equivalent to 1 + σ2 ≡ (σ − 1)2 on J , we see that [NK/K1(β)] = [1] in
J . From the Norm Lemma (8) we conclude that [NK/K1(β)]K1 = [1]K1 ,
and by the Exact Sequence Lemma (6) applied to the F2[H1]-module
J , we see that [β] ∈ [K×

1 ]. Let b ∈ K×
1 such that [b] = [γ]σ−1.

Now set c := NK1/F (b). Observe that 〈[c]〉 ⊂ MG
γ and [c] = [b]1+σ =

[γ]σ
2−1 = [NK/K1(γ)]. Hence NK/K1(γ) = ck2 for some k ∈ K×, and

k2 ∈ K×
1 ∩ K×2. By Kummer theory k2 = as

1g
2 for some s ∈ Z

and g ∈ K×
1 , whence NK/K1(γ) = cas

1g
2 and [NK/F (γ)]F = [a]sF . By

hypothesis s ≡ 0 mod 2. Therefore NK/K1(γ) = ch2 for some h ∈ K×
1 .

Now NK/F (γ) = NK1/F (ch2) = c2(NK1/F (h))2. Let γ′ = bh. Then
NK/F (γ′) = c2(NK1/F (h))2 so that NK/F (γ/γ′) = 1. By Hilbert 90
there exists α ∈ K× with ασ−1 = γ/γ′. Then

[NK/F (α)] = [α](σ−1)3 = [γ/γ′](σ−1)2 = [NK/K1(γγ′)]

= [ch2b2h2] = [c] = [γ](σ−1)2 .

Because MG
γ = 〈[γ](σ−1)2〉 our statement follows. ¤
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In what follows, let lH(γ) denote the dimension over Fp of the cyclic
Fp[H]-submodule of J generated by [γ].

Lemma 12 (Second Fixed Elements are Norms Lemma).

(a) Suppose p > 2 and n ≥ 1. Let γ ∈ K× with [γ] ∈ J \ [K×
n−1], and

let H = Gal(K/Kn−1). Assume that one of the following holds:

• ξp /∈ F
• ξp ∈ F and lH(γ) ≥ 3
• ξp ∈ F , lH(γ) = 2, and [NK/F (γ)]F = [1]F .

Then

[γ](σ−1)l(γ)−1 ∈ [NK/F (K×)].

(b) Suppose p = 2 and n ≥ 2. Let γ ∈ K× and H = Gal(K/Kn−2).
Assume that one of the following holds:

• lH(γ) = 4
• lH(γ) = 3 and [NK/F (γ)]F = [1]F .

Then

[γ](σ−1)l(γ)−1 ∈ [NK/F (K×)].

Proof. (a). Since part (a) is true for n = 1 by the First Fixed Ele-
ments are Norms Lemma (10), let us assume that n > 1. The Fixed
Submodule Lemma (5) tells us that lH(γ) ≥ 2, since [γ] /∈ [K×

n−1].

Now if lH(γ) = 2, we claim that γ is not exceptional for K/Kn−1,
as follows. Since lH(γ) = 2 < p, the Norm Lemma (8) tells us
that [NK/Kn−1(γ)]Kn−1 ∈ 〈[an−1]Kn−1〉. If γ is exceptional for K/Kn−1,
then [NK/Kn−1(γ)]Kn−1 6= [1]Kn−1 . By the Norm Lemma (8) again,
[NK/F (γ)]F 6= [1]F , contradicting our hypothesis. Hence if lH(γ) = 2
then γ is not exceptional for K/Kn−1, as required.

Let

[β] = [γ](σ
pn−1

−1)lH (γ)−1

= [γ](σ−1)pn−1(lH (γ)−1)

.

We invoke the First Fixed Elements are Norms Lemma (10) and deduce
that there exists [α] ∈ J such that [β] = [NK/Kn−1(α)]. Then

[β] = [α](σ−1)pn−1(p−1)
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since lH(α) = p. Set s = l(β). Then

[α](σ−1)pn
−pn−1

(σ−1)s−1

= [β](σ−1)s−1

= [γ](σ−1)pn−1(lH (γ)−1)+s−1

,

and this element is in JG.

Set [λ] := [α](σ−1)s

. Then we have

[λ](σ−1)pn
−pn−1

−1

= [α](σ−1)pn
−pn−1+s−1

.

Hence l(λ) = pn − pn−1.

Now we claim that lH(λ) = p − 1. First, since

[λ](σ
pn−1

−1)p−1

= [λ](σ−1)pn
−pn−1

= [1]

we see that lH(λ) ≤ p − 1. But since

[λ](σ−1)pn−1(p−2)

= [λ](σ−1)pn
−pn−1

−pn−1

and pn−1 > 1 (since we assume n > 1), we see that

[λ](σ−1)pn−1(p−2) 6= [1].

(Observe that here we use more than we need as pn−1 ≥ 1 is sufficient
for the inequality above.) Therefore indeed lH(λ) = p−1 ≥ 2, since we
assume that p ≥ 3. Observe that since [β] 6= [1] we have s = l(β) > 0.
Thus [λ] is in the image of σ − 1 and hence [NK/F (λ)]F = [1]F . Since
lH(λ) = p − 1 < p, we obtain

[NK/Kn−1(λ)]Kn−1 ∈ 〈[an−1]Kn−1〉.

By the Norm Lemma (8), we deduce that

[NK/Kn−1(λ)]Kn−1 = [1]Kn−1 .

Hence λ is unexceptional for K/Kn−1. Thus we can use the First
Fixed Elements are Norms Lemma (10) for λ. We see that there exists
χ ∈ K× such that

[λ](σ
pn−1

−1)lH (λ)−1

= [χ](σ−1)pn
−pn−1

or equivalently

[λ](σ−1)pn
−2pn−1

= [χ](σ−1)pn
−pn−1

.

This means in particular that

l(χ) = l(λ) + pn−1 = pn.
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Putting our calculations together, we obtain

[NK/F (χ)] = [χ](σ−1)pn
−1

= [λ](σ−1)pn
−pn−1

−1

= [α](σ−1)pn
−pn−1+s−1

= [γ](σ−1)pn−1(lH (γ)−1)+s−1

= [γ](σ−1)l(γ)−1

as required.

(b). If lH(γ) = 3 then we claim that [NK/Kn−2(γ)]Kn−2 = [1]Kn−2 , as
follows. Since lH(γ) < 4, we have from the Norm Lemma (8) that
[NK/Kn−2(γ)]Kn−2 ∈ 〈[an−2]Kn−2〉. If [NK/Kn−2(γ)]Kn−2 = [an−2]

s
Kn−2

for s 6≡ 0 mod 2, then we obtain from the Norm Lemma (8) that
[NK/F (γ)]F = [a]sF 6= [1], contradicting our hypothesis. Therefore if
lH(γ) = 3 then [NK/Kn−2(γ)]Kn−2 = [1]Kn−2 , as required.

We may then invoke the Fixed Elements of Length 3 Submodules
are Norms Lemma (11) and deduce that there exists α ∈ K× such that

[α](σ
2n−2

−1)3 = [γ](σ
2n−2

−1)lH (γ)−1

.

If instead lH(γ) = 4, then by setting α = γ we see that α as above
exists as well.

In either case, then, we obtain the equation with α above. Hence

[α](σ−1)2
n
−2n−2

= [γ](σ−1)2
n−2(lH (γ)−1) 6= [1].

Set s := l(γ) − 2n−2(lH(γ) − 1) > 0. Then we have

[α](σ−1)2
n
−2n−2+s−1

= [γ](σ−1)2
n−2(lH (γ)−1)+s−1 6= [1].

Furthermore, this element belongs to JG. Set [λ] := [α](σ−1)s

. Then

[λ](σ−1)2
n
−2n−2

−1

= [α](σ−1)2
n
−2n−2+s−1

,

whence l(λ) = 2n − 2n−2.

Now consider lH(λ). On the one hand,

[λ](σ
2n−2

−1)3 = [λ](σ−1)2
n
−2n−2

= [1],

and on the other hand

[λ](σ
2n−2

−1)2 6= [1].
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We deduce that lH(λ) = 3. Observe that since [λ] is in the image of
σ − 1 we have [NK/F (λ)]F = [1]F . Since lH(λ) = 3, we see that

[NK/Kn−2(λ)]Kn−2 ∈ 〈[an−2]Kn−2〉.

By the Norm Lemma (8), we deduce that

[NK/Kn−2(λ)]Kn−2 = [1]Kn−2 .

By the Fixed Elements of Length 3 Submodules are Norms Lemma (11),
there exists χ ∈ K× with

[χ](σ
2n−2

−1)3 = [λ](σ
2n−2

−1)2 .

Equivalently,

[χ](σ−1)2
n
−2n−2

= [λ](σ−1)2
n−1

,

and therefore l(χ) = l(λ) + 2n−2 = 2n.

Summarizing, we have obtained

[NK/F χ] = [χ](σ−1)2
n
−1

= [λ](σ−1)2
n
−2n−2

−1

= [α](σ−1)2
n
−2n−2+s−1

= [γ](σ−1)l(γ)−1

as required. ¤

2. Base Cases

Proposition 3. Theorem 1 holds for n = 1.

Proof. Let I be an Fp-basis for [NK/F (K×)]. For each [x] ∈ I, we con-
struct a free Fp[G]-module M(x), as follows. Choose a representative
x ∈ F× for [x] such that x ∈ NK/F (K×). Choose γ ∈ K× such that
x = NK/F (γ). Finally let M(x) be the Fp[G]-submodule of J generated

by [γ]. Since [NK/F (γ)] = [γ](σ−1)p−1
= [x] 6= [1], dimFp

M(x) = p and
hence M(x) is free. By the Exclusion Lemma (2), the set of modules
M(x), [x] ∈ I, is independent.

Let Y1 = ⊕IM(x). Then Y1 is a free Fp[G]-module with Y G
1 =

[NK/F (K×)]. Let Y0 be any complement in [F×] of Y G
1 . Clearly Y0 is a

trivial Fp[G]-module. Since Y G
0 ∩ Y G

1 = {0}, Y0 + Y1 = Y0 ⊕ Y1 by the
Exclusion Lemma (2). Moreover, (Y0 + Y1)

G = [F×].

Now set J̃ := Y0 +Y1. Then, applying the Inclusion Lemma (1) with
U = J̃ , V = J , and U + V = J , we will deduce that J̃ = J . Observe
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first that (U + V )G = JG which, by the Fixed Submodule Lemma (5),
is [F×]. Since J̃G = [F×], we obtain (U + V )G ⊂ U .

Let [γ] ∈ J \ JG. Then l(γ) ≥ 2. If p = 2 then [c] = [γ](σ−1)l(γ)−1
=

[γ](σ−1) = N [γ]. Otherwise, by the First Fixed Elements are Norms

Lemma (10), we obtain [c] = [γ](σ−1)l(γ)−1
= [NK/F (α)] for some α ∈

K×. In any case, [c] ∈ [NK/F (K×)]. Equivalently, switching for the mo-
ment to additive notation for convenience, [c] =

∑

I cx[x] with almost
all cx = 0. Now for each [x], M(x) = Mω(x) for some ω(x) ∈ K× with

N([ω(x)]) = [x]. Hence [c] = N(
∑

cx[ω(x)]) ∈ Y1 ⊂ J̃ . We have shown

that for every [γ] ∈ J \ JG, [γ](σ−1)l(γ)−1
= N([α]) for [α] ∈ Y1 ⊂ J̃ .

Hence we have satisfied the hypotheses of the Inclusion Lemma (1),
and J ⊂ J̃ , as required. ¤

Proposition 4. Theorem 2 holds for n = 1.

Proof. Let X be the cyclic submodule of J generated by the given
exceptional element [δ]. Since δ = p

√
a satisfies [NK/F (δ)]F = [a]F and

[δ](σ−1) = [ξp] ∈ JG, we have that m < 1.

For the case in which p = 2 and −1 ∈ NK/F (K×), let γ satisfy
NK/F (γ) = −1. Then set γ′ =

√
aγ. We have NK/F (γ′) = a and

[γ′](σ−1) = [γ′](1+σ) = [NK/F (γ′)] = [a] = [1] ∈ [K×
−∞]. Hence in this

case γ′ is exceptional and m = −∞. By the definition, then, for any
exceptional δ in this case, we have [δ](σ−1) = [1].

In any case, by the Exact Sequence Lemma (6), we have [δ] 6∈ [F×].
If m = −∞, then X is of dimension 1 and hence X ∩ [F×] = {0}.
If m = 0, then X is of dimension 2 and by the Fixed Submodule
Lemma (5), we have that XG = X(σ−1) = X ∩ [F×].

We proceed to construct Y1. Let I be an Fp-basis for [NK/F (K×)].
For each [x] ∈ I, we construct a free Fp[G]-module M(x), as follows.
Choose a representative x ∈ F× for [x] such that x ∈ NK/F (K×).
Choose γ ∈ K× such that x = NK/F (γ). Finally let M(x) = Mγ, the

Fp[G]-submodule of J generated by [γ]. Since [NK/F (γ)] = [γ](σ−1)p−1
=

[x] 6= [1], dimFp
M(x) = p and hence M(x) is free. By the Exclusion

Lemma (2), the set of modules M(x), [x] ∈ I, is independent. Let
Y1 = ⊕IM(x). Then Y1 is a free Fp[G]-module with Y G

1 = [NK/F (K×)].

Now XG∩Y G
1 = {0}, as follows. Suppose not. Then since X∩[F×] =

{0} in the case m = −∞, we must have m = 0. Let [f ] ∈ XG ∩ Y G
1 .
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Since Y1 is free, there exists [α] ∈ Y1 such that N [α] = [f ]. Consider

δ′ = δ/(α)(σ−1)p−2
. Then [NK/F (δ′)]F 6= [1]F and [δ′]σ−1 = [1] ∈ [K×

−∞],
so that m = −∞, a contradiction. Because XG ∩ Y G

1 = {0}, by the
Exclusion Lemma (2) we have X + Y1 = X ⊕ Y1.

Now let Y0 be any complement in [F×] of the Fp-submodule of J
generated by X ∩ [F×] and Y G

1 . Clearly Y0 is a trivial Fp[G]-module.
Since Y G

0 ∩ (X + Y1)
G = {0}, we obtain X + Y0 + Y1 = X ⊕ Y0 ⊕ Y1

from the Exclusion Lemma (2).

If m = −∞ then observe that [F×] = Y G
0 + Y G

1 , and if m = 0 then
since XG = X(σ−1), we have [F×] = X(σ−1) + Y G

0 + Y G
1 .

Now set J̃ = X + Y0 + Y1. We adapt the proof of the Inclusion
Lemma (1) to show that J ⊂ J̃ and hence J = J̃ , by induction on the
socle series Ji of J .

We first show that if [β] ∈ J1 = JG then [β] ∈ J̃ . If [NK/F β]F = [1]F ,
then the Proper Subfield Lemma 9 gives [β] ∈ [F×]. Since Y0 is a
complement in [F×] of the submodule generated by X ∩ [F×] and Y G

1 ,
[β] ∈ J̃ .

Otherwise [NK/F β]F 6= [1]F . Since l(β) = 1 we must have m = −∞
and [δ] ∈ J1. By the Exact Sequence Lemma (6), both [NK/F (β)]F and
[NK/F (δ)]F lie in 〈[a]F 〉, and by the definition of exceptionality, both
are generators of 〈[a]F 〉. Hence [NK/F (β)]F = [NK/F (δ)]sF for some
s ∈ Z, and we set β′ = β/δs. Then [β′] ∈ JG and [NK/F (β′)]F = [1]F .
By the Exact Sequence Lemma (6), we see that [β′] ∈ [F×]. As in the
preceding paragraph, this gives [β′] ∈ J̃ . Then, since [δ] ∈ J̃ as well,
we obtain [β] ∈ J̃ . Hence J1 ⊂ J̃ .

For the inductive step, assume that Ji ⊂ J̃ for all 1 ≤ i < t ≤ p, and
let [γ] ∈ Jt \ Jt−1.

We first claim that in the particular case of t = 2, without loss of
generality we may assume that γ is unexceptional, as follows. If γ is
exceptional and l(γ) = 2, then by the Fixed Submodule Lemma (5),
we see that m = 0. We established earlier, however, that if p = 2
and n = 1 we have m = −∞. Hence p > 2. Now since m = 0, we
have [δ](σ−1) ∈ [F×], l(δ) ≤ 2, and by the definition of exceptionality
l(δ) 6= 1, since otherwise m = −∞. Hence l(δ) = l(γ) = 2.
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Since p > 2, we deduce from the Norm Lemma (8) that both of
[NK/F (γ)]F and [NK/F (δ)]F lie in 〈[a]F 〉, and by the definition of ex-
ceptionality, both are generators. Hence [NK/F (γ)]F = [NK/F (δ)]sF for
some s ∈ Z, and we set γ′ = γ/δs. Then l(γ′) ≤ 2 and [NK/F (γ′)]F =

[1]F , so that γ′ is unexceptional. Since [δ] ∈ X ⊂ J̃ , to show that
[γ] ∈ J̃ it is enough to show that [γ′] ∈ J . We may therefore assume
that γ is unexceptional if t = 2.

Now if p = 2 then l(γ) = 2 and

[c] = [γ](σ−1)l(γ)−1

= [γ](σ+1) = N [γ] = [NK/F (γ)],

and we set α = γ. Otherwise, p > 2 and by the First Fixed Elements
are Norms Lemma (10), we have [c] = [γ](σ−1)l(γ)−1

= [NK/F (α)] for
some α ∈ K×.

In either case, [c] ∈ [NK/F (K×)]. Equivalently, switching for the mo-
ment to additive notation for convenience, [c] =

∑

I cx[x] with almost
all cx = 0. Now for each [x], M(x) = Mω(x) for some ω(x) ∈ K× with

N([ω(x)]) = [x]. Hence [c] = N(
∑

cx[ω(x)]) ∈ Y1 ⊂ J̃ . Switching

back to multiplicative notation, [c] = [α](σ−1)p−1
for some [α] ∈ Y1. Let

[γ′] = [α](σ−1)p−t ∈ J̃ . Since [γ/γ′](σ−1)t−1
= [1], we find l(γ/γ′) < t. By

induction, [γ/γ′] ∈ J̃ , and hence [γ] ∈ J̃ as well. By induction on the
socle series, then, J ⊂ J̃ . ¤

Proposition 5. Theorem 2 holds in the case p = 2, n = 2.

Proof. Let X be the cyclic submodule of J generated by the given
exceptional element [δ]. Consider θ =

√
a1. Then [NK/F (θ)]F = [a]F .

Because K/F is Galois we have aσ
1 = a1k

2 for some k ∈ K×
1 . Therefore

[θ]σ−1 = [±k] ∈ K×
1 . Hence m < 2. Now let δ be any exceptional

element in K×. Because [NK/F (δ)]F 6= [1]F we see that [δ] 6∈ [F×].

If m = −∞, then X is of dimension 1 and therefore X ∩ [F×] =
{0}. If m = 0, then X is of dimension 2, and by the Exact Sequence
Lemma (6), observing that NK/F (δσ−1) = 1, we obtain XG = X(σ−1) =
X ∩ [F×]. Finally assume that m = 1. Observe that then l(δσ−1) 6= 1.
Indeed otherwise NK/F (δσ−1) = 1 and the Exact Sequence Lemma (6)
implies that [δ]σ−1 ∈ [F×], which contradicts our assumption that m =
1. Hence l(δ) ≥ 3. However since [δ]σ−1 ∈ [K×

1 ] and (σ − 1)2 ≡ σ2 − 1,
we have l(δσ−1) ≤ 2, and therefore l(δ) ≤ 3. Consequently l(δ) = 3.
Since [NK/F (δ)]F 6= [1]F we see that [δ] /∈ [K×

1 ]. Therefore X(σ−1) =
X ∩ [K×

1 ].
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We proceed to construct Y2. Let I2 be an F2-basis for [NK/F (K×)].
For each [x] ∈ I2, we construct a free F2[G]-module M(x), as follows.
Choose a representative x ∈ F× for [x] such that x ∈ NK/F (K×).
Choose γ ∈ K× such that x = NK/F (γ). Finally let M(x) = Mγ. Since

[NK/F (γ)] = [γ](σ−1)3 = [x] 6= [1], dimF2 M(x) = 4 and hence M(x) is
free. By the Exclusion Lemma (2), the set of modules M(x), [x] ∈ I2,
is independent. Let Y2 = ⊕I2M(x). Then Y2 is a free F2[G]-module
with Y G

2 = [NK/F (K×)].

Suppose XG ∩ Y G
2 6= {0}. Since Y G

2 ⊂ [F×] and X ∩ [F×] = {0} if

m = −∞, we are in the case m = 0 or m = 1, and XG = X(σ−1)m+1
=

X ∩ [F×]. In particular, l(δ) = m + 2 ≤ 3. Let f ∈ F× satisfy
[f ] ∈ XG ∩ Y G

2 . Since Y2 is free, there exists [α] ∈ Y2 such that

N [α] = [f ]. Let δ′ = δ/(α)(σ−1)4−l(δ)
. Then [NK/F (δ′)]F = [NK/F (δ)]F

since α(σ−1)4−l(δ)
is in the image of σ − 1. Moreover, l(δ′) < l(δ). If

m = 0 then l(δ′) ≤ 1 and by the definition of exceptionality, m = −∞,
a contradiction. If m = 1 then l(δ′) ≤ 2 so that l((δ′)σ−1) ≤ 1 and
[(δ′)σ−1] ∈ JG. But since (δ′)σ−1 is in the image of σ − 1, we have
[N((δ′)σ−1)]F = [1]F , and from the Proper Subfield Lemma (9) we
obtain [δ′] ∈ [F×]. Then by the definition of exceptionality, m ≤ 0,
again a contradiction. Thus XG ∩ Y G

2 = {0}.

Because XG ∩ Y G
2 = {0}, by the Exclusion Lemma (2) we have

X + Y2 = X ⊕ Y2.

We proceed to construct Y1. Let I1 be an F2-basis for a complement
in [NK1/F (K×

1 )] of the F2-submodule generated by [NK/F (K×)] and
X ∩ [NK1/F (K×

1 )]. For each [x] ∈ I1, we construct an F2[G]-module
M(x) of dimension 2, as follows. Choose a representative x ∈ F× for [x]
such that x ∈ NK1/F (K×

1 ). Choose γ ∈ K×
1 such that x = NK1/F (γ).

Finally let M(x) = Mγ . Since [NK1/F (γ)] = [γ](σ−1) = [x] 6= [1],
dimF2 M(x) = 2. The M(x), [x] ∈ I1, are independent as above. Let
Y1 = ⊕I1M(x). Then Y1 is a direct sum of F2[G]-modules of dimension
2, and Y G

1 is the F2-span of I1. By construction Y G
1 ∩ Y G

2 = {0} and
hence by the Exclusion Lemma (2), we have Y1 + Y2 = Y1 ⊕ Y2.

Suppose XG ∩ (Y1 + Y2)
G 6= {0}. Since (Y1 + Y2)

G ⊂ [F×] and
X ∩ [F×] = {0} if m = −∞, we are in the case m = 0 or m = 1, and

XG = X(σ−1)m+1
= X∩[F×]. Let XG = 〈[x]〉; then [1] 6= [x] = [y1]+[y2]

for some [y1] ∈ Y G
1 and [y2] ∈ Y G

2 . Since Y G
1 + Y G

2 ⊂ [NK1/F (K×
1 )], we

deduce [x] ∈ [NK1/F (K×
1 )]. We have already established that [y1] 6= [1],

since XG ∩ Y G
2 6= {0}. Hence [1] 6= [y1] = [y2] + [x]. But then Y G

1
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does not consist of a complement of the F2-submodule generated by
Y G

2 = [NK/F (K×)] and X ∩ [NK1/F (K×
1 )], a contradiction. Hence we

have established our equality XG ∩ (Y1 + Y2)
G = {0}.

Because XG ∩ (Y1 + Y2)
G = {0}, by the Exclusion Lemma (2) we

have X + Y1 + Y2 = X ⊕ Y1 ⊕ Y2.

Finally let Y0 be any complement in [F×] of the F2-submodule of
J generated by X ∩ [F×], Y G

1 , and Y G
2 . Clearly Y0 is a trivial F2[G]-

module. Since Y G
0 ∩(X+Y1+Y2)

G = {0}, we see that X+Y0+Y1+Y2 =
X ⊕ Y0 ⊕ Y1 ⊕ Y2 by the Exclusion Lemma (2).

If m = −∞ then observe that [F×] = Y G
0 + Y G

1 + Y G
2 , and otherwise

since XG = X(σ−1)m+1
, we have [F×] = X(σ−1)m+1

+ Y G
0 + Y G

1 + Y G
2 . In

order to connect this expression with Theorem 2, part (3), in the case
i = 0, observe that (σ − 1)(σ − 1)2m−1 = (σ − 1)2m

= (σ − 1)m+1 for
m = 0 or 1.

Now let J̃ = X +Y0 +Y1 +Y2. We show that J = J̃ by showing that
an arbitrary element [β] ∈ J lies in J̃ , as follows.

First, if β is exceptional, then since m ≤ 1 we have [β]σ−1 ∈ [K×
1 ].

Since 1 + σ ≡ σ − 1 on J and [NK1/F (γ)] = [γ]σ+1 for γ ∈ K×
1 , we see

that l(β) ≤ 3. By the Norm Lemma (8), we have [NK/F (β)]F = [a]sF
for some s 6≡ 0 mod p. Because p = 2 and [NK/F (β)]F 6= [1]F we
have [NK/F (β)]F = [a]F . Since δ is exceptional, [NK/F (δ)]F = [a]F
as well. Then β′ = β/δ satisfies [NK/F (β′)]F = [1]F and is therefore

unexceptional. Since [δ] ∈ X ⊂ J̃ , to show that [β] ∈ J̃ it suffices
to show that [β′] ∈ J̃ . Therefore we may and do assume that [β] is
unexceptional.

Observe that the above argument applies not only to elements β that
are exceptional, but in fact to all elements β such that [NK/F (β)]F =
[a]sF for some s ∈ Z. Therefore we may assume not only that β is
unexceptional, but also that [NK/F (β)]F = [1]F .

Suppose that l(β) = 1 and [NK/F (β)]F = [1]F . From the Exact

Sequence Lemma (6) we see that [β] ∈ [F×]. Since [F×] ⊂ J̃ , we
obtain [β] ∈ J̃ as well.

Now if l(β) = 2, then [β](σ
2−1) = [β](σ−1)2 = [1] and [β] ∈ JH1 .

Moreover, we assume that [NK/F (β)]F = [1]F . By the Proper Subfield



GALOIS MODULE STRUCTURE OF pTH-POWER CLASSES 27

Lemma (9), we deduce that [β] ∈ [K×
1 ]. Hence we may assume that

the representative β of [β] lies in K×
1 . Then [β](σ−1) = [NK1/F (β)] ⊂

[NK1/F (K×
1 )].

If m = 1 then

[NK1/F (K×
1 )] ⊂ X(σ−1)2 + Y G

1 + Y G
2 = X(σ−1)2 + Y

(σ−1)
1 + Y

(σ−1)3

2 ,

since Y1 is a direct sum of cyclic modules of length 2 and Y2 a direct
sum of cyclic modules of length 4. If m = 0 then X ∩ [F×] = Xσ−1 and
therefore

[NK1/F (K×
1 )] ⊂ X(σ−1) + Y

(σ−1)
1 + Y

(σ−1)3

2 .

If m = −∞ then X ∩ [NK1/F (K×
1 )] = {0} and

[NK1/F (K×
1 )] ⊂ Y G

1 + Y G
2 = Y

(σ−1)
1 + Y

(σ−1)3

2 .

In any case, [β](σ−1) lies in J̃σ−1 and hence there exists α ∈ J̃ such
that [α](σ−1) = [β](σ−1). But then [α/β] ∈ JG, which we have already
established lies in J̃ . Hence [β] ∈ J̃ .

Now suppose l(β) ≥ 3 and [NK/F (β)]F = [1]F . By the Fixed Ele-
ments of Length 3 Submodules are Norms Lemma (11), we have [c] =

[β](σ−1)l(β)−1
= N [α] for some α ∈ K×. Equivalently, switching for the

moment to additive notation for convenience, [c] =
∑

I2
cx[x] with al-

most all cx = 0. As in the proof of the previous theorem, we obtain [c] =
N(

∑

cx[ω(x)]) ∈ Y2 ⊂ J̃ . Let [β′] = [β] − (σ − 1)4−l(β)(
∑

cx[ω(x)]).
Then l(β′) < l(β) and we proceed by induction.

Hence J = J̃ .

Now we consider the location of [K×
1 ] in J . Since K1 is the fixed

field in K of H1, we have

[K×
1 ] ⊂ JH1 = XH1 ⊕ Y0 ⊕ Y1 ⊕ Y H1

2 .

By our construction of Y0 and Y1 we see that Y0 ⊕ Y1 ⊂ [K×
1 ]. By the

Submodule-Subfield Lemma (7) we see that Y H1
2 = Y2 ∩ [K×

1 ]. Also
because m ≤ 1 we see from the definition of m that X(σ−1) ⊂ [K×

1 ].
Hence X(σ−1) + Y0 + Y1 + Y H1

2 ⊂ [K×
1 ]. It remains to show that this

inclusion is an equality.

We showed after the definition of exceptional element that [δ] /∈
[K×

n−1] = [K×
1 ]. Therefore X(σ−1) = X ∩ [K×

1 ], and we have

X(σ−1) ⊕ Y0 ⊕ Y1 ⊕ Y H1
2 ⊂ [K×

1 ] ⊂ XH1 ⊕ Y0 ⊕ Y1 ⊕ Y H1
2 .
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Hence each [k] ∈ [K×
1 ] can be written as

[k] = [x] + [y], where [x] ∈ XH1 and [y] ∈ Y0 ⊕ Y1 ⊕ Y H1
2 .

Thus

[x] = [k] + [y] ∈ [K×
1 ] + Y0 + Y1 + Y H1

2 ⊂ X ∩ [K×
1 ].

Therefore we see that X(σ−1) ⊕ Y0 ⊕ Y1 ⊕ Y H1
2 = [K×

1 ]. Observe that if
m = −∞ then X(σ−1) = {0}. Since m ≤ 1 we see that our decomposi-
tion of [K×

1 ] is in agreement with Theorem 2, part (3). ¤

3. Free Submodules and Proof of Theorem 1

For the following proposition, assume Theorems 1 and 2 hold for all
extensions of degree ps, 1 ≤ s < n, and if p = 2, then n > 2.

Proposition 6. There exists a submodule

Ŷ = Ŷn ⊕ Ŷn−1 ⊕ · · · ⊕ Ŷ0

of J such that

(1) Ŷi is a direct sum of cyclic Fp[G]-modules of dimension pi;

(2) [K×
i ] = Ŷ Hi for 0 ≤ i < n;

(3) Ŷ G
n = [NK/F (K×)].

Proof. Let I be an Fp-base for [NK/F (K×)]. As usual, for each [x] ∈ I
construct free independent Fp[G]-modules M(x), [x] ∈ I, such that

M(x)G = 〈[x]〉. Set Ŷn = ⊕[x]∈IM(x). Hence Ŷn is a direct sum of

cyclic Fp[G]-modules of dimension pn, and Ŷ G
n = [NK/F (K×)].

Assume now that ξp ∈ F×. Since Kn−1/F embeds in a cyclic ex-
tension K of degree pn over F , [an−1]

σ̄
Kn−1

= [an−1]Kn−1 by Kummer
theory, where σ̄ ∈ G/Hn−1 is the image of σ under the natural projec-
tion G → Ḡ := G/Hn−1. (Indeed since an−1 is a pth power in K, so is
aσ̄

n−1; therefore by Kummer theory [an−1]
σ̄
Kn−1

∈ 〈[an−1]Kn−1〉. However,

viewing 〈[an−1]Kn−1〉 as Fp, then σ̄ is an exponent pn−1 action on Fp.
Since

Aut(Fp) ∼= Z/(p − 1)Z,

this action must be the identity. Hence [an−1]
(σ̄−1)
Kn−1

= [1]Kn−1 .) More-

over, we have that [NKn−1/F (an−1)]F = [a]F by Proposition 1.



GALOIS MODULE STRUCTURE OF pTH-POWER CLASSES 29

Because Theorem 2 holds for n − 1, we have an Fp[Ḡ]-module de-
composition

J(Kn−1) = K×
n−1/K

×p
n−1 = 〈[an−1]Kn−1〉 ⊕ Ỹn−1 ⊕ · · · ⊕ Ỹ0

into direct sums Ỹi of cyclic Fp[Ḡ]-modules of dimension pi and a Ḡ-
invariant submodule 〈[an−1]Kn−1〉Fp

. Indeed we only have to check that
an−1 is an exceptional element in Kn−1. This follows since we have
shown both [NKn−1/F (an−1)]F = [a]F and [an−1]

σ̄−1
Kn−1

= [1]Kn−1 .

Moreover, by the Submodule-Subfield Lemma (7),

Ỹ Ḡ
n−1 = [NKn−1/F (K×

n−1)]Kn−1 ∩ Ỹn−1.

Because NKn−1/F acts on J(Kn−1) as (σ̄−1)pn−1−1 we see that NKn−1/F

annihilates the sum Ỹn−2⊕· · ·⊕Ỹ0. Also [NKn−1/F (an−1)]Kn−1 = [1]Kn−1 .
Therefore

[NKn−1/F (K×
n−1)]Kn−1 = Ỹ Ḡ

n−1.

Assume now that ξp 6∈ F×. Then because Theorem 1 holds for n−1,
we have an Fp[Ḡ]-module decomposition

J(Kn−1) = K×
n−1/K

×p
n−1 = Ỹn−1 ⊕ · · · ⊕ Ỹ0

into direct sums Ỹi of cyclic Fp[Ḡ]-modules of dimension pi. As before
let σ̄ denote the image of σ under the natural projection G → Ḡ.
Because NKn−1/F acts on J(Kn−1) as (σ̄−1)pn−1−1 we see that NKn−1/F

annihilates the sum Ỹn−2 ⊕ · · · ⊕ Ỹ0. Therefore again

[NKn−1/F (K×
n−1)]Kn−1 = [NKn−1/F (Ỹn−1)]Kn−1 = Ỹ Ḡ

n−1.

In both cases ξp ∈ F×, ξp 6∈ F×, consider J as an Fp[Hn−1]-module.
Then the Exact Sequence Lemma (6) gives us that the images of
Ỹ0, . . . , Ỹn−1 under the map

ǫ : J(Kn−1) → J(K)

are direct sums of modules of dimension pi and are independent. Be-
cause the modules Ỹi are cyclic as Fp[Ḡ]-modules, the images ǫ(Ỹi) are

cyclic as Fp[G]-modules. Set Ŷi = ǫ(Ỹi) for i < n − 1. (Recall that we

already defined Ŷn at the beginning of our proof.)

Set W := Ŷ Hn−1
n . By the Submodule-Subfield Lemma (7),

W = Ŷ (σ−1)pn
−pn−1

n = Ŷn ∩ [K×
n−1].
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Since Ŷn is a direct sum of cyclic Fp[G]-modules of dimension pn, W
is a direct sum of cyclic modules of dimension pn−1 and hence is free
as an Fp[Ḡ]-module. Because W ⊂ [K×

n−1], we may consider the image

P of the projection map pr : W → ǫ(Ỹn−1) from W to the summand
ǫ(Ỹn−1) in the decomposition

[K×
n−1] = ǫ(J(Kn−1)) = ǫ(Ỹn−1) ⊕ Ŷn−2 ⊕ · · · ⊕ Ŷ0.

Observe that W ∼= P as Fp[G]-modules. Indeed, since W is a free
Fp[Ḡ]-module, each [w] ∈ W \{0} may be written as [w̃](σ̄−1)s

for some
0 ≤ s ≤ pn−1 − 1 and [w̃] ∈ W with l(w̃) = pn−1. We have

pr([w̃])(σ̄−1)pn−1
−1

= [w̃](σ̄−1)pn−1
−1 6= [1],

since all other components of [w̃] are killed by (σ̄ − 1)pn−1−1. (Since
n ≥ 2, pn−1 − 1 ≥ pn−2.) Therefore pr([w̃])(σ̄−1)s

= pr([w]) 6= [1]. We
conclude that the kernel of the projection map is [1], as required.

Since M Ḡ = M (σ−1)pn−1
−1

for free Fp[Ḡ]-modules, we have further

obtained that W Ḡ = P Ḡ; equivalently, WG = PG. Observe that

WG = W Ḡ = W (σ−1)pn−1
−1 ⊂ [NKn−1/F K×

n−1] = ǫ(Ỹn−1)
G.

By the Free Complement Lemma (3), there exists a free Fp[Ḡ]-

module complement Ŷn−1 in ǫ(Ỹn−1) of P . Since W = Ŷn ∩ [K×
n−1],

we obtain Ŷ G
n = WG = PG. Now the next idea is to use the fact that

Ŷ G
n = PG to show that Ŷn and Ŷn−1 are independent and Ŷn ⊕ Ŷn−1

and Ŷn−2 ⊕ · · · ⊕ Ŷ0 are also independent. Then from the definition of
Ŷn and from our observation on Ŷi, i ∈ {n − 1, . . . , 0} above it follows

immediately that Ŷ = Ŷn ⊕ · · · ⊕ Ŷ0 ⊂ J satisfies conditions (1) and
(3) of our proposition. The last part of our proof is then devoted to
proving condition (2).

By the Exclusion Lemma (2), PG ∩ Ŷ G
n−1 = {0} implies that Ŷn−1 +

Ŷn = Ŷn−1 ⊕ Ŷn. Then, since PG + Ŷ G
n−1 = ǫ(Ỹn−1)

G, we obtain (Ŷn−1 +

Ŷn)G = ǫ(Ỹn−1)
G. Finally, by the Exclusion Lemma (2), Ŷn−1 + Ŷn is

independent from Ŷn−2 + · · · + Ŷ0. Hence we have a submodule

Ŷ = Ŷn ⊕ Ŷn−1 ⊕ · · · ⊕ Ŷ0 ⊂ J

satisfying items (1) and (3).
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We turn next to item (2) and prove that Ŷ Hn−1 = [K×
n−1]. Now

Ŷn−1 + · · · + Ŷ0 ⊂ [K×
n−1] by construction, and Ŷ Hn−1

n = W = Ŷn ∩
[K×

n−1] ⊂ [K×
n−1] from above. Hence Ŷ Hn−1 ⊂ [K×

n−1]. We also have

the decomposition [K×
n−1] = ǫ(Ỹn−1) + Ŷn−2 + · · · + Ŷ0. Therefore it is

sufficient to show that ǫ(Ỹn−1) ⊂ Ŷ Hn−1 .

Because ǫ(Ỹn−1) = Ŷn−1 + P it is enough to show that P ⊂ Ŷ Hn−1
n +

Ŷn−2+· · ·+Ŷ0 = W +Ŷn−2+· · ·+Ŷ0. But by the definition of projection,
P ⊂ W + Ŷn−2 + · · · + Ŷ0. Hence we conclude that Ŷ Hn−1 = [K×

n−1],
which is item (2) for i = n − 1.

For i < n− 1, observe that since Theorems 1 and 2 hold in the case
n − 1, we have

(Ỹn−1 + · · · + Ỹ0)
Hi/Hn−1 = [K×

i ]Kn−1 , i < n − 1.

(If we are in the situation covered by Theorem 1 then this statement is
immediate. If we are in the situation covered by Theorem 2 we use the
fact that i(Kn−1/F ) = −∞ and therefore the summand of [K×

i ]Kn−1

corresponding to the module generated by an exceptional element is
trivial.)

Again using Theorem 1 and Theorem 2 as well as the equality Ŷ Hn−1 =
[K×

n−1] and the fact that

ǫ : [K×
n−1]Kn−1 → J with ǫ([K×

n−1]Kn−1) = [K×
n−1]

is an Fp[G]-homomorphism, we obtain for each i ∈ {0, 1, . . . , n − 2}
that

Ŷ Hi = (Ŷ Hn−1)Hi/Hn−1 = [K×
n−1]

Hi/Hn−1

= (ǫ(Ỹn−1 + · · · + Ỹ0))
Hi/Hn−1

= ǫ([K×
i ]Kn−1) = [K×

i ],

as required. ¤

Proof of Theorem 1. The case p = 2, n = 1 was treated in Proposi-
tion 3. For the remaining case of ξp /∈ F and p > 2, we proceed by
induction. The base case of n = 1 is Proposition 3. Assume then that
n > 1 and the Theorem holds for n− 1. By Proposition 6 above, there
exists an Fp[G]-submodule Ŷ = ⊕Ŷi ⊂ J , where each Ŷi is a direct sum

of cyclic Fp[G]-modules of dimension pi, [K×
i ] = Ŷ Hi , 0 ≤ i < n, and

Ŷ G
n = [NK/F (K×)]. Set Yi = Ŷi and Y = ⊕Ŷi. All that remains is to

show that J ⊂ Y .
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We adapt the proof of the Inclusion Lemma (1) to show that J ⊂ Y ,
by induction on the socle series Ji of J . We first show that Jpn−1 ⊂ Y ,
as follows. Consider Y and J as Fp[Hn−1]-modules. By the Fixed
Submodule Lemma (5), JHn−1 = [K×

n−1], and we have already shown
that [K×

n−1] = Y Hn−1 ⊂ Y , so JHn−1 ⊂ Y . Since JHn−1 is the kernel of

σpn−1 − 1 ≡ (σ − 1)pn−1
, JHn−1 = Jpn−1 . Hence Jpn−1 = [K×

n−1] ⊂ Y .

For the inductive step, assume that Ji ⊂ Y for all i < t for some
pn−1 < t ≤ pn, and let [γ] ∈ Jt \ Jt−1. Hence l(γ) = t. Therefore [γ] 6∈
[K×

n−1], and by the Second Fixed Elements are Norms Lemma (12), part

(a), there exists [χ] ∈ J such that [γ](σ−1)t−1
= [NK/F (χ)] ∈ Y G

n . Since
Yn is a free Fp[G]-module, there exists [χ′] ∈ Yn such that [NK/F (χ′)] =

[χ′](σ−1)pn
−1

= [χ](σ−1)l(χ)−1
. Set [γ′] = [χ′](σ−1)pn

−t ∈ Yn ⊂ Y . Then
l(γ/γ′) < t. By induction [γ/γ′] ∈ Y , and since [γ′] ∈ Y , we obtain
[γ] ∈ Y as well. ¤

4. Exceptional Elements

Assume that ξp ∈ F and, if p = 2, then either n > 1 or −1 ∈
NK/F (K×). Recall that in Proposition 4 in section 2 we proved that
Theorem 2 holds for extensions of degree p and in Proposition 5 we
proved that Theorem 2 holds in the case p = 2 and n = 2. Assume
then that Theorem 2 holds for extensions of degree ps for 1 ≤ s < n.

In the next lemma we assume that n ≥ 2 and, if p = 2, that n ≥ 3
as well. These conditions allow us to use Proposition 6, by which we
assume that we have a fixed submodule Ŷ = Ŷn ⊕ Ŷn−1 ⊕ · · · ⊕ Ŷ0 of J
with properties (1), (2) and (3) listed in Proposition 6.

Lemma 13. Suppose δ ∈ K× satisfies [NK/F (δ)]F 6= [1]F and pt + 2 ≤
l(δ) ≤ pt+1, for some t ∈ {0, 1, . . . , n − 2}. Then there exists δ′ ∈ K×

with [NK/F (δ′)]F 6= [1]F and l(δ′) < l(δ).

Proof. Let [β] = [δ](σ−1) and [γ] = [δ](σ−1)l(δ)−1
. Since l(β) < pt+1,

[β] ∈ JHt+1 , and since [β] ∈ Jσ−1, [NK/F (β)]F = [1]F . By the Proper
Subfield Lemma (9), we have [β] ∈ [K×

t+1].

By Proposition 6, [β] ∈ Ŷ Ht+1 . Moreover, pt + 1 ≤ l(β) < pt+1. Let

W = Ŷ Ht+1
n ⊕ Ŷ

Ht+1

n−1 ⊕ · · · ⊕ Ŷ
Ht+1

t+1

= Ŷ Ht+1
n ⊕ Ŷ

Ht+1

n−1 ⊕ · · · ⊕ Ŷ
Ht+1

t+2 ⊕ Ŷt+1.
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By Proposition 6 and the Submodule-Subfield Lemma (7), W is a direct
sum of cyclic Fp[G]-modules of length pt+1.

Let β′ be the component of β in W . Because pt + 1 ≤ l(β) and

(σ − 1)pt

is trivial on Ŷt ⊕ · · · ⊕ Ŷ0, we see that l(β) = l(β′) and also

[γ] = [δ](σ−1)l(δ)−1

= [β](σ−1)l(β)−1

= [β′](σ−1)l(β′)−1

.

Since W is a direct sum of cyclic Fp[G]-modules of length pt+1 and
contains [β′], of length strictly less than pt+1, [β′] lies in the image of
(σ − 1) on W . Hence there exists [α′] ∈ W such that [α′](σ−1) = [β′].
Therefore l(α′) = l(δ) and

[γ] = [δ](σ−1)l(δ)−1

= [α′](σ−1)l(δ)−1

.

Moreover, by Proposition 6, W ⊂ Ŷ Ht+1 = [K×
t+1] ⊂ [K×

n−1] and there-

fore [NK/F (α′)]F = [1]F . Now set δ′ = δ/α′. Then [δ′](σ−1)l(δ)−1
= [1] so

that l(δ′) < l(δ), and [NK/F (δ′)]F = [NK/F (δ)]F 6= [1]. ¤

Proposition 7. Suppose that ξp ∈ F and, if p = 2, that n > 1 or
−1 ∈ NK/F (K×). Then m < n and, for any exceptional element δ,
l(δ) = pm + 1. Moreover, this length is the minimal l(z) for all z with
[NK/F (z)]F 6= [1]F .

Observe that the proposition implies that for any exceptional element
δ, l(δ) < pn. (Indeed pm + 1 ≤ pn−1 + 1 and pn−1 + 1 ≤ pn unless
p = 2 and n = 1. If p = 2, n = 1, and −1 ∈ NK/F (K×), then
let −1 = NK/F (θ), where θ ∈ K×. Observe that δ =

√
aθ satisfies

[NK/F (δ)]F = [a]F and [δ](σ−1) = [1]. Hence l(δ) < 2.) By the Norm
Lemma (8), then [NK/F (δ)]F = [a]sF , and by definition of exceptional
element, s 6≡ 0 mod p. By choosing an appropriate power of δ, we have
that there exists an exceptional element δ with [NK/F (δ)]F = [a]F .

Proof. We first prove that m < n. Assume first that p > 2 or p = 2 and
n > 1. Consider δ = p

√
an−1. We observed in the proof of Proposition

2 that NK/F (δ) = a0 = a. Now δσ = p
√

aσ
n−1 for a suitable pth root

of unity. Because K/Kn−1 is Galois we see from Kummer theory that
aσ

n−1 = an−1k
p
n−1 for some kn−1 ∈ K×

n−1. Hence δσ−1 ∈ K×
n−1, and

therefore m ≤ n − 1, as required.

Now consider the case when p = 2, n = 1, and −1 = NK/F (θ) for
some θ ∈ K×. Then set δ =

√
aθ. As we observed above, [NK/F (δ)]F =

[a]F and [δ]σ−1 = [1], showing that m = −∞ < 1.
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Now let δ be an arbitrary exceptional element. Clearly [δ] 6= [1] since
[NK/F (δ)]F 6= [1]F ; hence l(δ) ≥ 1. If m = −∞, then [δ]σ−1 = [1] so
that l(δ) ≤ 1 and because of our convention p−∞ = 0 we are done.

Hence assume that m ≥ 0. Then set [β] := [δ]σ−1 ∈ [K×
m]. Also

[NKm/F (β)] = [β](σ−1)pm
−1 ∈ [F×].

Therefore l(δ) ≤ 1 + (pm − 1) + 1 = pm + 1.

Now suppose [z] ∈ J satisfies [NK/F (z)]F 6= [1]F and l(z) is minimal
among all such z. Since [NK/F (δ)]F 6= [1]F and δ above has l(δ) ≤ pm +
1, we see that l(z) ≤ pm + 1. Now suppose, contrary to our statement,
that l(z) < pm + 1. If m = 0 then l(z) = 1 and hence [z](σ−1) ∈ [K×

−∞],
contradicting the minimality of m. Otherwise m ≥ 1 and repeated
application of Lemma 13 yields δ′ ∈ K× such that [NK/F (δ′)]F 6= [1]F
and l(δ′) ≤ pm−1 + 1. (Observe that we can indeed apply Lemma 13,
since l(δ′) ≤ l(z) ≤ pm ≤ p(n−2)+1, where the last inequality holds since
m < n.)

Let [β′] = [δ′](σ−1). Then l(β′) ≤ pm−1 so that [β′] ∈ JHm−1 , and since
[β′] is in the image of (σ − 1), [NK/F (β′)]F = [1]F . By the Proper Sub-
field Lemma (9), we see that [β′] ∈ [K×

m−1]. Hence [NK/F (δ′)]F 6= [1]F ,
and [δ′]σ−1 ∈ [K×

m−1], contradicting the minimality of m. Therefore
l(δ) = pm + 1. ¤

Now assume that ξp ∈ F and, if p = 2, then n ≥ 2.

Proposition 8. If δ is an exceptional element of K/F , then δ is an
exceptional element of K/Ki for 0 ≤ i < n if p > 2 and for 0 ≤ i < n−1
if p = 2.

Proof. Since K0 = F , the proposition is clear for i = 0. We therefore
assume that i > 0.

If δ is an exceptional element of K/F , then Proposition 7 tells us
that l(δ) = pm+1 for m < n. If p > 2, then for each i ∈ {0, 1, . . . , n−1}
we have

l(δ) = pm + 1 ≤ pn−1 + 1 ≤ pn − pn−1 ≤ pn − pi.

If p = 2 and n ≥ 2, then similarly for each i ∈ {0, 1, . . . , n−2} we have

l(δ) = 2m + 1 ≤ 2n−1 + 1 ≤ 2n − 2n−2 ≤ 2n − 2i.
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Since the Norm Lemma (8) gives [NK/F (δ)]F 6= [1]F if and only if
[NK/Ki

(δ)]Ki
6= [1]Ki

, it follows [NK/Ki
(δ)]Ki

6= [1]Ki
.

Let τ = σpi

. Then (τ − 1) ≡ (σ − 1)pi

on J , and so [δ](σ−1) ∈
[K×

m] implies that [δ](τ−1) ∈ [K×
m]. Now we define intermediate fields

{K ′
−∞, K ′

0, . . . , K
′
n−i} of K/Ki by K ′

j := Kj+i.

First consider the case m < i. We have that l(δ) = pm + 1, and so

then l(δ) ≤ pi. Hence [δ]τ−1 = [δ](σ−1)pi

= [1]. Since we have shown
that δ satisfies [NK/Ki

(δ)]Ki
6= [1]Ki

, δ is an exceptional element of
K/Ki with i(K/Ki) = −∞.

Now consider the case m ≥ i. In this case we have shown that δ
satisfies [NK/Ki

(δ)]Ki
6= [1]Ki

and [δ]τ−1 ∈ [K
′×
m−i]. All that remains

is to show that no δ′ ∈ K× exists with [NK/Ki
(δ′)]Ki

6= [1]Ki
and

[δ′]τ−1 ∈ [K
′×
j ] for j < m − i. Suppose such a δ′ exists. We may

assume that this δ′ has a minimal length among all elements z with
[NK/Ki

(z)]Ki
6= [1]Ki

. By the remark made after Proposition 7 we see
that we may further assume that [NK/Ki

(δ′)]Ki
= [ai]Ki

. Therefore
[NK/F (δ′)]F = [NKi/F (ai)]F = [a]F 6= [1]F .

If j = −∞, then since (τ −1) ≡ (σ−1)pi

, we obtain l(δ′) ≤ pi ≤ pm.
On the other hand, if j ≥ 0 then m > i. Moreover, since (τ − 1) ≡
(σ − 1)pi

and [NK′

j/F (γ)] = [γ](σ−1)pi+j
−1

for [γ] ∈ [K
′×
j ], we have

l(δ′) ≤ pi + (pi+j − 1) + 1 ≤ pm.

In either case, this violates the condition of Proposition 7, since then
l(δ) is not minimal among lengths l(δ′) for [NK/F (δ′)]F 6= [1]F . ¤

5. Proof of Theorem 2

We first adapt the proof of Theorem 1 to prove the following analogue
for the case of Theorem 2. We assume here that Theorem 2 holds for
n − 1 and, if p = 2, then n > 2.

Proposition 9. Let ξp ∈ F , n ≥ 2, and δ ∈ K× be any exceptional
element of K/F . Then the Fp[G]-module J decomposes as

J = X + Ŷ , Ŷ = Ŷn ⊕ Ŷn−1 ⊕ · · · ⊕ Ŷ0,

where
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(1) X is the cyclic Fp[G]-module generated by [δ];

(2) Ŷi is a direct sum of cyclic Fp[G]-modules of dimension pi with

[K×
i ] = Ŷ Hi , 0 ≤ i < n;

(3) Ŷ G
n = [NK/F (K×)].

Proof. By Proposition 6, there exists an Fp[G]-submodule Ŷ = ⊕Ŷi ⊂
J , where each Ŷi is a direct sum of cyclic Fp[G]-modules of dimension

pi, [K×
i ] = Ŷ Hi , 0 ≤ i < n, and Ŷ G

n = [NK/F (K×)]. Let X be defined

as in the statement of the Theorem and set Ĵ = X + Ŷ . We have that
Ĵ is an Fp[G]-submodule of J .

Assume first that p > 2. Consider Ĵ and J as Fp[Hn−1]-modules.
By Proposition 8, δ is exceptional for K/Kn−1 and so by Proposition 4
(which is just Theorem 2 in case n = 1), J decomposes as X̄ ⊕ Ȳ1 ⊕ Ȳ0,
where X̄ ⊂ X is the Fp[Hn−1]-submodule generated by [δ], Ȳ0 ⊂ JHn−1 ,

and Ȳ
Hn−1

1 + Ȳ0 ⊂ [K×
n−1] (by Theorem 2, case n = 1, part (3)). Hence

JHn−1 ⊂ X + [K×
n−1] ⊂ Ĵ . (Here we use the fact that X̄ ⊂ X and

Ȳ
Hn−1

0 = Ȳ0.)

Now suppose that [Γ] ∈ J \ (X + [K×
n−1]). Our goal is to show that

[Γ] = [θ] + [γ] with [θ] ∈ X and [γ](σ−1)l(γ)−1 ∈ Ŷ G
n . Then, with this

result in hand, we will adapt the proof of the Inclusion Lemma (1) to

show that J ⊂ Ĵ .

Write lH(Γ) for the length of the cyclic Fp[Hn−1]-submodule of J
generated by Γ. Since [Γ] 6∈ JHn−1 , we find lH(Γ) ≥ 2.

If lH(Γ) = 2 and Γ is exceptional, we find γ and θ as follows. By
Proposition 8, δ and Γ are exceptional elements for K/Kn−1. Since
[NK/Kn−1(Γ)]Kn−1 6= [1]Kn−1 , we see that for a suitable power s ∈ Z,
[NK/Kn−1(Γ)]Kn−1 = [NK/Kn−1(δ)]

s
Kn−1

. Set θ = δs and γ = Γ/θ. Then
[NK/Kn−1(γ)]Kn−1 = [1]Kn−1 and so [NK/F (γ)]F = [1]F . Moreover,
l(γ) > pn−1 since otherwise [γ] ∈ JHn−1 and by the Exact Sequence
Lemma (6) we would have [γ] ∈ [K×

n−1], contradicting our assumption
on Γ. Thus we have l(γ), l(Γ) > pn−1. Also since the maximum length
of the elements in X is at most pn−1 + 1 by Proposition 7, we have
l(θ) ≤ pn−1 + 1. Now if l(Γ) > l(θ) then l(γ) = l(Γ/θ) = l(Γ), and if
l(Γ) = l(θ) then l(Γ) = l(θ) = pn−1 + 1 and pn−1 < l(γ) ≤ pn−1 + 1,
showing that in this case as well l(Γ) = l(γ). Thus in all cases
l(Γ) = l(γ) and therefore also lH(γ) = lH(Γ).
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Otherwise, let θ = 1 and γ = Γ. Clearly l(γ) = l(Γ) and lH(γ) =
lH(Γ).

In either case, our choice of γ is made in order to make sure that we
have either lH(γ) ≥ 3 or both lH(γ) = 2 and [NK/F (γ)]F = [1]F . These
are the necessary hypotheses to apply the Second Fixed Elements are
Norms Lemma (12), part (a), by which we obtain that there exists

[χ] ∈ J such that [γ](σ−1)l(γ)−1
= [NK/F (χ)] ∈ Ŷn. Hence we have

shown that for all [Γ] ∈ J \ (X + [K×
n−1]), we have that [Γ] = [θ] + [γ]

with [θ] ∈ X, [γ](σ−1)l(γ)−1 ∈ Ŷ G
n .

Now we adapt the proof of the Inclusion Lemma (1) to show that

J ⊂ Ĵ , by induction on the socle series Ji of J . Since σpn−1 − 1 ≡
(σ − 1)pn−1

, JHn−1 = Jpn−1 . Hence Jpn−1 ⊂ Ĵ and our base case for the
induction is Jpn−1 .

For the inductive step, assume that Ji ⊂ Ĵ for all i < t for some
pn−1 < t ≤ pn, and let [Γ] ∈ Jt\Jt−1. Then l(Γ) = t. If [Γ] ∈ X+[K×

n−1],

we have already shown that [Γ] ∈ Ĵ . Therefore we assume that this is
not the case.

By our result above, we may write [Γ] = [θ] + [γ] with [θ] ∈ X and

[γ](σ−1)l(γ)−1

= [NK/F (χ)] ∈ Ŷ G
n

for some [χ] ∈ J . Moreover, as we have shown, we may assume that

l(γ) = l(Γ). To show that [Γ] ∈ Ĵ , it is enough to show that [γ] ∈
Ĵ . Since Ŷn is a free Fp[G]-module, there exists [χ′] ∈ Ŷn such that

[NK/F (χ′)] = [χ′](σ−1)pn
−1

= [χ](σ−1)l(χ)−1
. Set [γ′] = [χ′](σ−1)pn

−t ∈
Ŷn ⊂ Ĵ . Then l(γ/γ′) < t. By induction [γ/γ′] ∈ Ĵ , and since [γ′] ∈ Ĵ ,

[γ] ∈ Ĵ as well. Hence our induction is complete.

The case p = 2 follows similarly with the following modifications.
Replace H := Hn−1 with H := Hn−2 and Kn−1 with Kn−2. Thus we
consider Ĵ and J as F2[H]-modules. By Proposition 5 (our theorem in
the base case p = 2 and n = 2) and by Proposition 8 we may write

J = X̄ ⊕ Ȳ0 ⊕ Ȳ1 ⊕ Ȳ2,

where X̄ ⊂ X is the cyclic F2[H]-module generated by [δ] and for
i = 0, 1, 2, the summand Ȳi is a direct sum of cyclic F2[H]-modules of
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dimension 2i. By Proposition 5 we also have

JHn−1 ⊂ X̄Hn−1 ⊕ (Ȳ0 ⊕ Ȳ1 ⊕ Ȳ2)
Hn−1

⊂ X ⊕ [K×
n−1] ⊂ Ĵ .

Now suppose that [Γ] ∈ J \ (X + [K×
n−1]). Again we want to show

that [Γ] = [θ] + [γ] with [θ] ∈ X and [γ](σ−1)l(γ)−1 ∈ Ŷ G
n . We have

[Γ] /∈ JHn−1 and so lH(Γ) ≥ 3.

If lH(Γ) = 3 then

[NK/Kn−2(Γ)]Kn−2 = [an−2]
s
Kn−2

for some s ∈ Z. Set θ = δs and γ = Γ/θ. Then

[NK/Kn−2(γ)]Kn−2 = [1]Kn−2 ,

whence [NK/F (γ)]F = [1]F . Also [γ] /∈ X + [K×
n−1] and therefore l(γ) >

2n−1. On the other hand, l(θ) ≤ 2n−1 + 1 by Proposition 7. Hence we
see again that l(γ) = l(Γ) and in particular lH(γ) ≥ 3.

Otherwise, if lH(Γ) = 4 then let θ = 1 and γ = Γ. Clearly l(γ) = l(Γ)
and lH(γ) = lH(Γ).

In either case, we see from the Second Fixed Elements are Norms
Lemma (12), part (b), that there exists [χ] ∈ J such that [NK/F (χ)] =

[γ](σ−1)l(γ)−1
.

From now on the proof that Ĵ = J in the case p = 2 is identical with
the proof above for the case p > 2. ¤

Proof of Theorem 2. The case n = 1 is Proposition 4. The cases p = 2
and n = 2 were established in Proposition 5. We proceed by induction
on n. Assume that the Theorem holds for n − 1. By Proposition 9,
we write J = X + Ŷ , Ŷ = ⊕Ŷi, where Ŷi is a direct sum of cyclic
Fp[G]-modules of dimension pi and for i < n, [K×

i ] = Ŷ Hi .

We define the Yi and Y as follows. When m = −∞, set Yi = Ŷi

and Y =
∑

Yi. Now suppose that m ≥ 0, and let [β] ∈ [K×
m] satisfy

[β] = [δ](σ−1). By Proposition 7, we see that l(β) = pm and so the cyclic
Fp[G]-submodule Mβ generated by [β] is a free Fp[G/Hm]-submodule.

Moreover, we have already established that [K×
m] ⊂ Ŷ , so Mβ ⊂ Ŷ .
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Now let [γ] = [β](σ−1)pm
−1 ∈ Ŷ G. Suppose that [γ] ∈ W := Ŷm+1 +

· · · + Ŷn. Then since WG is in the image of (σ − 1)pm+1 on W , there

exists [α] ∈ W such that [α](σ−1)pm+1
= [γ]. Hence [β′] = [α](σ−1), being

in the image of (σ − 1), satisfies [NK/F (β′)]F = [1]F , while l(β′) =

pm + 1 = l(δ) and [β′](σ−1)pm

= [δ](σ−1)pm

. Hence [NK/F (δ/β′)]F 6= [1]F
and l(δ/β′) ≤ pm. But this contradicts the minimality of l(δ) among
lengths l(z) with [NK/F (z)]F 6= [1]F , a contradiction. Hence [γ] 6∈ W .

However, since [γ] is in the image of (σ−1)pm−1 on Ŷ , [γ] ∈ Ŷm⊕· · ·⊕
Ŷn. Let [γ′] be the component of [γ] in Ŷm. By the previous paragraph,

[γ′] 6= [1]. Now since [γ′] lies in Ŷ G
m , we have that [γ′] is in the image

of (σ − 1)pm−1 on Ŷm. Now let [β](m) ∈ Ŷm be a projection of [β] into

Ym. (Since Mβ ⊂ Ŷ this projection is well defined.) Moreover since

[γ′] = [β]
(σ−1)pm

−1

(m) 6= [1] we see that [β](m) generates a cyclic Fp[G]-

submodule M[β](m)
of Ŷm which is a free Fp[G/Hm]-submodule of Ŷm.

By the Free Complement Lemma (3), there exists a free Fp[G/Hm]-

complement Ym of M[β](m)
in Ŷm. Having defined Ym, we set all other

Yi = Ŷi, i 6= m, and Y =
∑

Yi.

Since the Ŷi are all independent, the Yi are independent. Assume now
that m > 0. Then X +

∑

Yi = X +
∑

Ŷi, because clearly X +
∑

Yi ⊂
X +

∑

Ŷi, and Ŷm ⊂ X +
∑

Yi follows from our construction of Ym.

Hence we have X + Y = X + Ŷ = J . Because in the case m = −∞ we
set Yi = Ŷi for all i ∈ {0, 1, . . . , n} we see that J = X + Ŷ = X + Y as
well. To show the sum is direct, consider first the case m = −∞. Here
XG = X, and by the Fixed Submodule Lemma (5) XG ∩ Y G is trivial.
Hence the Exclusion Lemma (2) gives X and Y are independent. When
m ≥ 0, XG is generated by [γ], which by construction satisfies [γ] 6∈
Y G. Again using the Exclusion Lemma (2), we have X and Y are
independent.

We now show that X(σ−1) ⊕ Y Hi = Ŷ Hi for i ≥ m. (Here X(σ−1)

means the image of X under (σ − 1).) First observe that since X and
Y are independent we indeed have X(σ−1) + Y Hi = X(σ−1) ⊕ Y Hi . If
m = −∞ then X(σ−1) = {0} and the equality X(σ−1) ⊕ Y Hi = Ŷ Hi is a
trivial statement. Assume now that m ≥ 0. We have

X(σ−1) ⊂ [K×
m] ⊂ [K×

i ] ⊂ Ŷ Hi .

Hence
X(σ−1) ⊕ Y Hi ⊂ Ŷ Hi .
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To obtain the reverse inclusion, observe that Yi = Ŷi, i 6= m, and
Ŷm ⊂ X(σ−1) + Ym by our construction of Ym. Finally since Ŷ Hi

m = Ŷm

and Y Hi
m = Ym we see that also Ŷ Hi ⊂ X(σ−1) ⊕ Y Hi . Thus we indeed

have the desired equality

X(σ−1) ⊕ Y Hi = Ŷ Hi = [K×
i ],

for each i ∈ {m,m+1, . . . , n−1} if m ≥ 0 and for each i ∈ {0, 1, . . . , n−
1} if m = −∞. For i < m, observe that since X is cyclic of length

pm + 1 and (σpi − 1) ≡ (σ − 1)pi

on J ,

XHi = X(σ−1)(σpi
−1)pm−i

−1

.

Then, since [K×
i ] = Ŷ Hi = (X(σ−1))Hi ⊕ Y Hi for all i ≤ m, we are

done. ¤

6. Proofs of Corollaries

Proof of Corollary 1. Recall that if M is a cyclic Fp[G]-module of di-
mension l, then the l+1 submodules of M are cyclic, given by (σ−1)iM ,
i = 0, 1, . . . , l, and have annihilators 〈(σ − 1)l−i〉 ⊂ Fp[G], respectively.

By Theorem 1, [K×
i ] = JHi = ⊕Y Hi

i , and Yj is a direct sum of cyclic
Fp[G]-modules of dimension pj.

Now Hi = 〈σpi〉 and (σpi − 1) ≡ (σ − 1)pi

on J . When j < i,
observe that Yj is a direct sum of cyclic Fp[G]-modules of dimension

pj < pi, and so Yj = Y Hi

j . When j ≥ i, the submodule Y Hi

j is given by

Y
(σ−1)pj

−pi

j .

On [K×
i ], NKi/F ≡ (σ − 1)pi−1. For j < i, since Y Hi

j is a direct sum

of cyclic Fp[G]-modules of dimension pj < pi, NKi/F annihilates Y Hi

j .

For j ≥ i, Y Hi

j is a direct sum of cyclic Fp[G]-modules of dimension pi

and so applying NKi/F to Y Hi

j yields Y
(σ−1)pj

−1

j = Y G
j . Hence we have

the first statement.

Now a cyclic Fp[G]-module of dimension pi is a free Fp[G/Hi]-module
on one generator, and for direct sums M of such modules,

rankFp[G/Hi] M = dimFp
MG.

Observe that Yj, j < n, is a direct sum of cyclic Fp[G]-modules of
dimension pj < pn. Applying NK/F to J , then, we see that Y G

n =
[NK/F (K×)]. Moreover, with a descending induction we see that Y G

i is
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a complement of [NKi+1/F (K×
i+1)] in [NKi/F (K×

i )]. Hence we have the
second statement. ¤

Proof of Corollary 2. We begin as in the previous proof. If m = −∞, in
fact, then the previous proof carries over without modification. Hence
we assume that m ≥ 0.

By Theorem 2, [K×
i ] = X ′ ⊕ Y Hi

i , where X ′ is a cyclic Fp[G]-module
of dimension pi if i ≤ m and of dimension pm if i ≥ m. As in the
previous proof, Y Hi

j = Yj for j < i and Y Hi

j for j ≥ i is a direct sum

of cyclic Fp[G]-modules of dimension pi. Similarly, NKi/F annihilates

Y Hi

j , j < i, and yields Y G
j when j ≥ i. Applying NKi/F annihilates

X ′ when m < i and otherwise yields (X ′)G = XG. Hence we have the
statements locating [NKi/F (K×

i )].

For the statements establishing ranks, we proceed as in the previous
proof. Observe that since X∩[K×

m] = Xσ−1 is a cyclic Fp[G]-submodule
of dimension pm, we obtain XG ⊂ [NKm/F (K×

m)]. If m 6= n − 1, then
since X ∩ [K×

m+1] = Xσ−1 is a cyclic Fp[G]-submodule of dimension
pm < pm+1, we see that XG ∩ [NKm+1/F (K×

m+1)] = {0}. If m = n − 1
then X ∩ [K×

m+1] = X is a cyclic Fp[G]-submodule of dimension pm +1,
which is annihilated by NKm+1/F unless pm + 1 = pm+1 = pn—that is,
p = 2, m = 0, n = 1. But this latter case violates the hypothesis of
Theorem 2. Hence XG ⊂ [NKm/F (K×

m)] \ [NKm+1/F (K×
m+1)] under our

hypotheses.

Again, since Yj, j < n, and X are direct sums of cyclic Fp[G]-
submodules of dimension less than pn, applying NK/F to J yields
Y G

n = [NK/F (K×)]. A descending induction yields that Y G
i , m < i < n,

is a complement of [NKi+1/F (K×
i+1)] in [NKi/F (K×

i )]. But Y G
m is a

complement of [NKm+1/F (K×
m+1)] + XG in [NKm/F (K×

m)]. For i < m,
then as before Y G

i is a complement of [NKi+1/F (K×
i+1)] = (X + Yi+1 +

· · ·+Yn)Hi in [NKi/F (K×
i )]. Hence we have the statements establishing

rankFp[G/Hi] Yi. ¤

7. Proof of Theorem 3

We shall first prove the first equality in Theorem 3 which says that

m = i(K/F ) = min{s | ξp ∈ NK/F (K×)NKn−1F (K×
s )}.
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In order to do so we shall calculate ( p
√

NK/F (α))σ−1, with a suitable
α ∈ K×, in two ways. Then comparing our results we shall see that we
are indeed dealing with the equation

Ei : ξp = NK/F (β)NKn−1/F (γ), β ∈ K×, γ ∈ K×
i , 0 ≤ i < n

and that our number m = i(K/F ) depends upon the smallest i ∈
{−∞, 0, 1, . . . , n − 1} such that Ei is solvable for a suitable β ∈ K×

and γ ∈ K×
i . The following lemma contains the key expression for

(

p
√

NK/F (α)
)σ−1

.

Lemma 14. Suppose that ασ−1 = γkp with γ ∈ K×
i , 0 ≤ i < n, and

k ∈ K×. Suppose additionally that if p = 2 then n > 1.

Then
(

p

√

NK/F (α)
)σ−1

= NK/F (k) p

√

NK/F (γ),

where
p

√

NK/F (γ) =
(

NKi/F (γ)
)pn−i−1

.

Proof. First we claim that

NK/F (α) = (kp)Sαpn

γS,

where
S := (pn − 1) + (pn − 2)σ + · · · + σpn−2 ∈ Z[G].

Observe that

α = α

ασ = kpαγ

ασ2

= ((kp)σkp) α (γγσ)

ασ3

=
(

(kp)σ2

(kp)σkp
)

α
(

γγσγσ2
)

. . .

ασpn
−1

=

(

pn−2
∏

j=0

(kp)σj

)

α

(

pn−2
∏

j=0

γσj

)

.

Our result is then the product of the equations.

Now [α](σ−1) = [γ], and because [γ] ∈ [K×
i ] and [NKi/F (β)] =

[β](σ−1)pi
−1

for β ∈ K×
i , we obtain [γ](σ−1)pi

= [1]. Hence [α](σ−1)pi+1
=

[1]. Now pi + 1 < pn unless p = 2 and n = 1, a case we have excluded.
Hence l(α) < pn, whence [NK/F (α)] = [1], and so NK/F (α) ∈ K×p.
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Therefore γS ∈ K×p as well, and we may choose a pth root p
√

γS ∈ K×.
We then choose

p

√

NK/F (α) = kSαpn−1 p
√

γS.

(Because ( p
√

NK/F (α))σ−1 does not depend upon the choice of a pth
root of NK/F (α) we see that we are free to make this choice.)

Our next claim is that

(

p
√

γS
)σ−1

=
(NKi/F (γ))pn−i−1

γpn−1 .

Let L be the Galois closure of K( p
√

γ) over F . Since [γ] lies in the
image of σ−1 on J , we have [NK/F (γ)]F = [1]F . Let σ̂ be any pullback
of σ to Gal(L/F ). Then

p
√

γ(σ̂pn
−1) = p

√
γ(1+σ̂+···+σ̂pn

−1)(σ̂−1) =
(

p

√

NK/F (γ)
)(σ̂−1)

= 1.

(Observe that the equation is independent of the choice of the pth root
of NK/F (γ).) Hence σ̂pn

leaves p
√

γ fixed. Now the field L is generated
over K by all elements p

√
γ̃, where γ̃ runs through all conjugate elements

γτ for τ ∈ G = Gal(K/F ). Therefore [NK/F (γ̃)]F = [1]F for each such
γ̃ and the same argument as above shows that σ̂pn

leaves each p
√

γ̃ fixed.
Since σ̂ restricted to K is σ we see that σ̂pn

leaves every element of K
fixed. Hence σ̂pn

leaves every element of L fixed as well. Therefore
σ̂pn

= 1 ∈ Gal(L/F ).

Set Ŝ = (pn − 1) + (pn − 2)σ̂ + · · ·+ σ̂pn−2, N̂ = 1 + σ̂ + · · ·+ σ̂pn−1,

and note that N̂ = N̂1N̂2, where N̂1 = 1 + σ̂pi

+ σ̂2pi

+ · · ·+ σ̂(pn−i−1)pi

and N̂2 = 1 + σ̂ + · · · + σ̂pi−1. Further observe that N̂1 ≡ NK/Ki
on

K×, N̂2 ≡ NKi/F on Ki, and (σ̂ − 1)Ŝ = N̂ − pn.

We calculate ( p
√

γS)σ−1 in two cases. First assume that γ ∈ K×
0 .

Then γS = γpn(pn−1)/2 and since in the case p = 2 we assume that
n ≥ 2 we see that γS is a pth power of an element in K×

0 and therefore

( p
√

γS)σ−1 = 1 confirming our claim in this case. Next assume that
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i > 0. Then we have

(

p
√

γS
)σ−1

=
(

p
√

γŜ
)σ−1

=
( p
√

γ)N̂

( p
√

γ)pn =

(

p
√

γN̂1

)N̂2

γpn−1

=

(

ξc
pγ

pn−i−1
)N̂2

γpn−1 =
(NKi/F (γ))pn−i−1

γpn−1 ,

where ξc
p is a suitable pth root of 1.

Returning to p
√

NK/F (α), we may write
(

p

√

NK/F (α)
)σ−1

= kS(σ−1)(αpn−1

)σ−1
(

p
√

γS
)σ−1

= kN−pn

(ασ−1)pn−1
(

p
√

γS
)σ−1

=
NK/F (k)

kpn (γkp)pn−1 (NKi/F (γ))pn−i−1

γpn−1

= NK/F (k)(NKi/F (γ))pn−i−1

.

¤

Proof of Theorem 3. We have three equalities to establish, and we be-
gin by showing m = min

{

s | ξp ∈ NK/F (K×)NKn−1/F (K×
s )

}

.

If m = −∞ then l(δ) = 1 for δ an exceptional element. Hence
[δ] ∈ JG and [NK/F (δ)]F 6= [1]F . However, for all f ∈ F×, we have
[NK/F (f)]F = [1]F . Hence [δ] ∈ JG \ [F×]. Therefore, by the Fixed
Submodule Lemma (5), ξp ∈ NK/F (K×). Going the other way, if ξp ∈
NK/F (K×), the Fixed Submodule Lemma (5) tells us that there exists
an exceptional element in JG and so m = −∞. Hence the Theorem
holds when m = −∞.

Assume then that m ≥ 0. Consider α ∈ K× with l(α) < pn. By the
Norm Lemma (8), [NK/F (α)]F ∈ 〈[a]F 〉. It follows that [NK/F (α)]F 6=
[1]F if and only if p

√

NK/F (α)
σ−1

is a nontrivial pth root of unity, say
ξt.

Now assume that [NK/F (α)]F 6= [1]F and [α](σ−1) = [γ], γ ∈ K×
i ,

i < n. Then by Lemma 14, ξt
p = NK/F (k)(NKi/F (γ))pn−i−1

, and, by
taking an appropriate power of ξt

p, we have that

ξp ∈ NK/F (K×)(NKi/F (K×
i ))pn−i−1

.
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Since there exists an exceptional element α with [α](σ−1) ∈ [K×
m],

observe that NKn−1/F (γ) = (NKi/F (γ))pn−i−1
to conclude that ξp ∈

NK/F (K×)NKn−1/F (K×
m). Hence the minimum s is less than or equal

to m.

Going the other way, assume that ξp = NK/F (k)NKs/F (γ)pn−s−1
for

k ∈ K and γ ∈ K×
s , s < n. Then 1 = NK/F (kpγ) and so by Hilbert 90

there exists δ ∈ K× with δσ−1 = γkp. Since [γ] ∈ [K×
s ] and σps − 1 ≡

(σ − 1)ps

annihilates [K×
s ], we have l(δ) ≤ ps + 1 < pn. By Lemma 14,

p
√

NK/F (δ)
(σ−1)

= NK/F (k)(NKs/F (γ))pn−s−1
= ξp. Since l(δ) < pn and

p
√

NK/F (δ)
(σ−1)

is a nontrivial pth root of unity, we use the equations
above to deduce that [NK/F (δ)]F 6= [1]F . Therefore by the definition of
exceptionality, m ≤ s.

We now establish the remaining two equalities. For convenience, we
set

T :=
{

t | ∃[δ] ∈ JHt∔1 , [NK/Kt∔1
(δ)]Kt∔1

6= [1]Kt∔1

}

and

S :=
{

s | ξp ∈ NK/Ks∔1
(K×)

}

.

Observe that n − 1 ∈ T because {0} 6= X ⊂ J by Theorem 2 and
NK/Kn

(k) = k for each k ∈ K×, and n − 1 ∈ S since ξp ∈ F× ⊂ K× =
NK/Kn

(K×). Hence the minima are well-defined. It remains to show
that m = min T = min S.

To see that m = min T , consider t ∈ T with t ≤ n−2 such that there
exists [z] ∈ JHt∔1 with [NK/Kt∔1

(z)]Kt∔1
6= [1]Kt∔1

. The Norm Lemma
(8) gives that [NK/F (z)]F 6= [1]F if and only if [NK/Kt∔1

(z)]Kt∔1
6=

[1]Kt∔1
, except possibly if l(z) > pn − pt∔1. But this latter case occurs

only if t = n−1, since otherwise [z] ∈ JHn−1 and so l(z) ≤ pn−1 ≤ pn−
pt∔1. Now for δ an exceptional element of K/F , we have l(δ) = pm+1 ≤
l(z), by Proposition 7, and hence [z] ∈ JHt∔1 implies l(δ) = pm + 1 ≤
l(z) ≤ pt∔1. Hence m ≤ t. In the case t = n − 1, again Proposition 7
gives m < n and hence m ≤ t. We conclude that m ≤ min T .

For the other direction, observe that for δ an exceptional element of
K/F , then l(δ) = pm + 1 and therefore we have [δ] ∈ JHm∔1 . Further,
by the Norm Lemma (8), [NK/Km∔1

(δ)]Km∔1
6= [1]Km∔1

, except possibly
if m = n − 1. (Here we have used

pm + 1 ≤ pn−1 ≤ pn − pn−1 ≤ pn − pm∔1



46 JÁN MINÁČ, ANDREW SCHULTZ, AND JOHN SWALLOW

whenever m ≤ n − 2.) When m = n − 1, then clearly m ≥ min T .
Otherwise m ∈ T and we deduce that m ≥ min T . We conclude that
m = min T .

Finally, we establish that min T = min S. Let t ∈ T with t ≤ n − 2,
and let z satisfy [z] ∈ JHt∔1 and [NK/Kt∔1

(z)]Kt∔1
6= [1]Kt∔1

. From

the Fixed Submodule Lemma (5), part (2), we obtain z(σpt∔1
−1) = λp

with NK/Kt∔1
(λ) = ξν

p for some ν ∈ Z not divisible by p. Choosing an
appropriate power of z, we may assume ν = 1. Hence t ∈ S. Since
n − 1 ∈ T ∩ S, we have T ⊂ S.

Conversely, suppose s ∈ S and s ≤ n − 2 satisfies ξp ∈ NK/Ks∔1
(λ)

for λ ∈ K×. We have 1 = NK/Ks∔1
(λp), and by Hilbert 90 we see that

there exists δ ∈ K× such that δσps∔1
−1 = λp. Hence [δ] ∈ JHs∔1 , and

again using the Fixed Submodule Lemma (5) and its proof we see that
[NK/Ks∔1

(δ)]Ks∔1
6= [1]Ks∔1

. Hence s ∈ T . Since n− 1 ∈ T ∩S, we have
S ⊂ T . ¤
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